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Last time
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m Electron mass : mc?: ~0.5 MeV
m Bohr energies: of order a*mc?: ~10 eV
m Fine structure: of order a*mc? : ~10% eV

m L.amb shift: of order o’mc?: ~10° eV
2

= Hyperfine splitting: of order (m/m )o*mc?:
~10° eV



Multi-Electron Atoms

B Atoms with 2 or more electrons have
a new feature:
m Electrons are indistinguishable!

m There is no way to tell them apart!

m Any measurable quantity (probability,
expectation value, etc.) must not
depend on which electron is labeled
1, 2, etc.
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S.E. for Multi-electron atoms

m [ .et’s consider two electrons in Helium with

coordinates:
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m The total Hamiltonian operator for this system
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m So the Schrodinger equation is:
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S.E. for Multi-electron atoms

The total potential V., has 3 contributions:
1. V between electron 1 and the nucleus
2. 'V between electron 2 and the nucleus

3. V between electron 1 and electron 2

For now, let’s consider only #1 and #2

SO, U-r.*i.: IJl {'{'I!H_}ﬁ-} 1 ultjl’ﬂe‘s‘}

|

[«

Voer = VGG 4V, (r,)

Note that the potential function is the same for both
electrons



S.E. for Multi-electron atoms
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m We get the usual separation of variables
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m Fach Y will depend on quantum numbers
n, ¢, m, m,

m So, A and B stand for the particular sets of quantum
numbers

m So, let’s call ¥, (1) eigenfunction for electron #1 and
has the quantum numbers symbolized by A.



S.E. for Multi-electron atoms

® So, total eigenfunction solution is:
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m And with this separability assumption, the S.E.
becomes: o U
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m This equation suggests that we write the total energy E
as:

L= sty



S.E. for Multi-electron atoms

B So, we can separate this neatly into two
independent expressions:
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m (This can be extended to any number of non-
interacting particles!)



Exchange electrons

So, we said that the total eigenfunction is:
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If we exchange electrons 1 and 2 we get:
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But the first equation gives:

P it b ot
And the second (exchanged) equation gives:
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But these two probabilities are different!
m This is not acceptablel

m This means that the expressions for ¥, above are not valid
solutions!



Exchange electrons

Since: Lf”"f ] HJLL

We need this to be satisfied:
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So the total eigenfunction:
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+ sign: Symmettic eigenfunction g

- sign: Anitsymmetric eigenfunction ¥, .
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Symmetric and Antisymmetric
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and ¥, . are degenerate!

m ¥

m Same energy

Symm

m They exhibit “exchange degeneracy”
m  They have the right properties:
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Pauli Exclusion Principle

m Principle was formulated by Wolfgang Pauli in
1925.

B “Weak form”:

m In an atom, no two electrons can be in the same
quantum state, 1.e. the same set of quantum
numbers: n, ¢, m, m,



Pauli Exclusion Principle

m Suppose electrons 1 and 2 are in the same quantum

state A. Then:
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m So, ¥V
m So, ¥V

symm Permits 2 electrons in the same state.

symm Violates the Pauli exclusion principle
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m Y, _obeys the Pauli exclusion principle.



Pauli Exclusion Principle

m “Strong” form of Pauli Exclusion Principle:

m A multi-electron system must have an antisymmetric total
eigenfunction.

m “Strong” because it also incorporates indistinguishability.

m All particles of half-integer spin (1/2,3/2, ...) have
antisymmetric total eigenfunctions and are called “Fermions”,
obeying Fermi-Dirac statistics

m Electrons, protons, neutrons

m All particles of integer spin (0, 1, 2, ...) have symmetric total
eigenfunctions, and are called “Bosons”, obeying Bose-
Einstein statistics.

m Photons, alpha, W and Z particles

Required for Bosons
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\Required for Fermions




