Quantum Mechanics and Atomic Physics Lecture 6: Potential Wells: Part II

http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh

Last Time

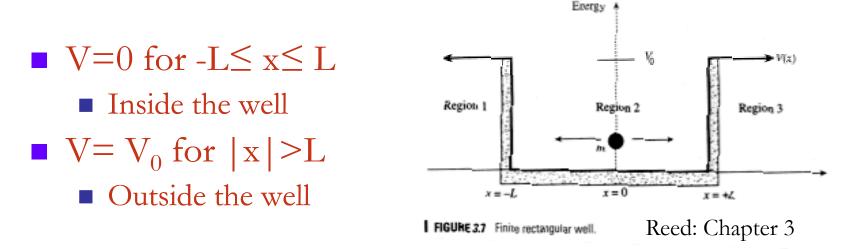
■ We solved S.E. for the Infinite Potential Well 0 $\Psi(x,t) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L} \cdot e^{-iE_n t/\hbar}$ $E_n = \frac{n^2 \pi^2 \hbar^2}{2 m I^2}, \quad n = 1, 2, 3, \dots$

Next: we consider the Finite Potential Well

The Finite Square Well

Mass m in a potential well of finite depth

 This is a more realistic case than infinite square well: e.g. electron trapped in surface of metal which needs a few eV to escape (as in photoelectric effect)



For E < V₀ we are seeking *bound energy states* (bottom of the well is at V=0)

Solutions inside and outside the well

• In regions (D) and (a) :
$$V(x) = V_0$$

 $-\frac{h^2}{am} \frac{d^2 \Psi_{out}}{dx^2} = (E - V_0) \Psi_{out}$

• In region @:
$$V(x)=0$$

 $-\frac{d^2}{dx^2} = E \operatorname{tin} (like infinite square well)$

Inside and outside the well

In region @ (in):

$$\Psi_2 = Ae^{i\frac{k_2x}{2}} + Be^{-i\frac{k_2x}{2}} (-L \le x \le L)$$

In region
$$\mathbb{O} \stackrel{!}{\prec} \mathfrak{G}$$
:
 $\Psi_1 = Ce^{k_1 \times} + \overline{D}e^{-k_1 \times} \quad (X \leq L)$
 $\Psi_3 = Ge^{k_1 \times} + Fe^{-k_1 \times} \quad (X \geq L)$

Boundary Conditions

$$\begin{array}{c} \Psi_{1} = \Psi_{2} \quad at \quad x = -L \\ \Psi_{2} = \Psi_{3} \quad at \quad x = +L \\ \bullet \quad \frac{d\Psi_{1}}{dx}\Big|_{-L} = \frac{d\Psi_{2}}{dx}\Big|_{-L} \quad and \quad \frac{d\Psi_{2}}{dx}\Big|_{+L} = \frac{d\Psi_{3}}{dx}\Big|_{+L} \\ and \quad \int_{-L}^{-L} \Psi_{1}^{*}\Psi_{1}dx + \int_{-L}^{L} \Psi_{2}^{*}\Psi_{2}dx + \int_{-L}^{\infty} \Psi_{3}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \int_{-\infty}^{-L} \Psi_{1}^{*}\Psi_{1}dx + \int_{-L}^{-L} \Psi_{2}^{*}\Psi_{2}dx + \int_{-L}^{\infty} \Psi_{3}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \int_{-\infty}^{\infty} \Psi_{1}^{*}\Psi_{1}dx + \int_{-L}^{L} \Psi_{2}^{*}\Psi_{2}dx + \int_{-L}^{\infty} \Psi_{3}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \int_{-\infty}^{\infty} \Psi_{1}^{*}\Psi_{1}dx + \int_{-L}^{L} \Psi_{2}^{*}\Psi_{2}dx + \int_{-L}^{\infty} \Psi_{3}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \int_{-\infty}^{\infty} \Psi_{1}^{*}\Psi_{1}dx + \int_{-L}^{L} \Psi_{2}^{*}\Psi_{2}dx + \int_{-L}^{\infty} \Psi_{3}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \int_{-\infty}^{\infty} \Psi_{1}^{*}\Psi_{1}dx + \int_{-L}^{L} \Psi_{2}^{*}\Psi_{2}dx + \int_{-L}^{\infty} \Psi_{3}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \int_{-\infty}^{\infty} \Psi_{1}^{*}\Psi_{1}dx + \int_{-L}^{\infty} \Psi_{2}^{*}\Psi_{2}dx + \int_{-L}^{\infty} \Psi_{3}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \int_{-\infty}^{\infty} \Psi_{1}^{*}\Psi_{1}dx + \int_{-L}^{\infty} \Psi_{2}^{*}\Psi_{2}dx + \int_{-L}^{\infty} \Psi_{3}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \int_{-\infty}^{\infty} \Psi_{1}^{*}\Psi_{1}dx + \int_{-L}^{\infty} \Psi_{2}^{*}\Psi_{2}dx + \int_{-L}^{\infty} \Psi_{3}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \int_{-\infty}^{\infty} \Psi_{1}^{*}\Psi_{1}dx + \int_{-\infty}^{\infty} \Psi_{2}^{*}\Psi_{2}dx + \int_{-\infty}^{\infty} \Psi_{3}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \int_{-\infty}^{\infty} \Psi_{1}^{*}\Psi_{1}dx + \int_{-\infty}^{\infty} \Psi_{2}^{*}\Psi_{2}dx + \int_{-\infty}^{\infty} \Psi_{3}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \int_{-\infty}^{\infty} \Psi_{1}^{*}\Psi_{1}^{*}\Psi_{2}dx + \int_{-\infty}^{\infty} \Psi_{2}^{*}\Psi_{2}^{*}\Psi_{3}dx = 1 \\ \bullet \quad \Psi_{3}^{*}\Psi$$

