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Announcement

m Second HW will be due on Monday Sept 19!

m The text book is on reserve in SERC reading
room




Let’s recap

m Last time we “dertved” time-independent
Schroedinger’s equation!
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m We derived this using A = —['I\; and a prototype wave

function U(Xt)= A cos( 21(“ vt) )
m Today we will derive time- dependent Schroedinger
equatlon
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m And discuss the probability interpretation of the

wavefunctions




Remember




Strategy for time-dependent
Schroedinger Equation
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m Differentiating by “x” allowed replacement of
“p” and led to time-independent Schroedinger
equation.

m So differentiating by “t”

of E and to the time-dependent Schroedinger

equation.

will lead to replacement



Strategy

m So our goal 1s to replace "E” by time-dertvative
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Let’s try to include time-dependence
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Problems with this result

m Amplitude appears in what we presume to be a
general physical law

m A should be dictated by the “boundary conditions™
of the problem (more on this next time)

m There is a sign ambiguity
m There is a square root in the denominator!

m This differential equation is non-linear

= A sum of independent solutions would not itself be
a solution



Plane wave representation for a
free particle

m Schroedinger had the idea to modify the wave
equation

m So the free particle wave equation becomes:

JT— (px- gu] s LA ax(?' (px fE-U]

1 [t {FI’E"L}]

T A

Y (xt): A tos



Time-Dependent S.E.

L._[FI'EH
IV . Ae® (-1E) - -LEW
Ik * T
. & (px-g®

2% - Ae (HL*P) .t eV

S K 2 N

3 . PL

BY Lo - D s Y

?f',lil — Y iy 4 ﬁ"'

Now E° Py VI E)
am
eV~ W VY
= 2
¥ - ovw e VY
= - . -
B E %’c A oA
L : :
. - 1Y = -':-",, -
UAL "y i L L'______

e —— - b} w]‘*-ti
R T i e T I
o — Seratd Af}*’:”'

am 3 I ‘ ,

[— ’c:qJLLLn,hm»




Free Particle Solution to S.E.
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m (a), (b): real (cosine) and imaginary (sine) parts of ‘¥ at t=0.
m (c), (d): at a slightly later time At

m The pattern for ¥ behaves as if it has advanced slightly to the
right between t=0 and t = At.

m Similarly for motion to the left (~ ex+®9),



Born’s interpretation

m Question: how are we to interpret a QM
wavefunction ¥?

m Interpretation in terms of probabilities by Max Born
in 1926.



Wavefunction V¥

m WY(x,t) is a general complex number:
Y=A + iB or Re® where i=V-1.

m Probability of finding particle between x and (x+dx) at
time t is:

Px,t)dx= W*(x,t) ¥(x,t)dx ~ (Born’s Interpretation)
where W*(x,t) is the complex conjugate of ‘¥

Y*(x,t) W(x,t) 1s known as the probability density

P(x,t)= W*(x,t) ¥ (x,t)=(A-iB)(A+iB)=A%-i*B*= A+ B>
So P(x,t) 1s real and positivel



Born’s interpretation, con’t

m Probabilistic interpretation of ¥ does not mean that a
particle can be in two or more places simultaneously!
m Particles do not loose their identity as (essentially) point
objects
m [n this interpretation, we can only predict the
probability of finding the particle in some region of
space or of its having momentum within certain limits.

m YV itself has no physical reality - it’s a mathematical
construction to keep account of probabilities.

m The “waviness” of matter is a consequence of its

probability distribution.



Normalization

m We say that a wavefunction is normalized if:
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m If one adds up the probabilities of finding a particle

over the entire space it could possibly occupy, the total
must be unity.

L

m The probabilities must add up to a “whole particle”

m In other words, the wavefunction ¥ must be square
integrable

m This is one of the boundary conditions hat must be imposed on
solutions to the S.E.!



Example

m A free particle’s wave function is represented by

m Which one of the following depicts the

probability of finding the particle correctly?
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Recall: Linearity

It ¥, (x,t) and W, (x,t) are two different solutions to the
equation for a given potential energy V, then any
arbitrary linear combination of these solutions, ‘¥ (x,t)
=c, ¥, (x,t) +¢c,'V,(x,1), 1s also a solution.

It involves the first (linear) power of W, (x,t) and W, (x,t)
c, and c, can have any (arbitrary) complex values

Linearity ensures we can add together wave functions
m Constructive and destructive interference

m Principle of superposition



Principle of superposition:

Double-slit experiment

® Only slit 1 open, we have:
§
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m Probability distribution with
only slit 1 open:
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Principle of superposition, con’t
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m Both slits open:
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Boundary Conditions

1. As we already covered, ¥ must be square integrable:
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2, The wavefunction W must be a continuous function!

m  This means forcing two solutions at the boundary to agree:
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with a discontinuity &t x = [

If V(x) 1s continuous or finitely discontinuous across a boundary, then

the first derivative of ¥, d¥W/dx, must be made continuous across the
boundary. But if V(x) 1s infinitely discontinuous across the boundary,
then d¥/dx can be discontinuous across the boundary.

C These will become clear once we start doing some examples.



Error in the book

mInEq. 247, v7(oy — V “(o)
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Change of Potential by a constant
amount

m Suppose we have a particle with potential V(x), with a wavefunction
solution ¥ and energy state E.

m [f the potential changes to V’(x) = V(x) +V,, where V, is constant,
what will be new ¥’ and E’?

B lLl ( ':_é_kr_. + Wix) .M]LI ~ T (1)
ann axK’
e

el AV EVE SR
:}"h t“lﬁ.#

_ ; { ) !
Y w v WY
Hm dx?t



... continued

(1) and (2) will be identical if E=F’+V,,

So the new wavefunction will be identical ¥’= W. But the new
energy state will be E=E’+V,.

All that happens 1s that the “zero” of the potential has shifted.

This 1s true for all wavefunction solutions, Y (or ezgnefunctions)
and E_ (or energy eignevalues). More on eigenfunctions and
eigenvalues next time.



Example: “particle-in-a-box”

m Consider a particle of mass m which can move freely
along the x axis anywhere from x=-a/2 to x=+a/2, but
is strictly prohibited from being found outside this
region. The particle bounces back and forth between
the walls at x=2a/2 of a (1-dim) box. Assume the
walls to be completely impenetrable, no matter how
energetic the particle is (this is an idealization!).

m The wave function of the particle 1s:
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Example, con’t

m Verify that it is a solution to the S.E. in the region -a/2< x < +a/2
and determine the value of the lowest energy state.
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Example, con’t

m Plot the space dependence of the wave function (for
fixed time).



Summary/Announcements

We derived time-dependent Schroedinger equation
Born’s interpretation of probability density for wavefunctions

Boundary conditions

Next time:

m Solutions to Schrodinger’s Equation in 1 dimension

Next homework due on Monday Sept 19!



