Quantum Mechanics and Atomic Physics Lecture 2: Rutherford-Bohr Atom and deBroglie Matter-Waves

http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh

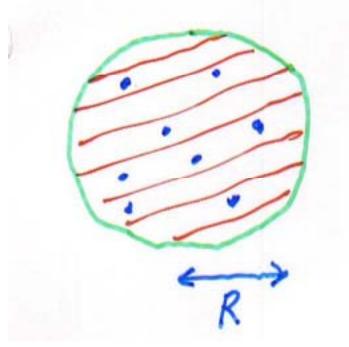
HW schedule changed!!

- First homework due on Wednesday Sept 14 and the second HW will be due on Monday Sept 19!
- HW1 Will be posted today

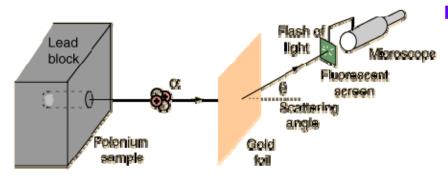
Review from last time

- Planck's blackbody radiation formula
- Explained phenomena such as blackbody radiation and the photoelectric effect.
- Light regarded as stream of particles, photons

 $E = \int (pc)^{2} + (mc^{2})^{2} = pc \quad \text{because m=0}$ Also, E=hf (f: frequency), so pc=hf $\Rightarrow p=hf/c=h/\lambda, \text{ because } \lambda=c/f$ (λ : wave length, c: speed of light)


Composition of Atoms

If matter is primarily composed of atoms, what are atoms composed of?


- J.J. Thomson (1897): Identification of cathode rays as electrons and measurement of ratio (e/m) of these particles
 - Electron is a constituent of all matter!
 - Humankind's first glimpse into subatomic world!
- Robert Millikan (1909): Precise measurement of electric charge
 - Showed that particles ~1000 times less massive than the hydrogen atom exist
- Rutherford, with Geiger & Marsden (1910): Established the nuclear model of the atom
 - Atom = compact positively charged nucleus surrounded by an orbiting electron cloud

Thomson Model of Atoms (1898)

- Uniform, massive positive charge
- Much less massive point electrons embedded inside.
- Radius R.

Rutherford's α -scattering apparatus

http://hyperphysics.phy-astr.gsu.edu/Hbase/hframe.html

Experiment was set up to see if any alpha particles can be scattered through a large angle.

They didn't expect they would be, but it made a good research project for young Marsden (a graduate student).

- Ernest Rutherford, with Hans
 Geiger and Ernest Marsden
 scattered alpha particles from a radioactive source off of a thin
 gold foil. (1911)
- Alpha deflection off of an electron
 - $\theta \sim m_e/m_{\alpha} \sim 10^{-4} \, rad < 0.01^{\circ}$
- But what about deflection off a positive charge?

(Alpha-particle = 2 protons + 2 neutrons)

Deflection off positive charge

From Gauss's law we know:

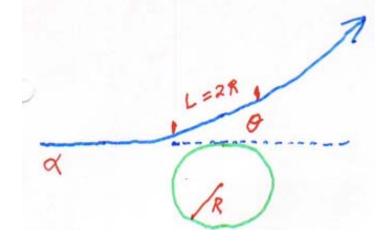
For
$$r < R$$
, $\oint \vec{E} \cdot d\vec{s} = \frac{1}{\varepsilon_0} Q_{encl}$
 $E \cdot 4 \pi r^2 = \frac{1}{\varepsilon_0} \rho \frac{4}{3} \pi r^3$, where $\rho = \frac{Q}{\frac{4}{3} \pi R^3}$

$$E = \frac{1}{4 \pi \varepsilon_0} \frac{Qr}{R^3} \text{ for } r < R$$

and obviously...

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \text{ for } \mathbf{r} > \mathbf{R}$$

Since the electric field E is maximum at r=R, expect maximum deflection for alpha particles just grazing the atom


What did they expect?

Consider only the region of length L or 2R.

