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AnnouncementAnnouncementAnnouncementAnnouncement

Second HW will be due on Monday Sept 19!Second HW will be due on Monday Sept 19!Second HW will be due on Monday Sept 19!Second HW will be due on Monday Sept 19!

The text book is on reserve in SERC reading The text book is on reserve in SERC reading 
roomroomroomroom



Let’s recapLet’s recapLet s recapLet s recap
Last time we “derived” timeLast time we “derived” time--independent independent 
S h di ’S h di ’ i !i !Schroedinger’sSchroedinger’s equation!equation!

We derived this using                   and a prototype wave We derived this using                   and a prototype wave 
functionfunctionfunction function 
Today we will derive timeToday we will derive time--dependent dependent SchroedingerSchroedinger
equationequationqq

And discuss the probability interpretation of the And discuss the probability interpretation of the 
wavefunctionswavefunctions



RememberRememberRememberRemember



Strategy for timeStrategy for time--dependent dependent 
SchroedingerSchroedinger EquationEquation

Differentiating by “x” allowed replacement of Differentiating by “x” allowed replacement of 
“p” and led to time“p” and led to time--independent independent SchroedingerSchroedinger
equation.equation.
So differentiating by “t” will lead to replacement So differentiating by “t” will lead to replacement 
of E and to the timeof E and to the time--dependent dependent SchroedingerSchroedingerpp gg
equation.equation.



StrategyStrategyStrategyStrategy

So our goal is to replace ”E” by timeSo our goal is to replace ”E” by time--derivativederivativeSo our goal is to replace E  by timeSo our goal is to replace E  by time derivative derivative 
inin



Let’s try to include timeLet’s try to include time--dependencedependenceLet s try to include timeLet s try to include time dependencedependence



Problems with this resultProblems with this resultProblems with this resultProblems with this result

Amplitude appears in what we presume to be aAmplitude appears in what we presume to be aAmplitude appears in what we presume to be a Amplitude appears in what we presume to be a 
general physical lawgeneral physical law

AA should be dictated by the “boundary conditions” should be dictated by the “boundary conditions” y yy y
of the problem (more on this next time)of the problem (more on this next time)

There is a sign ambiguityThere is a sign ambiguity
There is a square root in the denominator!There is a square root in the denominator!

This differential equation is nonThis differential equation is non--linearlinearqq
A sum of independent solutions would not itself be A sum of independent solutions would not itself be 
a solutiona solution



Plane wave representation for a Plane wave representation for a 
free particlefree particle

SchroedingerSchroedinger had the idea to modify the wavehad the idea to modify the waveSchroedingerSchroedinger had the idea to modify the wave had the idea to modify the wave 
equationequation
So the free particle wave equation becomes:So the free particle wave equation becomes:So the free particle wave equation becomes:So the free particle wave equation becomes:



TimeTime--Dependent S.E.Dependent S.E.TimeTime Dependent S.E.Dependent S.E.



Free Particle Solution to S.E.Free Particle Solution to S.E.Free Particle Solution to S.E.Free Particle Solution to S.E.

Fig. 2.2 in Reed:Fig. 2.2 in Reed:
(a), (b): real (cosine) and imaginary (sine) parts of (a), (b): real (cosine) and imaginary (sine) parts of ΨΨ at t=0.at t=0.
(c ), (d): at a slightly later time (c ), (d): at a slightly later time ΔΔt t 
The pattern forThe pattern for ΨΨ behaves as if it has advanced slightly to thebehaves as if it has advanced slightly to theThe pattern for The pattern for ΨΨ behaves as if it has advanced slightly to the behaves as if it has advanced slightly to the 
right between t=0 and t = right between t=0 and t = ΔΔt.t.
Similarly for motion to the left  (~ Similarly for motion to the left  (~ ee--ii((kxkx++ωωt)t)).).



Born’s interpretationBorn’s interpretationBorn s interpretationBorn s interpretation

Question: how are we to interpret a QMQuestion: how are we to interpret a QMQuestion: how are we to interpret a QM Question: how are we to interpret a QM 
wavefunctionwavefunction ΨΨ??

Interpretation in terms of probabilities by Max BornInterpretation in terms of probabilities by Max BornInterpretation in terms of probabilities by Max Born Interpretation in terms of probabilities by Max Born 
in 1926.in 1926.



WavefunctionWavefunction ΨΨWavefunctionWavefunction ΨΨ
ΨΨ((x,tx,t) is a general complex number:) is a general complex number:
ΨΨ=A + =A + iBiB or or ReReiiθθ where where ii==√√--1.1.

