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The Classical Harmonic The Classical Harmonic 
OscillatorOscillator

Classical mechanics examplesClassical mechanics examplesClassical mechanics examplesClassical mechanics examples
Mass on a springMass on a spring
Mass swinging as a simple pendulumMass swinging as a simple pendulumMass swinging as a simple pendulumMass swinging as a simple pendulum

These examples all correspond to a situation These examples all correspond to a situation 
h h li i fh h li i fwhere we have a linear restoring force:where we have a linear restoring force:

And the harmonic oscillator potential is then:And the harmonic oscillator potential is then:



The S.E. for the harmonic The S.E. for the harmonic 
oscillator potentialoscillator potential

S.E.:S.E.:
Ψ

Angular Frequency of oscillator:Angular Frequency of oscillator:

So,So,



S.E. of H.O., con’tS.E. of H.O., con’tS.E. of H.O., con tS.E. of H.O., con t

Let’s define:Let’s define:

and

Think of Think of ξξ as a dimensionless measure of xas a dimensionless measure of x

So:

Insert back into S.E. ….Insert back into S.E. ….



S.E. of H.O., con’tS.E. of H.O., con’tS.E. of H.O., con tS.E. of H.O., con t

Let’s define:Let’s define:

Think of Think of λλ as a dimensionless measure of Eas a dimensionless measure of E



S.E. of H.O., con’tS.E. of H.O., con’tS.E. of H.O., con tS.E. of H.O., con t

Finally we have:Finally we have:Finally we have:Finally we have:

This is called Weber’s Differential EquationThis is called Weber’s Differential Equation



Dimensional AnalysisDimensional AnalysisDimensional AnalysisDimensional Analysis
Let’s check that Let’s check that ξξ is a dimensionless measure of xis a dimensionless measure of x



Dimensional AnalysisDimensional AnalysisDimensional AnalysisDimensional Analysis

Let’s check that Let’s check that λλ is a dimensionless measure of Eis a dimensionless measure of E



The Asymptotic SolutionThe Asymptotic SolutionThe Asymptotic SolutionThe Asymptotic Solution

Let’s solve forLet’s solve for ΨΨ((ξξ)) and then revert back to xand then revert back to xLet s solve for Let s solve for ΨΨ((ξξ)) and then revert back to x.and then revert back to x.
First, let’s consider First, let’s consider ΨΨ at large at large ξξ, i.e. large x, i.e. large x

λλ fi ifi iλλ stays finite so:stays finite so:

Trial solution at large  Trial solution at large  



Cont’dCont’dCont dCont d



The Asymptotic Solution, con’tThe Asymptotic Solution, con’tThe Asymptotic Solution, con tThe Asymptotic Solution, con t

Just like finite square well, we want thatJust like finite square well, we want that ΨΨ((ξξ)) →→0 as0 asJust like finite square well, we want that Just like finite square well, we want that ΨΨ((ξξ)) →→0 as 0 as 
ξξ→∞→∞

We establish the We establish the asymptotic formasymptotic form of the wavefunctionof the wavefunction
So if we require finiteness at  So if we require finiteness at  ξ=ξ=∞, ∞, then we must require then we must require 
B=0, so:B=0, so:



The Series SolutionThe Series SolutionThe Series SolutionThe Series Solution

For a more general solution valid at anyFor a more general solution valid at any ξ  ξ  let’slet’sFor a more general solution, valid at any For a more general solution, valid at any ξ, ξ, let s let s 
try try 

H(H(ξ): ξ): 
is a yet unknown function. is a yet unknown function. 
It must vary more slowly than exp(It must vary more slowly than exp(ξξ22/2)/2) at large at large ξξ in in 
order to prevent order to prevent ψψ from divergingfrom diverging



The Series Solution, con’tThe Series Solution, con’tThe Series Solution, con tThe Series Solution, con t

How do we know if this is a valid assumption?How do we know if this is a valid assumption?How do we know if this is a valid assumption?How do we know if this is a valid assumption?
We don’t know yet, but let’s see if it works.We don’t know yet, but let’s see if it works.



