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AnnouncementAnnouncementAnnouncementAnnouncement

Next HW is due Monday 26Next HW is due Monday 26ththNext HW is due Monday 26Next HW is due Monday 26 ..
There will be a There will be a quiz, quiz, next class (Wed, Sept. 21next class (Wed, Sept. 21stst): ): 
Closed book Closed note no calculator needed;Closed book Closed note no calculator needed;Closed book, Closed note, no calculator needed; Closed book, Closed note, no calculator needed; 
Will cover topics up to today: If you understand Will cover topics up to today: If you understand 
the concept and the standard math it will takethe concept and the standard math it will takethe concept and the standard math, it will take the concept and the standard math, it will take 
less than 5 minutes.less than 5 minutes.



Last timeLast timeLast timeLast time
Boundary ConditionsBoundary Conditions

11 ΨΨ t bt b i t bli t bl ∫∫ ΨΨ∗∗(( tt)) ΨΨ(( tt))dd = 1= 11.1. ΨΨ must be square must be square integrableintegrable:  :  ∫∫ ΨΨ∗∗((x,tx,t) ) ΨΨ((x,tx,t))dxdx = 1= 1

2.2. The The wavefunctionwavefunction ΨΨ must be a continuous function!must be a continuous function!
Thi m n f r in t l ti n t th b nd r t rThi m n f r in t l ti n t th b nd r t rThis means forcing two solutions at the boundary to agree:This means forcing two solutions at the boundary to agree:

ΨΨ<<(boundary) = (boundary) = ΨΨ>>(boundary)(boundary)

If V( ) i i fi i l di i b d hIf V( ) i i fi i l di i b d h3.3. If V(x) is continuous or finitely discontinuous across a boundary, then If V(x) is continuous or finitely discontinuous across a boundary, then 
the first derivative of the first derivative of Ψ,Ψ, ddΨΨ//dxdx, must be made continuous across the , must be made continuous across the 
boundary.  But if V(x) is infinitely discontinuous across the boundary, boundary.  But if V(x) is infinitely discontinuous across the boundary, 
then dthen dΨΨ//dxdx can be discontinuous across the boundary.can be discontinuous across the boundary.// yy

Introduced a “particleIntroduced a “particle--inin--aa--box”box”



Solutions to S.E. in 1Solutions to S.E. in 1--dimension: dimension: 
OverviewOverview

Examples of applications of solutions to the S.E. for a Examples of applications of solutions to the S.E. for a 
11 dimensional potential function V(x)dimensional potential function V(x)11--dimensional potential function, V(x)dimensional potential function, V(x)

Modeling of real electronic devices (e.g. CCD chips)Modeling of real electronic devices (e.g. CCD chips)
Understanding nuclear phenomena (beyond the energy levels Understanding nuclear phenomena (beyond the energy levels g p ( y gyg p ( y gy
of the Hof the H--atom) such as alphaatom) such as alpha--decaydecay

In the next few lectures we will:In the next few lectures we will:
i i l lli i l llExamine potential wellsExamine potential wells

Solve the S.E. for the first time for an infinite wellSolve the S.E. for the first time for an infinite well
Consider the finite wellConsider the finite wellConsider the finite wellConsider the finite well

Quantum tunnelingQuantum tunneling
Consider potential barriersConsider potential barriers

A i l ll d i idA i l ll d i idA potential well turned insideA potential well turned inside--outout
Important for understanding nuclear structure/scatteringImportant for understanding nuclear structure/scattering



Concept of a Potential Well: Concept of a Potential Well: 
Classical Newtonian ExampleClassical Newtonian Example

Let’s consider a car of mass Let’s consider a car of mass 
m on a roller coaster trackm on a roller coaster track

V(x)=mgh(x)V(x)=mgh(x) Reed: Chapter 3( ) g ( )( ) g ( )
If released from rest, total energy E=mgh(xIf released from rest, total energy E=mgh(x00))
If no friction/air resistance, it will remain in valley (or well) If no friction/air resistance, it will remain in valley (or well) 
b tb tbetween xbetween x00 an xan x11..

Constrained in potential wellConstrained in potential well
In a bound energy stateIn a bound energy stategygy

Total energy is less than V(x) as x Total energy is less than V(x) as x →→∞∞



Newtonian example, con’tNewtonian example, con’tNewtonian example, con tNewtonian example, con t

What if car is releasedWhat if car is releasedWhat if car is released What if car is released 
from xfrom x00 with some with some 
nonnon--zero speed?zero speed?nonnon zero speed?zero speed?
Total energy Total energy 
E=mvE=mv 22/2 + mgh(x/2 + mgh(x ))

Reed: Chapter 3
E=mvE=mv00

22/2 + mgh(x/2 + mgh(x00))
Now car is in a new Now car is in a new 
b db dbound energy statebound energy state



Newtonian example, con’tNewtonian example, con’tNewtonian example, con tNewtonian example, con t

Now, what if the track Now, what if the track ,,
to the right of the to the right of the 
release point is always release point is always 
l r th th rti ll r th th rti llower than the vertical lower than the vertical 
level of the release level of the release 
point?point? Reed: Chapter 3pp

The car will eventually The car will eventually 
In classical mechanics the energy E
is unrestricted - E does not appear in

reach x= reach x= ∞∞
This is an illustration of This is an illustration of 

nb nd n rnb nd n r

Newton’s second law.