ProbabilityProbability of finding particle between x and (of finding particle between x and (x+dxx+dx) at ) at 
time t is: time t is: 
P(P(x,tx,t))dxdx= = ΨΨ∗∗((x,tx,t) ) ΨΨ((x,tx,t))dxdx ((Born’sBorn’s Interpretation)Interpretation)
where where ΨΨ∗∗((x,tx,t) is the complex conjugate of ) is the complex conjugate of ΨΨ

ΨΨ∗∗((x,tx,t) ) ΨΨ((x,tx,t) is known as the ) is known as the probability densityprobability density

P(P(x,tx,t)= )= ΨΨ∗∗((x,tx,t) ) ΨΨ((x,tx,t)=(A)=(A--iBiB)()(A+iBA+iB)=A)=A22--ii22BB22=A=A22+B+B22

So P(So P(x,tx,t) is real and positive!) is real and positive!



Born’s interpretation, con’tBorn’s interpretation, con’tBorn s interpretation, con tBorn s interpretation, con t
Probabilistic interpretation of Probabilistic interpretation of ΨΨ does not mean that a does not mean that a 
particle can be in two or more places simultaneously!particle can be in two or more places simultaneously!particle can be in two or more places simultaneously!particle can be in two or more places simultaneously!

Particles do not loose their identity as (essentially) point Particles do not loose their identity as (essentially) point 
objectsobjects

In this interpretation, we can only predict the In this interpretation, we can only predict the 
probability of finding the particle in some region of probability of finding the particle in some region of 
space or of its having momentum within certain limitsspace or of its having momentum within certain limitsspace or of its having momentum within certain limits.space or of its having momentum within certain limits.
ΨΨ itself has no physical reality itself has no physical reality -- it’s a mathematical it’s a mathematical 
construction to keep account of probabilities.construction to keep account of probabilities.p pp p
The “waviness” of matter is a consequence of its The “waviness” of matter is a consequence of its 
probability distribution.probability distribution.



NormalizationNormalizationNormalizationNormalization

We say that a wavefunction is normalized if:We say that a wavefunction is normalized if:yy

If one adds up the probabilities of finding a particle If one adds up the probabilities of finding a particle 
over the entire space it could possibly occupy, the total over the entire space it could possibly occupy, the total 
must be unity.must be unity.
Th p b biliti t dd p t “ h l p ti l ”Th p b biliti t dd p t “ h l p ti l ”The probabilities must add up to a “whole particle”The probabilities must add up to a “whole particle”
In other words, the wavefunction In other words, the wavefunction ΨΨ must be square must be square 
integrableintegrableintegrableintegrable

This is one of the This is one of the boundary conditionsboundary conditions that must be imposed on that must be imposed on 
solutions to the S.E.!solutions to the S.E.!



ExampleExampleExampleExample

A free particle’s wave function is represented byA free particle’s wave function is represented byA free particle s wave function is represented byA free particle s wave function is represented by

Which one of the following depicts the Which one of the following depicts the 
probability of finding the particle correctly?probability of finding the particle correctly?



Recall: LinearityRecall: LinearityRecall: LinearityRecall: Linearity

If If ΨΨ11(x,t) and (x,t) and ΨΨ22(x,t) are two different solutions to the (x,t) are two different solutions to the 11( , )( , ) 22( , )( , )
equation for a given potential energy V, then any equation for a given potential energy V, then any 
arbitrary linear combination of these solutions, arbitrary linear combination of these solutions, ΨΨ(x,t) (x,t) 
== ΨΨ ( t) +( t) + ΨΨ ( t) i l l ti( t) i l l ti=c=c11ΨΨ11(x,t) +c(x,t) +c22ΨΨ22(x,t), is also a solution.(x,t), is also a solution.
It involves the first (linear) power of It involves the first (linear) power of ΨΨ11(x,t) and (x,t) and ΨΨ22(x,t)(x,t)
cc and cand c can have any (arbitrary) complex valuescan have any (arbitrary) complex valuescc11 and cand c2 2 can have any (arbitrary) complex valuescan have any (arbitrary) complex values
Linearity ensures we can add together wave functionsLinearity ensures we can add together wave functions

Constructive and destructive interferenceConstructive and destructive interferenceConstructive and destructive interferenceConstructive and destructive interference
Principle of superpositionPrinciple of superposition



Principle of superposition:Principle of superposition:
DoubleDouble slit experimentslit experimentDoubleDouble--slit experimentslit experiment

Only slit 1 open, we have:Only slit 1 open, we have:Only slit 1 open, we have:Only slit 1 open, we have:

Probability distribution withProbability distribution withProbability distribution with Probability distribution with 
only slit 1 open:only slit 1 open:

Probability distribution

If only slit 2 open:If only slit 2 open:
Probability distribution



Principle of superposition, con’tPrinciple of superposition, con’tPrinciple of superposition, con tPrinciple of superposition, con t

Both slits open:Both slits open:Both slits open:Both slits open:

Individual counts/min

Int rf r n t rm!

