Quantum Mechanics and Atomic Physics Lecture 24: Approximation Methods II http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh

Last Time

We introduced solvinging SE using approximations

- Analytic methods
 - Wentzel-Kramers-Brillouin (WKB) method (last time)
 - Perturbation theory (last time and today)
 - Variational methods (today)

Time-independent Perturbation Theory

Perturbation theory applies when the potential V(x) is a small deviation from another potential V⁰(x) for which we <u>can</u> solve S.E. exactly.

 $V(x) = V^{\circ}(x) + \Delta V(x)$

- V⁰(x) is the **unperturbed potential**
- And we can solve:

Hº Yn = En Yn

where $H^{\circ} = -\frac{h^2}{2m} \frac{d^2}{dx^2} + V^{\circ}(x)$

- V(x) is the **perturbed potential**
- ΔV(x) is the perturbing potential, or the perturbation (your book calls this V')

$$V(x) = V^{\circ}(x) + \Delta V(x)$$

• We want to solve: $H_{h} = E_{h} + H_{h}$

$$Ht_{n} = Ent_{n}$$

$$H = -\frac{1}{2m}\frac{d^{2}}{dx^{2}} + V(x) = -\frac{1}{2m}\frac{d^{2}}{dx^{2}} + V^{\circ}(x) + \Delta V(x)$$

$$H = H^{\circ} + \Delta V(x)$$

- Let's define $f_n(x)$ so that Let's define ε_n so that $E_n = E_n^\circ + \varepsilon_n$
- Put into the equation above that we want to solve.

=)
$$(H^{\circ} + 6v)(H_{n}^{\circ} + f_{n}) = (E_{n}^{\circ} + E_{n})(H_{n}^{\circ} + f_{n})$$

=) $H^{\circ} \Psi_{n}^{\circ} + H^{\circ} f_{n} + \Delta v \Psi_{n}^{\circ} + \Delta v f_{n}$
 $T = E_{n}^{\circ} \Psi_{n}^{\circ} + E_{n}^{\circ} f_{n} + E_{n} \Psi_{n}^{\circ} + E_{n} f_{n}$
 $H^{\circ} - E_{n}^{\circ})f_{n} + (\delta v - E_{n})\Psi_{n}^{\circ} = (E_{n} - \Delta v)f_{n}$

• So far, this is <u>exact</u>.

Now let's introduce approximations:

$$(H^{\circ} - E_{n}^{\circ})f_{n} + (\delta v - E_{n})\dot{\Psi}_{n}^{\circ} = (E_{n} - \Delta v)f_{n}$$

- The right hand side consist only of multiplication of two *tiny* quantities, whereas the left side has only one tiny quantity in each term
- The basic assumption of first-order timeindepended perturbation theory is that the right hand side is set to zero:

$$=) ([H^{\circ} - \overline{E_{n}}^{\circ}] f_{n} + (\overline{OV} - \varepsilon_{n}) H_{n}^{\circ} \sim 0$$

$$\rightarrow$$
 (H^o - En^o) $f_n \approx (\epsilon_n - \Delta v) H_n^{o}$

Our goal is to solve for ε_n
So let's expand f_n in the complete set Ψ_n⁰

$$f_n(x) = \leq a_{nj} \Psi_j^\circ(x)$$

So the left hand side of: $(\mathbb{H}^{\circ} - \mathbb{E}_{n}^{\circ}) \in (\mathbb{E}_{n} - \Delta v) \times \mathbb{V}_{n}^{\circ}$ becomes:

$$(H^{\circ}-En^{\circ})f_{n} = (H^{\circ}-En^{\circ}) \not\leq a_{nj} \not\leq y_{j}^{\circ} - En^{\circ} \not\leq a_{nj} \not\leq y_{j}^{\circ}$$
$$= \not\leq a_{nj} H^{\circ} \not\leq y_{j}^{\circ} - En^{\circ} \not\leq a_{nj} \not\leq y_{j}^{\circ}$$
$$= \not\leq a_{nj} \not\in y_{j}^{\circ} - \not\leq a_{nj} \not\in y_{j}^{\circ} - \not\leq a_{nj} \not\in y_{j}^{\circ}$$
$$= \not\leq a_{nj} (\not\in y_{j}^{\circ} - \not\in z_{n}^{\circ}) \not\neq y_{j}^{\circ}$$

$$= \sum_{j} \mathcal{E}_{anj} (E_j^\circ - E_n^\circ) \Psi_j^\circ \approx (\mathcal{E}_n - \Delta V) \Psi_n^\circ$$