In QM, it does enter explicitly in S.E.
and for a given potential energy, the totalan an unbound energy unbound energy 

statestate

and for a given potential energy, the total
energy E is a parameter  of  the solutions 
to S.E.



TimeTime--Independent PotentialsIndependent PotentialsTimeTime Independent PotentialsIndependent Potentials
Let’s revisit S.E. for a timeLet’s revisit S.E. for a time--independent independent 
potential V(x t)=V(x):potential V(x t)=V(x):potential V(x,t)=V(x):potential V(x,t)=V(x):



TimeTime--Independent Potentials, Independent Potentials, 
con’tcon’t

“Separation of variables”“Separation of variables”Separation of variablesSeparation of variables
Left hand side = Right hand sideLeft hand side = Right hand side

E h b d hE h b d hEach must be a constant, and the same constantEach must be a constant, and the same constant



This equation has now beenThis equation has now been
solved once and forever.
For any time-independent V(x).
We can pretty much ignore it

We can ignore the 
constant of  integration 
since it gets absorbed

p y g
from now on.

since it gets absorbed 
into the normalization 
anyway.

Does this look familiar?  It’s the time-independent S.E.



ExampleExampleExampleExample

Is a validIs a valid wavefunctionwavefunction forfor)sin(),( tkxAtx ω−=ΨIs                                 a valid Is                                 a valid wavefunctionwavefunction for for 
a region where V(x)=0?a region where V(x)=0?

)sin(),( tkxAtx ωΨ



Example Cont’dExample Cont’dExample Cont dExample Cont d



Example Cont’dExample Cont’dExample Cont dExample Cont d

How aboutHow about ??iwtekxAtx −=Ψ )sin(),(How aboutHow about ??
If valid, evaluate the total energy.  If valid, evaluate the total energy.  

ekxAtxΨ )sin(),(



The Infinite Potential WellThe Infinite Potential WellThe Infinite Potential WellThe Infinite Potential Well
A particle is trapped between walls A particle is trapped between walls 
so energetically high it wouldso energetically high it wouldso energetically high it would so energetically high it would 
require an infinite amount of require an infinite amount of 
energy to get over them.energy to get over them.
Also called Also called infinite square wellinfinite square well or or 
infinite rectangular wellinfinite rectangular well
V 0 f 0≤ ≤ LV 0 f 0≤ ≤ LV=0 for 0≤ x≤ LV=0 for 0≤ x≤ L

Inside the wellInside the well
V=V= ∞∞ for x<0 x>Lfor x<0 x>L

Reed: Chapter 3

V= V= ∞∞ for x<0, x>Lfor x<0, x>L
Outside the wellOutside the well

Look for boundLook for bound--state solutions state solutions 
with E>0 with E>0 



Real Example: Electron trapped Real Example: Electron trapped 
in a “box”in a “box”

Reed: Chapter 3



In the outside regions: x<0, x>LIn the outside regions: x<0, x>LIn the outside regions: x<0, x>LIn the outside regions: x<0, x>L



In the inside region: 0≤ x ≤ LIn the inside region: 0≤ x ≤ LIn the inside region: 0≤ x ≤ LIn the inside region: 0≤ x ≤ L

Let’s apply boundary conditionsLet’s apply boundary conditions
3rd condition cannot be applied since we have infinite3rd condition cannot be applied since we have infinite3rd condition cannot be applied since we have infinite 3rd condition cannot be applied since we have infinite 
potential discontinuitiespotential discontinuities
We can apply conditions 1 and 2We can apply conditions 1 and 2



Continuous WavefunctionContinuous WavefunctionContinuous WavefunctionContinuous Wavefunction

E Ei l EEnergy Eigenvalues En

n is principle quantum number 

Ground state energyGround state energy 
corresponds to n=1
(n=0 leads to a null solution)

We just We just derivedderived the quantization of energy!the quantization of energy!



Normalized WavefunctionNormalized WavefunctionNormalized WavefunctionNormalized Wavefunction

Ei f ti l ti t thEi f ti l ti t thEigenfunction: solution to the Eigenfunction: solution to the 
timetime--independent S.E.independent S.E.



Two key lessonsTwo key lessonsTwo key lessons Two key lessons 

The quantized energy levels EThe quantized energy levels E ((energyenergyThe quantized energy levels EThe quantized energy levels Enn((energy energy 
eigenvalueseigenvalues) resulted naturally by imposing the ) resulted naturally by imposing the 
boundary conditions to the S Eboundary conditions to the S Eboundary conditions to the S.E.boundary conditions to the S.E.

