Quantum Mechanics and Atomic Physics Lecture 18: Angular Momentum Raising and Lowering http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh

Hydrogen Atom Summary

 $\Psi_{nem_e}(r, \theta, \varphi) = R(r) \Theta(\theta) \mathcal{P}(\theta)$

Coulomb Potential:

 $V(r) = \frac{1}{4\pi\epsilon_0} \frac{Q_1Q_2}{r} = \frac{-e^2}{4\pi\epsilon_0 r}$

- Ψ is a product of
 - Φ which is $e^{7} m^{\circ}$
 - Θ which is a polynomial in $\cos\theta$
 - **R** which is a product of a decaying exponential and a polynomial in r
- Ψ depends on 3 quantum numbers
 - Principal quantum number n=1, 2, 3, ...
 - Orbital angular momentum quantum number $\ell = 0, 1, 2, ... (n-1)$
 - <u>Today we will concentrate on this</u>
 - Magnetic quantum number $m_{\ell} = 0, \pm 1, \dots \pm \ell$ or
 - $m_{\ell} = -\ell, -\ell+1, \dots, \ell-1, \ell$
 - Next time we will focus on this

Review of Orbital Angular Momentum

Recall that the orbital angular momentum in spherical coordinates is:

$$\begin{split} \hat{L} = \vec{r} \times \vec{p} & \vec{p} = -i \hbar \vec{\nabla} \\ L_x = i \hbar \left(\sin \varphi_{\partial \theta}^2 + \cot \theta \cos \varphi_{\partial \phi}^2 \right) & \quad \textbf{From HW 8 or} \\ L_y = i \hbar \left(-\cos \varphi_{\partial \theta}^2 + \cot \theta \sin \varphi_{\partial \phi}^2 \right) & \quad \textbf{Reed Prob. 6-7} \\ L_y = -i \hbar \frac{2}{3} \varphi \end{split}$$

Is the Hydrogen wavefunction (ψ_{nlm}) an eigenstate of L_x , L_y , L_z ?

- You should already be able to tell me the answer to this question!
- Let's start with L_z:

• Yes, it is an eigenstate of L_z with eigenvalue m_e hbar!

Now let's try L_x and L_y

So, no, ψ_{nlm} is <u>not</u> an eigenstate of either L_x or L_y.
But we can always evaluate the expectation values...

What about the expectation values of L_x and L_y ?

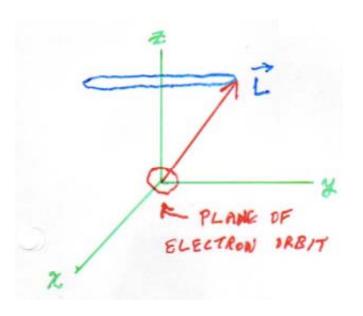
$$(L_{\chi}) = \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} \Psi^{\chi} l_{\chi} \Psi i^{2} \sin \theta \, d\psi \, d\theta \, dr$$

$$=) \quad (L_{\chi}) = 0$$

$$(L_{\chi}) = 0$$

 For example, as an exercise you can show that this is true for the (2,1,1) state. See problem 7-21 in your book.

What does this mean?



- So, the vector L is continuously precessing about the z-axis.
- The plane of electron's orbit is perpendicular to L and precesses with it.
- There is a fixed value of L_z but L_x and L_y are not fixed and average to zero.

More things to note...

Uncertainty principle:

- If L_x, L_y, and L_z were all fixed, the electron would be moving in a definite fixed plane.
- But then its momentum component perpendicular to the plane would be infinitely uncertain
 - So not bound in the H atom

How about the following questions?

- Does this mean hydrogen atom has a well-defined L_z but not L_x or L_y?
- Considering that Coulomb potential is spherically symmetric, how can there be a special axis called z-axis at all?
- But if Hydrogen atom is placed in an external magnetic field B, symmetry is destroyed and the direction of B is chosen to be the z-axis.
 - We will see this next week!

Is ψ_{nlm} an eigenstate of L²?

