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Last Time

m  Multi-electron atoms and Pauli’s exclusion principle

m Electrons are Fermions (spin 1/2), are indistinguishable and have an
antisymmetric total eignefunction
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Example

m [f we put 5 electrons (fermions!) in an infinite square
well, what is the ground state energy?

m Recall the energies for an infinite square well are:

2 2312 212
n:n ﬂiz =n°E,, where E, = ﬂhz
2mL 2mL

m Since electrons are fermions, 2 electrons will populate n=1,

2inn=2 and 1 in n=3.

m So, the ground state energy of this system is:

E=2-(E,)+2-(4E,) +1-(9E,)=19E,

m What if we put 5 bosons in the well?
m All 5 bosons can go into n=1!

m So ground state energy 1s E=5E,



Example

m Construct total (spatial+spin) first excited state
configuration of a Helium atom using the spatial
hydrogenic wavetunction
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m If you consider Coulomb repulsion between
electrons, will the first excited state be in a

singlet state (parahelium) or 1n a triplet state
(orthohelium)?



Complex Atoms

m For complex atoms, S.E. is solved numerically, using:
m the potential between each electron and the nucleus,
m and the potential between each electron and all the others.

m Atomic energy levels and chemical properties are then obtained!

Each value of n corresponds to a shell:
n: 1 2 3 4
Shell: K L M N

Each n and ¢ constitute a subshell:
l: 0 1 2 3 4
S p d f




Population of Shells

Shell [n |[¢ m, m, Sub-shell | Max. Sub-shell | Max. Shell
population population
K 1 0 0 +1/2 1s 2 2
L 2 | 0 0 +1/2 2s 2
0,1 +1/2 2p 6 8
M 3 0 0 +1/2 3s 2
1 0, 1 +1/2 3p 6 } 18
2 0, 1, +1/2 3d 10
+2

For each ¢, there are (2¢+1) values of m, and 2 values of m

so the maximum subshell population is 2(2¢+1)




Maximum Shell Population

m Foreachn,¢=0,1, ... (n-1)

m So the maximum shell population is:



Shielding/Screening

m Chemical properties of atoms are
(mostly) determined by the outermost

electrons.

m QOuter electrons do not feel the full n-13.6 eV
nuclear charge, because inner electrons E,= n?
partially shield the nucleus. @) ' for n=2 and

m This is called shielding or ~__———" " =2 [ o
screening. Lithium

m Also radii of complex atoms are within a
factor of two of hydrogen!

m The inner electrons get pulled in
closer to the nucleus. (In contrast,
note that hydrogenic radius grows
fast with n as a,*n?)



Energy Levels of Helium

B In Helium one electron 1s presumed to be in the ground state
of a helium atom, the 1s state.

m  An electron in an upper state can have spin antiparallel to the
ground state electron (s’=0, singlet state) or parallel to the
ground state electron (s’=1, triplet state)

m  This gives us two sets of states for Helium:

1.  Parahelium:

I l m clectrons have antiparallel spins, s’=0, singlet spin
eigenfunctions , antisymmetric ¥, symmetric ¥(space),
attractive exchange force, electrons close

2. Orthohelium:

I I m clectrons have parallel spins, s’=1, triplet spin
eigenfunctions , symmetric y, antisymmetric ¥(space),
repulsive exchange force, electrons generally far apatt.




Parahelium/Orthohelium

Parahelium (s’=0) Orthohelium (s’=1)
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It Is observed that the orthohelium states (s’=1) are
lower in energy than the parahelium states (s’=0).
For the same n, energy increases with |



Features of Helium Energy
Levels

1. For an n, energy increases with ¢.
m  Mainly due to increasing shielding as ¢ increases.

2. Triplet states have a little less energy than
corresponding singlet state.

m  Mainly because electrons are farther apart due to
exchange forces.

m  Energy of e e interaction is:
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3.

Features of Helium Energy
Levels

Most important: 1°S state does not exist!

That’s because it would violate Pauli exclusion
principle: n=1, ¢=0, m,=0, parallel spins (s=1).
Parahelium: s’=0, so j’=¢. So singlet states are: 1!S,

21S,, 2P, etc.

