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The Classical Harmonic
Oscillator

m (Classical mechanics examples
m Mass on a spring

m Mass swinging as a simple pendulum

m These examples all correspond to a situation

where we have a linear restoring force:
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m And the harmonic oscillator potential 1s then:
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The S.E. for the harmonic
oscillator potential
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m Angular Frequency of oscillator:
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S.E. of H.O., con’t

B [.et’s define: = A
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m Think of & as a dimensionless measure of x

m Insert back into S.E. ....



S.E. of H.O., con’t
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B Think of A as a dimensionless measure of E




S.E. of H.O., con’t

m Finally we have:
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m This 1s called Weber’s Ditferential Equation



Dimensional Analysis

m Let’s check that € is a dimensionless measure of x
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Dimensional Analysis

m [.et’s check that A is a dimensionless measure of E
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The Asymptotic Solution

m Let’s solve for W(&) and then revert back to x.

m First, let’s consider W at large &, i.e. large x

m A stays finite so:
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The Asymptotic Solution, con’t

m Just like finite square well, we want that (&) —0 as
G
m We establish the asymptotic form of the wavefunction

m So if we require finiteness at =00, then we must require
B=0, so:
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The Series Solution

m For a more general solution, valid at any &, let’s
try 5
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m is a yet unknown function.

m [t must vary more slowly than exp(£?/2) at large & in
order to prevent y from diverging



The Series Solution, con’t

m How do we know if this 1s a valid assumption?

m We don’t know yet, but let’s see 1f it works.
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The Series Solution, con’t

m [ et’s try series solution:

H3) = i; a, §"

m (We omit negative powers since they wonld blow up at

x=g=0)
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The Series Solution, con’t

m Plug back into eqn on p. 12:
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The Series Solution, con’t

m | ct’s define j=n-2:

m | or n are dummy indices so,
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The Series Solution, con’t
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m The terms in the square brackets are pure numbers

m No dependence on ¢

m ¢ is not equal to zero yet the sum evaluates to zero

m This can only happen for all possible values of & if what is in
square brackets vanishes in general.

m Therefore:




Recursion Relation

4:' an 4 - '}1} A .. Thisis called a recursion relation
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Specifies a given expansion coetficient recursively in
terms of a preceding coefficient in the series.

To get a complete solution, we also need to supply
values for the first two coetficients, a, and a,

All subsequent even-indexed coefficients can then be
expressed in terms of a,

All subsequent odd-indexed coefficients can then be
expressed in terms of a,



The Series Solution, con’t

m The need to supply two coetficients can be understood since to
solve second-order differential equation (S.E.) we have two
constants of integration to be set by the boundary conditions.

m In this case, we have one boundary condition:
m Finiteness: we want (&) —0 as E—©

m Recall our wavefunction Lt
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u Exp term converges

m We want H(E) convergent or if it diverges to do so more

slowly than exp(£%/2)

m Unfortunately though: >
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See Reed for a nice explanation of this.



The Series Solution, con’t

m So the series solution: H(3) = ,f::d A, §°
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and since T, lacg T Hiz)-> €

B We must force the series to terminate after a finite
number of terms.

m T)us has the physical consequence of guantizing the energy levels of the
Systen?

m That will happen if all 2.=0 for j>n, then the recursion
relation demands:
= A=2n+1



Initial coefficients

m But we have two initial coefficients a, and a,

m We can’t simultaneously terminate both even
and odd sets of coefficients. So we must
arbitrarily demand that either a, or a,be zero.

m So, we pick one of them to be zero and force
the series termination of the othetr:
mA=2n+1
m [fa,=0,n=1, 3,5, .... Odd Parity
m[fa=0,n=0,2 4, .... Even Parity



Hermite Polynomials

m The general result is a family of functions H_(E),
with each member being a polynomial involving
only even or odd powers of & (but not both!) up
to order C".
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Normalized H.O. wavefunctions

m We can normalize, and go back to using x:
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m Ground state energy of H.O. (n=0): .
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Exam

m Verify the normalization fp ctor of the
groundstate wavetunction:
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Wavefunctions

Reed: Chapter 5

m Shows n=0 and n=5 0s
. M,E |
wavefunctions " /\
. 02F H
m A few things to note: W ok
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m For even values of n, oal
wavefunction is symmetric 06
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m For odd values of n, : 4
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There are n+1 maxima

Probability for finding the
oscillator “outside’ of the

well is greatest for n=0, Let’s calculate this ...

By “outside” I mean
beyond the classical turning
point.



Classical Turning Point

m The Classical “turning points”
of the motion are at x_ such

that V(X)=E_

m Soin QM, we get
penetration of ¥

into |x|>|x,|
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Harmonic-potential energy levels

m We can determine the energy corresponding to quantum number

n: A= dntl= L=
F
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m Note, that E oc n

m The energy levels are equally spaced!

m Called vibrational levels

m Mimics attractive forces between molecules
m FEqual spacing of molecular spectral lines

m The zero point energy (n=0) is:
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Energy Levels
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m Equally spaced energy levels



Summary/Announcements

B Next time: Harmonic Oscillator continued

m Probability, raising and lowering operators

B Next homework due on Mon. Oct 17.

B Midterm exam Mon. Oct. 19 in class - it will be closed
book with one letter size formula-only sheet.