 $F = q_{\alpha}E = \frac{1}{4\pi\varepsilon_{0}}\frac{2eQ}{R^{2}}$ $v = \text{ speed of } \alpha$ Traversal time is $\Delta t = \frac{L}{v} = \frac{2R}{v}$ Momentum change $\Delta p = F\Delta t$ (Impulse)
So... $\Delta p = \frac{1}{4\pi\varepsilon_{0}}\frac{4eQ}{Rv}$

Also use p = mv

then
$$\theta_{\text{Thomson}} = \frac{\Delta p}{p} = \frac{1}{4 \pi \varepsilon_0} \frac{4eQ}{Rv^2 m}$$

For R = 10⁻¹⁰ m, $v = 2 \times 10^7 m/s, m = m_{\alpha}, Q = 79e$
 $\Rightarrow \theta_{\text{Thomson}} \approx 0.02^{\circ}$, Very tiny.

- Much larger deflections observed! About one in 7500 alphas scattered through more than 90°
 - Impossible in Thomson model!

What they observed

- No deflection at all for most α particles
- Once every ~10⁴ particles, they observed more than 90° deflections
- Inconsistent with the Thomson model
- Can be explained only if all the positive charge is concentrated to a radius of ~ 10⁴ times smaller than the size of the atom itself

Rutherford Model

• "It was quite the most incredible event that has ever happened to me in my life. It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came back and hit you. On consideration, I realized that this scattering backwards must be the result of a single collision, and when I made calculations I saw that it was impossible to get anything of that magnitude unless you took a system in which the greater part of the mass of the atom was concentrated in a minute nucleus. It was then that I had the idea of an atom with a minute massive center carrying a charge."

Lord Rutherford, 1936

Rutherford Model

- Atom is composed of a nucleus carrying all the positive charge, and electrons orbiting around the small (~10⁴ times smaller than the atom) nucleus in different orbits like planets orbiting around the sun.
- Problems: Orbiting electrons are accelerating charges and then they should emit electromagnetic radiation, eventually losing their energy and collapsing toward the nucleus.

The Bohr Atom

- The idea of the nuclear atom (Rutherford's planetary model) raised many questions at the next deeper level.
 - How do the the electrons move around the nucleus and how does their motion account for the observed spectral lines?
- In 1913, Niels Bohr published a revolutionary three-part paper.

First, Recall the Line Spectrum of Hydrogen

- In addition to (continuous) thermal spectrum, all atoms emit a discrete set of wavelengths specific to each type of atom
 - "Line spectrum"
- Rydberg formula (1913) for hydrogen:

$$\frac{1}{\lambda} = R_H (\frac{1}{n_f^2} - \frac{1}{n_i^2})$$

Rydberg constant $R_H = 1.09678 \times 10^{-3} A^{-1}$ $n_f = 1, 2, 3....$

$$n_i = (n_f + 1), (n_f + 2), (n_f + 3), \dots$$

Balmer series, for $n_f = 2, n_i = 3 \implies \lambda = 6565 \text{ Å}$

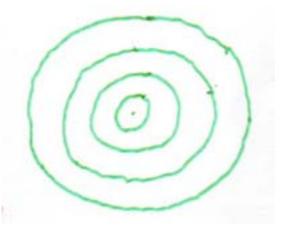
- Why does Rydberg formula work?
- Why is absorption spectrum = emission spectrum?

Hydrogen Wavelengths in Angstrom

SERIES	ng	2	3	4	5	 00
LYMAN	l	1216	1026	973	950	 914
BALMER	2		6565	4863	4342	 3650
PASCHEN	3			18761	12824	 8220
BRACKETT	4	142.0			40520	 14590
PFUNA	5	1				 22790

Bohr Model of Hydrogen Atom

Assumptions


1. Electron can only be in circular orbits that have orbital angular momenta:

 $L \equiv mvr = n\hbar$, where n = 1, 2, 3,...

- 2. Atom does not radiate while in such states
- Atom radiates when electron jumps from one allowed orbit to another. Emitted photon carries off difference in energy between the orbits.