Finiteness of Wavefunctions

- But, are the wavefunctions finite?
 - $\Psi_1 \rightarrow \infty$ as x $\rightarrow -\infty$ and $\Psi_3 \rightarrow \infty$ as x $\rightarrow \infty$
- Therefore finiteness requires that D=0 and G=0
- That leaves four constants: A, B, C and F
- But we have <u>five</u> constraints!
 - The four boundary conditions plus normalization
 - Are we over-determined?
 - How about k_1 and k_2 ?
 - k₁ and k₂ are determined by energy and so energy cannot take any arbitrary values → energy quantization!!

Boundary Conditions, con't

In region
$$@:$$

 $\Psi_2 = A e^{i k_2 x} + B e^{-i x_2 x}$
but more convenient to write us:
 $\Psi_2 = A \sin k_2 x + B \cos k_2 x$

qх

- $\Psi at x=tL$: $Fe^{-k_1L} = Asink_2L + Bcosk_2L$ $\frac{d\Psi}{dx}at_{x=tL}$: $-k_1Fe^{-k_1L} = 4zAsosk_2L 4zBsinsk_2L$

Let's define two new constants:

$$N = K_{1}L = \sqrt{\frac{2m(V_{0}-E)}{t^{2}}}L, \quad \exists = K_{2}L = \sqrt{\frac{2mE}{t^{2}}}L$$

$$Ce^{-n} = -Asing + Bcosg (1)$$

$$(n) = Acosg + Bsing (2) = Four equations$$

$$Fe^{-n} = Asing + Bcosg (3) = Four equations$$

$$-(n) = Acosg - Bsing (4) = Four enknowns.$$

$$\frac{\text{Divide}}{(1)} \implies \frac{F}{C} = \frac{(A \sin \xi + B \cos \xi)}{(-A \sin \xi + B \cos \xi)}$$

$$\frac{(4)}{(2)} \implies \frac{F}{C} = -\frac{(A \cos \xi - B \sin \xi)}{A \cos \xi + B \sin \xi}$$

$$\frac{F}{(2)} \implies \frac{F}{C} = -\frac{(A \cos \xi - B \sin \xi)}{A \cos \xi + B \sin \xi}$$

$$\frac{A^{2} \sin \xi \cos \xi + B^{2} \sin \xi \cos \xi + AB = A^{2} \sin \xi \cos \xi + B^{2} \sin \xi \cos \xi - AF$$

$$\implies AB = -AB \implies 2AB = 0 \implies \overline{AB = 0}$$

Square leqn (1):

$$\left(Ce^{-N}\right)^{2} = A^{2} \sin^{2} \xi + B^{2} \cos^{2} \xi - 2AB \sin \xi \log \xi$$
Square leqn (3)

$$\left(Fe^{-N}\right)^{2} = A^{2} \sin^{2} \xi + B^{2} \cos^{2} \xi + 2AB \sin \xi \log \xi$$
inserved AB = -AB or AB = 0

$$\implies \sqrt{F^{2} = c^{2}}$$
So, F=±C

Two classes of solutions!

