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Approximation Methods

Exact solutions to Schrodinget’s equation are possible only for
mathematically simple potentials.

However, many realistic potentials require approximations.
This is true also for some remarkably simple ones
m c.g. alinear potential V(x) o¢ x
Approximate solutions:
m Analytic methods
m Wentzel-Kramers-Brillouin (WKB) method (today)
m Perturbation theory (today and next)
m Variational methods (next)
m Numerical methods

Note: again the emphasis is to obtain bound-state solutions



The WKB Method

m This approximation 1s applicable
when V rises sharply in the region
V>E so that barrier penetration 1s
very tiny.

m The WKB assumption is:

m Take W ~ O at the classical
turning points E=V(x).

m Then the oscillatory solutions
for E>V must be such that an
integral number of half-
wavelengths must fit within the
turning points.

Like a standing wave of vibrating
string clamped on both ends:
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Il-'l:IltEi'l Left: A string vibwating in tha n=3 mode.
Right- A gquanbum wavefunction with n =4,

Reed: Chapter 9



The WKB Method

m [n general, however, V(x) will not be constant
and the wavelength will be a function of position.
So A is not constant:

m So as V(X) increases, A(X) increases.



The WKB Method

So a short distance dx (so between x and x+dx) over
which the potential V(x) 1s effectively constant will
contain a number of wavelengths given by:

And there must be an integral number of wavelengths, so:



The WKB Approximation

m This zs the WKB approximation, for energy

eigenvalues E._.

m One can also obtain the approximate
eigenstates, but that’s beyond the scope of this
course.



When is WKB approx. valid?

m The accuracy of the WKB approximation
depends on the quantum wavelength A not
varying too rapidly over short distances.

m So we demand that any change dA in A over the
distance dx be small:



m From the deBroglie relation: A=)
= And classically: pLx) = vamiE- V|

m So, A/

m dV/dx is sometimes written as |dV/dx| since A can either
increase/decrease as V(x) decreases/increases.

m The above is referred to as the classical approximation.



Example

m [ .ct’s determine the

Energy

approximate energy

Vix)

eigenvalues for a particle :

of mass m moving in this

linear pOtCﬂtiali | FIGURE9.2 Linear Potential.

® The turning points are:

)(f- O, X=A



To do WKB problems

1. Write E in terms of position where E cuts the
V(x) line.
m Hereit’'s Xi=0 , K.=< O

2. Solve equation:

X o
.’2(1

3. Solve for E._.



Back to example
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For a linear potential like this, 1t turns out that the WKB approximation
overestimates the ground state energy by about 20%.



Example (9.2)

m [et’s use the WKB approximation to estimate the energy levels
for the hydrogen atom.

m [et’s treat it as a 1D system in the radial coordinate r.

1 FIGURE 9.3 Coulomb Potential.



m The upper limit of integration is:

m Integral becomes:

m We are looking for bound-states: E<0. So:



m To simplify integral, we can make a change of variables:
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m Remarkably, the WKB approximation gives us the exact levels
given by Bohr and the S.E.!



Perturbation theory

m Pertrubation theory:

m A general, yet powerful, method for expressing
approximate wavefunctions and energies for
potentials

m BExpressed as variants of potentials for which the SE
can be solved exactly

m First let’s revisit the superposition theorem ...



Superposition Theorem Revisited

m Any linear combination of solutions to the Time-
dependent S.E. is also a solution of the T.D.S.E.

m An essential ingredient was the
orthogonality/orthonormality theorems:

Kronecker delta



Superposition Theorem Revisited

m Such a set of eigenfunctions forms a so-called
complete set

m Which means that any (well-behaved) function can be
expanded in the set:

m Vocabulary:

m A complete set of ¥ are called basis vectors or base
vectots

m The a_are called expansion coefficients or projections of

O (x) onto ¥ _(x)



Superposition Theorem Revisited

m Question:
m Suppose that ¢(x) is a continuous, but arbitrary

function valid over the same domain as ¥ _(x).

m What values must the expansion coeftficients take if
we we want:



Let’s figure out the a_



m The sum runs over all possible values of n. But since:

i\



Normalization

m Note: ¢(x) need not (and in general is not) be a solution
to the Time-Independent S.E.

m ((x) will be valid only over the domain of W (x)

m So if ¢(x) is normalized over this range, we get a
constraint on a_:



m For a particular value of n, the inner sum runs over all
possible values of m

m This is repeated for all possible values of n
m And in each case, 0_"=0 unless m=n

m So,

m So the condition that ¢(x) is normalized requires the
above or



Example

m Find the normalization constant here, where % (%)

are energy eigenfunctions:

b = A2+ w31 m)



m Also, if ¢(x) is chosen such that it is normalized over
the domain of W (x), it will happen automatically when
we compute a_

a =<Y¥ |[¢p>

since

represents an exact expression for ¢(x)

m The probability that a measurement of energy will yield
E_1s



Example: Approximate a straight
line as a sum of rectangular well
wavefunctions

m [et’s express a straight line, ¢(X)=x, as a linear
sum of infinite rectangular well eigenfunctions:



m Define

m Use

m Note that the expansion coefficients a_ are functions of n - this
occurs often.



m Any function can be reproduced by adding together an infinite

number of sinusoidal functions Reed Chapter 9

m Fourier series 10
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| FIGURE 94 Approximating a Straight Line as a Sum of Rectangular-well Wavefurictions,

m Terms up to n=20

m An infinite number of terms needed to reproduce a straight
line up to x=1

B ((x) goes to zero at x=1 because infinite well wavefunctions
go to zero there



Example cont’d
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Example cont’d

m What 1s the probability of finding the system in
the ground state of the infinite potential well?



Summary/Announcements

m Next time: Approximation Methods continued

m HW 12 due on Wed Dec 7% in class: no late HW
accepted

m HW 13 due on Mon Dec 12" in class: no late HW
accepted: HW 13 will be posted later today:.



