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AnnouncementAnnouncementAnnouncementAnnouncement

First homework due on Wednesday Sept 14First homework due on Wednesday Sept 14First homework due on Wednesday Sept 14 First homework due on Wednesday Sept 14 
at the beginning of class: late homework will at the beginning of class: late homework will 
be accepted only until noon of the followingbe accepted only until noon of the followingbe accepted only until noon of the following be accepted only until noon of the following 
day in my mail box with penalty of day in my mail box with penalty of 20% 20% 
deductiondeduction and the second HW will be dueand the second HW will be duededuction deduction and the second HW will be due and the second HW will be due 
on Monday Sept 19!on Monday Sept 19!
The text book is on reserve in SERC readingThe text book is on reserve in SERC readingThe text book is on reserve in SERC reading The text book is on reserve in SERC reading 
roomroom



Let’s recapLet’s recapLet s recapLet s recap
We’ve seen experimental (and theoretical) evidence that We’ve seen experimental (and theoretical) evidence that 
h h i l f i ih h i l f i ishows that particles of microscopic systems move shows that particles of microscopic systems move 

according to some form of wave motion.according to some form of wave motion.
A microscopic particle acts as if certain aspects of itsA microscopic particle acts as if certain aspects of itsA microscopic particle acts as if certain aspects of its A microscopic particle acts as if certain aspects of its 
behavior are governed by de Broglie’s postulate of a behavior are governed by de Broglie’s postulate of a 
wave or “wave or “wavefunctionwavefunction”.”.
How this “How this “wavefunctionwavefunction” affects our description of the ” affects our description of the 
particle and its behavior is the subject of quantum particle and its behavior is the subject of quantum 
mechanics (or wave mechanics)mechanics (or wave mechanics)mechanics (or wave mechanics).mechanics (or wave mechanics).
This was developed by Erwin Schrodinger, Heisenberg This was developed by Erwin Schrodinger, Heisenberg 
and others from 1925and others from 1925--26.26.and others from 1925and others from 1925 26.26.
Let’s first look at the classical model of a wave….Let’s first look at the classical model of a wave….



Classical vs. Quantum PhysicsClassical vs. Quantum PhysicsClassical vs. Quantum PhysicsClassical vs. Quantum Physics
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But: Quantum mechanics gives us a way to calculate the probabilityBut: Quantum mechanics gives us a way to calculate the probability
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But: Quantum mechanics gives us a way to calculate the probability But: Quantum mechanics gives us a way to calculate the probability 
of each possible outcome of a measurement.of each possible outcome of a measurement.
Consider a particle of  mass m and suppose the force on it is F(x,t)Consider a particle of  mass m and suppose the force on it is F(x,t)
Then the potential energy is:Then the potential energy is:

∫V (x, t) = − F(x,t)dx∫



SchroedingerSchroedinger EquationEquationSchroedingerSchroedinger EquationEquation

SchroedingerSchroedinger equation for quantum mechanicsequation for quantum mechanicsSchroedingerSchroedinger equation for quantum mechanics equation for quantum mechanics 
is equivalent to Newton’s equation for classical is equivalent to Newton’s equation for classical 
mechanics that is:mechanics that is: )(
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SchroedingerSchroedinger equation looks like:equation looks like:
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If there is no time dependence, it reduces to:If there is no time dependence, it reduces to:
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which is called timewhich is called time independent independent SchroedingerSchroedinger
equation.equation.



The Classical Wave EquationThe Classical Wave EquationThe Classical Wave EquationThe Classical Wave Equation

Traveling wave on a string isTraveling wave on a string isTraveling wave on a string is Traveling wave on a string is 
described by a “wave described by a “wave 
function” : y = f(x t)function” : y = f(x t)function  : y  f(x,t)function  : y  f(x,t)
Harmonic wave: Harmonic wave: 
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The Classical Wave Equation, The Classical Wave Equation, 
con’tcon’t

Can we express this more generally?Can we express this more generally?Can we express this more generally?Can we express this more generally?
Such generalized expressions of physical laws Such generalized expressions of physical laws 
take the form of partial differential equations:take the form of partial differential equations:take the form of partial differential equations:take the form of partial differential equations:



Classical wave Equation cont’Classical wave Equation cont’Classical wave Equation contClassical wave Equation cont



Classical wave Equation cont’Classical wave Equation cont’Classical wave Equation contClassical wave Equation cont



Properties of Wave functionsProperties of Wave functionsProperties of Wave functionsProperties of Wave functions

LinearityLinearityLinearityLinearity
If yIf y11, y, y22, …, , …, yynn are solutions of the same wave are solutions of the same wave 
equation then any linear sum of them is also aequation then any linear sum of them is also aequation, then any linear sum of them is also a equation, then any linear sum of them is also a 
solution of the wave equation; that is, a function solution of the wave equation; that is, a function 
of the form y = aof the form y = a yy + a+ a yy + ++ +aa yy is also ais also aof the form y = aof the form y = a11 yy11 + a+ a22 yy2 2 +…++…+aannyynn is also a is also a 
solution.solution.