- Even Parity solutions:
 - If A=0: $C e^{-\hbar_1 L} = B\cos k_2 L$ $F e^{-\kappa_1 L} = B\cos k_2 L$ = C = FAnd $\Psi_2 = B\cos k_2 \chi$ Even parity: $\Psi(x) = \Psi_2(-x)$
- Odd Parity solutions:

• If
$$B=0$$
: $Ce^{-k_1L} = -A\sin k_2L$
 $Fe^{-k_1L} = A\sin k_2L$
 $= C = -F$
And $\Psi_2 = A\sin k_2 \chi$
 $Odd Parity: \Psi_2(\chi) = -\Psi_2(-\chi)$

The Strength Parameter

$$\overline{\xi}^2 + \eta^2 = \frac{2mV_0L}{\pi^2} = K^2 = constant$$

- For a given K, only certain values of ξ will satisfy the boundary conditions
- From our definitions of η and ξ, these will correspond to particular values of the energy of the particle.
- The energy levels are given by:

$$E_n = \overline{S}_n^2 \frac{\hbar^2}{2mL^2}$$

Finite Square Well: Even Solutions

$$\Psi_{1} = Ce^{k_{1}X} (\chi L - L)$$

$$\Psi_{2} = B\cos k_{2}\chi (-L \leq \chi \leq L)$$

$$\Psi_{3} = Ce^{-k_{1}\chi} (\chi \geq L)$$

$$C = B \cos x_{a} \mathbf{t} e^{x_{i} \mathbf{t}}$$
$$= B \cos z e^{n}$$

So,

$$\Psi_1 = B \cos \xi e^n e^{\pi i x} (\pi 4 - L)$$

 $\Psi_2 = B \cos \pi x_2 \pi (-L \leq x \leq L)$
 $\Psi_3 = B \cos \xi e^n e^{-\pi i x} (\pi > L)$

Dividing eqns
$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
:
 $\begin{pmatrix} n \\ 3 \end{pmatrix} = \frac{A \cos 3 + B \sin 3}{-A \sin 3 + B \cos 3}$ and $w/A = 0$

$$\begin{pmatrix} M_{\frac{1}{3}} \end{pmatrix} = \frac{\sin \xi}{\cos \xi} = \tan \xi$$

$$This gives us the energy equation!$$

$$tan \xi = \frac{M_{\frac{1}{3}}}{E} = \sqrt{\frac{V_0 - E}{E}} = 3 \quad tan \ k_2 L = \sqrt{\frac{V_0 - E}{E}}$$

$$= 3 \quad \tan(L\sqrt{\frac{2mE}{\hbar^2}}) = \sqrt{\frac{V_0 - E}{E}} <= 3 \quad tan \ (\xi) = \sqrt{\frac{K^2 - \xi^2}{\xi}}$$

$$f = \frac{\xi^2 + y^2}{\xi} = K^2$$

$$This is what gives us energy quantization!$$

$$K^2 = \frac{2mV_0L^2}{K^2}$$

Energy Quantization

$$\tan(L\sqrt{\frac{2mE}{\hbar^2}}) = \sqrt{\frac{V_0 - E}{E}}$$

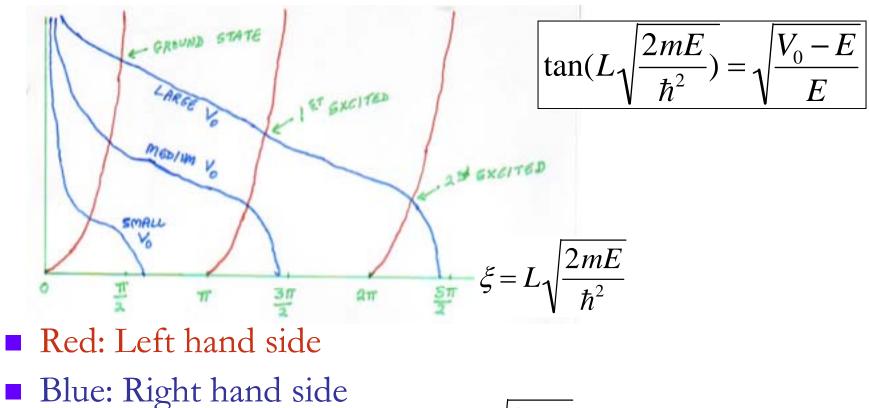
This expression cannot be solved analytically.

