Quantum Mechanics and Atomic Physics Lecture 12: The Harmonic Oscillator: Part II

http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh

Last time: H.O. With § = XX, a = Jmin, the M.O. S.E. reduces to $\frac{d\psi}{dz^2} + (\chi - \xi^2) \psi = 0$ We found that the solution of should look like $\gamma(3) = A_n H_n(\xi) e^{-\xi/2}$, where An = Jutt 2nn? And λ should be $\lambda = 2ntl$ Hn (3) are Hermite poly nom Tals LC> even fty if nis even > odd fty if nis odd

Even and Odd functions

$$f_{even}$$

$$f_{a}(z)=1, H_{1}(z)=2z,$$

$$H_{a}(z)=4z^{2}-2, H_{3}(z)=8z^{3}-12z, etc.$$

$$f_{a}(z)=4z^{2}-2, H_{3}(z)=8z^{3}-12z, etc.$$

$$f_{a}(z)=8z^{3}-12z, etc.$$

Even and Odd functions

- Even functions $f(x) = x^{2}, \quad f(x) = e^{x^{2}}, \quad f(x) = \chi \#$ $f(x) = \chi^{2} + 2\chi 6, \quad f(x) = -\chi \# + e^{x^{2}}$ $f(x) = cos(x), \quad f(x) = sin^{2}(\chi)$
- Odd functions

 $f(x) = -\chi, \quad f(x) = \chi^3, \quad f(x) = \chi + 3\chi^3$ $f(x) = \bar{s}\ln(\chi)$

Neither even nor odd $f(x) = cos(x) + sin(x), f(x) = e^{x}, f(x) = x + x^{2}$

Example

- How can the quantization of energy of a H.O. apply to the motion of a mass on a spring?
 - Classical example: Let's evaluate the discrete values of the allowed energy levels at the macroscopic level:

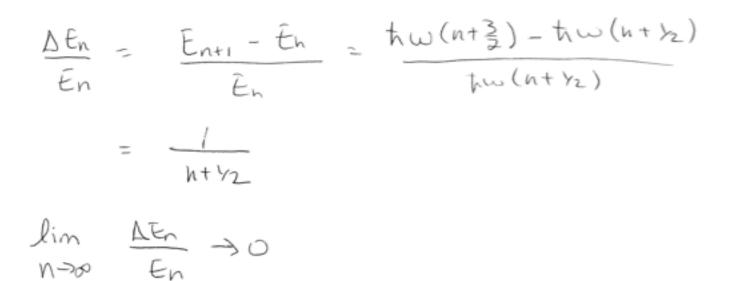
 $M \approx 0.01 \text{ kg} \quad 4 = 0.1 \text{ M/m} \qquad \omega = \int_{-\infty}^{\infty} = 3.16 \text{ med} \text{ s}.$ $T = 2\overline{w} = 1.99 \text{ s}$ $A = -\pi \omega = -6.58 \times 10^{-16} \text{ eV} * \text{ s} -3.16 \text{ med} \text{ s}$ $= -3.08 \times 10^{-6} \text{ eV}$ These energy levels are far too small to be detected.

Example, con't

• Now at the atomic level:

$$\begin{aligned} Q_{n} &= 0.529 \overset{2}{A} \\ v &= \frac{1}{137} \overset{2}{C} \\ w &= \frac{v}{r} &: \frac{v}{a_{0}} = \left(\frac{1}{137}\right) (3x10^{18} \frac{a}{5}) / (0.529 \overset{2}{A}) \\ &= \frac{4.14}{r} \cdot \frac{1}{137} \cdot \frac{1}{137$$

Correspondence Principle



- Classically, a particle spends much of it's time near the turning points because it has low speed there.
 - Think of a mass on a spring

