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ABSTRACT

Protein–DNA interactions play a central role in tran-
scriptional regulation and other biological processes.
Investigating the mechanism of binding affinity and
specificity in protein–DNA complexes is thus an
important goal. Here we develop a simple physical
energy function, which uses electrostatics, solvation,
hydrogen bonds and atom-packing terms to model
direct readout and sequence-specific DNA confor-
mational energy to model indirect readout of DNA
sequence by the bound protein. The predictive cap-
ability of the model is tested against another model
based only on the knowledge of the consensus
sequence and the number of contacts between
amino acids and DNA bases. Both models are used
to carry out predictions of protein–DNA binding
affinities which are then compared with experi-
mental measurements. The nearly additive nature of
protein–DNA interaction energies in our model allows
us to construct position-specific weight matrices by
computing base pair probabilities independently for
each position in the binding site. Our approach is less
data intensive than knowledge-based models of
protein–DNA interactions, and is not limited to any
specific family of transcription factors. However,
native structures of protein–DNA complexes or their
close homologs are required as input to the model.
Use of homology modeling can significantly increase
the extent of our approach, making it a useful tool
for studying regulatory pathways in many organisms
and cell types.

INTRODUCTION

Gene regulation is mediated in part by protein transcription
factors (TFs) binding to cis-regulatory regions of the genome.

Accurate genomewide characterization of TF binding sites
is thus a necessary prerequisite to deciphering complex gene
expression patterns. Probabilistic models of TF binding pro-
files, often called position-specific weight matrices (PWMs),
are typically used as input to such predictions (1–3). With the
weight matrix representation of TF binding sites, the pro-
bability P(S j p) that sequence S is a binding site for the TF
represented by p is given by

P S j pð Þ ¼
YL
i¼1

pi
si

‚ 1

where L is the length of the binding site in base pairs, si is
the base at position i and pi

a is the probability of base a (A, C,
G or T) at position i in the weight matrix, subject to normal-
ization:

P4
a¼1 pi

a ¼ 1 (any i). PWMs can be constructed from
an alignment of binding sites obtained by footprinting meth-
ods, gel-shift analysis and reporter constructs. In addition, TF
binding sites can be characterized using SELEX, DNA
microarray, genomewide location (ChIP-chip) and other
in vitro techniques (1). However, TF binding specificity data
of this type cannot be used to rationalize the mechanism by
which proteins interact with DNA. Moreover, for many TFs
there is little or no experimental binding site information.

In principle, one should be able to predict the TF binding
site profile from a structure of the protein–DNA complex or its
close homolog. At first it was anticipated that structural studies
would reveal a universal protein–DNA recognition code,
which could be used for predicting TF binding sites based
on amino acid identities at the protein–DNA interface (4,5).
It became apparent, however, when more protein–DNA struc-
tures were solved and classified that despite some predomin-
antly occurring interactions, such as Lys-G, the energetics of
amino acid–base contacts depends on their structural context
and, in particular, on the structural family of the DNA-binding
protein (6–10). Many amino acids were observed to form
favorable contacts with different bases, making it necessary
to generalize a deterministic recognition code to a probab-
ilistic binding profile based, for example, on maximizing
the likelihood of observed protein–DNA contacts (11–13).
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Probabilistic recognition codes are more accurate when
developed for a specific structural family, thereby implicitly
taking protein–DNA structural context into account. Indeed,
binding site profiles based on the classification of TFs into
families were found to be useful in bioinformatics pattern
detection algorithms (14). However, data availability has so
far limited knowledge-based PWM predictions to the C2H2

zinc finger family (15,16).
An alternative approach to specificity and binding affinity

predictions is based on all-atom modeling of protein–DNA
complexes (17–19). Starting from a known structure of the
protein bound to its consensus DNA sequence, an ensemble
of models is created by threading novel DNA sequences onto
the binding site. Protein–DNA binding energies, DG, are
then evaluated for each member of the structural ensemble.
DG predictions can be either used to directly infer high-affinity
binding sites in genomic sequence or converted into PWM
probabilities using the Boltzmann formula. In the latter case,
it is only necessary to compute DG values for all one-point
mutations from the consensus-binding site. The main limiting
factor of the structural approach to TF binding site specificity
predictions is the availability of experimentally determined
structures of protein–DNA complexes. The range of applic-
ability of structural methods will significantly increase if
the DNA-binding proteins can be modeled by homology.
Homology modeling involves threading a protein amino
acid sequence onto a suitable structural template chosen on
the basis of its sequence similarity to the protein of interest.
The threading procedure creates a new protein–DNA binding
interface, for which DG and PWM probability calculations are
then carried out as in native structures.

Here we present a computational model for predicting
protein–DNA binding affinities and specificities. The model
can be applied to a wide variety of DNA-binding proteins for
which there is either a native protein–DNA structure or a
sufficiently close homolog. The model is based on a simple
free energy function, which consists of the protein–DNA inter-
action energy and the DNA conformational energy. The
protein–DNA interaction energy is used to describe direct
readout of the DNA sequence by the protein, whereas the
DNA conformational energy takes into account distortion of
B-DNA shape caused by protein binding. We carried out a
series of tests of our PWM and binding energy predictions.
First, we checked the ability of the model to reproduce
experimental binding free energy measurements. We also
assessed the accuracy of the pairwise additivity approximation
in our analysis. Second, we checked the ability of our algo-
rithm to discriminate experimentally known TF binding sites
from random ensembles of sequences. Third, we carried out
PWM predictions for a number of TFs and compared them
with experimental PWMs. For all these predictions native
protein–DNA complexes were used as structural templates.
Finally, the extent of applicability of homology modeling
to protein–DNA binding affinity predictions was explored
with several representative PWM calculations. The relative
accuracy and computational efficiency of our approach
allowed us to carry out numerous predictions of TF binding
affinities and specificities, facilitating future experimental
and computational studies of transcriptional regulation in
different organisms and biological systems.

METHODS

Binding stability and weight matrix predictions

Free energy model of protein–DNA interactions. We extended
Rosetta protein–nucleic acid model developed in Ref. (20)
by adding sequence-specific DNA conformational energy.
The free energy function employed in protein–DNA binding
affinity calculations consists of the protein–DNA interaction
component describing intermolecular readout of the DNA
sequence by the protein, and of the DNA deformation com-
ponent describing intramolecular readout of the binding site
sequence:

Gprot�dna ¼ Gpd þ Gd: 2

Protein–DNA interactions are modeled as a linear combination
of the Lennard–Jones potential (which switches to a linear
repulsive potential at short distances) (20), the orientation-
dependent hydrogen bonding potential describing amino
acid side chain–amino acid side chain and amino acid side
chain–DNA base hydrogen bonds (21), the Generalized Born
electrostatics and solvation model (22), and the implicit sol-
vation model developed by Lazaridis and Karplus (23):

Gpd ¼ wLJrep
ELJrep

þ wLJattr
ELJattr

þ whb Ehb

þ welGel þ wLKsol
GLKsol

‚ 3

where each energy is a sum over all protein–DNA and protein–
protein atomic pairs, and {w} is a set of fitting weights. Para-
meterization of the Lennard–Jones potential, the hydrogen
bonding potential and the Lazaridis and Karplus solvation
model is carried out as described in Ref. (20), whereas the
Generalized Born model with AMBER parm99 atomic partial
charges (24) is adopted from Ref. (22). Other free energy
components, including the knowledge-based potential derived
from residue pair statistics and the solvent accessible surface
area term, were tested but omitted from the final model since
they did not significantly improve the predictions of protein–
DNA binding energies. The model requires an atomic repres-
entation of protein–DNA complexes including all hydrogen
and heavy atoms. Hydrogen atoms and heavy atoms missing
from experimental structures were built using standard
CHARMM27 bond lengths and bond angles, with all rotatable
bonds connecting hydrogens to heavy atoms optimized using
Monte Carlo search with the free energy function described
above.