Let's plot both the left hand side and right hand side on the same graph

■ Note:

- the right hand side = ∞ for E=0
- The left hand side = 0 for $E=V_0$

Graphical Solution

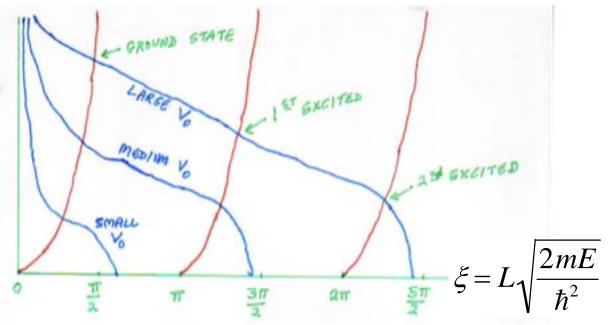


• expressed as functions of $\xi = I$

$$\xi = L_{\sqrt{\frac{2mE}{\hbar^2}}}$$

■ For three different values of V₀

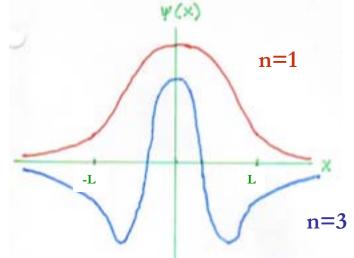
Graphical Solution, con't



Features:

- We get quantized energy eigenvalues
- At least one solution must exist, no matter how small V₀ is (remember that E<V₀)
- Total number of solutions is finite, no matter how large V_0 is.

Even Solution Eigenfunctions



$$\Psi_{1} = B \cos \xi e^{n} e^{\frac{\pi}{2}ix} (\pi 4:L)$$

$$\Psi_{2} = B \cos \frac{\pi}{2}ix (-L \le x \le L)$$

$$\Psi_{3} = B \cos \xi e^{n} e^{-\frac{\pi}{2}ix} (\pi 7L)$$

Two possible eigenfunctions are shown (n=1 and n=3)

- Ψ is symmetric in x: $\Psi(-x) = \Psi(x)$
 - Since cosine is symmetric
 - We have even parity
- Note: we get penetration into the classically forbidden regions (1) and (3)
- For the case E>V₀ we get oscillatory solutions in all three regions. No bound states: continuum of energies is possible.

Normalization

• We can get B from the normalization condition Normalization: $\int_{-1}^{1} \frac{1}{4^{*}} \frac{1}{4^{*}} dx + \int_{-1}^{1} \frac{1}{4^{*}} \frac{1}{4^{*}} dx + \int_{-1}^{\infty} \frac{1}{4^{*}} \frac{1}{4^{*}} dx = 1$ $\int_{-L}^{-L} \Psi_{1} dx = \int_{0}^{\infty} \Psi_{3}^{*} \Psi_{3} dx = C^{2} \int_{L}^{\infty} e^{-2k_{1}x} dx$ $= \frac{c^2}{-2\pi} \left[0 - e^{-2\pi L} \right] = \frac{c^2}{2\pi} \frac{c^2}{2\pi} e^{-2\pi L}$ So this term enters twice in the normalization

$$\int_{-L}^{L} \Psi_{2} \Psi_{2} dx = B^{2} \int_{-L}^{L} (\cos^{2} \chi_{2} \chi dx)$$

$$= B^{2} \left(\frac{\chi}{2} + \frac{\sin(2\chi_{2}\chi)}{4\chi_{2}} \right)_{-L}^{L}$$

$$= B^{2} \left(\frac{\sin 2\xi}{2\chi_{2}} + L \right)$$

$$z \times \frac{C^2}{2\pi} e^{-2\pi} + B^2 \left(\frac{\sin 2\xi}{2\pi} + L \right) = 1$$

