Quantum Mechanics and Atomic Physics Lecture 7: Potential Barriers

http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh

Last Time

We covered the finite potential well and looked at the graphical form of the quantization of energy states, which are a function of

$$\xi = k_2 L = L \sqrt{\frac{2mE}{\hbar^2}}$$

• We found that there are even parity and odd parity solutions.

Number of bound states in a finite potential well

Number of bound states Cont'd

of Bound states = N If $0 \leq K \leq \frac{\pi}{2} \leq 0 \leq \frac{2K}{2} \leq 1 \geq N = 1$ $\frac{\pi}{2} \leq K < \pi (\leq) < \frac{2K}{\pi} < 2) \Rightarrow N = 2$ $\pi \left\{ K \left\{ \frac{3}{2} \pi \left(\frac{k}{2} \right\} \right\} \right\} = 3$ $N(K) = \left[+ \left[\frac{2K}{\tau c} \right] \right]$ largest integer loss than or equal to 2K

Example: CCD

- Finite potential wells are used in everyday devices!
 - Digital cameras: two-dimensional grid of potential wells
 - This is called a charge-coupled-device or CCD
 - Each well can be thought of as a "pixel" or a picture element
- Example: We have a camera with "9micron pixels"; this means each potential well is 9 by 9microns in size (1micron = 10⁻⁶m). Let's assume it can hold 60,000 electrons before becoming full (each energy level can hold two electrons of opposite spin). If we assume that the pixels are one-dimensional finite square wells, what must be their depth V₀?

Number of eigenvalues
$$N = 30,000$$

$$N = 1 + \frac{2K}{\pi} \approx \frac{2K}{\pi}$$

$$=) K = \frac{\pi}{2} N = \sqrt{3^{2} + \Lambda^{2}} = \sqrt{\frac{2mV_{*}L^{2}}{L^{2}}}$$

$$\left(\frac{\pi}{2}N\right)^{2} = \frac{2mV_{*}L^{2}}{L^{2}}$$

$$V_{0} = \frac{(N\pi\kappa)^{2}}{8mL^{2}} ; L^{2} = \frac{9microns}{2} = 4.5microns$$

$$= \frac{((30,000)\pi \cdot 1.055\times10^{-34}J.s)^{2}}{8(9.11\times10^{-31}kg)((4.5\times10^{-6}m)^{2})} = 6.7\times10^{-19}J$$

$$\approx 4.2eV$$

Which is a device that can be easily powered with batteries!

V

Example 2

- Do the previous CCD camera problem, using the infinite well formula we found earlier, but simply using the approximate criterion that E_N < V₀.
 - Answer: Your answer should be identical to that of the previous example; be careful on the definition of "L".

Sketching Wavefunctions

Continued

Continued

Number of nodes excluding the boundaries is equal to "n-1", with ground state corresponding to n=1.

Example

Potential Barriers

- A potential barrier can be thought of as an "inside-out" potential well.
- The possibility of finding the particle in region (3) is called *tunneling*.

A mass m has speed v₀. How high up the frictionless hill can it go?

$$\frac{1}{2}mv_0^2 + mgh =) h = \frac{v_0^2}{2g}$$

- If h is less than the height of the hill, the block can't get over the hill.
- But if there is a tunnel at height < h, the block can get through.
- In QM it goes through anyway!

Barrier Potential

Regions (1) and (3): V=0 for x<0 and x>L
Region (2): V=V₀ for 0<x<L

V₀ is the height of the barrier
L is the width of the barrier

Barrier Potential: E<V₀ ■ Case I: E<V₀

In regions
$$(\hat{C}\hat{c}, \hat{C})$$
:
 $-\frac{1^{2}}{2m} \frac{d^{2}\psi}{dx^{2}} - E\psi = 0$

$$\psi_{3} = A_{0}e^{i\chi_{1}\chi} + Ae^{-i\chi_{1}\chi}$$

$$\psi_{3} = De^{i\chi_{1}\chi} + Fe^{-i\chi_{1}\chi}$$

If particle gets into region (3) it must Keep going right (nothing to reflect it). So F=0.

$$u_{1}^{2}h_{1}=\sqrt{\frac{2mE}{h^{2}}}$$

In region
$$\textcircled{D}$$
:

$$-\frac{t^2}{2m}\frac{d^2\psi}{dx^2} + (V_0 - E)\psi = 0$$

$$\xrightarrow{\partial m} \frac{dx^2}{dx^2} + (e^{\frac{\pi}{2}x}, \frac{\pi}{2}) = \sqrt{\frac{2m(v_0 - E}{t^2})}$$

A₀*A₀ is the incident wave.
A*A is the reflected wave.
D*D is the transmitted wave.