Lead to the quantum numbers, n, allowing  us to Lead to the quantum numbers, n, allowing  us to 
label the energy eignevalueslabel the energy eignevalueslabel the energy eignevalueslabel the energy eignevalues

There is a wavefunction There is a wavefunction ΨΨ ((eigenfunctioneigenfunction) ) 
corresponding to each eigenvaluecorresponding to each eigenvaluecorresponding to each eigenvaluecorresponding to each eigenvalue

Gives the probability distribution of the system for a Gives the probability distribution of the system for a 
total energy Etotal energy Etotal energy Etotal energy Enn



Energy levels and WavefunctionsEnergy levels and WavefunctionsEnergy levels and WavefunctionsEnergy levels and Wavefunctions

n=1 is ground staten=1 is ground staten=1 is ground state n=1 is ground state 
Number of Number of extremaextrema in in wavefunctionwavefunction is equal to nis equal to n
Nodes are where Nodes are where ΨΨ=0 =0 

where we never expect to find the particlewhere we never expect to find the particle
Number of nodes for state n is Number of nodes for state n is nn--1 excluding the 1 excluding the boudariesboudaries



Wavefunctions and Probablility Wavefunctions and Probablility 
DistributionsDistributions

Reed: Fig. 3-6

Probability distributions |Probability distributions |ΨΨnn||22

Peaks correspond to where there is a high probability to findPeaks correspond to where there is a high probability to findPeaks correspond to where there is a high probability to find Peaks correspond to where there is a high probability to find 
the particlethe particle
Valleys correspond to low probabilityValleys correspond to low probability



Why do we not detect a wavy Why do we not detect a wavy 
nature in everyday life?nature in everyday life?

For a microscopic objectFor a microscopic objectFor a microscopic objectFor a microscopic object
Let’s evaluate the quantum number for an electron Let’s evaluate the quantum number for an electron 
with energy E=20eV trapped in a potential well ofwith energy E=20eV trapped in a potential well ofwith energy E 20eV trapped in a potential well of with energy E 20eV trapped in a potential well of 
L=1AngstromL=1Angstrom



Now for a macroscopic objectNow for a macroscopic objectNow for a macroscopic objectNow for a macroscopic object

Let’s evaluate the quantum number for an object of mass Let’s evaluate the quantum number for an object of mass q jq j
m=1kg, energy E=1J trapped in a potential well of width L=1m.m=1kg, energy E=1J trapped in a potential well of width L=1m.

This value of  n is so large that we would
never be able to distinguish the quantized
nature of  energy levels. gy

For example, the difference in energy between
two consecutive states, n1=4.3x1033 and

33 34n2=4.3x1033+1 is around 10-34J!  This is much
too small to be detected.

Thi l h th t t di ti tThis also shows that quantum predictions must
agree with classical results in the limit of  large 
quantum numbers: Bohr’s correspondence principle



Bohr’s correspondence principleBohr’s correspondence principleBohr s correspondence principleBohr s correspondence principle

n→∞
lim  Quantum Physics =  Classical Physics

Cl i ll i f iCl i ll i f i ΔΔE/E 0E/E 0Classically: continuum of energies so Classically: continuum of energies so ΔΔE/E=0E/E=0



Bohr’s correspondence principle, Bohr’s correspondence principle, 
con’tcon’t

Let’s evaluate the probability to find a particle in xLet’s evaluate the probability to find a particle in x11≤x ≤x≤x ≤x22p y pp y p 11 22

I d d thi i th l i l p t ti !Indeed this is the classical expectation!



ExampleExampleExampleExample

Probabilities for a particle in a box:Probabilities for a particle in a box:Probabilities for a particle in a box:Probabilities for a particle in a box:
A particle is known to be in the ground state of a A particle is known to be in the ground state of a 
infinite square well with length L Calculate theinfinite square well with length L Calculate theinfinite square well with length L. Calculate the infinite square well with length L. Calculate the 
probability that this particle will be found in the probability that this particle will be found in the 
middle half of the well, between middle half of the well, between xx=L/4 and =L/4 and xx=3L/4.=3L/4.

Classically: we expect 1/2 Classically: we expect 1/2 -- a classical particle spends equal a classical particle spends equal 
time in all parts of the welltime in all parts of the well





Full Wavefunction for Infinite Full Wavefunction for Infinite 
Potential WellPotential Well

In summaryIn summaryIn summary,In summary,

Ψ(x t) = 2 sin nπx
⋅ e−iEn t /hΨ(x,t)

L
sin

L
e

2 2h2

En =
n2π 2h2

2mL2 ,   n =1,2, 3,....
  



Summary/AnnouncementsSummary/AnnouncementsSummary/AnnouncementsSummary/Announcements

Introduction to concept of Potential WellsIntroduction to concept of Potential WellsIntroduction to concept of Potential WellsIntroduction to concept of Potential Wells
The Infinite Square WellThe Infinite Square Well

Next time:Next time:
More on Potential WellsMore on Potential Wells

Next homework due on Monday Sept 26!  Next homework due on Monday Sept 26!  
There will be a quiz, next class (Wed, Sept. 21There will be a quiz, next class (Wed, Sept. 21stst): Closed ): Closed q ( pq ( p ))
book, Closed note, no calculator needed.book, Closed note, no calculator needed.