Substitute (= Bcossen

$$2 \frac{B^2 \cos^2 \overline{5}}{2\pi} + B^2 \left[\frac{\sin 2\overline{3}}{2\pi} + L \right] = 1 \qquad \text{Multiply by} \frac{1}{2\pi}$$

- -

$$2 \frac{B^{2} \cos^{2} \tilde{s}}{2N} + \frac{B^{2} \sin 2\tilde{s}}{2\tilde{s}} + B^{2} = \frac{1}{L}$$

$$B^{2} \left[\frac{(\cos^{2} \beta)}{8 n} + \frac{\sin^{2} \beta}{2 \beta} + 1 \right] = \frac{1}{L}$$

$$B^{2} = \frac{1}{L \left[\frac{(\cos^{2} \beta)}{n} + \frac{\sin^{2} \beta}{2 \beta} + 1 \right]}$$

$$B^{2} = \frac{1}{L \left[\frac{(\cos^{2} \beta)}{n} + \frac{\sin^{2} \beta}{2 \beta} + 1 \right]}$$

$$B^{2} = \frac{n \beta}{L \left[\frac{\cos^{2} \beta}{\beta} + \frac{\sin^{2} \cos^{2} \beta}{2 \beta} + 1 \right]}$$

$$B^{2} = \frac{n \beta}{L \left[\frac{\cos^{2} \beta}{\beta} + \frac{\cos^{2} \beta}{2 \beta} + \frac{\cos^{2} \beta}{2 \beta} + \frac{\cos^{2} \beta}{2 \beta} + \frac{\cos^{2} \beta}{2 \beta} \right]}$$

$$B^{2} = \frac{n \beta}{L \left[\frac{\cos^{2} \beta}{\beta} + \frac{\cos^{2} \beta}{2 \beta} + \frac{\cos^{2} \beta}{2 \beta} + \frac{\cos^{2} \beta}{2 \beta} \right]}$$

- Once a given energy state ξ_n is specified, the B (and therefore C) can be computed
- Unlike the infinite well, here the normalization constants depend on the energy eigenvalue involved!
- Exercise you can try on your own: determine the probability of finding the particle outside the well (cross check with eqn. 3.4.11 in your book). It depends on the energy eigenvalue.

Finite Square Well: Odd Solutions

$$B = 0, \quad \mathcal{L} = -F$$

$$\Psi_{1} = Ce^{\pi_{1}x} \quad (\pi \mathcal{L} - \mathcal{L})$$

$$\Psi_{2} = A \sin \pi_{2}x \quad (-\mathcal{L} \le x \le \mathcal{L})$$

$$\Psi_{3} = -Ce^{-\kappa_{1}x} \quad (\pi \neg \mathcal{L})$$

So,

$$\Psi_1 = -A \sin \xi e^n e^{\pi_i x}$$
 (XC-L)
 $\Psi_2 = A \sin \pi_2 x$ (-L SX EL)
 $\Psi_3 = A \sin \xi e^n e^{-\pi_i x}$ (X > 1)

Dividing
$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
:
 $\begin{pmatrix} A \\ \overline{3} \end{pmatrix} = \frac{A \cos \overline{3} + B \sin \overline{3}}{-A \sin \overline{3} + B \cos \overline{3}}$ and $\omega/B = 0$

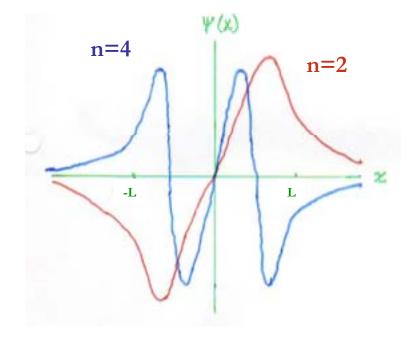
$$\left| \frac{h}{\xi} \right|^{2} = -\frac{\cos \xi}{\sin \xi} = -\cot \xi$$
$$-\cot \xi = \frac{h}{\xi} = \sqrt{\frac{V_{0}-E}{E}}$$
$$But - \cot \xi = \tan \left(\xi \pm \frac{\pi}{2} \right)$$