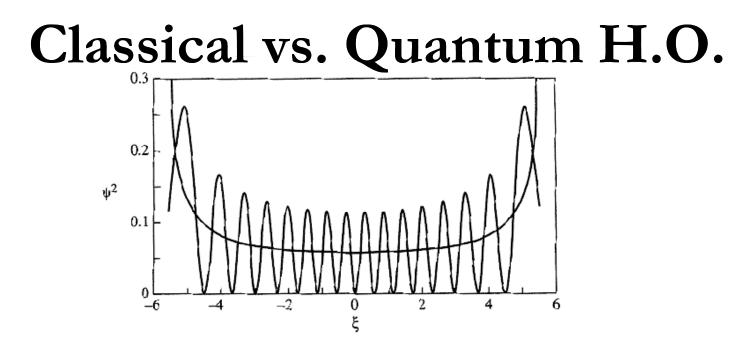


FIGURE 5.3 Probability densities for n = 15 classical (smooth upward-opening curve) and quantum (wiggly curve) oscillators. The classical turning points of the motion are $\xi \sim \pm 5.57$.

- Probability density for classical harmonic oscillator (see Reed section 5.5) and for QM oscillator for n=15.
- P_{classical} diverges at the turning points
 - Oscillator is momentarily at rest at those points and has a high probability of being found there
- $P_{classical}$ tracks closely the running average of P_{QM}
 - In the limit as $n \rightarrow \infty$, these should agree more and more.

Probability of finding the oscillator "outside" the well Let's do this calculation for the ground state wavefunction: $\Psi_{\alpha}(\mathbf{x}) = \frac{\sqrt{\alpha}}{\pi^{-\alpha}} e^{-\frac{\sqrt{\alpha}}{2}\mathbf{x}^{2}/2}$ Eo= hw classically forbidden region V(x) > E. =) 17x2 > two -> X > C C= [= - -P(outside) = 1- Plineide) P(inside)= je 4. to dx = 2 je to dx = Jale lx

Change variables: $\overline{3} = \propto v \quad dx = \frac{1}{2}d_{\overline{3}}$ Plinside): $\frac{d}{\sqrt{2}} \int_{0}^{\infty} e^{-\overline{3}^{2}} d_{\overline{3}}$

This integral is known as the error function $erf(z) = \frac{2}{m} \int_{0}^{z} e^{-3^{2}} d\xi$

=) here
$$Z = d.c = d.f = 1$$

=) Pinside = eif(1)
= 0.843
=) Poutside = 1-Pinside = 1-0.843 = 0.157
=) Poutside = 15.7%

Harmonic Oscillator Uncertainties

Because integrand is odd irrespective of parity of $\Psi_n(x)$.

If Ψ_n has <u>even</u> parity, dΨ_n/dx has <u>odd</u> parity
If Ψ_n has <u>odd</u> parity, dΨ_n/dx has <u>even</u> parity
So, <p_n> =0

Not a surprise!

Harmonic Oscillator
Uncertainties, con't
Using
$$\int_{-\infty}^{\infty} z^{2} H_{n}^{2}(z) e^{-z^{2}} dz = \sqrt{\pi} d^{n} n! (n+b_{2})$$

 $\langle \chi_{n}^{2} \rangle = \int_{-\infty}^{\infty} \Psi_{n}^{*} \chi^{2} \Psi_{n} dx = \frac{t_{n}}{m\omega} (n+b_{2})$
 $(\Delta \chi)_{n} = \sqrt{\langle \chi_{n}^{2} \rangle - \langle \chi_{n} \rangle^{2}} = \sqrt{\frac{t_{n}}{m\omega} (n+b_{2})}$
 $= \frac{\chi_{turning point}}{\sqrt{2}}$
Since $\chi_{twrning point} = \sqrt{\frac{T_{n}}{m\omega} (2n+1)}$

$$(P_n^2) = -\hbar^2 \int \frac{\varphi_{x}}{-\varphi} \frac{d^2 \psi_{x}}{dx^2} dx$$

= $\hbar m \omega (n + \frac{1}{2})$
 $(AP)_n = \sqrt{\langle P_n^2 \rangle - \langle P_n \rangle^2} = \sqrt{\hbar m \omega (n + \frac{1}{2})}$
 $\Delta P_n \Delta x_n = (n + \frac{1}{2})\hbar$

■ For n=0 it just barely satisfies uncertainty principle!