The DNA sequence-dependent conformational energy
model is based on the effective harmonic potential developed
in Ref. (25). The DNA conformational energy is computed as a
sum over all base pair and base step energies:

Gd ¼ wdna�bp

X
bp

E
ab
dna�bp þ wdna�bs

X
bs

E
ab
dna�bs‚ 4

where the first sum is over all base pairs in the double helical
DNA (a,b denote bases in a base pair), the second sum is over
all consecutively stacked base pair steps (a,b denote base pairs
in a base step), and wdna–bp, wdna–bs are fitting weights. Base
pairs and base steps are counted once in the 50–30 direction.
The first term in Equation 4 is necessary to enforce reasonable
base pairing in the process of DNA minimization, which occurs
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in the space of DNA torsional angles and not in the space of
effective degrees of freedom defined below. Both Edna–bs and
Edna–bp are approximated with harmonic functions (25):

E
ab
dna�bs=dna�bp

¼ 1

2

X6

i¼1

X6

j¼1

f
ab
ij dqai dq

b
j ‚ 5

where the sum runs over effective degrees of freedom {q}
(Twist, Tilt, Roll, Shift, Slide and Rise for base steps; Open-
ing, Buckle, Propeller, Shear, Stretch and Stagger for base
pairs) (26). All effective geometric parameters are calculated
as described in Ref. (27). Every set of six geometric paramet-
ers completely describes the mutual orientation of two bases or
base pairs represented as rigid bodies. dqai is a deviation of qai
from its value averaged over a set of experimental observa-
tions (DNA structures from a non-homologous set of protein–
DNA complexes): dqai ¼ qai � hqai i: The force constants f abij
are evaluated by inverting the covariance matrix of dqi

a
aver-

aged over the same set of DNA structures: f
ab
ij ¼ hdqai dq

b
j i

�1
.

All q distributions are self-consistently trimmed by remov-
ing all data points for which at least one of the geometric
parameters is more than three standard deviations away
from the average, followed by updating all averages and stand-
ard deviations. This procedure is repeated until convergence,
which usually requires 2–3 iterations and removes just a few
percent of the data points (28). A non-homologous, manually
curated set of 101 structures used in Ref. (20) was employed
to derive the force constants for the DNA conformational
potential.

Given free energies of the protein–DNA complex and its
unbound partners, the binding free energy is computed as
follows:

DG ¼ Gprot�dna � Gprot � Gdna: 6

Mutations of one or several base pairs in the binding site result
in changes of protein–DNA binding free energies:

DDG ¼ DGmut � DGwt‚ 7

where DGmut(DGwt) refers to the mutated and wild-type DNA
sequence, respectively.

Weight matrix predictions based on binding
free energies

Computation of weight matrix probabilities pi
si

requires an
assumption of the pairwise additivity of base pair energies:

DG ¼
XL

i¼1

DGi
si

‚ 8

where L is the length of the binding site in base pairs, si is the
base at position i and DGi

a is the binding energy of base a
(A, C, G or T) at position i, which is assumed to be independ-
ent of all other bases. In our model, all energy terms except for
the base step energies are explicitly pairwise independent.
However, even the energies that are pairwise independent
by construction (i.e. computed as sums over individual
atom–atom interactions) can become non-additive if con-
formational rearrangement is allowed at the protein–DNA
binding interface. Thus, it is important to check explicitly if
the energies in our model are approximately pairwise additive.

With the pairwise additivity assumption, a set of 4L pre-
dicted energies DGi

a can be converted into weight matrix
probabilities using the Boltzmann formula (29):

pi
a ¼

exp � bDGi
a

� �
P4

g¼1 exp � bDGi
g

� � ‚ 9

where b ¼ 1/RT is the inverse temperature used as a fitting
parameter [b was changed in steps of 0.25 (kcal/mol)�1 in
all fits].

Experimental datasets

Binding free energies. Table 1 collects structural data for
protein–DNA complexes with binding free energy measure-
ments available from the ProNIT database (http://dna01.bse.
kyutech.ac.jp/jouhou/pronit/pronit.html) and from the literat-
ure. Each dataset in Table 1 consists of a structure of the
protein–DNA complex and a series of binding free energy
measurements DG for wild-type and mutant DNA sequences.
In several cases, association or dissociation constants reported
by the authors were converted into binding free energies using

DDG ¼ 
 RT ln
Kmut

a‚ d

Kwt
a‚ d

 !
‚ 10

with RT ¼ 0.59 kcal/mol. In the case of the MAT a1/a2 TF,
in vivo repression levels of the heterologous reporter promoter
construct were used as a measure of binding affinity:

DDG ¼ � RT ln
Rmut

Rwt


 �
‚ 11

where R is the repression ratio in the presence and absence
of the wild-type or mutant a1/a2 binding site (30). Eleven

Table 1. Experimental binding affinity dataset

Name PDB
code

Method
(Res., Å)

DDG data
points

Organism Reference

Zif268 1aay X-ray (1.6) 15 (8) Mus musculus (42)
Zif268 1aay X-ray (1.6) 6 (6) M.musculus (67)
Zif268

D20A
1jk1 X-ray (1.9) 6 (6) M.musculus (67)

Tus 1ecr X-ray (2.7) 20 (20) Escherichia coli (68)
LacR 1efa X-ray (2.6) 5 (5) E.coli (69)
lR 1lmb X-ray (1.8) 51 (51) l-Phage (51)
TrpR 1tro X-ray (1.9) 9 (9) E.coli (70)
ER 1hcq X-ray (2.4) 7 (7) Homo sapiens (71)
CroR 6cro X-ray (3.0) 56 (56) l-Phage (52)
EcoRI 1ckq X-ray (1.85) 13 (13) E.coli (41)
Crp 1run X-ray (2.7) 15 (15) E.coli (72)
BamHI 1bhm X-ray (2.2) 23 (0) Bacillus

amyloliquefaciens
(49)

PU.1 ETS 1pue X-ray (2.1) 25 (0) M.musculus (50)
Ndt80 1mnn X-ray (1.4) 26 (0) Saccharomyces

cerevisiae
(34)

MAT a1/a2 1yrn X-ray (2.5) 54 (0) S.cerevisiae (30)
c-Myb 1mse NMR (NA) 27 (0) M.musculus (47)
AtERF1 1gcc NMR (NA) 21 (0) Arabidopsis

thaliana
(45)

For protein–DNA structures solved by X-ray crystallography, resolution (Å) is
shown in parentheses. The total number of DDG measurements are shown for
each dataset, with the number of data points used in free energy function
parameterization listed in parentheses.
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datasets in the top part of Table 1 (total of 196 data points) are
used to train the weights in the free energy function.

Binding sites and weight matrices. Table 2 collects protein–
DNA structures for which binding site data and experimental
weight matrix data are available. The Zif268 weight matrix
was taken from a selection experiment (31). The experiment
generated the G-C-G-T/g-G/A-G-G-C/a/t-G-G/T consensus
sequence, which we used to create five binding site variants
(in addition to the consensus sequence from the Zif268 struc-
ture). Binding sites and weight matrices for seven Escherichia
coli TFs were obtained from the DPInteract database (32).
For TrpR, 4 sites from DPInteract were augmented with
10 additional sites from RegulonDB (33). For Ndt80 in
Saccharomyces cerevisiae we used the weight matrix from
Ref. (34); Ndt80 binding sites were collected by searching
promoters of the genes known to be regulated by Ndt80
with the YGNCACAAAA consensus sequence. A collection
of 17 naturally occurring MAT a1/a2 binding sites plus the
synthetic consensus sequence were obtained from Ref. (30).
Eight Gcn4p sites were assembled from Ref. (35) and the
TRANSFAC database (36). Finally, binding sites and weight
matrices for the Prd homeodomain homodimer were taken
from Ref. (37), whereas binding data for the rest of Drosophila
melanogaster TFs were collected by E. D. Siggia and
E. Emberly (unpublished data).

Prediction testing

Protein–DNA interaction model based on the number of
interface atomic contacts. In order to test our DDG and PWM

predictions we developed a simple null model that exploits the
structure of the protein–DNA complex but does not require
any detailed predictions of protein–DNA energetics. This
so-called ‘contact’ model constructs a weight matrix from
the consensus DNA sequence and the number of atomic
contacts N between protein side chains and DNA base
pairs. In particular, we assume that the three non-consensus
bases occur with equal probabilities, whereas the consensus
base is favored over any non-consensus base by (N/Nmax)
if N < Nmax. If N > Nmax, the consensus base becomes
absolutely conserved:

pi
si

Nð Þ

¼
1
4

1 � N=Nmaxð Þ if N < Nmax‚ 0 if N > Nmax i 6¼ wtð Þ;
1
4

1 þ 3N=Nmaxð Þ if N < Nmax‚ 1 if N > Nmax i ¼ wtð Þ

(

12

Here pi
si

Nð Þ is the probability of the base pair type si ¼ {A, C,
G, T} in the PWM column i, wt denotes a consensus base pair
found in the protein–DNA complex at position i, N is the
number of protein–DNA base atomic contacts summed over
the base pair i (protein and DNA atoms are defined to be in
contact if they are separated by <4.5 Å; hydrogen atoms are
excluded from the counts), and Nmax is the number of contacts
above which the native base pair is always conserved. Nmax is
treated as a free parameter in the probability model.