• Now let's multiply by Ψ_n^{0*} and integrate:

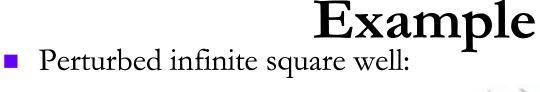
$$=) \quad 0 = \int \Psi_{n}^{o*} (\xi_{n} - \Delta v) \Psi_{n}^{o} dx$$

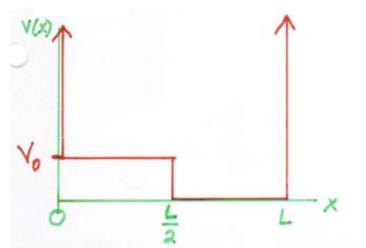
$$= \sum_{n} \int \Psi_{n}^{o*} \Psi_{n}^{o} dx - \int \Psi_{n}^{o*} \Delta v \Psi_{n}^{o} dx$$

$$= I$$
(normalization)
$$=) \quad \xi_{n} = \int \Psi_{n}^{o*} \Delta v \Psi_{n}^{o} dx$$

$$\xi_{n} = \langle \Psi_{n}^{o} | \Delta v | \Psi_{n}^{o} \rangle$$

Given a perturbation $\Delta V(x)$, this gives the firstorder correction ε_n to the unperturbed energy E_n^{0} , and $E_n = E_n^{0} + \varepsilon_n$





 $V(x) = V_0$ $0 \le x \le U_0$ V(x) = 0 $U_0 \le x \le L$ $V(x) = \infty$ elsewhere

Vo is "small".

- The unperturbed eigenfunctions:
- The unperturbed energies:
- The perturbing potential:
- The perturbed energies:

$$E_h^{\circ} = \frac{n^2 \pi^2 h^2}{\lambda m l^2}$$

AV= Vo OCXELA

• We want to find ε_n

$$\begin{aligned} &\mathcal{E}_{n} = \int \mathcal{Y}_{n}^{o*} \wedge \mathcal{V} + \mathcal{V}_{n}^{o} dx \\ &= \frac{2}{L} \int_{0}^{\mathcal{U}_{L}} \mathcal{V}_{0} \sin^{2} n \overline{n} \mathcal{V}_{L} dx = \frac{2V_{0}}{L} \int_{0}^{\mathcal{U}_{L}} \left(\frac{1}{2} - \frac{1}{2} \cos^{2} n \overline{n} \mathcal{V}_{L} dx \right) \\ &= \frac{V_{0}}{L} \left[\chi - \frac{1}{2n\pi} \sin^{2} n \overline{n} \mathcal{V}_{L} \right]_{0}^{\mathcal{U}_{L}} = \frac{V_{0}}{L} \frac{1}{2} \end{aligned}$$

$$ightarrow En = \frac{V_0}{2}$$

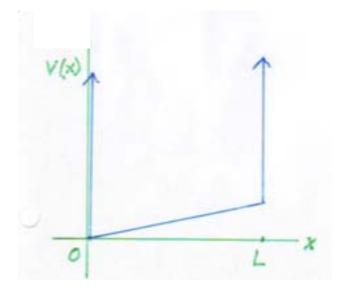
$$\overline{E}_n = \frac{h^2 T_1^2 h^2}{\frac{1}{2} m L^2} + \frac{V_0}{2}$$

Example

 Assume an infinite square well has a tilted floor.

V(x) = ax OCXCL

- Also assume αL is small compared to the ground state unperturbed energy
- Find the first order correction to energy eigenvalues.



$$\mathcal{E}_{n} = \int \Psi_{n}^{\circ \star} (\Delta V) \Psi_{n}^{\circ} dx$$

$$\Psi_{n}^{\circ} = \int_{L}^{2} \sin \frac{n \pi x}{L}$$

$$\mathcal{E}_{n} = \int_{0}^{L} \frac{2}{L} \propto x \sin^{2} \frac{n \pi x}{L} dx$$

$$= \frac{2 \kappa}{L} \int_{0}^{L} \frac{1}{L} (x - x \cos \frac{2n \pi x}{L}) dx$$

$$= \frac{\kappa}{L} \left[\frac{\chi^{2}}{2} \right]_{0}^{L} - \int_{0}^{L} \pi \cos \frac{2n \pi x}{L} dx \right]$$

$$= \frac{\kappa}{L} \left[\frac{L^{2}}{2} - \frac{L^{2}}{\frac{4}{3} \pi^{2} \pi^{2}} \cos \frac{2n \pi x}{L} \right]_{0}^{L}$$

$$\Rightarrow \ \ell_n = \frac{\alpha L}{2}$$

Also note that as $\alpha \rightarrow 0$ we get $\varepsilon_n \rightarrow 0$ as expected!