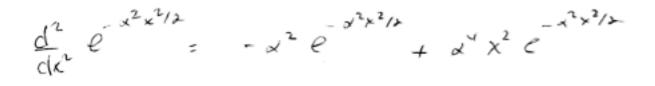
Expectation Value of KE

For the H.O. in the ground state, let's find the expectation value of the Kinetic Energy: see this week's HW for a different method.

$$P_{0p} = -i\hbar \frac{\partial}{\partial x} = i\hbar \frac{\partial}{\partial x} = i\hbar \frac{\partial}{\partial x} = \frac{\rho_{0r}^{2}}{2m} = \frac{1}{2m} \left(-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}\right)^{2}$$

$$\langle KE \rangle = \int_{-\infty}^{\infty} \psi_{0}^{*} k \bar{e}_{0p} \psi_{0}^{*} dx = -\frac{\hbar^{2}}{2m} \int_{0}^{\infty} \psi_{0}^{*} \frac{\partial^{2}}{\partial x^{2}} t_{0} dx$$

$$= -\frac{\hbar^{2}}{2m} \left(\frac{x}{\sqrt{\pi}}\right) \int_{0}^{\infty} e^{-x^{2}x^{2}/2} \frac{\partial^{2}}{\partial x^{2}} e^{-x^{2}x^{2}/2} dx$$



$$= \int -\frac{\hbar^2}{2m} \left(\frac{\alpha}{\sqrt{\pi}} \right) \left[-\frac{1}{2\pi} \int e^{-\frac{\pi^2 x^2}{4x}} e^{-\frac{\pi^2 x^2}{4x}} + \frac{1}{2\pi} \int \frac{\sqrt{\pi}}{2\pi} \frac{1}{\sqrt{\pi}} \frac{\sqrt{\pi}}{2\pi} \right]$$

$$=) -\frac{h^{2}}{2m} \frac{\alpha}{\sqrt{n}} \left[-\alpha \left[\overline{n} + \frac{\alpha}{2} \right] \right] = -\frac{h^{2}}{2m} \frac{\alpha}{n} \left(-\frac{\alpha}{2} \right)$$
$$= \frac{h^{2} \alpha^{2}}{4m} = \frac{h^{2}}{4m} \left(\frac{m\omega}{n} \right) = \frac{h\omega}{4}$$

$$S_{0}$$
,
 $\langle kE \rangle = \frac{kw}{4}$

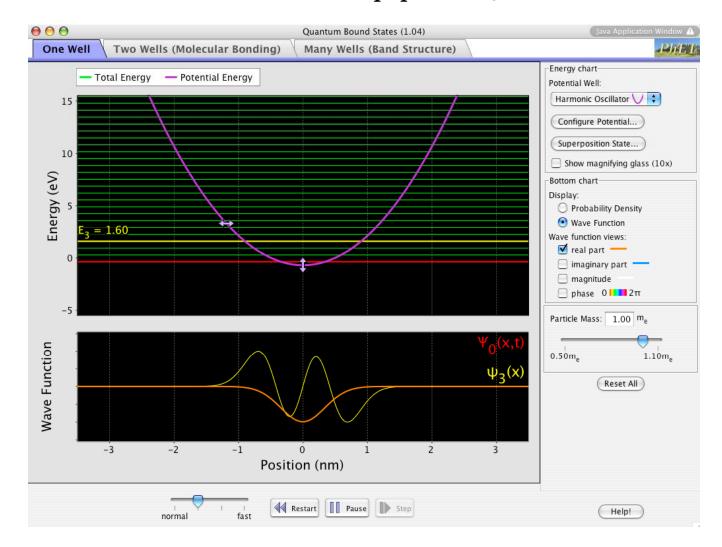
Similarly:

$$\langle V \rangle = \frac{1}{4} \hbar w$$

where $V = \frac{1}{2} k \chi^2 = \frac{1}{2} m w^2 \chi^2$
and we've seen that $E = \frac{\pi w}{2}$.

