Quantum Mechanics and Atomic Physics 750:361
Prof. Sean Oh, Fall 2011
HW #4

1. Consider the semi-infinite potential well illustrated in Figure P3.11 of Reed Problem 3-11: Each of the
following parts is worth one full HW problem for grading.

(a) Set up and solve the SE for this system; assume E <V, Apply the appropriate boundary conditions at

_ _ _ 3 _ 2m,L? _ . _ |2mE
x=0 and x=L, show that tan(§) = — N where K? = h—z" and & = k,L with k, = o
(b) As we did in class, sketch f(§) = tan(¢) and g(¢) = _\/KZL——@' and find how many bound states
exist for K’=100.
(c) With k?=100, find all real and positive roots of ¢ in the equation [tan(¢é) = — fo——ez] using a

numerical root-finder (such as FindRoot[] in Mathematica).



(a)

Define region 1 as that for which x < 0. region 2 as 0 < x < L. and region 3 as x > L. Since V =«
in region 1.y = 0 there. We restrict attention to bound states, that is, E < V_. In regions 2 and 3
the solutions of the Schrodinger equation take the usual sinusoidal and exponential forms:

Y, = Acos(k,x)+Bsin(k,x). k, =+V2mE/#’

Y, = Cexp(k,;x) + Dexp(-k;x). k, =+2m(V,-E)/ 71’ .

Atx =0, we must have y, = 0. which forces A = 0. As x—2, we must have y,—0, which forces
C = 0. Demanding the continuity of v, and v, and their first derivatives at x = L leads fo

and

Bsin(k,L) = Dexp(-k,L)
and
k, Bceos(k,L) =-k,Dexp(-k,L).

Dividing the first of these conditions by the second (or vice-versa) gives the energy eigenvalue
condition

-k, tan(k,L) = k,.

Defining dimensionless variables £ = k,L and n) = k;L. this condition can be expressed as
-ntang =§.

2 and n also satisfy

» 5 _2mV,I’

P+ = T—2— =K.
2+ e
Sotan(f)=—%=—\/Kf—_$z.



(2)  lecawse § = LJ ‘;‘f_ ,
orly portive & values are wm(7of
40(:1"'“ nS . Tferc—Fafe/ ‘7°C_3): Gan csj
aand 3(.;): - ’li__"g_';t_ 5 hooul d pe_
Loth reqatly e
, : : \L””’
: | l| \ ‘ | |l %.’/
]\ N N A N VRN
OINE /o infon ZR/iw 727 %
. T T | ’;
| ! I ' E [
: ' I
i | | Ill |
/ | = E
2 \
)
|
_JC{$ )= ¢ {) ';
2 |
”Weze bound states 3(5] = ":_é——--

(c) & = 2.85234, &, = 5.67921,&; = 8.4232 : See the Mathematica code below:

FindRoot[Tan[y]==-y/V 100-¥* ty pi}]
{y—2.85234}

FindRoot[Tan[y]==-y/V 100-¥* ty opi}]
{y—5.67921}

FindRoot[Tan[y]=--y/V 100-¥* ty 3pi}]
{y—8.4232}



2. Reed. Prob. 3-17

Problem 3-17

Electrons of energy 10 eV are incident on a rectangular potential barrier of height 20 eV and
width S0A. What is the transmission coefficient?

First check that the thick barrier approximation is valid. This requires (MKS units)

2mL’ (V,-E) _ 2(9.109 x 10) (5x 107)*(1.602 x 107)

= 65554
i’ (1.055x 107%)

to be much greater than 1, which is so. Hence (again MKS units)

Trpee — 16[%} (l—g] exp [—%ﬁZm(V‘,—E)]
o 1

o

72(9.109 x 107)(1.602 x 10-‘3)l

2(5x107)
~ 4 exp|l-———
p[ 1.055x 107

~ 4exp(-161.93) = 1.89 x 107",

3. Reed, Prob. 3-18

In quantum tunneling, the penetration probability is sensitive to slight changes in the height
and/or width of the barrier. Consider an electron with V(x) — E = 10 eV incident on a barrier of
width 20A. By what factor does the penetration probability change if the width is increased to
21A°

The penetration probability for a barrier of width x is given by P = e™*, where

K = 2V NO-E.

h

If x 1s changed to X + AX. then

P‘i
X - e

Px +Ax

k Ax

For an electron with V(x)-E =10 eV,



L 29209.1094 x 107 ke)

= 10546 X 101 )\/10(1-60223;101%) = 3.240x10"m™.
2 X — SeC

For Ax = 10"° m,

A 5% increase in the barrier width leads to a drop in the penetration probability by a factor of
over 25.