For fun see:

http://www.visionlearning.com/library/flash_viewer.php?oid=1347&mid=51

Bohr Atom

Bohr began by assuming that the energies of the electron's orbit are dictated by Newtonian dynamics of circular orbit:

 $\vec{T} = m\vec{a} \left(circular motion \quad a = \frac{v^2}{r} \right)$ Z= Charge of Nucleus \uparrow (I for hydrogen) $\frac{1}{4\pi\epsilon_{n}} \frac{ze^{2}}{r^{2}} = m \frac{v^{2}}{r} \Rightarrow mv^{2} = 4\pi\epsilon_{0} \frac{ze^{2}}{r}$ (I) $K = \frac{1}{2}mv^{2} = \frac{1}{8\pi\epsilon_{0}}\frac{Ze^{2}}{r}$ $E = KtU = \frac{1}{2}mv^{2} - \frac{1}{4\pi\epsilon_{0}}\frac{Ze^{2}}{r}$ E=total energy K=Kinetic energy V=Potential energy $=\frac{1}{8\pi\epsilon_{o}}\frac{Ze^{2}}{\Gamma}-\frac{1}{4\pi\epsilon_{o}}\frac{Ze^{2}}{\Gamma}=\frac{1}{98\pi\epsilon_{o}}\frac{Ze^{2}}{\Gamma}$ "-" sign implies that energy must be added to atom to remove electron to infinity

Bohr Atom, con't $From (1) =) r = \frac{1}{4\pi t_0} \frac{Ze^2}{m_1 r^2} (2)$ L = mvr = nh, Bahrls key assumption $\Rightarrow v = nk, \quad k \equiv \frac{h}{2\pi}$ $= \frac{1}{4\pi\epsilon_{o}} \frac{Ze^{2}}{mr} \left(\frac{mr}{nh}\right)^{2} = \frac{Ze^{2}m}{4\pi\epsilon_{o}h^{2}} \frac{r^{2}}{h^{2}}$ $=) r = \left(\frac{4\pi\epsilon_{0}k^{2}}{2\epsilon^{2}m}\right) n^{2} = 0.528 n^{2} \mathring{A}$ with Z=1 for hydrogen $50 r_1 = 0.528 \hat{A}_1 r_2 = 2.112 \hat{A}_1 r_3 = 4.752 \hat{A}_1.1$ ralled Bohr radius

Example

Let's do problem 1-5 in your book.

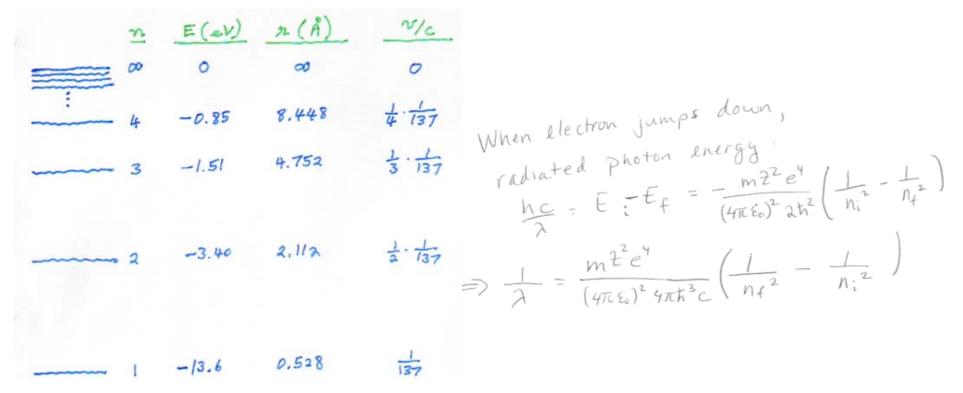
Problem 1-5

Derive an expression for the speed of an electron in Bohr orbit n in terms of the speed of light. Is it justifiable to neglect relativistic effects in the development of the Bohr model?

