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Last time

m Hydrogen atom: electron in circular orbit
B creates an orbital magnetic moment in an atom

m clectron spin creates a spin magnetic moment (zz7insic angular
momentum).

m In an external B field, every Bohr model photon line should split
into exactly 3 equally spaced lines:

AE=gu;B with ¢=1: Normal Zeeman Effect:

In reality, many more lines exist, and was called Anomalous
Zeeman Effect; will not be covered in this course.

m Radiative Transitions (Photon emission or absorption) occur

Onlybetween 50 = t( and LMy = 0, t|

This 1s called Selection Rules.



Energy Level Diagrams for

Simple Hydrogen Model
B=0 B#0
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Real Hydrogen Atom

m Energy levels split even in the absence of B field
due to

1. Spin-orbit coupling (fine structure):
Relativistic effect (Dirac theory), ~10*eV

2. Electron-nucleon spin interaction (hypertine
structure): ~10°eV

3. Quantum electrodynamics effect (Lamb shift):
~10%eV
We will cover each of these briefly today.



Energy scales of each effect

= & = 3 :Fine structure constant
HYiLraTak -

m Electron mass : mc?: ~0.5 MeV
m Bohr energies: of order a*mc?: ~10 eV
m Fine structure: of order a*mc? : ~10% eV

m L.amb shift: of order o’mc?: ~10° eV
2

= Hyperfine splitting: of order (m/m )o*mc?:
~10° eV



Spin-Orbit Coupling
m The magnetic moments are:

/'U-L - "zl

m Interaction of Y, and U causes a fine-structure
splitting of energy levels, even 1f B

external :O '



Origin of Spin-Orbit Coupling

m In electron’s reference frame (neglect that it is
not inertial), special relativity says that
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Spin-Orbit effect, con’t

m It turns out that the spin-orbit etfect plus

relativistic correction ( KE = ch ~c
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This result 1s obtained by Dirac.

Here, j 1s the total angular momentum quantum
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Spin-Orbit Coupling, con’t

m “Vector model” of angular momentum:

m Total angular momentum is:
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m Now we have
m Total angular momentum quantum number |

m Total magnetic quantum number m

Cdesl (Lts)

* Dirac Theory: use n, ¢, j, m

“ Instead of: n, ¢, m, m_
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Angular momentum Addition

m Angular momentum addition 1s itself a whole
new non-trivial subject, and here I just list the
final results:
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Hydrogen Fine-Structure

1£,g‘ | (Lts)

m Only one electron in Hydrogen so s=1/2
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m Most of the Schrodinger energy levels in Hydrogen
should split into two levels

m Exception: for ¢=0, note j=1/2 only, so no splitting of
¢=0 states.



Hydrogen Fine-Structure, con’t
The Bohr energy levels are:
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Recall the fine-structure constant: & = == 37

Now, in the Dirac theory:
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In Schrodinger (and Bohr) theory, levels of the same n are
degenerate.

In the Dirac theory, levels of the same n and j are degenerate.



Spectroscopic Notation

m For each energy level: N LB

m Since s=1/2 in Hydrogen, 2s+1=2 always.

m HExample:
mn=4¢=1,j=3/2
m We write this as 4 “P5,
m Called “four doublet P three-halves”



Energy Level diagram revisited

m Now in the Dirac theory with B

external

=0

£ Notes:
1.  Clearly this is not to
scale!
2. Levels of the same n
and j are degenerate
3. S states (¢=0) are

labeled “doublet” even

though they are not!



Compare to Bohr/Shrodinger
theory

B =0

external




Example

m By how much does the 1 %S, /, energy differ from the
Bohr value of -13.6 eV?
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m A little below the Bohr value




Example

m Find the energy separation of 2 *P, ,and 2 “P; ,

- 3. ¥ eV

= — [-13 Ko _::'flL"I
C(%;) - E(2%,) = + 45300 eV

m This 1s why it’s called “fine” structure!



Hyperfine Structure

m Proton and neutrons are also spin 1/2 particles

m So nuclear spin angular momentum can interact
with the electron’s py to split each Dirac energy level

i two!
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m Hyperfine splitting is ~10¢ eV wguu:’%&\



There’s even more to the story

m In 1947, Willis Lamb discovered that the 2P, ,, state is
slightly lower than the 2§, /, state resulting in a slight
shift of the corresponding spectral line

m This 1s called the L.amb shift
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m One would think that that such a tiny effect would be
considered insignificant

m But later Hans Bethe was the first to explain the Lamb
shift in the hydrogen spectrum

m Beginning of the modern development of quantum
electrodynamics!