4. Reed, Prob. 3-21

A potential barrier 1s defined by V(X) = V_ (1 — x/A) for 0 < x < A; V(x) = 0 otherwise. A
particle of mass m and energy E (< V) is mcident on this barrier from the left. Derive an

expression for the penetration probability. Evaluate your result numerically for an electron
mncident on such a barrier with V. =5eV., E=2¢eV, and A = 12 A. Potentials of this form are

used to model the spontaneous escape of electrons from metal surfaces subjected to electric



fields, a process known as cold emission. The expression for the transmission probability is
known as the Fowler-Nordheim formula.

A sketch of the potential is shown below. An particle of energy E ( < V,) will cut the barrier at x
=0 and at the upper limif Xypper = A(1-E/V,).

The penetration probability 1s given by

2m F . 2\2mV, F
nP = - fm f\fVO(l-X/A)—E dx = -% f\j(l—E/Vo)—fo dx.
! 0 ! 0
Defining the new variable v = x/A transforms the integral to

1-E/V
2A42mV, ’
InP = -% fﬂa-y dy,
1
0

where a. = 1 — E/V,.

Solving the integral gives

2A4/2mV, ) 4 A42mV, 2
InP = —% [—%(a - y)j"} = _é(l ~E/V,)"?.
1 3

A 3h

Substituting the given values (MKS umits) yields

4(12x107°),/2(9.109 x 107)(8.010 x 107

InP =
3(1.055x 107)

) (0.6 = -8515.

orP~20x10*



5. Reed, Prob. 3-22

A potential barrier is defined as

V(x) =

(V,/1)x’ 0 <x <L
X < 0;:x > L.

A particle of mass m and energy V,/2 is incident on this barrier from x < 0. Derive an expression
for the penetration probability. Evaluate your expression numerically for an electron striking
such a barrier with L = 10A and V, =5 eV.

The situation is sketched below.

Energy
A

Vo

The barrier penetration integral is

24/2m r
P~ -~ fq}V(x)—E dx.
1
b

With E = V,/2, the lower limit of integrationis b=L/ /2. hence



L
24/2mV, 2 12
InP ~ —é r x -0[/2 dx.
hL v
L2

This integral is standard (see Appendix C): the result is

mp - - N2VL ] 1111'1“{5)wl 03763 Ve L
—_—_— e = - — 2 ~ =03
e 2 n

For an electron with L. = 10A and V, =5 eV, P ~ 0.0473.

6. Reed, Prob. 3-23

A sprinter of mass 70 kg running at 5 mv/s does not have enough kinetic energy to leap a wall of
height 5 meters, even if all of that kinetic energy could be directed into an upward leap. If the
wall 1s 0.2 meters thick, estimate the probability of the sprinter being able to “quantum tunnel”
through it rather than attempting to leap over it.

The kinetic energy of the sprinter is

E = %mv2 = %(?0 kg)(5m/s)® = 875 Joules

The sprinter’s potential energy at the top of the wall would be
V, = mgh = (70kg)(9.8 m/s’)(5m) = 3430 Joules,

showing that the sprinter does not possess sufficient energy to classically leap the wall. We
therefore examine the problem as a quantum tunneling issue with a particle of mass 70 kg and
energy E = 875 J incident on a barrier of height 3430 J and thickness 0.2 meters. This easily
satisfies the condition for a thick barrier,

2ex7r
2ml (\:o -E) o

L,
n_

since

2111L2(\{} -E) R
nl

1.29 x 107

The penetration probability for a thick barrier is



E). E 2L .
Tk = 16(?](1_ v ) E‘Xp(—T 2m(V,-E)|.

/

o

This evaluates as
T ~ 3.04exp(-2.268 x 10™).

To put this n a more convenient form, invoke the identity In(x) = 2.303log;¢(x), from which we
find log;o(T) ~ -0.98 x 10°°, which we can safely round to ~-10°%, or T ~ 1077,