Animation

http://phet.colorado.edu/simulations/sims.php?sim=Quantum_Bound_States



Raising and Lowering Operators

- Operator based solution to the H.O. potential developed by Paul Dirac
 - Can be applied to any potential
- Define two operators:

$$A^{+} = \frac{i}{\sqrt{2}} \left(-\frac{d}{dx} + \sqrt{2}x \right)$$
$$A^{-} = \frac{i}{\sqrt{2}} \left(-\frac{d}{dx} - \sqrt{2}x \right)$$

Called Raising and Lowering Operators

Let's look at some of their properties

$$A^{\dagger} \Psi = \frac{i}{\sqrt{2}} \left(-\frac{d\Psi}{dx} + \alpha^2 \star \Psi \right)$$
$$A^{-} \left(A^{\dagger} \Psi \right) = \frac{i}{\sqrt{2}} \left(-\frac{d}{dx} - \alpha^2 \star \right) \left[-\frac{d}{dx} \right]$$

 $^{\prime}$

$$= -\frac{1}{2\alpha^2} \left(\frac{d^2\psi}{dx^2} - \alpha^2\psi - \alpha^2 \times \frac{d\psi}{dx} + \frac{d^2 \times d\psi}{dx} - \frac{d^2 \times^2 \psi}{dx} \right)$$
$$= -\frac{1}{2\alpha^2} \left(\frac{d^2\psi}{dx^2} - \alpha^2 \psi - \alpha^2 \times \frac{d\psi}{dx^2} \right)$$

$$A^{\dagger}(A^{-}\Psi) = -\frac{1}{2a^{2}} \left(\frac{d^{2}\Psi}{dx^{2}} + a^{2}\Psi - a^{2}x^{2}\Psi \right)$$

50,

$$[A^{-}, A^{+}]\Psi = (A^{-}A^{+} - A^{+}A^{-})\Psi$$

$$= \Psi$$
Unity operator:
$$[A^{-}, A^{+}] = 1$$
This is independent of the wavefunction being

operated on.

Now let's apply this operator on Ψ

$$(A^{-}A^{+} + A^{+}A^{-})\Psi = -\frac{1}{\alpha^{2}}\frac{d^{2}\Psi}{dx^{2}} + \alpha^{2}x^{2}\Psi$$
 After canceling terms
$$= -\frac{\hbar}{m\omega}\frac{d^{2}\Psi}{dx^{2}} + \frac{m\omega}{\hbar}\chi^{2}\Psi$$
 Look familiar?
$$H_{0p} \equiv \frac{\hbar\omega}{2}(A^{-}A^{+} + A^{+}A^{-})$$
 Hamiltonian
$$A^{-}A^{+} - A^{+}A^{-} = I \implies A^{-}A^{+} \equiv (I + A^{+}A^{-})$$

$$= H_{op} = t_{w} (A^{\dagger}A^{-} + \frac{1}{2})$$

$$= \sum [H_{op}, A^{\dagger}] \Psi = (t_{w} A^{\dagger}) \Psi$$

$$= (H_{op}, A^{-}] \Psi = (-t_{w} A^{-}) \Psi$$

$$[H_{op}, A^{+}] \Psi = (H_{a}A^{+}) \Psi - (A^{\dagger}H_{op}) \Psi = t_{w}(A^{\dagger}\Psi)$$