Energy Level diagram revisited

m Now in the Dirac theory with B__..._,=0
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Quantum Electrodynamics

(QED)

m Developed by Feynman, Schwinger, and
Tomonaga in the 1940’s

m The eletromagnetic force is transmitted via the
exchange of virtual photons

m FExample: Scattering of one electron off another
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Higher-order effects in QED
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Electron emits and
reabsorbs a virtual
photon

Photons are continuously

Interactions with the “vacuum”

QED Theory Experiment
Electron’s g factor 2.002319282 2.002319288
+0.000000006 +0.000000014
Fine-Structure 1.096903x101°Hz 1.096913x10!"Hz
2P,,,-2P, +0.000004 +0.000010
Lamb Shift 1.05791x10°Hz 1.05790x10°Hz
2P, ,-28, ), +0.00016 £0.00006
Hyperfine 1.4204057x10°Hz 1.4204057517864x10°Hz
21cm line +0.0000001 =+0.00000000001

turning into e*e” pairs and then

annihilating them back into

photons

Amazing agreement!




The true energy levels of
Hydrogen

For B=0

........



Energy scales of each effect

= & = 3 :Fine structure constant
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m Electron mass : mc?: ~0.5 MeV
m Bohr energies: of order a*mc?: ~10 eV
m Fine structure: of order a*mc? : ~10% eV

m L.amb shift: of order o’mc?: ~10° eV
2

= Hyperfine splitting: of order (m/m )o*mc?:
~10° eV



Multi-Electron Atoms

B Atoms with 2 or more electrons have
a new feature:
m Electrons are indistinguishable!

m There is no way to tell them apart!

m Any measurable quantity (probability,
expectation value, etc.) must not
depend on which electron is labeled
1, 2, etc.
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S.E. for Multi-electron atoms

m [ .et’s consider two electrons in Helium with

coordinates:
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m The total Hamiltonian operator for this system
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m So the Schrodinger equation is:
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S.E. for Multi-electron atoms

The total potential V., has 3 contributions:
1. V between electron 1 and the nucleus
2. 'V between electron 2 and the nucleus

3. V between electron 1 and electron 2

For now, let’s consider only #1 and #2
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Note that the potential function is the same for both
electrons



S.E. for Multi-electron atoms
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m We get the usual separation of variables
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m Fach Y will depend on quantum numbers
n, ¢, m, m,

m So, A and B stand for the particular sets of quantum
numbers

m So, let’s call ¥, (1) eigenfunction for electron #1 and
has the quantum numbers symbolized by A.



S.E. for Multi-electron atoms

® So, total eigenfunction solution is:
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m And with this separability assumption, the S.E.
becomes: o U
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m This equation suggests that we write the total energy E
as:

L= sty



S.E. for Multi-electron atoms

B So, we can separate this neatly into two
independent expressions:
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m (This can be extended to any number of non-
interacting particles!)



Exchange electrons

So, we said that the total eigenfunction is:

Lhu"l - \‘]Lﬂ (1) &'LG“F}
If we exchange electrons 1 and 2 we get:
Yo=Y T

But the first equation gives:

P it b ot
And the second (exchanged) equation gives:
Yor Trot = qﬂ:{l) F*() $p(2) Yaco)

But these two probabilities are different!
m This is not acceptablel

m This means that the expressions for ¥, above are not valid
solutions!



Exchange electrons

Since: Lf”"f ] HJLL

We need this to be satisfied:
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So the total eigenfunction:
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+ sign: Symmettic eigenfunction g

- sign: Anitsymmetric eigenfunction ¥, .
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Symmetric and Antisymmetric
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and ¥, . are degenerate!

m ¥

m Same energy

Symm

m They exhibit “exchange degeneracy”
m  They have the right properties:
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Pauli Exclusion Principle

m Principle was formulated by Wolfgang Pauli in
1925.

B “Weak form”:

m In an atom, no two electrons can be in the same
quantum state, 1.e. the same set of quantum
numbers: n, ¢, m, m,



Pauli Exclusion Principle

m Suppose electrons 1 and 2 are in the same quantum

state A. Then:
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m So, ¥V
m So, ¥V

symm Permits 2 electrons in the same state.

symm Violates the Pauli exclusion principle
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m Y, _obeys the Pauli exclusion principle.



Pauli Exclusion Principle

m “Strong” form of Pauli Exclusion Principle:

m A multi-electron system must have an antisymmetric total
eigenfunction.

m “Strong” because it also incorporates indistinguishability.

m All particles of half-integer spin (1/2,3/2, ...) have
antisymmetric total eigenfunctions and are called “Fermions”,
obeying Fermi-Dirac statistics

m Electrons, protons, neutrons

m All particles of integer spin (0, 1, 2, ...) have symmetric total
eigenfunctions, and are called “Bosons”, obeying Bose-
Einstein statistics.

m Photons, alpha, W and Z particles

Required for Bosons

W o0 ¥y (D)W (2) %, (2) W, ()

\Required for Fermions




Summary/Announcements

B Next time: More on Pauli exclusion and multi-electron
atoms

m Next homework due on Monday Nov 28.

m No class coming Wednesday, November 23 —
Thanksgiving recess