Put
$$r = \frac{4\pi\epsilon_0 \hbar^2 n^2}{m \pi^2 e^2}$$

into $U = \frac{n\hbar}{mr}$
 $\Rightarrow U = \frac{1}{4\pi\epsilon_0} \frac{2e^2}{\hbar n}$
As a fraction of c
 $U = \frac{1}{4\pi\epsilon_0} \frac{2e^2}{\hbar n}$
 $U = \frac{1}{4\pi\epsilon_0} \frac{2e^2}{\hbar n}$

Energy Levels of Hydrogen



- For n=1, $E_1 = -2.17 \times 10^{-18} J = -13.6 eV$
- Bohr model explains ionization energy of hydrogen in terms of fundamental constants!

 $E_n = -13.6 \text{eV}/n^2 = -13.6 \text{eV}, -3.4 \text{eV}, -1.51 \text{ eV}, \text{etc.}$

- Lowest (n=1) orbit: "Ground state"
- n>1 orbits: 'Excited states''
 - Atom radiates when electron in an excited state spontaneously jumps to a lower state: "Quantum leap" or "Quantum jump"

Energy level diagram for Hydrogen

So Bohr model explains Rydberg formula and constant in terms of fundamental constants!

$$R_{Bohr} = 1.09737 \times 10^{-3} A^{-1}, R_{True} = 1.09678 \times 10^{-3} A^{-1}$$

Bohr's Atomic model explained ..

- Explained the limited number of lines seen in the absorptions spectrum of Hydrogen compared to emission spectrum
- Emission of x-rays from atoms
- Chemical properties of atoms in terms of electron-shell model
- How atoms associate to form molecules

Deficiencies of Bohr Theory

- Many of the energy levels in hydrogen are actually doublets, i.e. two levels closely spaced in energy. Bohr theory cannot account for this.
- Quantization of angular momentum is just assumed, not explained or derived.
- Cannot explain spectra of complex atoms.
- Bohr theory is non-relativistic.
 - Not too bad since v/c=1/137, but it means theory can't be exactly right.

De Broglie Waves

- In 1924, Louis de Broglie proposed:
 - Since photons have wave and particle characteristics, perhaps all forms of matter have wave as well as particle properties
 - All particles have wavelike characteristics, with wavelength λ=h/p (remember that this was the case only for light at that time)
 - Revolutionary idea with no experimental confirmation at the time!

Example

An electron has K=0.2MeV. Find it's de Broglie wavelength.

$$E = mc^{2} + K = 0.511 + 0.2 = 0.711 \text{ MeV}$$

$$P = \frac{1}{c} \sqrt{E^{2}} - (mc^{2})^{2} = \sqrt{(0.711)^{2}} - (0.511)^{2}} = 0.444 \frac{meV}{c}$$

$$h = 12400 \text{ Å } \frac{eV}{c} = 0.0124 \text{ Å } \frac{meV}{c}$$

$$S0 \quad \lambda = \frac{0.0124 \text{ Å } \frac{meV}{c}}{0.494 \frac{meV}{c}} = 0.025 \text{ Å}$$

$$Since \quad \lambda = h \ln p$$

$$- \text{Wrong to use} \quad k = \frac{p^{2}}{am} \Rightarrow p = \sqrt{amk}$$

$$- \text{ also wrong to use} \quad E = p_{-} \Rightarrow p = \frac{E}{c}$$

Example

Why didn't bullets show interference? Take the bullet mass to be 1.0 gram, speed=500m/s. Find wavelength.

Non-relativistic, so,

$$p = mv = (0.001 \text{ kg})(500 \text{ m/s}) = 0.5 \frac{5.5}{m}$$

 $\lambda = \frac{1}{p} = \frac{6.63 \times 10^{-34} \text{ J-s}}{0.5 \text{ Fs}} = 1.3 \times 10^{-33} \text{ m}$

Let's put into perspective: Atomic sizes are of order 10⁻¹⁰ m. Nuclear Sizes are of order 10⁻¹⁵ m For a bullet, A is infinitesimal! HAATTA 2 ~ 10 -33 m !

Summary

- Thomson \rightarrow Rutherford \rightarrow Bohr model of the atom
- deBroglie waves and the wave-particle duality
- Next time:
 - Introduction to Schrodinger's Equation
- First homework due on Wednesday Sept 14 and the second HW will be due on Monday Sept 19!