Quantum Mechanics and Atomic Physics 750:361

Prof. Sean Oh, Fall 2011

HW #5

Due date: Monday, Oct. 10, 2011, at the beginning of class

1. Reed, Prob.3-28

In an experiment involving electron scattering from a finite rectangular well of depth 4 eV, it is
found that electrons of energy 5 eV are completely “transmitted”. What must be the width of the
well? At what next higher energy can one expect to again observe T = 1?

From equation (3.10.15), resonant scattering occurs at
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L = 2.045x107"° meters,

orL=2.045A.

Resonant scattering occurs next for n = 2, hence
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2. Reed, Prob. 4-3



A particle of mass m has the hypothetical wavefunction y(x) = Ae™, (0 < x <% =
otherwise). Determine the normalization constant A in terms of o.. Determine ( > < )

terms of a and m.

Normalization demands

flpzdx = Alfe'z""dx =1
0 0

This integral can be found in Appendix C, with the result
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or A =1/2c¢. . Hence we have
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3. Reed, Prob. 4-5
With p = hv/c, Ap = h(Av)/c, hence

C 3 x 10° 7 1
Av = hAp = 626 « l0_34(3.16 x 10") = 80 sec™.
A brief radio-wave pulse of photons is of duration T = 0.001 seconds. The pulse must then have a
length of T¢ = 3 x 10° meters, and. since an individual photon might be anywhere in the pulse.
the uncertainty in the position of that photon will be Ax = 3 x 10’ meters. What is the
corresponding uncertainty in the momentum of the photon? If the momentum and frequency of a
photon are related by p = hv/c, what 1s the uncertainty i the frequency of the photon?

The uncertainty relation gives

h 1.055 x 107%

Ap = -
2Ax 2(3 x 107)

= 1.76 x 10 kg(m/s)




With p = hv/c, Ap = h(Av)/c, hence

3 8
Av = Sap = —3 X1 3165 107) = 80 sec.

nr 6.626 x 107~*

4. Reed, Prob. 4-6

The ground state wavefunction of the harmonic oscillator potential (see Chapter 5) 1s given by

where o 1s a constant. Verify that (Ax Ap) =//2 for this state.

We have

= flP:?“Po dx = % fxe_“:x: dx = 0, by symmetry.
T T,

Similarly, with the help of Appendix C,
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For <p> we find

\Ff (—1!‘:— e ¥ 2 ) = |ﬁa f Tdx = 0, by symmetry.
The computation of (p2> 1s more mvolved:
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These results give

ax = ()0 = 5

and

Hence

AxAp=2.

5. Reed, Prob. 4-10



Use the uncertainty principle to estimate the ground state energy of a particle of mass m moving
in the linear potential

HINT: Imagine some energy level E that cuts the potential at x = 0 and x = E/a.. Take x ~ Ax and
p~Ap ~ i/2(AX).

A sketch of the potential is shown below. An energy level E will cut the potential at x = E/a.
Since we know that the wavefunction will decrease exponentially beyond this limit, we can
assume that the bulk of it is confined to within 0 < x < (E/a), hence we can argue Ax ~ X.

Energy

V(x) = ax

E

P X

Using the hints given, the energy of the system can be expressed as

E = p—‘+V(X) = ﬁi + a(Ax).
2m 8m (AxX)

The minimum energy is found by computing the derivative of E with respect to Ax and equating
it to zero:

dE K
= - + o
d(Ax) 4m(Ax)

which gives



r: 1/3
Ax = ||
(4111(1)

Back-substituting this result into the expression for E gives

w4 23 e 1/3 . e 1/3 i \1/3
= n:a + oal— = f.,Sag'j : = 11913 | .
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6. Reed, Prob. 4-11

Consider a non-relativistic “free” particle (that is, one not subject to a potential) of mass m
moving with speed v. The energy of this particle will be mv’/2 = p*/2m where p = mv. Show that
the uncertainty principle AxAp = /i/2 becomes AEAt = /i/2 in this case. According to
Einstein, this mass has an energy equivalent given by E = me’; show also that the uncertainty
principle can then be written in the form AmAt = 7/2¢”. A free neutron (one not bound within
a nucleus) has a half-life against beta-decay of 10.25 minutes. Taking this time as an estimate of
At, what is the corresponding uncertainty in the mass of the neutron?

Momentum is defined as p = mv. Writing v as Ax/At gives this as

p = mg = Ax = YAt
At m

Now take the derivative of E = p’/2m to give

-
AE = 2PAP _ P, Ay = DBAE
2m m P

Substituting both of these into the Uncertainty Principle gives

Axap = 1= [Patl[®aE] 2 P = ARAt = 2
2 m J\p 2 2

2 2
From E = mc”, AE = ¢"Am, hence

5
AmAt = —I, )
2¢”

For the neutron, At ~ 10.25 minutes ~ 615 seconds. Hence

- _34
Am = 1y LOHOXIOT TS 6540410 ke

2¢°At 2(2.9979 x 10° m/s)*(615 s)




Am amounts to about 5.7 x 10~® times the mass of the neutron itself: absolutely inconsequential.

7. Reed, Prob. 4-17.

Current versions of string theory hold that the most fundamental structures in the Universe may
be “strings” of length L ~ 10~ m vibrating in various energy states. The mass of these strings is
taken to be the Planck mass, m, = \hc/G where G is the Newtonian gravitational constant.
Using the argument presented at the end of section 4.3, estimate the lowest possible energy for a
vibrating string. Express your answer in giga-electron-volts (GeV = 10° eV). Do you think such
energies are obtainable with current particle accelerators?

The argument in section 4.3 showed that for a particle of mass m trapped in an infinite
rectangular well of width L, the lowest energy state must satisfy
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=

Setting m = V/ic/G gives

E = 11\/§h3;3.
8L° V¢

Putting in the numbers gives E > 6.39 x 10° Joules, or E > 4 x 10" GeV. The Fermilab
accelerator can obtain energies of about 1 TeV (1 TeV = 10" eV): string theory is far from being
experimentally tested.