Again you should know the answer to this! L2 = Lx + Ly + L3 = Lx Lx + Ly Ly + L3 L3 $= -t^{2} \left[\frac{1}{\sin \theta} \frac{2}{d \theta} \left(\frac{\sin \theta}{d \theta} \frac{2}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{2^{2}}{\partial \phi^{2}} \right]$ $\begin{bmatrix} 2 \\ 0 \end{bmatrix} = -\frac{1}{h^2} \begin{bmatrix} \underline{R} \stackrel{\mathbb{Z}}{=} \frac{d}{d\theta} \left(\sin \theta \frac{d\theta}{d\theta} \right) + \frac{\underline{R} \theta}{\sin^2 \theta} \frac{d^2 \overline{\Phi}}{d\theta^2} \end{bmatrix}$ But \$= e ineq -> d2 = - m2 \$ $\begin{bmatrix} 2 \psi = -t^2 R \overline{\Psi} \begin{bmatrix} f \\ sin \theta d \theta \end{bmatrix} = \frac{m_e^2}{d\theta} \begin{bmatrix} f \\ sin \theta d \theta \end{bmatrix}$

Recall when we did the separation of variables in Lecture 14 (chapter 6):

$$\frac{1}{\sin^2 d\theta} \left(\frac{\sin^2 d\theta}{d\theta} \right) + \left[l(l_{1}) - \frac{m_e^2}{\sin^2 \theta} \right] \theta = \theta$$

$$= \left[l_2 \psi_{\pm} - l_1^2 R \Phi \left[- l(l_{1}) \theta \right] = + l(l_{1}) l_1^2 R \theta \Phi$$

$$= \left[l_2 \psi_{\pm} - l_1^2 R \Phi \left[- l(l_{1}) \theta \right] = + l(l_{1}) l_2^2 R \theta \Phi$$

So, yes, ψ_{nlm} is eigenstate of L² with eigenvalue
 ℓ (ℓ+1) hbar²

 $L^{2} \mathcal{Y} = \mathcal{L}(\ell+1) \mathcal{L}^{2} \mathcal{Y}_{nem} \Longrightarrow L^{2} \mathcal{Y}_{em} = \mathcal{L}(\ell+1) \mathcal{L}^{2} \mathcal{Y}_{em}$ $\frac{\mathbf{Example}}{\mathbf{Example}}$ $\mathcal{Y}_{2,2}(\theta, q) = \int_{32\pi}^{15} \sqrt{12\theta} e^{+2iq}$ $\begin{bmatrix} 2 & (0, q) = -k^{2} \begin{bmatrix} \frac{1}{5ln0} & \frac{3}{50} & \frac{3}{5ln0} & \frac{3}{50} \end{bmatrix} + \frac{1}{5ln0} & \frac{3^{2}}{5q^{2}} \end{bmatrix} \begin{bmatrix} \frac{1}{5ln0} & \frac{3}{50} & \frac{3}{5ln0} & \frac{3}{50} \end{bmatrix}$ $= \int_{32\pi} K^{2} \left[\frac{1}{\overline{slu}} \frac{2}{\overline{slu}} \left(\overline{slu} \left(2 \overline{slu} \left(2 \overline{slu} \right) \frac{2}{\overline{slu}} \right) + (2\overline{z})^{2} \frac{2}{\overline{e}^{2}} \right]$ $= -\int \frac{i\Gamma}{32\pi} k^{2} \left[2 \frac{1}{\overline{sin}\theta} \frac{\partial}{\partial \theta} \left((1 - (0s^{2}\theta) cos\theta) \right) \frac{2i\theta}{\theta} - 4 \frac{\theta}{\theta} \frac{2i\theta}{\theta} \right]$ $= -\int \frac{15}{32\pi} k^{2} \left[\frac{2}{stup} \left(-stup + 3\cos^{2}\theta \sin\theta \right) e^{2t} - 4 e^{2t} \varphi \right]$ $= -\int \frac{15}{32\pi} k^{2} \left[-2 + 6 \cos^{2} \theta - 4 \right] e^{2i\theta} , (2+i) t_{1}^{2}$ $= \sqrt{\frac{11}{32\pi} \cdot 6k^{2}} \left[\frac{1 - (0)^{2}0}{5\ln^{2}0} - \frac{2}{6} \frac{1}{9} - \frac{6k^{2}}{2} \frac{1}{2} \frac{1}{2$