Accumulated counts/min

|Ψ1+Ψ2|2Interference term! |Ψ1+Ψ2|

ΝΟΤ |Ψ1|2 +|Ψ2|2



Boundary ConditionsBoundary ConditionsBoundary ConditionsBoundary Conditions
1.1. As we already covered, As we already covered, ΨΨ must be square must be square integrableintegrable::

2.2. The The wavefunctionwavefunction ΨΨ must be a continuous function!must be a continuous function!
This means forcing two solutions at the boundary to agree:This means forcing two solutions at the boundary to agree:
ΨΨ<<(boundary) =(boundary) = ΨΨ>>(boundary)(boundary)ΨΨ (boundary)  (boundary)  ΨΨ (boundary)(boundary)

Fig. 2.3 from Reed

3.3. If V(x) is continuous or finitely discontinuous across a boundary, then If V(x) is continuous or finitely discontinuous across a boundary, then 
the first derivative of the first derivative of Ψ,Ψ, ddΨΨ//dxdx, must be made continuous across the , must be made continuous across the 
b d B if V( ) i i fi i l di i h b db d B if V( ) i i fi i l di i h b dboundary.  But if V(x) is infinitely discontinuous across the boundary, boundary.  But if V(x) is infinitely discontinuous across the boundary, 
then dthen dΨΨ//dxdx can be discontinuous across the boundary.can be discontinuous across the boundary.
These will become clear once we start doing some examples.These will become clear once we start doing some examples.



Error in the bookError in the bookError in the bookError in the book

In Eq 2 4 7In Eq 2 4 7In Eq. 2.4.7, In Eq. 2.4.7, 



Change of Potential by a constant Change of Potential by a constant 
amountamount

Suppose we have a particle with potential V(x), with a wavefunction Suppose we have a particle with potential V(x), with a wavefunction pp p p ( ),pp p p ( ),
solution solution ΨΨ and energy state E.and energy state E.
If the potential changes to V’(x) = V(x) +VIf the potential changes to V’(x) = V(x) +V00, where V, where V00 is constant, is constant, 

h ill bh ill b ΨΨ’ d E’?’ d E’?what will be new what will be new ΨΨ’ and E’?’ and E’?

(1)

(2)(2)



… continued… continued… continued… continued

(1) and (2) will be identical if E=E’+V(1) and (2) will be identical if E=E’+V00..( ) ( )( ) ( ) 00

So the new wavefunction will be identical So the new wavefunction will be identical ΨΨ’= ’= ΨΨ.  But the new .  But the new 
energy state will be E=E’+Venergy state will be E=E’+V00..
All that happens is that the “zero” of the potential has shifted.All that happens is that the “zero” of the potential has shifted.
This is true for all wavefunction solutions, This is true for all wavefunction solutions, ΨΨnn (or (or eignefunctionseignefunctions) ) 
and Eand E (or(or energy eignevaluesenergy eignevalues) More on eigenfunctions and) More on eigenfunctions andand Eand Enn (or (or energy eignevaluesenergy eignevalues).  More on eigenfunctions and ).  More on eigenfunctions and 
eigenvalues next time.eigenvalues next time.



Example: “particleExample: “particle--inin--aa--box”box”Example: particleExample: particle inin aa boxbox

Consider a particle of mass m which can move freelyConsider a particle of mass m which can move freelyConsider a particle of mass m which can move freely Consider a particle of mass m which can move freely 
along the x axis anywhere from x=along the x axis anywhere from x=--a/2 to x=+a/2, but a/2 to x=+a/2, but 
is strictly prohibited from being found outside this is strictly prohibited from being found outside this 
region.  The particle bounces back and forth between region.  The particle bounces back and forth between 
the walls at x=the walls at x=±±a/2 of a (1a/2 of a (1--dim) box.  Assume the dim) box.  Assume the 

ll b l l i bl hll b l l i bl hwalls to be completely impenetrable, no matter how walls to be completely impenetrable, no matter how 
energetic the particle is (this is an idealization!).energetic the particle is (this is an idealization!).
Th f ti f th p rti l iTh f ti f th p rti l iThe wave function of the particle is:The wave function of the particle is:



Example, con’tExample, con’tExample, con tExample, con t
Verify that it is a solution to the S.E. in the region Verify that it is a solution to the S.E. in the region --a/2≤ x ≤ +a/2 a/2≤ x ≤ +a/2 
and determine the value of the lowest energy state.and determine the value of the lowest energy state.



Example, con’tExample, con’tExample, con tExample, con t

Plot the space dependence of the wave function (forPlot the space dependence of the wave function (forPlot the space dependence of the wave function (for Plot the space dependence of the wave function (for 
fixed time).fixed time).



Summary/AnnouncementsSummary/AnnouncementsSummary/AnnouncementsSummary/Announcements

We derived timeWe derived time--dependentdependent SchroedingerSchroedinger equationequationWe derived timeWe derived time dependent dependent SchroedingerSchroedinger equationequation
Born’sBorn’s interpretation of probability density for interpretation of probability density for wavefunctionswavefunctions
Boundary conditionsBoundary conditions

Next time:Next time:
Solutions to Schrodinger’s Equation in 1 dimensionSolutions to Schrodinger’s Equation in 1 dimensionSolutions to Schrodinger s Equation in 1 dimensionSolutions to Schrodinger s Equation in 1 dimension

Next homework due on Monday Sept 19!  Next homework due on Monday Sept 19!  