Helium Example

m Normal Helium (* , He)
m Even number of spin 1/2 constituents
m 2 protons, 2 neutrons and 2 electrons
m |s a Boson

m Helium-3 (° , He)
m 2 protons, 1 neutrons, 2 electrons
m [s a Fermion

m Generally, Even number sum of
protons+neutrons+electrons = Boson

Odd number sum =2 Fermion



Total Fermion Eigenfunction

So, for Fermion, total eigenfunction must be
antisymmetric

Can write:

'«-qu = '\-14{5PQ:E}+ (spra)
So, W (space) and ¥ (spin) must have opposite
symmetry in order for ¥, . to be antisymmetric

We had used A and B as abbreviations for particular
sets of n, ¢, m, m_

Now let’s use a and b as abbreviations for particular
sets of n, ¢, m,

m i.c. just the space part



Space and Spin Eigenfunctions
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m The space wavefunctions are analogous to RO® for
Hydrogen

m For spins, there is no spatial wavetunction, so

m Symbolically,
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Spin Eigenfunctions
m Example: A (4, %)
m But this does not have definite symmetry:
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m So, the antisymmetric ), cortesponding to g (space)
(singlet state): 1
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m The symmetric ¥, corresponding to ¥, _.(space); there
are three ways to do it (triplet state):
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Spin Angular Momentum

m In a two electron atom (Helium) the spin
angular momentum of the two electrons couple
to give the total spin:

m But what 1s s’?
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Spin Angular Momentum

m [f =0, m, = 0 only, and this is the singlet state, which 1s

antisymmetric.

m We have opposite spins, and =0 Sa i
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m [fs’=1,m,=-1,0, +1, and this 1s why we get the triplet state
which 1s symmetric.

m We have parallel spins
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Parallel Spins

m For parallel spins:
ms’=]
m triplet state in Helium (called Orthohelium)
m ) symmetric
m ‘V(space) antisymmetric.
m Suppose electrons get close, so a=b (same spatial
quantum numbers):

VR
Vane: (space) - %EH@UE‘*&L‘” et

m [ow probability for electrons to have similar coordinates

m Parallel-spin electron repel each other, over and above the
Coulomb repulsion.

m This “exchange” force mainly reflects the exclusion principle



Antiparallel Spins

m For antiparallel spins:
m =0
m Singlet state in Helium (called Parahelium)
B ) antisymmetric
m ‘V(space) symmetric
m Suppose electrons get close, so a=b (same spatial

quantum numbers):
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m This is large, so antiparallel-spin electrons attract each
other via the “exchange” force.



Example

m Construct total (spatial+spin) ground state
electron configuration of a Helium atom using
the spatial hydrogenic wavefunction notation of

Yt



Example

m Construct total (spatial+spin) first excited state
configuration of a Helium atom using the spatial
hydrogenic wavetunction

b U,

m If you consider Coulomb repulsion between
electrons, will the first excited state be in a

singlet state (parahelium) or in a triplet state
(orthohelium)?



Example

m [f we put 5 electrons (fermions!) in an infinite square
well, what is the ground state energy?

m Recall the energies for an infinite square well are:

2 2312 212
n:n ﬂiz =n°E,, where E, = ﬂhz
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m Since electrons are fermions, 2 electrons will populate n=1,

2inn=2 and 1 in n=3.

m So, the ground state energy of this system is:

E=2-(E,)+2-(4E,) +1-(9E,)=19E,

m What if we put 5 bosons in the well?
m All 5 bosons can go into n=1!

m So ground state energy 1s E=5E,



Example

m For two electrons in an infinite potential well,
construct the total wavefunction of the ground
state.

m For two electrons in an infinite potential well,
construct total wavefunctions of the first excited
state, with and without consideration of the
electron-electron Coulomb potential



Summary/Announcements

m Next time:

m Multi-electrons
m HW 12 will be posted on Nov. 30% (Wednesday).

m There will be a quiz next class (30