ExampleExampleExampleExample

Which of the following are acceptable classicalWhich of the following are acceptable classicalWhich of the following are acceptable classical Which of the following are acceptable classical 
wave functions?wave functions?
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Free ParticleFree ParticleFree ParticleFree Particle

A free particle is one subject to no force.A free particle is one subject to no force.p jp j
Reasonable assumptions concerning the properties of desired Reasonable assumptions concerning the properties of desired 
quantum mechanical wave equation:quantum mechanical wave equation:

1.1. It must be consistent with postulates of de Broglie and It must be consistent with postulates of de Broglie and 
Einstein:  Einstein:  λλ=h/p and =h/p and νν=E/h=E/h

2.2. It must be consistent with energy equation: It must be consistent with energy equation: E=pE=p22/2m + V/2m + V
3.3. It must be It must be linear.linear.
44 Forces of interest are derivable from potentials:Forces of interest are derivable from potentials:4.4. Forces of interest are derivable from potentials:Forces of interest are derivable from potentials:

F=F=--∂∂V(x,t)/V(x,t)/∂∂xx



LinearityLinearityLinearityLinearity

If If ΨΨ11(x,t) and (x,t) and ΨΨ22(x,t) are two different solutions to the (x,t) are two different solutions to the 11( , )( , ) 22( , )( , )
equation for a given potential energy V, then any equation for a given potential energy V, then any 
arbitrary linear combination of these solutions, arbitrary linear combination of these solutions, ΨΨ(x,t) (x,t) 
== ΨΨ ( t) +( t) + ΨΨ ( t) i l l ti( t) i l l ti=c=c11ΨΨ11(x,t) +c(x,t) +c22ΨΨ22(x,t), is also a solution.(x,t), is also a solution.
It involves the first (linear) power of It involves the first (linear) power of ΨΨ11(x,t) and (x,t) and ΨΨ22(x,t)(x,t)
cc and cand c can have any (arbitrary) complex valuescan have any (arbitrary) complex valuescc11 and cand c2 2 can have any (arbitrary) complex valuescan have any (arbitrary) complex values
Linearity ensures we can add together wave functionsLinearity ensures we can add together wave functions

Constructive and destructive interferenceConstructive and destructive interferenceConstructive and destructive interferenceConstructive and destructive interference
Principle of superpositionPrinciple of superposition



Free ParticleFree ParticleFree ParticleFree Particle

For a free particle F=0For a free particle F=0pp
So F=So F=--∂∂V(x,t)/V(x,t)/∂∂x=0 if V= constantx=0 if V= constant
Linear momentum p will be constant and therefore its total Linear momentum p will be constant and therefore its total 
energy will be constantenergy will be constantenergy will be constantenergy will be constant

Let’s make the connection from the classical wave to quantum Let’s make the connection from the classical wave to quantum 
mechanical matter waves by using the classical sinusoidal mechanical matter waves by using the classical sinusoidal 
wavefunction as an example:wavefunction as an example:

y = Acos 2π
λ

(x − vt)

And let’s assume no time dependence. And let’s assume no time dependence. 

λ



TimeTime--Independent S.E.Independent S.E.TimeTime Independent S.E.Independent S.E.

This IS the non-relativistic,
1 Dimensional time independent1-Dimensional, time-independent
Schrodinger equation! (S.E.)



TimeTime--Independent S.E. in 3Independent S.E. in 3--DDTimeTime Independent S.E. in 3Independent S.E. in 3 DD

Now the wavefunction is Now the wavefunction is ΨΨ((rr):):(( ))



We just derived Schrodinger’s equation!We just derived Schrodinger’s equation!

There are three things to note in what we did:There are three things to note in what we did:
1.1. The classical wave equation was NOT used The classical wave equation was NOT used -- we used only a we used only a 

prototype wavefunctionprototype wavefunction
2.2. We did not use the concept of quantizationWe did not use the concept of quantization
33 The total energy E appears explicitly in the resulting differentialThe total energy E appears explicitly in the resulting differential3.3. The total energy E appears explicitly in the resulting differential The total energy E appears explicitly in the resulting differential 

equationequation
This is unusual from the point of view of classical physics.  This is unusual from the point of view of classical physics.  
For example Newton’s lawFor example Newton’s law FF=m=maa makes no mention ofmakes no mention ofFor example, Newton s law For example, Newton s law FF=m=maa makes no mention of makes no mention of 
energy.energy.

Schrodinger’s equation is an “eigenvalue equation”:Schrodinger’s equation is an “eigenvalue equation”:
We will see later that for a given value of V and a set of We will see later that for a given value of V and a set of 
“boundary conditions” there will be a restricted set of functions “boundary conditions” there will be a restricted set of functions 
ΨΨ(x,t) satisfying the equation, and each of these corresponds to (x,t) satisfying the equation, and each of these corresponds to ( , ) y g q , p( , ) y g q , p
a particular value of Ea particular value of E

The quantized energy states!The quantized energy states!



Example ProblemExample ProblemExample ProblemExample Problem

Problem 2Problem 2--3 in your book3 in your bookProblem 2Problem 2 3 in your book3 in your book



Problem,Problem, con’tcon’tProblem, Problem, con tcon t

Can you explain why Schroedinger did not use this version instead??Can you explain why Schroedinger did not use this version instead?? 



Summary/AnnouncementsSummary/AnnouncementsSummary/AnnouncementsSummary/Announcements

We “derived” Schrodinger’s equation!We “derived” Schrodinger’s equation!We derived  Schrodinger s equation!We derived  Schrodinger s equation!
Next time:Next time:

TimeTime--dependent Schrodinger Equationdependent Schrodinger Equation
Probabilities and boundary conditionsProbabilities and boundary conditions

There is a copy of textbook on reserve in the SERC ReadingThere is a copy of textbook on reserve in the SERC ReadingThere is a copy of textbook on reserve in the SERC Reading There is a copy of textbook on reserve in the SERC Reading 
Room (downstairs)Room (downstairs)
The first HW is due at the beginning of next Lecture The first HW is due at the beginning of next Lecture 
(W d d )(W d d )(Wednesday).(Wednesday).