Probabilities defined by Equation 12 are converted into
energies using:

DGi
si

Nð Þ ¼

Emax log pi
si

Nð Þ � log pi
si

0ð Þ
h i.

log pi
si

Nmax � 1ð Þ � log pi
si

0ð Þ
h i

if N < Nmax;

Emax if N > Nmax

8>>><
>>>:

13

The log pi
si

0ð Þ ¼ log 0:25ð Þ offset ensures that mutations from
the consensus sequence are not penalized in the absence of
protein–DNA contacts. The maximum energy penalty is
capped at Emax, which together with Nmax constitute the
free parameters of the model. In all contact model fits Nmax

was changed in steps of 5 kcal/mol and Emax was changed in
steps of 1.0 kcal/mol.

Significance test of PWM predictions. Statistical significance
of PWM predictions is estimated using the y-test, which is a
generalization of the well-known c2-test (38):

y p‚qð Þ ¼ 1

L

XL

j¼1

X
i¼fA‚ C‚ G‚ Tg

qj
i ln

qj
i

pj
i

2
4

3
5‚ 14

where {pj} are predicted probabilities, {qj} are experimental
frequencies and L is the length of the binding site in base pairs.
Both p and q distributions are smoothed by adding 0.05 to all
PWM entries and re-normalizing. The quality of PWM pre-
dictions is further estimated by comparing y(p, q) with the
average value of y computed for an ensemble of 10 000 align-
ments of random weight matrices pj

random to the experimental
weight matrix frequencies {qj} [hy ( prandom, q)i]. Each column
in the random weight matrix is obtained by uniformly

Table 2. Experimental binding site and weight matrix dataset

Name PDB code Method
(Res., Å)

Nseq Organism Reference

lR 1lmb X-ray (1.8) –a l-Phage (51)
CroR 6cro X-ray (3.0) –a l-Phage (52)
AtERF1 1gcc NMR (NA) –a A.thaliana (45)
c-Myb 1mse NMR (NA) –a M.musculus (47)
Zif268 1aay X-ray (1.6) 6b M.musculus (31)
Ndt80 1mnn X-ray (1.4) 8b S.cerevisiae (34)
Gcn4p 1ysa X-ray (2.9) 9c S.cerevisiae (35,36)
MAT a1/a2 1yrn X-ray (2.5) 19c S.cerevisiae (30)
EcR/Usp 1r0o X-ray (2.24) 33c Drosophila

melanogaster
(57)

Ttk 2drp X-ray (2.8) 16c D.melanogaster –
Prd(homeo) 1fjl X-ray (2.0) 15c D.melanogaster (37)
Ubx/Exd 1b8i X-ray (2.4) 4b D.melanogaster –
Trl 1yui NMR (NA) 5c D.melanogaster –
MetJ 1mj2 X-ray (2.4) 16c E.coli (32)
TrpR 1tro X-ray (1.9) 15c E.coli (32,33)
PhoB 1gxp X-ray (2.5) 16c E.coli (32)
Ihf 1ihf X-ray (2.5) 27c E.coli (32)
DnaA 1j1v X-ray (2.1) 9c E.coli (32)
PurR 2puc X-ray (2.7) 23c E.coli (32)
Crp 1run X-ray (2.7) 50c E.coli (32)

For protein–DNA structures solved by X-ray crystallography, resolution (Å) is
shown in parentheses. Nseq is the total number of aligned binding site
sequences (including the DNA sequence from the protein–DNA complex).
aPWM is obtained fromDDG data for all one-point mutations of the binding site.
bPWM is obtained separately from the bindingsites listed in the table, by SELEX
experiments or independently published surveys of genomic sites.
cAlignment of binding sites listed in the Nseq column is used to create an
experimental PWM (binding site from the protein–DNA structure is not
included into PWM; pseudocounts are set to 0.0).
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sampling four numbers in the (0,1) interval and
enforcing normalization afterwards. The difference between
hy (prandom,q)i and y (p, q) can be viewed as a measure of
success of our predictions.

RESULTS AND DISCUSSION

Binding free energy predictions

All-atom free energy models. DNA-binding proteins employ
two complementary mechanisms of binding site recognition.
The intermolecular readout mechanism is based on direct
interactions of protein side chains with DNA bases, whereas
the intramolecular readout mechanism involves sequence-
specific deformation of the DNA site by the bound protein.
We developed a free energy function that takes both these
mechanisms into account. Interactions of protein side chains
with DNA are modeled using an all-atom representation of
both protein and DNA, including all the hydrogen atoms. The
protein–DNA interaction energy is a weighted sum of terms
describing shape complementarity and packing at the inter-
face, polar interactions (electrostatics and hydrogen bonds),
van der Waals forces and solvation energies (Equation 3). The
DNA conformational energy is calculated using a reduced
geometric representation in which DNA bases and base
pairs are represented by rigid bodies and their mutual orienta-
tion serves as a measure of deviation from the B-form DNA.
The DNA conformational energy is a weighted sum of two
terms describing base pairing and stacking of consecutive base
pairs. Using this free energy function, we developed the
following approach to predicting protein–DNA binding affin-
ities. First, a suitable protein–DNA complex is identified as a
structural template for computational modeling. Second, each
novel DNA sequence (i.e. from a set for which experimental-
binding affinity measurements are available) is threaded onto
the DNA phosphate backbone with fixed DNA torsional
angles. The result of this procedure is a set of initial structural
models with novel DNA sequences. Third, binding free ener-
gies, DG, for each member of the set are computed in either of
two different ways.

One approach, which we shall call the static model, does not
allow any side chain or DNA conformational rearrangements
in the protein–DNA complex. The free energy is computed
once for each initial model, and the difference in binding
affinity between mutant and wild-type DNA sequences is cal-
culated as DDG ¼ Gmut

prot�dna � Gwt
prot�dna‚ where Gprot–dna is the

free energy of the protein–DNA complex. The relative weights
of the free energy terms in Equation 2 are found by the least-
squares fit to a set of experimentally observed protein–DNA
binding affinities. The experimental dataset used in the fitting
consists of 11 series of DG measurements with a total of 196
data points (Table 1). For each series of measurements there is
a crystal structure of the protein–DNA complex with <3.0 Å
resolution used as a template for base pair threading and
binding affinity predictions. The set of weights obtained in
this way is cross validated by removing parts of the dataset and
refitting the weights. Very similar weights are obtained in each
case (data not shown). The ratio of protein–DNA to DNA
conformational energies obtained through the least squares
fit to experimental DDG data is necessarily averaged over
protein families included in the fit. Although there are not

enough data to carry out separate fits for each protein family,
restricting the fit to proteins known to significantly bend and
twist DNA results in a larger contribution of the DNA
conformational energies.

In the other approach, called the dynamic model, we min-
imize the total free energy of the protein–DNA complex start-
ing from the initial model. The protein backbone stays fixed
during minimization, whereas the torsional angles of DNA and
interface side chains are allowed to relax (the protein–DNA
interface is defined based on amino acid-dependent distance
cutoffs). The conformational search used in Gprot–dna minim-
ization consists of 10 two-step iterations. (i) Simulated anneal-
ing of amino acid side chains at the protein–DNA interface
with side chains represented as discrete backbone-dependent
rotamers (39) on a fixed protein backbone, and frozen DNA
conformation. (ii) Continuous minimization of amino acid
side chains at the protein–DNA interface together with sim-
ultaneous conformational relaxation of DNA. Amino acid side
chains are no longer represented by rotamers at this step.

Experimental binding affinity data available to us are
insufficient to reliably fit the weights by iterations to self-
consistency when conformational rearrangement is allowed.
Instead, we obtain the weights for components of the protein–
DNA free energy function by maximizing the recovery of
native amino acid side chains at all interface positions in a
non-homologous set of protein–DNA complexes. In other
words, we adopt a strategy used in protein sequence design
in which rotamer conformations for all amino acids are sub-
stituted at all interface positions, and the probability of native
amino acids is maximized by varying the weights (20,40).
Similar to the static model, the ratio of the protein–DNA
energy to the DNA conformational energy is expected to be
protein family dependent and was estimated on average by
requiring that the typical fluctuations from the equilibrium
shape observed in the database of protein–DNA complexes
be on the order of RT: 3�ff iih�qqi

2i � RT (overbar denotes an
average over all base step/base pair types; we neglect off-
diagonal coupling of the effective degrees of freedom). The
estimated ratio of the protein–DNA to intra-DNA energies is
consistent with the non-iterative least squares fit to experi-
mental DDG data from Table 1. In the dynamic model, DDG
is calculated as DDG¼ðGmut

prot�dna �Gmut
dna Þ�ðGwt

prot�dna �Gwt
dnaÞ,

where G
mut=wt
prot�dna is the minimized free energy of the protein–

DNA complex, and G
mut=wt
dna is the reference free energy of the

unbound DNA (Gmut
prot ¼ Gwt

prot since the protein sequence is
fixed). G

mut=wt
dna is computed by continuous minimization of

the DNA conformation in the absence of the protein. Including
separately minimized unbound DNA rather than ideal B-DNA
as a reference state was found to be beneficial in most cases
where DNA was not significantly distorted from its equilib-
rium shape. However, in several more extreme cases, such as
BamHI endonuclease and the PU.1 ETS domain, local DNA
minimization in the absence of bound protein was found to be
insufficient for relaxing DNA conformation and was omitted
from the model. Better conformational sampling might be
provided by simulated annealing of DNA degrees of freedom.