Example

 $L_z \mathcal{V}_{nem}(r, e, g) = mk \mathcal{V}_{nem}(r, e, g)$ (=) L_{Z} $Y_{e,m}(o, q) = mtr Y_{em}(o, q)$ $L_{z} = -ik \frac{\partial}{\partial g}$ $L_{z} (e, q) = -ik \frac{\partial}{\partial g} \left[\int_{32\pi} \frac{15}{6 \ln^{3} \theta} e^{2ig} \right]$ $= -ik(2i) \int \int \frac{is}{\sqrt{2\pi}} \overline{si} e^{2i\varphi}$ = 2/ YZ.2 (0.9)

Example

$$\begin{aligned}
\psi(r,\theta,\varphi) &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} \psi_{3,2,1} + \psi_{3,1,1} \end{array} \right) \\
L^{2}\psi &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} L^{2} \psi_{3,2,1} + L^{2} \psi_{3,1,1} \end{array} \right) \\
&= \frac{1}{\sqrt{2}} \left(\begin{array}{c} 2(2+1) k^{2} \psi_{3,2,1} + 1 \cdot (1+1) k^{2} \psi_{3,1,1} \end{array} \right) \\
&= \frac{k^{2}}{\sqrt{2}} \left(\begin{array}{c} 3 \psi_{3,2,1} + 2 \psi_{3,1,1} \end{array} \right) \\
L_{z}\psi &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} x_{1} \psi_{3,2,1} + 2 \psi_{3,1,1} \end{array} \right) \\
&= x_{1} \psi
\end{aligned}$$

So ψ is not an eigenfunction of L² but is an eigenfunction of L_z.

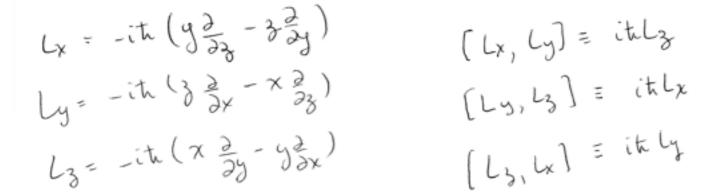
Example

What are the expectation values of H, L² and L_z of the following Hydrogen wavefunctions?

a)
$$\psi(r.o.g) = \frac{1}{52} [\psi_{321} + \psi_{322}]$$

b) $\psi(r.o.g) = \frac{1}{5} [3\psi_{311} + 4\psi_{420}]$

Recall Angular Momentum Commutation Relations



- The components of L do not commute with each other!
- No simultaneous eigenstates!
- If you measure $L_x \Rightarrow$ get a certain value
- Next, measure $L_v \Rightarrow$ get a certain value
- Measure L_x again ⇒ in general, you won't get the same value as before!
- So, once a measurement has been made, knowledge of the other two components is irretrievably lost.

Let's evaluate commutator $[L^2, L_x]$

$$(l^{2}, L_{X}) = L^{2}(L_{X}\Psi) - L_{X}(L^{2}\Psi)$$

$$= (L^{2}_{X} + L^{2}_{Y} + L^{2}_{X})(L_{X}\Psi) - L_{X}(L^{2}_{X} + L^{2}_{Y} + L^{2}_{X})\Psi$$

$$= (L^{2}_{Y} + L^{2}_{X})(L_{X}\Psi) - L_{X}(L^{2}_{Y} + L^{2}_{X})\Psi$$

$$= (L^{2}_{Y} + L^{2}_{X})(L_{X}\Psi) - L_{X}(L^{2}_{Y} + L^{2}_{X})\Psi$$

$$= (ly^{2} l_{x} - l_{x} ly^{2}) + (l_{3}^{2} l_{x} - l_{x} l_{3}^{2}) +$$

$$= (ly^{2}, l_{x}] + (l_{3}^{2}, l_{x}] +$$

$$[l^{2}, l_{x}] = (ly^{2}, l_{x}] + (l_{3}^{2}, l_{x}]$$

$$[4j^{2}, 4x] = 4y[4y, 4x] + [4y, 4x] 4y$$

 $[4j^{2}, 4x] = 4y[4y, 4x] + [4y, 4x] 4y$

From Chapter 4:

$$[AB,C] = A[B,C] + [A,C]B$$

$$\left[L_{3}^{2}, L_{x} \right] = L_{3} \left(-i t_{1} L_{3} \right) + (-i t_{1}) L_{3} L_{3}$$

$$= -i t_{1} L_{3} \cdot \bullet - i t_{1} L_{3} L_{3}$$

$$\left[L_{3}^{2}, L_{x} \right] = L_{3} \left(i t_{1} L_{3} \right) + (i t_{1} L_{3}) L_{3}$$

$$= i t_{1} L_{3} L_{3} + i t_{1} L_{3} L_{3}$$

Put it all together

• We can show similarly that:

$$= \sum_{n=1}^{\infty} \left[\lfloor 2^{2}, \lfloor 2^{2} \rfloor \right] = 0$$

$$\left\{ \lfloor 2^{2}, \lfloor 2^{2} \rfloor \right\} = 0$$

$$= \sum_{n=1}^{\infty} \left\{ \lfloor 2^{2}, \lfloor 2^{2} \rfloor \right\} = \emptyset$$

- So, L^2 commutes with <u>each</u> of L_x , L_y and L_z
- But none of these commute with each other!
- We can measure L² and any <u>one</u> of L_y, L_y and L_z and get sharp eigenvalues and simultaneous eigenstates

Raising and lowering angular momentum operators

Let's introduce:

$$L_{+} \equiv L_{x} + i L_{y}$$
$$L_{-} \equiv L_{y} - i L_{y}$$

 Like raising and lowering operators of Harmonic Oscillator (H.O.) from chapter 5:

$$A^{+} = \frac{i}{dx} \left(-\frac{d}{dx} + d^{2}x \right)$$

Raised/lowered energy eigenvalue
$$A^{-} = \frac{i}{dx} \left(-\frac{d}{dx} - d^{2}x \right)$$

by (hbar ω)

Functional form of L₊ $''_{L_{t}} = k e^{\pm i \phi} \left\{ \pm \frac{\partial}{\partial \phi} + i \cos \frac{\partial}{\partial \phi} \right\}$ 4 How ? $L + = L_X + \tilde{L} L_Y = \tilde{L} \left(\bar{s}_{inp} - \frac{2}{20} + coto cos g - \frac{2}{20} \right)$ $+i\cdot ik(-\cos 9\frac{2}{20} + \cot 9\sin 9\frac{2}{20})$ = $X_{n}\left(ising + cosg\right)\frac{\partial}{\partial g} + cotb(icosg - sing)\frac{\partial}{\partial g}$ $= K \left[e^{ig} \frac{\partial}{\partial \phi} + i \cot \theta (\cos \theta + i \sin \theta) \frac{\partial}{\partial \phi} \right]$ = $k \left[e^{i\varphi} \frac{\partial}{\partial r} + \tau \cot \varphi e^{i\varphi} \frac{\partial}{\partial \varphi} \right] = \hbar e^{i\varphi} \left[\frac{\partial}{\partial \varphi} + \tau \cot \varphi \frac{\partial}{\partial \varphi} \right]$

What do these operators raise and lower?

Let's find out ...

$$[L_{3}, L_{\pm}] = L_{3}L_{\pm} - L_{\pm}L_{3}$$

$$= L_{3}(L_{x} \pm iL_{y}) - (L_{x} \pm iL_{y})L_{3}$$

$$= L_{3}L_{x} \pm iL_{3}L_{y} - L_{x}L_{3} \mp iL_{y}L_{3}$$

$$[L_{3}, L_{x}] \qquad \pm i[L_{3}, L_{y}]$$

$$\begin{bmatrix} L_3, L_t \end{bmatrix} = \begin{bmatrix} L_3, L_x \end{bmatrix} \pm i \begin{bmatrix} L_3, L_y \end{bmatrix}$$

$$i \pm L_y = -i \pm L_x$$

$$= i t_{Ly} \mp i(t_{Lx})$$

$$= i t_{Ly} \pm t_{Lx}$$

$$= i t_{Ly} = i t_{Lx}$$

$$= i t_{Ly} = i t_{Lx}$$

$$= i t_{Ly} = i t_{Lx}$$

Let's operate on wavefunction ...