$$= \sum (H_{a}A^{\dagger}) \Psi - A^{\dagger}(E\Psi) = t_{w}(A^{\dagger}\Psi)$$

$$= \sum (H_{a}A^{\dagger}) \Psi - A^{\dagger}(E\Psi) = t_{w}(A^{\dagger}\Psi)$$

$$= \sum (H_{a}A^{\dagger}) \Psi - A^{\dagger}(E\Psi) = t_{w}(A^{\dagger}\Psi)$$

$$= \sum (H_{a}A^{\dagger}) \Psi = (E + t_{w})(A^{\dagger}\Psi)$$

$$= H_{op}(A^{-}\Psi) = (E - t_{w})(A^{-}\Psi)$$

Let's discuss this

- When A⁺ acts on Ψ, it gives rise to a new function
 (A⁺Ψ) whose energy eigenvalue is the same as that of
 Ψ but more by ħω
- Similarly, when A⁻ acts on Ψ, it gives rise to a new function (A⁻Ψ) whose energy eigenvalue is the same as that of Ψ but less by ħω

■ A⁺ and A⁻ are also called **ladder operators**

Let's now go back to H.O. potential

But first, let's note that the lowering operator can't generate a lower state than the ground state so:

 A⁻ψ₀ = 0

A⁺ and A⁻ action on H.O. wavefunctions

See proof in your book

At Yu = i VATI Yuti

A- 4 = - i Vn 4 -.

• We can also rearrange original equations to get:

 $\implies P_{op} = \frac{\sqrt{h}}{\sqrt{a}} \left(A^{+} + A^{-} \right) \qquad \text{Momentum and position} \\ \text{operators}$

$$\implies X_{or} = -\frac{i}{\sqrt{2}\alpha} \left(A^{+} - A^{-} \right)$$

Example

• Let's use this new knowledge to calculate $\langle x^2 \rangle$:

Recall, orthogonality:

$$\langle \Psi_{k}^{*}|\Psi_{n}\rangle = \delta_{\chi}^{n}$$

So,

$$\begin{cases} x^{2} \end{pmatrix} = + \frac{1}{2\alpha^{2}} \int \Psi_{n}^{*} (A^{\dagger}A^{-} + A^{-}A^{+}) \Psi_{n} dx \\
= \frac{1}{2\alpha^{2}} \frac{2}{\pi \omega} \int \Psi_{n}^{*} H_{op} \Psi_{n} dx \\
= \frac{1}{\alpha^{2} \pi \omega} \int \Psi_{n}^{*} E_{n} \Psi_{n} dx = \frac{E_{n}}{\alpha^{2} \pi \omega} \\
\begin{cases} \chi^{2} \end{pmatrix} = \frac{1}{\alpha^{2}} (n + \gamma_{2}) \\
\end{cases}$$
Similarly for $\langle p^{2} \rangle$.

Name of System	Physical Example	Potential and Total Energies	Probability Density	Signi@cant Feature
Zero potential	Proton in beam from cyclotron	E	ψ <u>*</u> Ψ	Results used for other systems
Step potential (energy below top)	Conduction electron near surface of metal		v.v.	Penetration of excluded region
Step potential (energy above top)	Neutron trying to escape nucleus		/ <u>**</u> ,	Partial teflec- tion at potential discontinuit
Barrier potential (energy below top)	∝ particle trying to escape Coloamb barrier			Tunnshing
Barrier potential (energy above top)	Electron scat- tering from negatively ionized #tom		<u>M.</u> .	No reflection at certain energies
Finite square well potential	Newtron bound in nucleus		Ŵ.	Energy quantization
Infizite square well potential	Molecule strictly confined to box		 ١	Approximation to finite square well
imple harmoric oscillator potential	Atom of vibrating diatomic molecule		M	Zero-point energy

Table 6-2. A Summary of the Systems Studied in Chapter 6

Eisberg & Resnick

Summary/Announcements

Next time: Review for exam: Bring questions!

Midterm exam Wed. Oct. 19 in class - it will be closed book- One letter size formula-only sheet allowed: (for example, solution steps are not allowed) needs to be turned in together with the answer book.