Measures of prediction success and the contact model. We
use three alternative measures to assess the quality of
DG predictions: a linear correlation coefficient r, an average
unsigned error e between predicted and experimental binding
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free energies, and a fraction of correct predictions F. Although
the first two measures are computed using standard formulae,
the fraction of correct predictions is based on a binary func-
tion: a prediction is considered to be correct if both DDGcomp

and DDGexp are <1.0 kcal/mol, or >1.0 kcal/mol, or else sep-
arated by <0.3 kcal/mol. The threshold value of 1.0 kcal/mol
corresponds to a �5-fold reduction in binding affinity at room
temperature. DG predictions are labeled as correct if they are
successfully classified to be favorable or destabilizing, even if
the absolute magnitudes of binding energies are not perfectly
reproduced.

We compare calculations of binding energies described
above with predictions based on a simple contact model.

Instead of modeling detailed energetics of protein–DNA
complexes, the contact model uses only the consensus
sequence and the number of protein–DNA base atomic con-
tacts at the binding interface (see Methods). The energy
penalty for each mutation from the consensus sequence is
given by Equation 13; it is a function of Nmax (the minimum
number of contacts at which a given consensus base is
assumed to be absolutely conserved, cf. Equation 12) and of
Emax (the maximum energy penalty for a mutation of the
consensus base). Nmax and Emax are adjusted to simultaneously
maximize the fraction of correct predictions F and minimize
the average error e over the DDG dataset. The latter require-
ment is necessary since many Nmax/Emax pairs result in similar
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values of F. The minimum value of e ¼ 1.73 kcal/mol is
obtained for Nmax ¼ 15 and Emax ¼ 3.0 kcal/mol. We find
that the contact model provides a stringent test of more com-
plicated models because, as demonstrated below, it is fairly
successful in binding affinity and weight matrix predictions.

DDG predictions and weight fitting. The extent to which the
static model reproduces experimental DDG measurements

from the 196 point dataset used for static model weight fitting
is shown in Figure 1A (closed circles). The overall correlation
between experimental and predicted binding free energies is
0.57 (Table 3). This is better than the correlation of 0.42
predicted with the contact model (Figure 1A, red triangles).
The number of mutations from the consensus sequence is also
shown (Figure 1A, green triangles). With the static model, the
fraction of correct predictions is 73%, somewhat higher than
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Figure 1. DDG predictions (ddGcomp) versus experimental measurements (ddGexp). (A) Static model binding energy predictions for the set of experimental
measurements used in fitting static model weights. (B) Dynamic model binding energy predictions for the same set of experimental measurements. Closed circles,
static/dynamic model; red triangles, contact model; green triangles, number of mutations from the consensus sequence. r1-Linear correlation coefficient for the static/
dynamic model and r2-linear correlation coefficient for the contact model. Three Zif268 datasets from Table 1 [two for Zif268 wild-type (42,67) and one for Zif268
D20A mutant (67)] are combined into one panel.
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the 70% fraction for the contact model. The average unsigned
error between experiment and prediction (e) is 1.58 kcal/mol
for the static model. Most of the errors (with an exception of
the l repressor) occur when the experimentally measured
reduction in binding affinity is underpredicted by our method.
This will lead to false positive hits in genomic sequence scans,
but will not miss true binding sites. Finally, we observe that
including DNA conformational energy into the model is bene-
ficial on average even though the relative degree of its import-
ance is probably protein family specific: prediction quality
decreases when it is excluded from the fit (Table 3).

The EcoRI endonuclease example clearly demonstrates
why the fraction of correct prediction is a relevant measure
of success. The linear correlation between prediction and
experiment in a series of destabilizing mutations of the
EcoRI endonuclease (41) is only 0.19, but all of the mutations
are correctly predicted to be destabilizing (Figure 1A, EcoRI
panel). The experiment shows binding free energy reduction in
the 4.1–5.7 kcal/mol range, whereas static model predictions
range from 0.83 to 12.21 kcal/mol (the latter prediction is
for the inverted 6 bp consensus sequence: GAATTC !
CTTAAG; experiment shows 5.2 kcal/mol reduction in bind-
ing energy in this case). Two binding free energy changes are
underpredicted at 0.83 and 1.06 kcal/mol, but the rest penalize
unfavorable mutations with 1.5 kcal/mol or higher. Therefore,
high-affinity sequences will be correctly identified by our
method even though the degree of suppression of unfavorable
mutations is not perfectly reproduced. In accordance with
this observation, only 1 out of 13 predictions is labeled as
incorrect in the binary measure. Another example is a series
of seven destabilizing mutations of the zinc finger consensus
sequence (Figure 1A, Zif268 panel) (42). Apparent binding
dissociation constants (determined by a nitrocellulose filter
binding assay) were too low to be measured accurately; the
experiment only provides the lower bound of 3.13 kcal/mol on
the binding energy reduction. Our calculations underpredict
the magnitude of destabilization in two out of seven cases
(giving 0.55 and 0.77 kcal/mol rather than >3.13 kcal/mol),
but the other five mutations are correctly identified as being
very unfavorable. The linear correlation coefficient is less
relevant in this case since experimental binding affinities
are not exactly known.

Figure 1B shows the dynamic model predictions for the
same DDG dataset. Unlike the static model, relative weights
of energy terms are not adjusted using these data. Overall,
the prediction quality is somewhat decreased compared
with the static model, both in terms of the correlation coeffi-
cient and the fraction of correct predictions (Table 3). There is

a striking increase in the average error (2.90 kcal/mol versus
1.58 kcal/mol), caused by the absence of the least squares fit to
the data. Indeed, the error decreases considerably when such a
fit is carried out (Table 3). The decision to ‘turn on’ conforma-
tional rearrangements and energy minimization depends on
several crucial factors, such as the quality of the structural
template (e.g. its X-ray resolution), the degree of DNA bend-
ing (in some extreme cases such as IHF in E.coli DNA is
distorted so much that our effective quadratic description of
DNA conformational energies may be no longer accurate), and
the necessity to model changes in DNA shape caused by amino
acid substitutions at the protein–DNA binding interface. It is
remarkable that in most cases where the protein–DNA crystal
structure is available, reasonable quality DDG predictions can
be made simply by computing the free energy of the initial,
non-minimized complex. The static model is very efficient
computationally and is nearly pairwise additive by construc-
tion, making possible rapid scans of longer genomic sequences
for high-affinity binding sites. However, it is more likely to fail
when DNA conformational change is required to predict novel
binding sites by homology, because the DNA shape from the
structure will always favor the original binding site sequence
unless it is allowed to relax.

In Figure 2 we show four binding free energy predictions
with the static model. Static model weights are not fitted on
this dataset. The first prediction is for Ndt80, the primary
transcriptional activator of the middle sporulation genes in
budding yeast (43). Ndt80 binds to the middle sporulation
element (MSE) with the gNCRCAAAW consensus sequence
found in promoters of middle sporulation genes. Its in vitro
binding affinity was studied by Pierce et al. (34) for a number
of one-point mutations from the GTCACAAAT MSE variant
and its flanking sequence. The measurements were carried out
using the electrophoretic mobility shift assay (EMSA) and
reported as ratios of protein concentrations bound to the mut-
ant sequence and the wild-type sequence. We converted these
ratios into changes in free energy using the Boltzmann for-
mula, and carried out binding affinity predictions starting from
the Ndt80 crystal structure with 1.4 Å resolution and the
GACACAAAA site. The correlation between theoretical pre-
dictions and experimental measurements is 0.67, the average
error is 0.58 kcal/mol, and the fraction of correct predictions is
19/26. When the dynamic model is used for predictions the
correlation improves to 0.74, but the fraction of correct
predictions drops to 15/26 (data not shown).