Orthohelium: s’=1, so if ¢=0, ’=s’=1. 2°P is
composed of three lines (¢=1, =0, 1, 2), 2°P,, 2°P,,
2°P,: Nominally these are degenerate, but they get
splitted due to spin-orbit coupling, etc.



Largest

/ Ionization Energy

Pkl & sl &

Feriedic Table of the Elements
i W O¥ [ ¥ ¥ enfe |
H' He
Li°|Be’ Trawshign Miaks B"|c" [N |0 |F" [ne

11 124 13 REY 15 16 17 18
Na [MG|um pen ve v wwp—SME  wm qp |A |Si |PU|ST|CIT|AF

K'|calse |Ti |v |cr |Mn|Fe|co [ni|culzn’|Ga|Ge |As |Se [Br |Kr

a7 &3 39| 0 11 a2 43 £l 45 a6 47 48 49 &1 = 53 b4
Rb |Sr |Y [Zr [Nb|Mo|Tc |Ru |RBh [Pd |Ag |Cd |In |Sn [Sb [Te [l [Xe

&5 B&[ 5771 2 i 74 75 " kil TE k] [T Bl = [X] a5 [
Cs|Ba| | Hi |2 |W'|Re |os |ir " [Pt | AU Hg [Tl |Pb |Bi |Po |At |Rn

&7 s B 1 4 wWE| e[ 07| @ L
Fr|Fa] || Fﬁo Ha

Lankharkiss lJsz lce o INd [Pm [sm|ed’[Gd 16 [0y [Ho Er |Tm Yo JLu'|
sinies | Ac [0 [Pa [u” NG [Pd |am o Bk |of |es” [Fm |Md NG 1L

[ [t [ Juetators [ ] neonmets

’ 1% 18 % §é 8
PTG N
m The ionization energy: the energy necessary to remove an electron from the

neutral atom.
Ionization energy of hydrogen: 13.6eV
Other atoms: 5-25 eV

outside a closed shell.

So within a factor of two or so of hydrogen.
It 1s a minimum for the atoms (alkali metals) which have a single electron

m [t generally increases across a row on the periodic table.

m maximum for the noble gases which have closed shells.



Energy of Complex Atoms

m Hydrogen atom:
m In Schrodinger theory, H atom exhibits ¢-degeneracy

m In Dirac therory: energy depends on n and |

m For complex atoms:

m For a given n, the energy increases with ¢

Penetration of 25 and 2p states
inside first Bohr radius.

m Mainly a consequence of screening.
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Build-up of Periodic Table

m FElectrons fill subshells in
order of increasing energy:

m 15 2s 2p 3s 3p 4s 3d 4p 5s
4d 5p 6s 4t 5d 6p 7s ...

m Note that the ¢ dependence of
energy becomes more and

more important as /., increases.

m Fach element is described by
gtving its electron

configuration , i.e. the
population of each subshell.
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Hund’s Rules

m  When electrons fill a subshell, do they follow any
special ordering of m, and m_?

B Yes, they follow Hund’s Rules:



Hund’s Rules: Energy Ordering

1. Lowest energy for maximum §’

m  Parallel spins =repulsive exchange force =electrons apart
(large r) =e-e energy is:

v o= L kece oo et
¥

qme . SAF =

=

—> which 1s low for large r

2. Lowest energy for maximum L.
m  To stay apart, they move in the same direction
around the nucleus and maximize I’ |
3.  Lowest energy for minimum |’ for less than halt

filled, and maximum ]’ for more than half-filled: fine
structure effect, as in Hydrogen



Electron Configurations

m They follow Pauli’s
exclusion principle and
Hund’s rules
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Electron level filling examples

® They should follow both Pauli’ exclusion
principles and Hund’s rules.
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Summary/Announcements

Next time:
m Approximation Methods (I)

HW 12 due on Wed. Dec. 7 (no late submission allowed)
HW 13 will be due on Mon. Dec. 12 (no late submission allowed)

Now it’s time for Quiz.



