Quantum Mechanics and Atomic Physics 750:361
Prof. Sean Oh, Fall 2011
HW #13
Due date: Monday, Dec. 12, 2011, at the beginning of class: no late HW will be accepted.
1. Reed, Prob. 9-3
Problem 9-3

Using the WKB approximation. determine the energy eigenvalues for a particle of mass m
moving in a potential given by V(x) = a| x|, (=% = X < ).

This potential 1s sketched below, and 1s symmetric around x = 0. An energy level E cuts the
potential at E = a|x‘. or x = + E/la = + p, say. Utilizing this symmetry, the WKB

approximation gives

Energy

; V(x) = a/x
\ A /E X X

p
4@ fﬂ dx = nh.
0

Extracting a factor of o from under the radical gives

B
4\/2111(1 f\/ﬁ— x dx = nh,
0
which on solving reduces to

% p**42ma = nh.

On substituting for B and solving for E. we find



2/3
E = 3ah ]_1:.3_
8+/2m

Energy levels for this potential increase in proportion to the two-thirds power of n.

2. Reed, Prob. 9-5

Problem 9-5
Show that application of the WKB method to the harmonic-oscillator potential V(x) = kx’/2
leads to E_ ~ nfiw. Investigate the application of the classical approximation to this system at the

point X.,/2 for a general energy level E,.

The WKB approximation gives

2@ f-\}E -kx*/2dx = nh.



where the limits of integration +a are given by E =ka’/2, or a = + V2E/k = JZE;’ ma’ where

o =+k/m. Eliminating E in favor of ka’/2 and accounting for symmetry about x = 0, the
integral can be written as

44/ mk f a’ - x’dx = nh,
0
which solves as

24/ mk [M{a: -x* +a’Sin'(x/a)| = nh,
0

or
24/ mk [az(m@)] = nh,

or, with a’ = 2E/k.

E=nhvk/m =nhw.

Application of the WKB approximation to the harmonic-oscillator potential fails to predict the
zero-point energy, but does predict the important physical result that the energy levels are
equally spaced.

We now examine the classical approximation for this solution. With E, ~ n/io the tumning

points are given by E, = kx*/2. or Xom = V207w /k, hence x /2 = qnfion/2k. At Xuuw/2,
then,

2 2\ 2k 4

V(x) = %(X_mm) - E{nﬁm) _ nﬁm-

With dV/dx = kx, evaluating the classical approximation at Xe,,/2 gives
mh ( dv h ot
32 _' = 3/2 ' 372 L _ -
famE- vl Tldx) 2 mGnaw /a2 (Y 2k

This expression reduces to 47/3” 1. The classical approximation then corresponds to

n >> = n >> 2.418.
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4. Reed, Prob. 9-12
Problem 9-12

As the previous problem but with V(r) = Ar’sin 6. Derive an expression for the first order
correction to the energy for state n.

The unperturbed n-th level wavefunction for a particle with / = 0 in an infinite spherical well of
radius a 1s given by

1 sin(n:rr..-"'a)
Whoo _'erta L

With a perturbing potential
V(r) = Ar’ sin®,

the perturbation to energy level n is given by

(Wﬂ |V’ wﬂ) = ff Yoo V(1) P AV

2ma

“ 7 psin’(nwr/a) .
= i"‘.[‘."(—1)(1“ sinB) r°sin 6 dpdodr
2
0 0 0

= % {j.r2 sin’ (11:(1‘!3)(11‘} {j'sin2 0 dB}.

0 0



The integral over 6 proceeds as

kY

fshf@d@: 6 _sin(20) -
274 | T2

0

The integral over r is identical to that which appeared in the previous problem:

a 3 ] [ [ 3 -2 . " . 2
fr‘ sin? | 278 g = |Z o[ L sin(2a1‘]—“:os(7'f“)
a -6 4(1 8(13. 4(1..

0 0

Hence we have

) e Alg[t J L Jlfx) _zaalfl 1
<1Pi|V Wg)- a las 6 4n3nzl}(2) T4 lB 2n1:ft2].

To first order, all energy levels are perturbed upward: as n — o, the energy perturbation
approaches Aa’n/12.