The second prediction is for the MAT a1/a2 homeodomain
heterodimer. a1 and a2 TFs bind cooperatively to repress
transcriptional activity of haploid-specific genes in diploid
a/a cells (44). Jin et al. (30) investigated effects of mutations
in the a1–a2 binding site on in vivo repression of a hetero-
logous promoter assayed for b-galactosidase activity in
wild-type diploid a/a cells. The presence of the a1–a2
binding site in the promoter causes MAT a1/a2 dependent
repression of lacZ expression. Repression ratios relative to
wild type are converted into energies using the Boltzmann
formula (see Methods) and compared to the experimental
predictions. For the static model, the correlation coefficient
is 0.45, the average error is 0.62 kcal/mol, and 44 out of 54
measurements are predicted correctly according to our defini-
tion. All but one of the incorrect predictions result in energies
that are lower than corresponding experimental energies

Table 3. DDG predictions summary

N r F e Description

1 0.57 143/196 1.58 static model: full
2 0.57 125/196 1.80 static model: protein–DNA only
3 0.43 133/196 2.90 dynamic model: full
4 0.41 128/196 2.93 dynamic model: protein–DNA only
5 0.39 117/196 1.86 dynamic model: full, fitted weights
6 0.42 137/196 1.73 contact model

r, Linear correlation coefficient; F, fraction of successful predictions (see text);
and e (kcal/mol), average unsigned error between predicted and experimental-
binding affinities.
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(Figure 2). The dynamic model is less successful in this case
(r ¼ 0.37; data not shown), probably because the X-ray struc-
tural template is only resolved to 2.5 Å and the 19 bp long
binding site presents a challenge for DNA conformational
modeling.

For our third and fourth predictions the only available struc-
tural templates were solved by NMR rather than X-ray crys-
tallography. AtERF1 is the ERF DNA-binding domain from
Arabidopsis, which mediates gene regulation by the plant
hormone ethylene (45). c-Myb is a product of the mouse
protooncogene c-myb essential in proliferation and differen-
tiation of hematopoietic cells (46). In both cases the binding
affinity data were obtained by using EMSA (45,47). Surpris-
ingly, the static model is capable of reasonable quality pre-
dictions (Figure 2). The fraction of correct predictions is 12/21
for AtERF1 and 20/27 for c-Myb. All incorrect predictions

classify corresponding mutations as too favorable, probably as
a result of experimental uncertainty in atomic coordinates of
NMR structures. This observation is confirmed by a significant
drop in prediction quality when the DNA conformation is
allowed to relax (data not shown). We generally find that
attempts at refinement of side chain and DNA atomic positions
starting from NMR structures do not lead to better DDG and
weight matrix predictions, in agreement with a previous obser-
vation that X-ray structures are consistently more accurate
than NMR-derived structures (48).

DNA conformational energy and sequence specificity. Finally,
we studied how well the DNA base step energy captures
sequence specificity owing to indirect readout in BamHI endo-
nuclease (49) and the PU.1 ETS domain (50). Engler et al. (49)
mutated 3 bp sequences flanking the GGATCC core BamHI
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Figure 2. DDG predictions (ddGcomp) versus experimental measurements (ddGexp). Static model binding energy predictions for Ndt80, (34) MAT a1/a2, (30)
AtERF1 (45) and c-Myb. (47) Closed circles, static model; red triangles, contact model; green triangles, number of mutations from the consensus sequence. r1-Linear
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recognition site and measured resulting binding free energy
changes. Inspection of the protein–DNA structure reveals that
outside of the core binding site sequence specificity is mostly
imparted by protein-phosphate backbone contacts and thus
should be ‘recorded’ in the DNA shape. Using the 2.2 Å crystal
structure of the BamHI/DNA complex as a modeling template
we were able to reproduce experimental binding affinities
measured for flanking sequence mutations with a correlation
coefficient of 0.63 (Figure 3, left panel). Interestingly, this
prediction requires DNA minimization in the context of the
protein–DNA complex, probably owing to DNA geometry
artifacts in the initial structure (the correlation drops to 0.24
if DNA is not allowed to relax). For the PU.1 ETS domain, up
to 3 bp upstream and/or 2 bp downstream of the GGAA core
recognition site were mutated and corresponding free energy
changes measured using EMSA (50). We again observe that
most of the flanking sequence specificity is due to the changes
in DNA shape conferred by protein-phosphate backbone con-
tacts and captured by the DNA base step energy (Figure 3,
right panel). DNA minimization is not as critical in this case
(the correlation is 0.69 for the static model and 0.70 for the
dynamic model).

Since most of the binding specificity for base pairs domin-
ated by indirect readout can be captured by the DNA con-
formational energy, it is interesting to know what fraction of
the base pairs in protein–DNA complexes has mostly phos-
phate backbone contacts. For these base pairs, the DNA con-
formational energy could be more important than the energies
of direct interactions between protein side chains and DNA
bases. A survey of protein–DNA contacts in structures from
Figure 1 shows that out of 143 bp which have at least one
contact with the protein, 54 bp have a ratio of phosphate
backbone contacts to DNA base contacts of 3 or higher.
When the static model DDG fit is restricted to mutations at
positions with high backbone/base contact ratio, the fitted
DNA weights are indeed several times greater than in the
fit with all data points, indicating the increased importance
of DNA conformational energies in this limit (data not shown).

Additivity in protein–DNA interactions

The assumption of independence of DNA base pair pro-
babilities at each position in the binding site forms a basis
of the weight matrix description of binding specificity (1,2).
Independence of DNA base pair probabilities implies that
the binding energy of a given DNA sequence is a sum of
energies associated with each base pair (Equation 8). Although
there is direct experimental evidence indicating that pair-
wise additivity is a reasonable approximation for l, Cro
and Mnt repressors (51–53), there are also reports in the
literature emphasizing the importance of dinucleotide and
higher order correlations (54,55). Nonetheless, it is generally
believed that pairwise additive energies do provide a
reasonable approximation to true protein–DNA interaction
energies (1,56).

In protein–DNA energy, non-additivity can only arise in the
dynamic model because all atomic potentials are pairwise.
When conformational rearrangement is allowed, the degree
of additivity will depend on the range of protein–DNA inter-
actions. For example, long-range electrostatic interactions
may cause more deviations from pairwise additivity than relat-
ively short-range van der Waals and hydrogen bonding inter-
actions. The degree of conformational change at the protein–
DNA interface in turn depends on the quality of experimental
structures and the number of water molecules at the interface
(as they are not explicitly modeled in our approach). In DNA
conformational energy the base stacking term is non-additive
by construction. If, however, the total binding energy pre-
dicted by our model turns out to be approximately pairwise
additive, the search for binding sites in genomic sequence can
be considerably simplified by constructing a weight matrix
or a table of energies for all one-point mutations from the
consensus sequence, instead of independently computing
DG values for each putative binding site.

In Figure 4, we compare protein–DNA binding energies
computed directly and by assuming pairwise additivity. In
the latter approach, the protein–DNA binding energy change
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caused by an arbitrary number of binding site mutations is
computed as a sum over energy changes DDGi

a associated with
one-point mutations from the consensus sequence:

DDG Sð Þ ¼
XL

i¼1

X4

a¼1

DDGi
ada‚si

‚ 15

where L is the length of the binding site in base pairs, si is the
base at position i in sequence S, a ¼ {A, C, G, T}, and
da‚ si

¼ 1 if a ¼ si and 0 otherwise. In the left panel of
Figure 4 we plot the energies of all adjacent dinucleotide
mutations of the Ndt80 binding site using the dynamic
model (all terms in the static model except the base stacking
energy are exactly pairwise additive). The protein–DNA inter-
action energies of the mutant sequences are quite well repro-
duced by the additive model. One discrepancy is in the
absolute magnitude of binding energies which is predicted
to be too large in the additive model. In the right panel of
Figure 4, a similar comparison is carried out for a set of
sequences including naturally occurring l repressor operators
and multiple mutations of the OR1 site. The agreement is
reasonable but somewhat less pronounced, perhaps reflecting
the increased number of mutations from the OR1 consensus
sequence. For each sequence in this set, DDG and DDGi

a meas-
urements were also made (51). A similar plot using experi-
mental DDG measurements shows better correlation (51),
demonstrating limits of applicability of computational models
to predicting the experimental degree of pairwise additivity.

Binding site discrimination

In order to carry out successful predictions of genomewide
transcriptional regulation, computational models of protein–
DNA binding free energy should be able to discriminate
TF binding sites from random ensembles of sequences.
Since we demonstrated that the static model works best for
DDG predictions, we assess its discriminatory power here by

computing binding free energies of 16 TFs for which multiple
DNA-binding sites are available (Table 2). Because pairwise
additivity is nearly exact for the static model, we can compute
binding energies of sites with arbitrary sequences using only
binding energies for one-point mutations from the consensus
sequence as input (Equation 15). The degree of discrimination
of TF binding sites from random sites is given by the Z-score:

Z Sð Þ ¼ DDG Sð Þ � hDDGi
s

‚ 16

where DDG(S) is the binding energy of sequence S measured
relative to the wild-type binding energy, hDDGi is the average
binding energy for the ensemble of all possible 4L sequences
(L is the length of the binding site) and s is the standard
deviation for the same ensemble.

