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1. Reed, Prob. 5-5

Verify by explicit calculation that the n = 0 and n = 2 harmonic oscillator wavefunctions are
orthonormal.

The wavefunctions are
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2. Reed, Prob. 5-6

Consider a particle of mass m in the first excited state (n=1) of a harmonic oscillator potential.
Compute the probability of finding the particle outside the classically allowed region.

Here we have

e o . -t
W(8) = | —=(28)e " .
1 24

The probability of finding the particle wirhin the classically allowed region is given by
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Where we have used = ax. Given that the turning points of the motion in the n = 1 case are
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+ \E (see problem 5-8 below) and that the integral 1s symmetric about & = 0, we have
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The integral itself (apart from the factor of 4..H/; ) evaluates to 0.393657. This gives P, =
0.8884,0orP_ =0.1116.



3. Reed, Prob. 5-7

In the case of a diatomic molecule, the analysis of the harmonic potential proceeds as above but
with the mass m replaced by the reduced mass of the molecule, m m,/(m, + m,), where m; and

my are the masses of the atoms. In the case of molecular hydrogen, H,. the equal spacing
o . 13
between the vibrational levels corresponds to a linear frequency v of 12.48 x 10 sec .

Determine the effective force constant k for H,.

Define the reduced mass to be u. For H,, u = m/2 where m is the mass of an individual hydrogen
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atom, hence u =8.365x 10 kg
The energy AE released in a An = 1 harmonic oscillator transition is

AE = o = fink/u.

3

If v 1s the frequency of the photon emitted during the transition then AE = 2xt/iv, or
k = 4n’uv’ = 47° (8.365x107°)(12.48 x 10" ) = 514.3 N/m.

This would make a strong spring: a Newton 1s equivalent to about a quarter-pound of force: it
would take about 40 pounds of force to stretch this molecular bond by one foot!



4. Reed, Prob. 5-17

Following the approach that led to equation (5.5.30), use the raising and lowering operators to
show that <p3> = o’f’(n+1/2) for the n’th harmonic-oscillator state, and hence verify that
AXAp is as given in problem 5-10.

The momentum operator is
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Operate this on harmonic-oscillator state n:
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By orthogonality, only the second and third terms make non-zero contributions:
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Just as in the calculation of <x) the bracketed term is, but for a constant, the Hamiltonian

operator:
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hence
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exactly as determined in Problem 5-10; AxAp follows directly.



5. The energy of a harmonic oscillator energy eigenstate is given by E = (n+1/2)%®. Using Virial theorem,
show that <KE>=<PE>= (n+1/2)(fi®/2) for the given state.
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