Boundary Conditions

•
$$\Psi_1 = \Psi_2 \text{ at } x = 0 \implies A_0 + A = B + C$$

• $\frac{d\Psi_1}{dx}\Big|_0 = \frac{d\Psi_2}{dx}\Big|_0 \implies ik_1 A_0 - ik_1 A = -k_2 B + k_1 C$
• $\Psi_2 = \Psi_3 \text{ at } x = L \implies Be^{-k_2 L} + Ce^{k_2 L} = De^{ik_1 L}$
• $\frac{d\Psi_2}{dx}\Big|_1 = \frac{d\Psi_3}{dx}\Big|_1 \implies -k_2 Be^{-k_2 L} + k_2 Ce^{k_2 L} = ik_1 De^{ik_1 L}$

With lots of algebra we can eliminate A, B and C.

$$\frac{D}{A_{o}} = \frac{4i \frac{\pi_{u}}{\pi_{z}} e}{-g^{*2} e^{\pi_{u}L} + g^{2} e^{-\kappa_{z}L}}$$

$$g = 1 + i \frac{\pi_{u}}{\pi_{z}} \quad and \quad g^{*} = 1 - i \frac{\pi_{u}}{\pi_{z}}$$

 D/A_0 is the amplitude of transmitted wave probability density as a fraction of that of the incident wave

Transmission coefficient

- Let's define the probability flux as the probability per unit area per second of finding the particle.
 - Flux = v * n \propto v* $|\Psi|^2 = (p/m)^* |\Psi|^2$ $\propto \kappa^* |\Psi|^2$ where n=#particles/volume

Transmission coefficient
Transmission coefficient (T) is defined as
Transmitted flux/Incident flux =

$$T = \frac{v_{out} W_{out}}{v_{in} (v_{in})^2} = \frac{k_{out} (v_{out})^2}{k_{in} (v_{in})^2} = \frac{|D|^2}{|A_0|^2}$$

With lots of algebra:

$$T = \frac{16 k_{1}^{2} k_{2}^{2} e^{2k_{2}L}}{(k_{1}^{2} + h_{2}^{2})^{2} (1 + e^{4k_{2}L}) - e^{2k_{2}L} (2k_{1}^{2} - (2k_{1}^{2} k_{2}^{2} + 2k_{2}^{2})}$$

$$= \left[(1 + \frac{(e^{h_{1}L} - e^{-h_{2}L})^{2}}{16 \frac{E}{V_{0}} (1 - \frac{E}{V_{0}})} - 1 \right]$$

Probability of reflection

Reflection coefficient R=1-T

In region (3), D*D is non-zero

There is clear transmission of particles tunneling through the barrier!

Example

An electron of energy E=3eV encounters a barrier of height V₀=10eV and width L=1.0 Angstrom. Find the probability of tunneling.

$$k_2 = \sqrt{\frac{2m(V_0 - E)}{\hbar^2}} = 1.4 \times 10^{10} \, m^{-1}$$

Using numbers above and $m = 9.11 \times 10^{-31} kg$

$$k_2 L = (1.4 \times 10^{10} m^{-1})(1.0 \times 10^{-10} m) = 1.4$$

$$T = \left[1 + \frac{(e^{1.4} - e^{-1.4})^2}{16(\frac{3}{10})(1 - \frac{3}{10})}\right]^{-1} = 0.19$$

So a 19% change.

Thick barrier approximation

In the thick barrier limit ($k_2L >>1$),

$$T = \frac{16 k_{1}^{2} k_{2}^{2} e^{2k_{2}L}}{(k_{1}^{2} + h_{2}^{2})^{2} (1 + e^{4k_{2}L}) - e^{2k_{2}L} (2k_{1}^{2} - 12k_{1}^{2} k_{2}^{2} + 2k_{2}^{2})}$$

$$= 2k_{1}L = 0 \quad \text{and} \quad e^{4k_{2}L} = 0$$

$$T \sim \frac{16k_{1}^{2} h_{2}^{2}}{(k_{1}^{2} + h_{2}^{2})^{2}} \quad e^{2k_{1}L} = 16 (\frac{E}{V_{b}}) (1 - \frac{E}{V_{b}}) e^{\frac{2L}{4} \int 2u(V_{b} - E)}$$

Thin Barrier Approximation If helder, ether =1 ethel =1, so $T = \frac{16k_{1}^{2}k_{2}e^{2k_{2}L}}{(k_{1}^{2}+h_{1}^{2})^{2}(1+e^{4k_{2}L})-e^{2k_{2}L}(2k_{1}^{2}+l_{1}^{2}k_{1}^{2}+2k_{2}^{2})}$ \sim 16k, 2k, 2 $2(h_{1}^{2}+h_{2}^{2})^{2}-(2h_{1}^{4}+1_{2}h_{2}^{2}+2h_{2}^{2})$ - 2hr L $= \frac{16h^{2}h^{2}}{16h^{2}h^{2}} e^{-2h^{2}L} = e^{-2h^{2}L}$ $= \rho^{-2} \frac{1}{k} \int 2m(V_{o} - E)$ => For arbitrarily shaped barriers (Reed 3.8) $P \sim e^{-2Sk(\pi)dX} = e^{-2\int \frac{2\pi}{K}} SJU(\pi) - E dX$

Alpha Decay

- In 1928, George Gamow showed that tunneling explains how alpha-decay radioactivity occurs.
 - Nucleus spontaneously decays by emitting an alpha-particle (He nucleus)
- Alpha-particles generally have only a few MeV of engery. How can they "jump" from the well?
 - Alpha-particle *tunnels* out of nucleus over Coulomb barrier.