In Table 4 we show Z-scores for the binding site from the
protein–DNA complex (ZPDB) and Z-scores averaged over all
sites from Table 2 (hZsitei). In addition, binding energies with
sites from protein–DNA complexes are ranked for all TFs with
L < 15. The overall quality of predictions is quite good, con-
sistent with our previous DDG predictions. Interestingly, the
energy of the binding site from the protein–DNA structure is
more favorable than the average energy of all binding sites in
all cases except Trl (1yui; Table 4), showing that most experi-
mentally characterized binding sites have lower affinities than
the consensus site. Nonetheless, almost all of the inspected
sites have highly favorable binding energies and thus low
Z-scores. One notable exception is the integration host factor
protein (Ihf) for which the average Z-score for 27 sites from
Table 2 is only �1.12. The large discrepancy between the
average Z-score and the PDB Z-score might be explained in
this case by the major role of indirect readout in Ihf binding:
the crystal structure of the Ihf–DNA complex shows that DNA
is bent almost 180� and has relatively few direct contacts
between side chains and DNA bases, especially in the 50 region
of the binding site. The experimental PWM is relatively
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Figure 4. Degree of pairwise additivity in binding energies predicted with the dynamic model. Comparison of binding energies computed after making multiple base
pairs substitutions (ddGcomp) with the sum of binding energies computed for corresponding one-point mutations of the DNA site from the protein–DNA structure
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non-specific, and different sites or groups of sites might utilize
significantly different binding modes that are not captured well
by our approach.

Ranking binding sites from the protein–DNA structure ver-
sus ensembles of random sites provides further illustration
of the accuracy of our predictions: for example, the native
binding site of the Ndt80 (1mnn) is 14th out of 16 777 216
sequences, whereas in Gcn4p (1ysa) the native binding site
is the lowest in energy among 16 384 sequences (Table 4).
Similar to DDG predictions, binding site discrimination
from random sequences strongly depends on the quality of
the structural template: Trl (1yui) native site is ranked only
91st out of 16 384, most probably because the structure of the
protein–DNA complex was determined by NMR.

PWM predictions

Results from the previous section show a reasonable degree
of additivity in protein–DNA binding free energy predictions,
most probably because of the limited role of long-range
interactions in our model. Therefore, we can convert binding
energies into weight matrices without significant loss of
information and test our PWM predictions against experi-
mental data. Similar to DDG predictions, we compare all-
atom static and dynamic models with the simpler contact
model, which uses the number of atomic contacts between
protein side chains and DNA base pairs as a measure of
binding specificity (Equation 12).

Experimental PWMs and prediction testing. We constructed
experimental PWMs for 20 TFs using several alternative
approaches. PWMs for lR (1lmb), CroR (6cro), c-Myb
(1mse) and AtERF1 (1gcc) were created by converting
experimental binding free energy measurements for all
one-point mutations of the binding site (Table 1) into prob-
abilities using the Boltzmann formula at room temperature.

The resulting PWMs are then constructed in a way directly
comparable to computational predictions. Another and more
commonly used method for constructing PWMs is based on
the alignment of binding sites obtained from either a SELEX
experiment or a set of promoter sequences of genes regulated
by the TF (2). The quality of weight matrices obtained from
such alignments depends on the number of sequences used in
the alignment. In our 20 PWM dataset shown in Table 2, 4
PWMs are created from DDG measurements, 14 PWMs are
based on genomic sites available from the literature, the
Zif268 PWM is from a SELEX experiment (31), and the
EcR/Usp PWM comes from a combination of SELEX (57)
and genomic sites. PWM predictions are analyzed using the
y-test (Equation 14). y(p, q) is a non-negative measure of the
‘goodness of fit’ between computational probabilities and
experimental frequencies (38). It is a monotonic function of
prediction quality.

Free parameters of PWM models. The contact model replaces
detailed calculations of protein–DNA energetics with an
assumption that the probability of each base in the consensus
sequence is directly proportional to the number of contacts
made between the base pair and all protein side chains (Equa-
tion 12). As in the binding free energy contact model, protein–
DNA contacts are defined as protein–DNA base atomic pairs
within Rmax ¼ 4.5 Å; contacts to the phosphate backbone are
ignored. As the number of contacts N increases, the consensus
base becomes more and more specific, with the rest of the
probability evenly divided between the other three bases. The
probability of the consensus base becomes 1 for N ¼ Nmax,
and all other probabilities become 0. Given Rmax, Nmax is a free
parameter to be adjusted by minimizing y(p, q) averaged over
a subset of TFs from Table 2. PWMs constructed from fewer
than 10 binding site sequences [including Gcn4p (1ysa), Trl
(1yui) and DnaA (1j1v)] are removed from the Nmax fit. The
average value of y is at a minimum for Nmax ¼ 20.

Using the Boltzmann formula to convert energies into prob-
abilities involves an inverse temperature factor b ¼ 1/RT,
which can also be viewed as an adjustable scaling factor.
The specificity of PWM predictions depends on b: at low
temperatures only a few lowest energy binding sites contribute
to weight matrix probabilities, whereas at high temperatures
a broader spectrum of sites is included. Therefore, incorrect
predictions of low-energy sites will result in higher fitted
temperatures. The static model fit with the 17 TF dataset
used for adjusting Nmax in the contact model gives
b ¼ 2.25 (kcal/mol)�1. For the dynamic model fit, we addi-
tionally exclude all NMR structures (1gcc and 1mse), crystal
structures with >2.5 Å resolution (6cro, 2drp, 1run and 2puc)
and the Ihf–DNA complex (1ihf) because its DNA conforma-
tion cannot be reasonably expected to be modeled by relaxa-
tion with the quadratic DNA potential. The dynamic model
fit over 10 remaining TFs results in b ¼ 0.75 (kcal/mol)�1.

PWM predictions and comparison with experiment. The fitted
values of Nmax and b are used to make PWM predictions for
all 20 TFs (16 for the dynamic model as 3 NMR structures and
Ihf are excluded). In Table 5 we show values of y computed
using the contact, static and dynamic models. We compare
model predictions with the average value of y for an ensemble
of randomly generated weight matrices (hyrandomi column in

Table 4. Summary of binding site energy predictions

PDB ZPDB hZsitei Rank L

1mnn �3.69 �2.54 14 12
1ysa �3.38 �2.53 1 7
1yrn �4.30 �3.34 – 19
1aay �3.70 �3.60 13 10
1b8i �3.22 �2.74 8 10
1r0o �3.80 �2.88 – 15
2drp �3.77 �2.76 6 11
1yui �2.38 �2.48 91 7
1fjl �3.22 �2.93 4507 13
1gxp �4.17 �3.06 – 20
1ihf �3.41 �1.12 – 34
1j1v �4.20 �3.36 13 13
1mj2 �3.09 �2.13 – 16
1run �3.50 �2.32 – 22
1tro �3.73 �2.57 – 18
2puc �3.88 �3.68 – 16

ZPDB is the Z-score (Equation 16) for the protein–DNA binding energy with the
binding site found in the protein–DNA structure; hZsitei is the average Z-score
for protein–DNA binding energies with binding sites listed in Table 2; Rank is
the rank of the binding energy for the structural site in the ensemble of 4L

sequences (L is the binding site length). Rank was computed for all binding
sites with L < 15. Static model was used in all predictions. TF binding sites
(including sequences from protein–DNA complexes) are as listed in Table 2 (see
Methods for details).
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Table 5). y is lower than the corresponding random value if a
prediction is successful. For the contact model the average
value of y over all TFs is 0.19, significantly better than the
random value of 0.70. For the static and dynamic models the
average over all TFs increases to 0.23 and 0.35, respectively.
Note, however, that even for the least successful predictions
(1b8i for the contact model, 1mj2 for the static model and 2puc
for the dynamic model) y is much smaller than the corres-
ponding random y (Table 5). Surprisingly, it is the contact
model that is the most successful on average: the static model
has a lower y in only 6 cases out of 20. This finding demon-
strates that PWM predictions may not require detailed models
of protein–DNA energetics if native protein–DNA complexes
are available. Furthermore, allowing conformational change
generally makes predictions worse, consistent with our earlier
observations regarding DDG predictions.

