Quantum Mechanics and Atomic Physics 750:361
Prof. Sean Oh, Fall 2011
HW #8

Due date: Monday, Nov. 7, 2011, at the beginning of class

1. Reed, Prob. 6-6

Using the method demonstrated in equation (6.3.9), evaluate the other three terms in equation
(6.3.8), and hence verify equations (6.3.10) and (6.3.11) for LO,,:.

The first term in (6.3.8) is, using equation (6.2.7)
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The second term yields zero:
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The fourth term gives
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Hence L, emerges as
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2. Reed, Prob. 6-7

Following the method that was used to derive the expression for (L,),, in section 6.3, show that

the operators for the x and y components of angular momentum in spherical coordinates are
given by
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Here we have
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3. Reed, Prob. 6-11

Prove that [L_.p,] = 0, [L,.p,] = (V/)p,.and [L..p,] = —(u2)p,. Permuting the coordinates
leads also to the identities [L .p,] = -(/)p,. [L,.p,] = 0, [L..p,] = (W)p,,
[L..p.] = (W)p,. [L,.p,] = -()p,,and [L,.p,] = 0.

The momentum operators are
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The angular momentum operators are
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Apply [Ly. px] to some dummy wavefunction, and use the subscript notation as in the solution of
problem 6-10 above to denote derivatives:
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The other results cited in the question can be similarly deduced, or established more easily by
cyclically permuting x, v, and z.



4. Reed, Prob. 7-2

Derive an expression for ( > for a particle in the / = 0 state of the infinite spherical well.

For the 7 = 0 state of the infinite spherical well, the wavefunctions are
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<T1> 1s given by
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where the factor of 4t comes from the integrals over 6 and ¢.
The integral for (1‘3> 1s of exactly the same form as that for <x1> in the infinite rectangular well

(example 4.1) with the radius of the spherical well (a) playing the role of the width L of the
rectangular well. Hence
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5. Reed, Prob. 7-4

Apply the results of problem 6-20 to the infinite spherical well wavefunctions (/ = 0) of section
7.2. It 1s helpful to recall that for a mass m, (p3> = 21n<KE> where <KE> 1s the kinetic energy.

Is the uncertainty principle satisfied?

The wavefunction is
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From problem 6-20, ArAp = (1‘3><p3) . The mean value of (radius squared) is given by
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The integrals over the angular coordinates yield 4x:
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Now, <p3> = 2111(KE>. Since the potential energy for this system is zero. this gives
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These results give
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Forn=1, ArAp = 1.670/; the uncertainty principle 1s satistied.