Operate this on wavefunction

 $L_3(L_{\pm} \psi) = L_{\pm}(L_3 \pm t_{\pm}) \psi$ Y = Yem L3(Lt Yem) = Lt (L3 th) Yem Recall La Yem = Meth Yem. =) L3(LE Yeme) = LE (metr Yeme ± th Yeme) = tr(meti)(Lt Yerre)

What does this mean?

- L_{\pm} operates on wavefunction and yields new function ($L_{\pm} Y_{\ell m \ell}$), whose z component of angular momentum is exactly hbar more/less than that possessed by $Y_{\ell m \ell}$
- L₊ and L₋ raise or lower the state of the z component of angular momentum of Y_{lml} by one unit in terms of hbar.
- Similar to case of H.O.

What effect does L_{\pm} operators have on the ℓ eigenvalue?

$$\begin{pmatrix} l_{1}^{2}, l_{t} \end{pmatrix} = l_{1}^{2} l_{t} - l_{t} l_{1}^{2}$$

$$= l_{1}^{2} (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) l_{1}^{2}$$

$$= l_{1}^{2} (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) l_{1}^{2}$$

$$= l_{1}^{2} (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) l_{1}^{2}$$

$$= l_{1}^{2} (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) l_{1}^{2}$$

$$= l_{1}^{2} (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) l_{1}^{2}$$

$$= l_{1}^{2} (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) l_{1}^{2}$$

$$= l_{1}^{2} (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) l_{1}^{2}$$

$$= l_{1}^{2} (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) l_{1}^{2} (l_{x} \pm l_{y})$$

$$= l_{1}^{2} (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) l_{1}^{2} (l_{x} \pm l_{y})$$

$$= l_{1}^{2} (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) - (l_{x} \pm i l_{y}) l_{1}^{2} (l_{x} \pm l_{y})$$

$$= l_{1}^{2} (l_{x} \pm i l_{y}) - (l$$

What wavefunction does L₊ return? Recall H.O.: $A^{\dagger} \Psi_{n} = i \sqrt{n + 1} \Psi_{n + 1}$ A tu= -i vn tu-1 At the \$ Yner Similarly, $L_t Y_{e_{i}m_{e}} \neq Y_{i_{i}m_{e_{i}}}$ L + Yeme = Keine Yemeti $K_{lime}^{\pm} = \hbar \sqrt{\ell(l+1) - m_{\ell}(m_{\ell} \pm 1)} = \hbar \sqrt{(\ell \mp m_{\ell})(l \pm m+1)}$

The proof in Reed (page 281) is wrong! Correct proof requires concepts beyond the scope of this course. You can find the correct proof in Griffiths page 166.

Correction in Reed

In particular,

$$\left\{ Y_{lm} \middle| L_{t}^{2} Y_{lm} \right\} = 0$$

$$\left\{ Y_{lm} \middle| L_{t} Y_{lm} \right\} = 0$$

$$\left\{ Y_{lm} \middle| L_{t} Y_{lm} \right\} = 0$$

$$\left\{ L_{t}^{2} Y_{lm} = Const \cdot Y_{lm+2} \right\}$$

More about L_{\pm}

• Just like harmonic raising and lowering operators, $L + Y_{2l} = 0$, $L - Y_{l,-l} = 0$

Questions

What is the expectation value of H(Hamiltonian), L², and L_z of $\psi = AL_+\psi_{321}$, where A is just a normalization constant?

Summary/Annoucements
Next time:
The Stern-Gerlach Experiment
evidence for quantized angular momentum

Next homework due on Monday Nov 21.