The y-test provides only an average measure of success and
does not necessarily reflect all relevant details of probability
distributions in specific columns. Hence it is useful to analyze
several PWM predictions in more detail. In Figure 5, PWM
WebLogo representations (58) are shown for 2 TFs: Ndt80 (A)
and Zif268 (B). The total height of each weight matrix column
is constant and the relative height of each letter is proportional
to its probability in a given PWM column. All bases are sorted
by probability. For each panel in Figure 5 the top logo is the
experimental PWM and the other three logos are predictions
with the contact model, the static model and the dynamic
model, respectively.

For Ndt80, y is 0.14 for the contact model, 0.12 for the
static model and 0.20 for the dynamic model (Table 5).
Figure 5A shows that relative specificities of C at position
5 and A/g at position 6 are best reproduced with the static
model (the contact model underpredicts specificity of C5
and overpredicts specificity of A6, whereas in the dynamic
model both C5 and A6 are insufficiently conserved). All three

computational models overpredict specificity of guanine
at position 3 and underpredict specificity of adenine at
position 9. Specificity of adenine at position 8 is predicted
best with the contact model. Our second prediction is for the
Zif268 zinc finger with the experimental PWM from a SELEX
experiment (Figure 5B) (31). The value of y is 0.13, 0.19 and
0.35 for the contact, static and dynamic models, respectively.
Because almost all positions in the experimental PWM are
strongly conserved, the contact model with the appropriate
Nmax cutoff is capable of a near perfect prediction of experi-
mental results. The high degree of specificity in the SELEX

Table 5. The y-test of PWM predictions for the contact, static, dynamic and

random models

PDB ycontact ystatic ydynamic hyrandomi

1mnn 0.14 0.12 0.20 0.68
1ysa 0.16 0.31 0.39 0.91
1yrn 0.20 0.26 0.36 0.73
1lmb 0.10 0.09 0.14 0.47
6cro 0.07 0.10 0.21 0.47
1mse 0.26 0.24 – 0.55
1gcc 0.15 0.12 – 0.57
1aay 0.13 0.19 0.35 0.95
1b8i 0.35 0.34 0.36 0.87
1r0o 0.22 0.25 0.38 0.72
2drp 0.19 0.24 0.23 0.69
1yui 0.07 0.26 – 0.95
1fjl 0.30 0.32 0.51 0.83
1gxp 0.24 0.28 0.41 0.68
1ihf 0.21 0.19 – 0.43
1j1v 0.21 0.22 0.36 0.70
1mj2 0.21 0.38 0.33 0.69
1run 0.10 0.17 0.38 0.51
1tro 0.30 0.31 0.39 0.71
2puc 0.18 0.26 0.63 0.81

Random model uses randomly sampled normalized PWM entries (see
Methods). Three NMR structures and Ihf (1ihf) are excluded from the dynamic
model predictions.
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Figure 5. PWM predictions for Ndt80 (A) and Zif268 (B). From top to bottom:
experiment, contact model based on the consensus sequence and the number of
protein–DNA contacts, static model and dynamic model (see text for details).
PWMs are displayed using the uniform height WebLogo representation(58): the
height of each letter in the column is proportional to its probability in the PWM.
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experiment could be an artifact of the stopping criteria in the
selection rounds. The main advantage of more complicated
models is in making some columns less specific in better
agreement with the experimental data, notably G/a at position
5. Interestingly, the y-test yields 0.13 for the weight matrix
predicted using zinc finger energy matrices from Benos et al.
(15), comparable to our predictions with contact and static
models.

In summary, reliable PWM predictions can be carried out if
the native structure of the protein–DNA complex is used as a
starting point for computational modeling. The contact model
which assigns base pair specificity based on the number of
atomic contacts between protein amino acids and DNA bases
is surprisingly successful. In some cases, the static model
provides the best results: although the agreement with the
experimental data is somewhat worse on average compared
with the contact model, core motif probabilities are often
better reproduced (Figure 5). Finally, the dynamic model is
typically worse than the others, especially in cases where a
high-resolution crystal structure of the protein–DNA complex
is not available, or where ordered water molecules mediating
protein–DNA interactions play a significant role. Water
molecules are not explicitly modeled in our approach and,
thus, their removal from the interface may result in artificially
increased conformational freedom of neighboring bases and
side chains. Limited utility of side chain conformational
rearrangement in computational modeling of intermolecular
binding interfaces was previously noted in the context of
protein–protein complexes (59).

Homology modeling

Binding affinity and specificity predictions described in the
previous sections require native structures of protein–DNA
complexes. However, even in well-studied organisms such
as S.cerevisiae and D.melanogaster there are only 10–15 suit-
able structures in the database. Furthermore, in most cases
experimentally available protein–DNA complexes are not
focused on any specific biological pathway (such as regulation
of the Drosophila segmentation gene network), being instead
distributed across a range of regulatory pathways and cell
types. Hence the ability to model protein–DNA interactions
by homology is crucial to future practical applications of our
approach.

A suitable modeling template is initially identified by
sequence similarity to protein–DNA complexes in the struc-
tural database using Ginzu (60). Besides sequence similarity,
the quality of experimental structures (such as X-ray resolu-
tion or missing atoms) is taken into account. Amino acid
substitutions at the DNA-binding interface are identified
by a sequence–structure alignment with the template using
K*Sync (60) or ClustalW (61). The approximate pairwise
additivity of base pair energies and the relatively short
range nature of the free energy function make it possible to
ignore amino acid substitutions elsewhere because they are
less likely to mediate protein–DNA interactions. An obvious
consequence of this assumption is that binding specificity does
not change if all amino acids at the protein–DNA interface are
conserved. To give a specific example, essentially all DNA
contacting amino acids are conserved in the Rel homology
region family (8) and, thus, binding sites for the embryonic

polarity protein dorsal in fly bear a strong resemblance to
nuclear factor kB sites from mouse and human [e.g. a dorsal
weight matrix from Ref. (62) gives the T-G/T-G-G-A/T-T-T-
T-T/C-C-C consensus sequence, very close to the T-G-G-G-A-
A-T-T-C-C-C binding site from the structure of the mouse
nuclear factor kB p50 homodimer bound to DNA]. A classi-
fication of protein–DNA complexes into families and sub-
families has been carried out on the basis of identical DNA
contacting amino acids (8). The definition of interface amino
acids is somewhat arbitrary: typically, amino acids are con-
sidered to be at the interface based on distance cutoffs and/or
visual identification of hydrogen bonds, van der Waals con-
tacts and favorable electrostatic interactions with DNA atoms.
We adopt a simple interface definition based on the 4.5 Å
cutoff between protein side chain atoms and DNA base or
phosphate backbone atoms.

In Figure 6 we show PWM predictions by homology for two
TFs from the Drosophila segmentation gene network: the
maternal factor bicoid (Bcd) and the gap factor giant (Gt)
(63). Bcd is a homeodomain TF; its experimentally charac-
terized binding sites suggest monomeric binding. The experi-
mental PWM for Bcd obtained from the alignment of 30
binding sites shows a strongly conserved C/T-T-A-A-T-C-
C/T-C/G consensus sequence. We use structures of the
Engrailed homeodomain–DNA wild-type complex (3hdd)
and its Q50K mutant (2hdd) as modeling templates (64,65).
The amino acid at position 50 is an important specificity deter-
minant for the 2 bp 30 of the core TAAT homeodomain motif:
Lys-50 makes favorable contacts with two guanines comple-
mentary to the CC dinucleotide immediately 30 of TAAT,
contributing to the difference between Q50 wild-type
Engrailed (GTAATTAC) and Engrailed Q50K (GTAATCCC)
binding sites from the structures.

Using the Q50K Engrailed mutant as a structural template
for Bcd makes homology modeling relatively easy: all amino
acids are conserved at the DNA-binding interface, even though
there are 28/55 amino acid substitutions and a 2 residue gap
in the alignment. Because Q50K Engrailed and Bcd DNA-
binding interfaces are virtually identical, the experimental
PWM for Bcd is reasonably well reproduced by the contact
model. Prediction of the motif 30 of the TAAT core is
further improved with the static model, but the TAAT motif
becomes less specific (Figure 6A). Structural analysis of
homeodomain–DNA complexes reveals that homeodomain
binding causes distortion in the DNA conformation (37,66).
The conformational change serves to enclose the recognition
helix within the major groove, increasing the surface area of
the protein–DNA interface and resulting in the Beg�DNA
(enlarged groove) DNA form (66). The distortion of the
DNA site is captured by the DNA conformational component
of the free energy function (Figure 6A; note that DNA
conformational energy weights from the static model are
multiplied by 5). Surprisingly, DNA shape confers binding
specificity not only to the TAAT core homeodomain motif,
but also to the 30 CCC motif.