Odd Solution Eigenfunctions

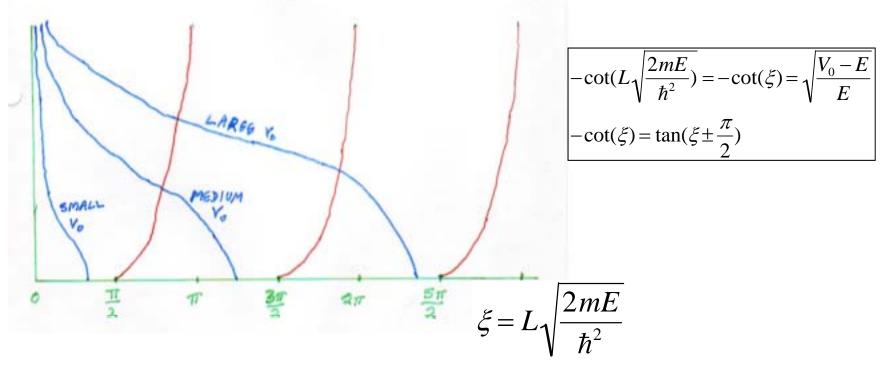
- Again, two possible eigenfunctions are shown (n=2 and n=4)
- This time Ψ is anti-symmetric in x:
 Ψ(-x) = -Ψ(x)
 - Since sine is anti-symmetric
 - We have odd parity
- Whenever the potential is symmetric, V(-x)=V(x), eigenfunctions must have definite parity, i.e. Ψ(-x) = ±Ψ(x)
 - Symmetric V implies symmetric probabilities

P(-x)=P(x) but P(x)= $|\Psi(x)|^2$ so $\Psi(-x) = \pm \Psi(x)$

$$\begin{aligned} \Psi_{1} &= -A \sin \xi e^{h} e^{\lambda_{1} x} & (x < -L) \\ \Psi_{2} &= A \sin \lambda_{2} x & (-L \leq x \leq L) \\ \Psi_{3} &= A \sin \xi e^{h} e^{-\lambda_{1} x} & (x > L) \end{aligned}$$

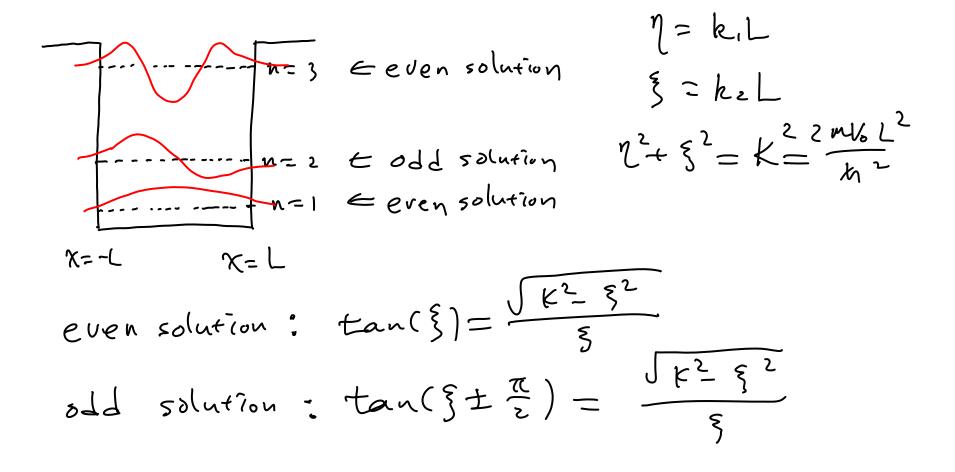


Energy Quantization : Graphical Solution



- So the graphical solution is the same as for the even parity solutions, except that the tangent curves are displaced by $\pi/2!$
- This time if V_0 is small enough, we may get no solutions.
 - As V_0 increases we get more solutions, but always a finite number
 - In general, for a given V₀, the particle will have a mixture of both classes even and odd parity (A=0 and B=0).