5. Reed, Prob. 9-16

Problem 9-16

I In Chapter 8 it was shown that an electron orbiting a nucleus with orbital angular momentum L
gives rise to a (vector) magnetic dipole moment p = (e/2m.)L. A magnetic dipole moment placed
in a magnetic field B acquires a potential energy given by V. = —u*B. Consider hydrogen
atoms in general (n, / .m) states suddenly subjected to a magnetic field B = Bz where 7 denotes
the usual Cartesian-coordinate unit vector in the z-direction. Use non-degenerate first-order
perturbation theory to show that the hydrogenic states will be perturbed by an amount
AE = —u,mB where ug 1s the Bohr magneton, n, = (ehi/2m,). What does this result imply
for the normally fourfold-degenerate n = 2 states? Within sunspots, magnetic fields can be as
strong as B =0.3 T. In the unperturbed Bohr model, 3—2 transitions usually give rise to photons
of wavelength 6564A. What alteration in the photon wavelength would you expect to observe for
hydrogen in the vicinity of such a sunspot?

The perturbing potential is

V = -u*B=--—|L*B=-|-S|LB
2m, 2m,

where L, denotes the z-component of L. But L, = m#, so



V' = —(e—n)mB = —ugmB.
2m,

Non-degenerate first-order perturbation theory gives

AE ~ <wn{m |\ﬂ|wm‘m) - (wn{m |_.u"Bn]B | lpu{m> = -!J'BlnB(wn[m |wn£m> =- MBH]B

where ,_, denotes a hydrogenic state. For the four n = 2 states, those with m = 0 (for both / =
0 and / = 1) will be unperturbed. Those with m = +1 will be displaced by AE ~ FuzmB. The

four states then split into three distinct states. From chapter 1, if both 2 and dj. are measured in A
and AE in eV,

_NAE  ¥ugmB
12398 T 12398e

where the factor of the electron charge (e) arises from converting Joules to eV. For o = 6564A.,
ug =9.274 x 10%* amp-m’>, B=0.3T, and m= 1, d» ~ = 0.06A.



6. Reed, Prob. 9-21

Problem 9-21

Consider the following potential, a one-dimensional analog of the hydrogen atom

K
V(X)=|'_;‘ x=0
1 w, xXx=0

Carry out a variational analysis for a particle of mass m moving in this potential, taking as the
trial wavefunction

¢ (x) = Cxe™  (x>0;¢=0otherwise),

where C is the normalization constant and p is the variational parameter. If k = e’/4xe, as in the
Coulomb potential, how does your estimate of the ground-state energy (for an electron) compare
with that for the usual Coulomb potential?

We begin by normalizing the trial wavefunction:

C“fx“e"zﬁxdx =1 = C = 4p.

0

The second derivative of the trial wavefunction is

d¢
dx’

= C(—2[3 + Bzx)e‘ﬁ“.
The variational energy estimate is

dx,

E = (o|H[o)= [ ¢(x)[[—%% ; V(x)]¢(x)
which evaluates as

E < —ECE{—2foe"zﬁxdx + Blfxle'wﬁ"dx - x(‘zfxe“’""dx = ef’ - xpP.
0 0 0



where ¢ = /i~ /2m. Setting the derivative equal to zero gives § = x/2e. and

1’

E = -———.
4 ¢

For and electron and with x = e”/4xte,,. this gives

4
.. me

32neh

exactly the hydrogen ground-state energy.

3. For an infinite potential well defined over [0, L], the wavefunction of a particle is prepared at t=0 as
Ax, for 0 <x<L/2

px) = {—A(x _ L),for% <x<lL® Each of the following parts is worth a full HW problem.
(a) Find the normalization constant A

(b) When you do the energy measurement, find the probability of getting energy of E;, which represents
the lowest energy value of the infinite potential well problem.

(b) When you do the energy measurement, find the probability of getting energy of E,, which represents
the second lowest energy value of the infinite potential well problem.



L ( ch- ’6['6. ZLJ‘)[;J& FO«‘%[I@Q Je //
ol (¢ wn _ = T
prefies, Y= (2 Sef ) o <ot

E’V\_ — ml(hﬂ 2
a7 )=
R T =l
| = S e *d o |
— o5 L
FLS'Z AxTLlx
o}
= A L(Lf _ ATLS
S 2\ (2
= A= Cl >'£ 23
(= B LZ/L
~—
o




Fera(/

gl Sley gdy = sty — 7]5
= |

oy 39y = Ly ~7M7J

'-—5(‘77(\ TQC.GSCK) — (g _{_—CL(Q_ST_\

)

C
&
2




PCe )= oyl = w098
—_— S — o
QC) Foy— A~
T ~ C
S\ﬁ @‘S(M/Q/y:_ L 5(“‘7 ”359J§7JD
— -7 coscrc) —
LT - 21
ST(, feg g by = [duy —yerg 3~

= ~2TC (o5 20 ~ TU Cs 57T

~

— —LTC — T — ~—31
ZTL _
w Sy dy = g |

~ E Cof LT vfr!mj
-2

—_—
—_—

p——
—




	hw13sol-partial1.pdf
	HW13partialsol