The Series Solution, con’tThe Series Solution, con’tThe Series Solution, con tThe Series Solution, con t

Let’s try series solution:Let’s try series solution:Let s try series solution:Let s try series solution:

(We omit negative powers since they would blow up at (We omit negative powers since they would blow up at 
ξξ ))x=x=ξξ=0)=0)



The Series Solution, con’tThe Series Solution, con’tThe Series Solution, con tThe Series Solution, con t

Plug back into eqn on p 12:Plug back into eqn on p 12:Plug back into eqn on p. 12:Plug back into eqn on p. 12:

n=0 =1n=0 n=1



The Series Solution, con’tThe Series Solution, con’tThe Series Solution, con tThe Series Solution, con t

Let’s define j=nLet’s define j=n--2:2:Let s define j nLet s define j n 2:2:

j or n are dummy indices soj or n are dummy indices soj or n are dummy indices so,j or n are dummy indices so,



The Series Solution, con’tThe Series Solution, con’tThe Series Solution, con tThe Series Solution, con t

The terms in the square brackets are pure numbersThe terms in the square brackets are pure numbersThe terms in the square brackets are pure numbersThe terms in the square brackets are pure numbers
No dependence on No dependence on ξξ

ξ ξ is not equal to zero yet the sum evaluates to zerois not equal to zero yet the sum evaluates to zeroξ ξ is not equal to zero yet the sum evaluates to zerois not equal to zero yet the sum evaluates to zero
This can only happen for all possible values of This can only happen for all possible values of ξξ if what is in if what is in 
square brackets vanishes in general.square brackets vanishes in general.
Therefore:Therefore:



Recursion RelationRecursion RelationRecursion RelationRecursion Relation

Thi i ll d i l iThis is called a recursion relation

Specifies a given expansion coefficient Specifies a given expansion coefficient recursivelyrecursively in in 
terms of a preceding coefficient in the series.terms of a preceding coefficient in the series.
To get a complete solution, we also need to supply To get a complete solution, we also need to supply 
values for the first two coefficients, avalues for the first two coefficients, a00 and aand a11
All b tAll b t i d d ffi i t th bi d d ffi i t th bAll subsequent evenAll subsequent even--indexed coefficients can then be indexed coefficients can then be 
expressed in terms of aexpressed in terms of a00
All subsequent oddAll subsequent odd--indexed coefficients can then beindexed coefficients can then beAll subsequent oddAll subsequent odd indexed coefficients can then be indexed coefficients can then be 
expressed in terms of aexpressed in terms of a11



The Series Solution, con’tThe Series Solution, con’tThe Series Solution, con tThe Series Solution, con t
The need to supply two coefficients can be understood since to The need to supply two coefficients can be understood since to 
solve secondsolve second--order differential equation (S E ) we have twoorder differential equation (S E ) we have twosolve secondsolve second order differential equation (S.E.) we have two order differential equation (S.E.) we have two 
constants of integration to be set by the boundary conditions.constants of integration to be set by the boundary conditions.
In this case, we have one boundary condition:In this case, we have one boundary condition:

Fi iFi i ΨΨ((ξξ)) 00 ξξFiniteness: we want Finiteness: we want ΨΨ((ξξ)) →→0 as 0 as ξξ→∞→∞
Recall our wavefunctionRecall our wavefunction

Exp term convergesExp term converges
We want H(We want H(ξξ) convergent or if it diverges to do so more ) convergent or if it diverges to do so more 
slowly than slowly than exp(exp(ξξ22/2)/2)
Unfortunately though:Unfortunately though:U y gU y g

See Reed for a nice explanation of  this.



The Series Solution, con’tThe Series Solution, con’tThe Series Solution, con tThe Series Solution, con t

So the series solution:So the series solution:

and sinceand since

We must force the series to terminate after a finite We must force the series to terminate after a finite 
number of terms.number of terms.

This has the physical consequence of quantizing the energy levels of the This has the physical consequence of quantizing the energy levels of the 
systemsystemsystemsystem

That will happen if all aThat will happen if all ajj=0 for j>n, then the recursion =0 for j>n, then the recursion 
relation demands:relation demands:

λλ=2n+1=2n+1



Initial coefficientsInitial coefficientsInitial coefficientsInitial coefficients

But we haveBut we have twotwo initial coefficients ainitial coefficients a00 and aand a11But we have But we have twotwo initial coefficients ainitial coefficients a00 and aand a11
We can’t simultaneously terminate both even We can’t simultaneously terminate both even 
and odd sets of coefficients. So we mustand odd sets of coefficients. So we mustand odd sets of coefficients.  So we must and odd sets of coefficients.  So we must 
arbitrarily demand that either aarbitrarily demand that either a00 or aor a11be zero.be zero.
So, we pick one of them to be zero and forceSo, we pick one of them to be zero and forceSo, we pick one of them to be zero and force So, we pick one of them to be zero and force 
the series termination of the other:the series termination of the other:

λλ=2n+1=2n+1
If aIf a00=0, n=1, 3, 5, …. Odd Parity=0, n=1, 3, 5, …. Odd Parity
If aIf a11=0, n=0, 2, 4, …. Even Parity =0, n=0, 2, 4, …. Even Parity 



Hermite PolynomialsHermite PolynomialsHermite PolynomialsHermite Polynomials

The general result is a family of functions HThe general result is a family of functions H ((ξξ))The general result is a family of functions HThe general result is a family of functions Hnn((ξξ), ), 
with each member being a polynomial involving with each member being a polynomial involving 
only even or odd powers ofonly even or odd powers of ξξ (but not both!) up(but not both!) uponly even or odd powers of only even or odd powers of ξξ (but not both!) up (but not both!) up 
to order to order ξξnn..

Reed: Chapter 5



Normalized H.O. wavefunctionsNormalized H.O. wavefunctionsNormalized H.O. wavefunctionsNormalized H.O. wavefunctions
We can normalize, and go back to using x:We can normalize, and go back to using x:

G d f H O ( 0)G d f H O ( 0)Ground state energy of H.O. (n=0):Ground state energy of H.O. (n=0):



ExampleExampleExampleExample
Verify the normalization factor of the Verify the normalization factor of the 
groundstate wavefunction:groundstate wavefunction:gg



WavefunctionsWavefunctionsWavefunctionsWavefunctions
Shows n=0 and n=5 Shows n=0 and n=5 
wavefunctionswavefunctions

Reed: Chapter 5

A few things to note:A few things to note:
For even values of n, For even values of n, 
wavefunction is symmetricwavefunction is symmetric
For odd values of n, For odd values of n, 
wavefunction is antiwavefunction is anti--
symmetricsymmetric
There are n+1 maximaThere are n+1 maxima
Probabilit for finding theProbabilit for finding theProbability for finding the Probability for finding the 
oscillator “outside” of the oscillator “outside” of the 
well is greatest for n=0.well is greatest for n=0. Let’s calculate this …

By “outside” I mean By “outside” I mean 
beyond the classical turning beyond the classical turning 
point.point.



Classical Turning PointClassical Turning PointClassical Turning PointClassical Turning Point
The Classical “turning points” The Classical “turning points” 
of the motion are at xof the motion are at xnn such such 
that V(x)=Ethat V(x)=Enn

So in QM, we get So in QM, we get 
penetration of penetration of ΨΨnnpp nn

into |x|>|xinto |x|>|xnn||



HarmonicHarmonic--potential energy levelspotential energy levelsHarmonicHarmonic potential energy levelspotential energy levels

We can determine the energy corresponding to quantum number We can determine the energy corresponding to quantum number gy p g qgy p g q
n:n:

Note, that E Note, that E ∝∝ nn
Th n r l l r q ll p d!Th n r l l r q ll p d!The energy levels are equally spaced!The energy levels are equally spaced!

Called vibrational levelsCalled vibrational levels
Mimics attractive forces between moleculesMimics attractive forces between moleculesMimics attractive forces between moleculesMimics attractive forces between molecules
Equal spacing of molecular spectral linesEqual spacing of molecular spectral lines

The zero point energy (n=0) is:The zero point energy (n=0) is:p gy ( )p gy ( )

 
E0 =

1
2

hω



Energy LevelsEnergy LevelsEnergy LevelsEnergy Levels

Equally spaced energy levelsEqually spaced energy levels



Summary/AnnouncementsSummary/AnnouncementsSummary/AnnouncementsSummary/Announcements
Next time: Harmonic Oscillator continuedNext time: Harmonic Oscillator continued

Probability raising and lowering operatorsProbability raising and lowering operatorsProbability, raising and lowering operatorsProbability, raising and lowering operators

Next homework due on Mon Oct 17Next homework due on Mon Oct 17Next homework due on Mon. Oct 17.Next homework due on Mon. Oct 17.
Midterm exam Mon. Oct. 19 in class Midterm exam Mon. Oct. 19 in class -- it will be it will be closed closed 
bookbook with one letter size formulawith one letter size formula--only sheet.only sheet.yy