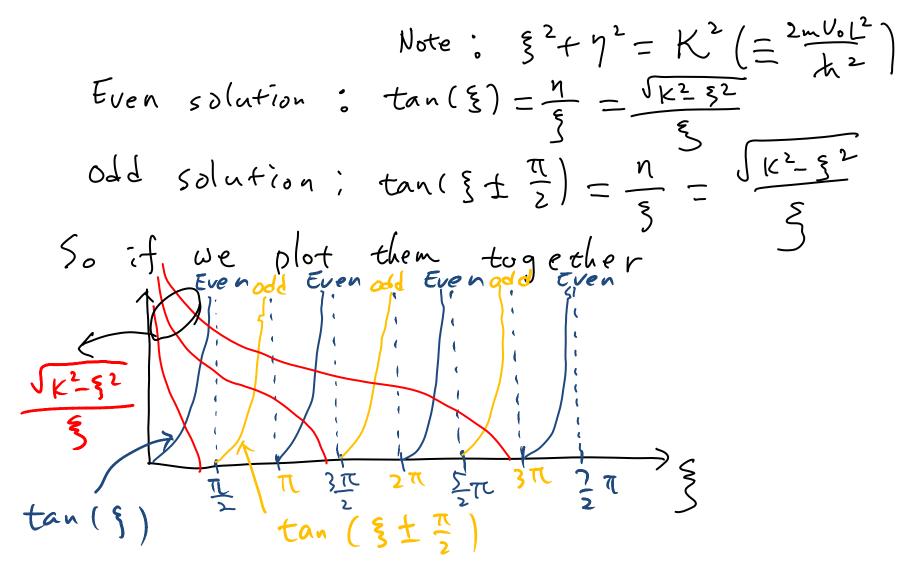
One page summary of the finite rectangular well



Important things to note

- For a finite potential well:
 - There is some probability of finding the particle beyond the walls of the well!
 - Classically: it cannot be found there
- This is called **tunneling** or **barrier penetration**
- A characteristic tunneling length is given by the reciprocal of k₁

Number of bound states in a finite potential well



Number of bound states Cont'd

of Bound states = N If $0 \leq K \leq \frac{\pi}{2} \leq 0 \leq \frac{2K}{2} \leq 1 \geq N = 1$ $\frac{\pi}{2} \leq K < \pi (\leq) < \frac{2K}{\pi} < 2) \Rightarrow N = 2$ $\pi \left\{ K \left\{ \frac{3}{2} \pi \left(\frac{k}{2} \right\} \right\} \right\} = 3$ $N(K) = \left[+ \left[\frac{2K}{\tau c} \right] \right]$ largest integer loss than or equal to 2K

Example: CCD

- Finite potential wells are used in everyday devices!
 - Digital cameras: two-dimensional grid of potential wells
 - This is called a charge-coupled-device or CCD
 - Each well can be thought of as a "pixel" or a picture element
- Example: We have a camera with "9micron pixels"; this means each potential well is 9 by 9microns in size (1micron = 10⁻⁶m). Let's assume it can hold 60,000 electrons before becoming full (each energy level can hold two electrons of opposite spin). If we assume that the pixels are one-dimensional finite square wells, what must be their depth V₀?

Number of eigenvalues
$$N = 30,000$$

$$N = 1 + \frac{2K}{\pi} \approx \frac{2K}{\pi}$$

$$=) K = \frac{\pi}{2} N = \sqrt{3^{2} + \Lambda^{2}} = \sqrt{\frac{2mV_{*}L^{2}}{L^{2}}}$$

$$\left(\frac{\pi}{2}N\right)^{2} = \frac{2mV_{*}L^{2}}{L^{2}}$$

$$V_{0} = \frac{(N\pi\kappa)^{2}}{8mL^{2}} ; L^{2} = \frac{9microns}{2} = 4.5microns$$

$$= \frac{((30,000)\pi \cdot 1.055\times10^{-34}J.s)^{2}}{8(9.11\times10^{-31}kg)((4.5\times10^{-6}m)^{2})} = 6.7\times10^{-19}J$$

$$\approx 4.2eV$$

Which is a device that can be easily powered with batteries!

V

Example 2

Do the previous CCD camera problem, using the infinite well formula we found earlier, but simply using the approximate criterion that E_N < V₀.

Summary/Announcements

- The Finite Potential Well
- Next time:
 - Sketches of Wavefunctions,
 - Potential Barriers and Scattering
- Next homework due on Monday Sept 26
- Now it's time for Quiz: Closed note and Closed book, and No Calculator!