Owing to the differences between Bcd- and En-binding
specificities, the contact model is not very successful in pre-
dicting the bicoid PWM starting from the wild-type En–DNA
complex. The dynamic model reproduces PWM columns 8
and 9 significantly better, but in column 7 adenine is favored
over cytosine, and in column 4 adenine is mixed with guanine

5794 Nucleic Acids Research, 2005, Vol. 33, No. 18



to the extent not corroborated by the experiment (Figure 6A).
One possible reason for this discrepancy is that the model does
not fully reproduce experimentally observed conformational
differences between wild-type and Q50K DNA sites (64).
This difference is reflected in wild-type Engrailed DNA
conformational energies which favor T/A at position 7 and
G at position 8 (Figure 6A; the static model DNA weights are
multiplied by 5 as before). Better DNA conformational
sampling should improve the accuracy of PWM predictions
with homology models.

Giant is a TF from the leucine zipper family. It binds DNA
as a homodimer, with the TTAC consensus motif at positions
3–6 and its inverted complement GTAA at positions 7–10
(Figure 6B). The experimental PWM for Gt is constructed
using just 7 binding sites and thus might be too specific at
positions 1 and 2 and 11 and 12, where there are few contacts
with protein side chains (as is evident from the contact model
prediction). We used the 1.8 Å resolution crystal structure
of the human nuclear factor NF-IL6 bound to the GAT-
TGCGCAATA site (1gu4) as the homology modeling tem-
plate. For each monomer in the homodimer there are 5 amino
acid mutations at the protein–DNA binding interface: 1 DNA
base contact and 4 phosphate backbone contacts. However,
only one of these contacts is non-homologous (K contacting
phosphate backbone in NF-IL6 is mutated to V in Gt), sug-
gesting that NF-IL6- and Gt-binding specificities should not
be very different. The mutated LYS makes contacts with
the phosphate group joining a dinucleotide complementary
to TG at positions 4 and 5 in one chain, and to CA at positions
8 and 9 in the other chain (Figure 6B, panel 2 from top; column
numbers are from the experimental PWM). In accordance with
this observation, comparison of the experimental PWM for Gt
with the contact model shows that the specificity change is
largely restricted to positions 5 (G!A) and 8 (C!T).
By construction, the contact model is incapable of accommod-
ating this change, whereas static and dynamic models are
partially successful, but at the price of making the prediction
at position 6 in the experimental PWM less specific
(Figure 6B).

The Bcd and Gt examples described above are represent-
ative of the future applications of our approach. Binding site
specificity predictions based on structural modeling can be
used in conjunction with existing bioinformatic algorithms
to study regulatory gene networks in many species. Even
though the requirement of having homologous structures of
protein–DNA complexes with a limited number of mutations
at the protein–DNA binding interface is much less restrictive,
it is still likely to be the main limitation of our approach. PWM
prediction by homology becomes less tractable if the number
of mutations at the interface is >2 or 3, probably because the
current implementation of our model does not allow protein
backbone degrees of freedom to relax. Modeling TF binding
specificities using distant homologs may require including
rigid body motion of the TF and sampling over multiple
docking conformations.

CONCLUSIONS

We developed a computational all-atom approach for predict-
ing protein–DNA binding affinities and TF weight matrices.
Protein–DNA energetics is described with the empirical free
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Figure 6. PWM predictions by homology for D.melanogaster TF bicoid (Bcd)
(A) and giant (Gt) (B). From top to bottom: (A) panel 1: experiment; panels 2–4:
contact model, static model with full energy function and static model with
DNA conformational energy only (with dna–bp and dna–bs weights multiplied
by 5) using D.melanogaster Engrailed homeodomain Q50K (2hdd) as a tem-
plate; panels 5–7: contact model, dynamic model with full energy function
(reference DNA energies are not subtracted since DNA is bent in homeodo-
mains) and static model with DNA conformational energy only (with dna–bp
and dna–bs weights multiplied by 5) using D.melanogaster Engrailed wild-type
homeodomain (3hdd) as a template. (B) Experiment, contact model, static
model and dynamic model using Homo sapiens nuclear factor NF-IL6 (C/
EBP-b;1gu4) as a template. All amino acids substituted at the protein–DNA
interface are repacked in the static model. PWMs are displayed using the uni-
form height WebLogo representation (58).
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energy function that accounts for protein–DNA interactions
(including electrostatics, solvation, hydrogen bonding, van der
Waals interactions and packing) and distortion of the DNA
shape caused by protein binding. Each term in the free energy
function is multiplied by a weight which is adjusted to optim-
ize the performance of the model on an experimental dataset.
Free energy minimization and conformational rearrangement
at the protein–DNA binding interface are either not employed
at all (static model), or limited to repacking interface side
chains and DNA minimization (dynamic model). Protein–
DNA docking orientation and protein backbone conformation
are kept fixed during energy minimization. Our approach is
computationally efficient and can be applied on the gen-
omewide scale. We demonstrated its utility by carrying out
a number of DDG and PWM predictions using native protein–
DNA complexes as structural templates.

Proteins bind DNA in a sequence-specific manner by util-
izing two distinct interaction mechanisms. The mechanism of
direct readout is mediated by protein side chains directly con-
tacting DNA base atoms. Favorable protein–DNA base con-
tacts result in base pair preferences at corresponding positions
in the binding site. The mechanism of indirect readout is
mediated by side chain contacts with the DNA phosphate
backbone. These contacts are typically as numerous as direct
protein–DNA base contacts and can exploit DNA flexibility by
twisting and bending it into the shape that fits best with the
binding interface presented by the protein. Since some DNA
sequences are more flexible than others, DNA conformational
change confers additional sequence specificity to the binding
site. In cases where indirect readout predominates, our model
predicts a major contribution of the DNA conformational
energy to the overall binding specificity (Figure 3).

None of the terms in the DNA base pair energy depend on
neighboring base pairs in the absence of conformational
rearrangement (except the base stacking energy) and, thus,
DNA base pair energies are nearly independent in the static
model and only weakly coupled in the dynamic model
(Figure 4). Thus, we can convert binding affinity predictions
for one-point mutations into weight matrix probabilities
without significant information loss. Results in Table 5
demonstrate that we are reasonably successful in predicting
experimental PWMs for a variety of TFs starting from the
native protein–DNA complex. Surprisingly, a simple contact
model based on the consensus sequence from the protein–
DNA complex works quite well, even though specific
examples in Figure 5 make evident some of its limitations
compared with all-atom models of protein–DNA interactions.

The number of protein–DNA complexes currently available
in the structural database is insufficient for modeling trans-
criptional regulation on a large scale. Therefore, the range of
applicability of our approach depends on its accuracy in
modeling TF binding specificities starting from homologous
structures. Owing to the relatively short-range nature of our
free energy function, it is sufficient to substitute amino acids
only at the DNA-binding interface when creating protein–
DNA homology models. Homology modeling should be easi-
est when there are no dissimilar amino acid substitutions at the
interface, because in many instances TFs with conserved inter-
faces have identical binding specificities. Our model makes
accurate predictions in such cases, but changes in binding
specificity resulting from amino acid mutations are often pre-

dicted less accurately (Figure 6). Refinement of protein–DNA
interfaces is a challenging problem which is strongly affected
by the quality of experimental structural data and the presence
of ordered water molecules mediating interactions across the
protein–DNA binding interface. Homology-based predictions
should be improved if interface waters are explicitly modeled
and multiple protein docking conformations are allowed.
Furthermore, homology modeling should be aided by better
DNA conformational sampling (i.e. using simulated annealing
techniques rather than minimization towards the nearest local
minimum).

In summary, the computational algorithm developed here
is useful for binding affinity and weight matrix predictions if
either a native structure of the protein–DNA complex or its
sufficiently close homolog is available. Unlike previously
reported knowledge-based approaches (15,16), our algorithm
is not limited to any specific TF family and is not as data
intensive. However, its accuracy strongly depends on the
quality of the experimental structure used as the modeling
template, and the number of amino acid substitutions at the
DNA-binding interface. In future, we intend to combine struc-
turally predicted PWMs with motif detection algorithms in
order to identify TF binding sites on the genomic scale.

SOFTWARE AND DATA AVAILABILITY

The protein–nucleic acid interaction module is implemented
in C++ in the ROSETTA software package (http://www.
bakerlab.org). ROSETTA software package is freely available
to academic users. We hope to foster further development of
computational algorithms for protein–DNA binding specificity
predictions by providing all experimental datasets used in this
study (including DG measurements, PWMs and TF binding
sites) as Supplementary Data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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view of the interface and comparison with other Engrailed structures.
J. Mol. Biol., 284, 351–361.

65. Tucker-Kellogg,L., Rould,M.A., Chambers,K.A., Ades,S.E., Sauer,R.T.
and Pabo,C.O. (1997) Engrailed (Gln50->Lys) homeodomain–DNA
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