The Variational Method

- Method to estimate <u>ground-state energies</u> of potentials
- Make an <u>educated guess</u> at the mathematical form of the ground-state wavefunction
- Requirement:
 - Normalized trial wavefunction needs to satisfy the boundary conditions of the problem
- Need not satisfy the SE!

The Variational Method

If \$\phi(x)\$ is trial ground-state wavefunction, the predicted ground-state energy is:

$$E = \langle \varphi | H | \varphi \rangle \qquad H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$$

If we know Ψ_n(x), the exact energy eigenfunctions, we can expand φ(x) like we did last time:

$$\varphi(x) = \sum_{n=1}^{\infty} a_n \Psi_n(x) \qquad a_n = (\Psi_n) \varphi^{\gamma}$$

But, we do not know $\Psi_n(x)$.

Trial wavefunction

- \$\overline{\phi(x)\$, the trial ground-state wavefunction, needs to satisfy:
 - Boundary conditions we'll discuss this in a moment
 - Normalization
 - This is ensured by:

$$\sum_{n} |a_{n}|^{2} = 1$$

- $\varphi(x) = \underset{n}{\leq} a_n \Psi_n(x)$ Let's substitute into F= < 4 | H | 47 $\zeta \varphi |H| \varphi = \int \left[\sum_{n=1}^{\infty} a_n^* \psi_n^* \right] H \left[\sum_{m=1}^{\infty} a_m^* \psi_n^* \right] dx$ $= \sum_{n} \sum_{m} a_{n}^{*} a_{m} \int \Psi_{n}^{*} H \Psi_{n} dx$ Jut Em Undx $=) = \sum_{n} \sum_{m} a_{n}^{*} a_{m} E_{m} \int \Psi_{n}^{*} \Psi_{m} dx$ Sh
 - => <4/H/4>= ZZ an am Enda

$$=$$
) = $\Xi a_n^* a_n E_n = \Xi |a_n|^2 E_n$

$$= So = \sum_{n} |a_n|^2 E_n$$

Now, if the true ground state energy is E₀
And all of the other states must have E_n ≥E₀
So:

$$\sum_{n} |a_n|^2 E_n > \sum_{n} \sum_{n} |a_n|^2 E_n$$

$$\sum_{n} E_n \sum_{n} |a_n|^2$$

$$\sum_{n} \sum_{n} \sum_{n} |a_n|^2$$

$$\sum_{n=1}^{\infty} |a_n|^2 \tilde{E}_n \ge \tilde{E}_0$$

$$\implies E \ge \tilde{E}_0$$

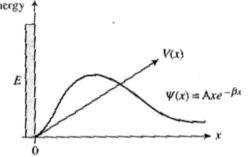
Trial wavefuction

- What does this mean?
 - If φ(x) is a normalized trial wavefunction for the ground state, then <φ | H | φ> sets an upper limit to the ground state energy.
- How do we choose $\phi(x)$?
 - 1. It should be normalizable (It should go to zero at infinitiy)
 - 2. The better your trial wavefunction is, the closer you are to the true ground state energy.

Example

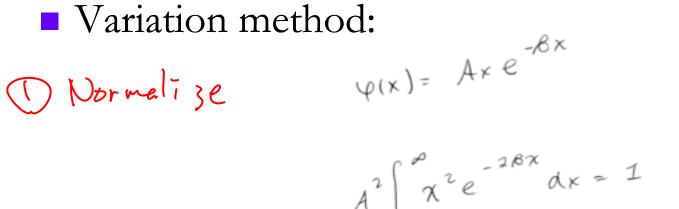
Let's use the variational method to set an upper limit on the ground state energy of the linear potential:
Energy 1

$$V(x) = \begin{cases} \infty & x < 0 \\ \alpha x & x \ge 0 \end{cases}$$



I FIGURE 9.9 Hypothetical Linear Potential Ground State.