FIGURE 3.18 Alpha-decay.

$$J(r) = \frac{1}{4\pi\epsilon_0} \frac{2\pi}{2}$$

Alpha Decay, con't

- To escape from the nucleus, the alpha particle must tunnel through the barrier.
- The probability to penetrate an arbitrarily shaped barrier (see Reed section 3.8):

P≈ e - 25√2m(V.-E)/t.dx

$$= \int l_{n} P \approx \left[-\frac{2}{\pi} \int_{R}^{b} \left[2m_{*} \left(\frac{2 \cdot 2e^{2}}{4\pi \epsilon_{*}r} - E \right) dr \right] \\ = \frac{2 \cdot 2e^{2}}{4\pi \epsilon_{*}b} \left[\frac{2 \cdot 2e^{2}}{4\pi \epsilon_{*}b} - \frac{2 \cdot 2e^{2}}{4\pi \epsilon_{*}b} \right] \\ = \frac{1}{2} \int l_{n} P = -\frac{2}{\pi} \sqrt{2m_{*}\epsilon_{*}} \int_{R}^{b} \left[\frac{b}{r} - 1 \right] dr \\ = \frac{1}{\pi} \int l_{n} P = -\frac{2}{\pi} \sqrt{2m_{*}\epsilon_{*}} \int_{R}^{b} \left[\frac{b}{r} - 1 \right] dr$$

(hange variable of integration

$$r = b \sin^{2} 0$$

$$= \int ln P = -\frac{2}{L} \sqrt{2m_{\perp}E_{\perp}} b \int_{\theta_{R}}^{\theta_{b}} 2\cos^{2} \theta \, d\theta$$
Use $\cos^{2}\theta = (1 + \cos 2\theta)/2$

$$\int_{\theta_{R}}^{\theta_{b}} (1 + \cos 2\theta) \, d\theta$$

$$= b \sin^{2} \theta_{b}$$
and
$$= \left[\theta + \frac{1}{2} \sin^{2} \theta_{b} - \theta_{c} \right] \theta_{b}$$

$$g_{b} = \pi_{12}, \quad \theta_{R} = \sin^{-1} \left(\sqrt{\frac{R}{b}} \right) \quad \theta_{R}$$

. .

$$= \int \ln P \approx -\frac{2}{\pi} \int \frac{2m_{e}E_{a}}{\hbar} \int \frac{\pi}{4\pi\epsilon} \int \frac{4}{\hbar} \int \frac{2m_{e}E_{a}}{\hbar} \sqrt{Rb}$$

$$\approx -\frac{4\pi}{\hbar} \frac{2e^{2}}{4\pi\epsilon} \frac{1}{V_{a}} + \frac{4}{\hbar} \int \frac{42e^{2}m_{a}R}{4\pi\epsilon\epsilon}$$
where $V_{\alpha} = \int \frac{2E}{m_{\alpha}}$
The term: $-\frac{4\pi\epsilon}{\hbar} \frac{2e^{2}}{4\pi\epsilon\epsilon} \frac{1}{V_{\alpha}}$ Gamow factor
$$\int \ln T/2 \propto -\ln P \approx \frac{1}{V_{\alpha}}$$

- The *Gamow factor* determines the dependence of the probability on the speed (or energy) of the alpha particle.
- This prediction of the half-life is in good agreement with observed half-lives of isotopes of heavy nuclei.

Alpha-decay

lass number A	Ε _α (MeV)	Half-life (sec)
220	8.95	10 ⁻⁵
222	8.13	2.18 × 10
224	7.31	1.04
226	6.45	1854
228	5.52	6.0×10^{7}
230	4.77	2.5×10^{12}
232	4.08	4.4×10^{17}

$$= \int \ln P \approx -\frac{2}{\pi} \sqrt{2m_{x}\epsilon_{x}} b = \frac{11}{5} + \frac{4}{5} \sqrt{2m_{x}\epsilon_{x}} \sqrt{Rb}$$

$$\approx -\frac{4\pi}{5} \frac{2e^{2}}{4\pi\epsilon_{x}} \frac{1}{v_{x}} + \frac{4}{5} \sqrt{\frac{42e^{2}m_{x}R}{4\pi\epsilon_{x}}}$$
where $V_{x} = \sqrt{\frac{2e}{m_{x}}}$
The term: $-\frac{4\pi}{5} \frac{2e^{2}}{4\pi\epsilon_{x}} \frac{1}{v_{x}}$ Gamow factor
 $\frac{1}{5} \frac{1}{4\pi\epsilon_{x}} \frac{1}{v_{x}} - \frac{1}{5} \frac{1}{v_{x}}$

Animations

There is a very nice educational website that allows you to try various quantum tunneling scenarios:

http://phys.educ.ksu.edu/vqm/html/qtunneling.html

Summary/Announcements

- We covered tunnelling through Potential Barriers ($E < V_0$)
- Next time:
 - We will discuss Scattering (Potential barriers with $E > V_0$)
 - Operators and Expectation Values
- Next homework due on Monday Oct 3