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Announcement

m Next HW is due Monday 26,

m There will be a quiz, next class (Wed, Sept. 21%:
Closed book, Closed note, no calculator needed;

Will cover topics up to today: If you understand
the concept and the standard math, it will take

less than 5 minutes.



Last time

m  Boundary Conditions
1. W must be square integrable: J W*(x,t) P(x,t)dx =1

2. The wavefunction ¥ must be a continuous function!

m  This means forcing two solutions at the boundary to agree:

Y=(boundary) = ¥~ (boundary)

3. If V(x) 1s continuous or finitely discontinuous across a boundary, then
the first derivative of ¥, d¥/dx, must be made continuous across the
boundary. But if V(x) is infinitely discontinuous across the boundary,
then d¥/dx can be discontinuous across the boundary.

m Introduced a “particle-in-a-box”



Solutions to S.E. in 1-dimension:
Overview

m FExamples of applications of solutions to the S.E. for a
1-dimensional potential function, V(x)
m Modeling of real electronic devices (e.g. CCD chips)
m Understanding nuclear phenomena (beyond the energy levels
of the H-atom) such as alpha-decay
m In the next few lectures we will:
m Hxamine potential wells
m Solve the S.E. for the first time for an infinite well

m Consider the finite well
m Quantum tunneling
m Consider potential barriers

m A potential well turned inside-out

m Important for understanding nuclear structure/scattering



Concept of a Potential Well:
Classical Newtonian Example

Let’s consider a car of mass

m on a roller coaster track

E Gm_und level
Xy 1|

V(X> :mgh (X) | FIBURE 3.1 Car on a roller-coaster track Reed: Chapter 3

If released from rest, total energy E=mgh(x)

If no friction/air resistance, it will remain in valley (or well)
between x, an x;.

m Constrained in potential well
® In a bound energy state
m Total energy is less than V(x) as x —®



Newtonian example, con’t

Fiah
m \What if car is released *
from x, with some

non-zero speed? EJF / i

m Total energy L AGURER2 sty
E=mv*/2 + mgh(x)

Reed: Chapter 3

m Now car 1s 1n 2 new
bound energy state



Newtonian example, con’t

HI}T

m Now, what if the track
to the right of the
release point 1s always
lower than the vertical
level of the release R
pOiﬂt? ) RGURES3. Car o 3 onbouse soary st Reed: Chapter 3
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Linbound travel

. In classical mechanics the energy E
m The car will eventually is unrestricted - E does not appear in
reach x= o Newton’s second law.

m This is an illustration of  In QM, it does enter explicitly in S.E.
an unbound energy and for a given potential energy, the total

energy E is a parameter of the solutions

state to S.E.



Time-Independent Potentials

m [et’s revisit S.E. for a time-independent
potential V(x,t)=V (x):
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Time-Independent Potentials,
con’t

m “Separation of variables”

m [ eft hand side = Right hand side

m Each must be a constant, and the same constant



This equation has now been
solved once and forever.
For any time-independent V(x).

We can ignore the

constant of integration =} Z ';!9 { ‘f.']

o We can pretty much ignore it
since it gets absorbed pretty 8
into the normalization from now on.

anyway. - e ' — - - —

e - T ——
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am  dx

Does this look familiar? It’s the time-independent S.E.



Example

m Is W(x,t)=Asin(kx —at) a valid wavefunction for
a region where V(x)=0°
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Example Cont’d
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Example Cont’d

m How about ¥(xt) = Asin(kx)e™ ?
m If valid, evaluate the total energy.
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The Infinite Potential Well

A particle is trapped between walls

so energetically high it would i ")" " A
require an infinite amount of -

energy to get over them. = —-e—
Also called znfinite square well or r* ]1
infinite rectangular well *

V=0 for 0< x< L, e

B [nside the well | FIGURE 3.4 Infinits square weell Reed: Chapter 3
V= o for x<0, x>L

m QOutside the well

Look for bound-state solutions
with E>0



Real Example: Electron trapped
in a “box”

5w X = LI| Reed: Chapter 3
i

HECURE 55 Schematc diagiam of & lection rapped in a ong-dimensmnal “bon” made o pletyodies and
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Lomeamy, Ing:



In the outside regions: x<(0, x>L
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In the inside region: 0= x S L
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m [et’s apply boundary conditions

® 3rd condition cannot be applied since we have infinite
potential discontinuities

m We can apply conditions 1 and 2



Continuous Wavefunction
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. (n=0 leads to a null solution)

m We just derived the quantization of energy!




Normalized Wavefunction
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Two key lessons

m The quantized energy levels E_(enetgy
eigenvalues) resulted naturally by imposing the
boundary conditions to the S.E.

m [ead to the quantum numbers, n, allowing us to
label the energy eignevalues

m There 1s 2 wavefunction ¥ (eigenfunction)
corresponding to each eigenvalue

m Gives the probability distribution of the system for a
total energy E_



Energy levels and Wavefunctions

m n=1] is ground state
m Number of extrema in wavefunction is equal to n
® Nodes are where ¥Y=0

m where we never expect to find the particle

m Number of nodes for state n 1s n-1 excluding the boudaries



Wavefunctions and Probablility
Distributions

Reed: Fig. 3-6
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m Probability distributions |V |?

m Peaks correspond to where there 1s a high probability to find
the particle

m Valleys correspond to low probability



Why do we not detect a wavy
nature in everyday life?

m For a microscopic object

m [et’s evaluate the quantum number for an electron

with energy E=20eV trapped in a potential well of
L=1Angstrom
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Now for a macroscopic object

m Let’s evaluate the quantum number for an object of mass
m=1kg, energy E=1] trapped in a potential well of width L=1m.

m= 158 €= 13 L=m

1 ]

This value of n is so large that we would
never be able to distinguish the quantized
nature of energy levels.

For example, the difference in energy between

two consecutive states, n,=4.3x10°3 and
n2=4.3X1033+1 is around 104! This is much
too small to be detected.

This also shows that quantum predictions must
agree with classical results in the limit of large
quantum numbers: Boht’s correspondence principle




Bohrt’s correspondence principle

'™ Quantum Physics = Classical Physics
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Classically: continuum of energies so AE/E=0



Bohr’s correspondence principle,
con’t
m [et’s evaluate the probability to find a particle in x,=x =x,
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Example

m Probabilities for a particle in a box:

m A particle is known to be in the ground state of a
infinite square well with length I.. Calculate the
probability that this particle will be found in the
middle half of the well, between x=L/4 and x=3L/4.

m Classically: we expect 1/2 - a classical particle spends equal
time in all parts of the well
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Full Wavefunction for Infinite
Potential Well

B [n summary,

_
P(x,t)= 2 sin N g
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Summary/Announcements

Introduction to concept of Potential Wells

The Infinite Square Well

Next time:

m More on Potential Wells
Next homework due on Monday Sept 26!
There will be a quiz, next class (Wed, Sept. 21%): Closed

book, Closed note, no calculator needed.