Recall, we used the WKB approximation on this same potential (see last lecture or example 9.1)
Use the trial wavefunction g(x) = A x e^{βx} and find β that minimizes ζg(x) H (g(x))



$$\frac{2}{(2,p)^3}$$

$$\frac{A^2}{4\mu^3} = 1 = A^2 = 4\mu^3$$

$$E \leq \langle \varphi | H | \varphi \rangle = \int \varphi^{*}(x) \left[-\frac{h^{2}}{2m} \frac{d^{2}}{dx^{2}} + V(x) \right] \varphi(x) dx$$
$$= \int \varphi^{*}(x) H \varphi(x) dx$$

(2) Evaluate
$$\langle g | H | g \rangle$$

 $H_{\gamma(x)} = -\frac{\hbar^2}{2m} \frac{d^2 \varphi}{dx^2} + V(x) \varphi$

$$\frac{d\hat{\varphi}}{dx^2} = \frac{d^2}{dx^2} \left[A \times e^{-\Re x} \right] = A \left(\Re^2 \times - \Im \Re \right) e^{-\Re x}$$

$$H_{\varphi(x)} := -\frac{\pi^{2}}{dm} \left(A \left(\beta^{2} x - 2\beta \right) e^{-\vartheta x} \right) + \alpha x \cdot A x e^{-\vartheta x}$$
$$= A e^{-\vartheta x} \left(2 \epsilon \beta - \epsilon \beta^{2} x + \alpha x^{2} \right)$$
$$\varepsilon = \frac{\pi^{2}}{2m}$$

$$\begin{split} \overline{E} &\leq \langle \varphi | H | \varphi \rangle = \int_{0}^{\infty} A_{x} e^{-\beta x} \cdot A e^{-\beta x} (2\xi g - \xi \beta_{x}^{2} + \kappa x^{2}) dx \\ &= A^{2} \left(2\xi \beta \int_{0}^{\infty} x e^{-2\beta x} dx - \xi \beta^{2} \int_{0}^{x^{2}} e^{-2\beta x} dx + \alpha \int_{0}^{\infty} x^{2} e^{-2\beta x} dx \\ &= \frac{1}{4\beta^{2}} \frac{1}{4\beta^{2}} \frac{2}{(2\beta)^{3}} \frac{2}{(2\beta)^{3}} \frac{1}{(2\beta)^{4}} \frac{2}{(2\beta)^{4}} \frac{2}{(2\beta)^{4}} \frac{1}{(2\beta)^{4}} \frac{2}{(2\beta)^{4}} \frac{1}{(2\beta)^{4}} \frac$$

• We want to find the minimum Energy, thus $dE/d\beta = 0$ and solve for β :

$$\begin{aligned} \frac{dE}{d\beta} &= 0 \\ \frac{dE}{d\beta} &= 2 \varepsilon \beta - \frac{3 \alpha}{2\beta^2} = 0 \\ =) \quad 2\zeta\beta &= \frac{3 \alpha}{2\beta^2} =) \quad \beta^3 = \left(\frac{3 \alpha}{4\varepsilon}\right) \\ =) \quad \beta^{m_{i_1}} &= \left(\frac{3 \alpha}{4\varepsilon}\right)^{\gamma_3} \\ =) \quad \beta^{m_{i_1}} &= \left(\frac{3 \alpha}{4\varepsilon}\right)^{\gamma_3} \\ \bar{E}_{m_{i_1}} &= \varepsilon \left(\frac{3 \alpha}{4\varepsilon}\right)^{\gamma_3} + \frac{3 \alpha}{2} \left(\frac{3 \alpha}{4\varepsilon}\right)^{-\gamma_3} = 2.476 \alpha^{\gamma_3} \varepsilon^{\gamma_3} \\ \bar{E}_{0} &\leq 2.476 \alpha^{\gamma_3} \varepsilon^{\gamma_3} \end{aligned}$$

Let's compare to WKB Approximation result

Variational method: $E_0 \le 2.476 \alpha^{33} \varepsilon^{33} \varepsilon^{33}$ ~6% higher than exact result WKB: $E_0 \simeq 2.811 \left(\frac{\alpha t}{\sqrt{2m}}\right)^{2/3} = 2.811 \alpha^{33} \varepsilon^{33}$

• Exact: 2.338 $\alpha^{2/3} \epsilon^{1/3}$

Variational method:

The closer is the trial wavefunction to the true ground state wavefunction, the closer the evaluated energy will be to the ground state energy.

Summary/Announcements

- Next time: GRE problems/Final review
- HW13 is due on Monday Dec 12: no late HW accepted.
- Final Exam: Wed, December 21, 8:00 am-11:00 am, SEC-209:
 - Closed book with a Letter size formula sheet on both sides
 - Those who achieve more than 20% improvement in percentile score in the Final exam compared to the Midterm will get extra credit: details will be finalized next class.