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By use of path-integral methods, a general expression is obtained for the two-frequency, two-position mutual
coherence function of an electromagnetic pulse propagating through turbulent atmosphere. This expression
is valid for arbitrary models of refractive-index fluctuations, wide band pulses, and turbulence of arbitrary
strength. The approach presented in this paper was examined in the cases of plane-wave, spherical wave, and
Gaussian beam propagation in power-law turbulence and compared with existing numerical and exact results.
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applicable to a wide range of practical pulse propagation problems. © 2002 Optical Society of America
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1. INTRODUCTION

The problem of pulse propagation through the turbulent
atmosphere is of great interest in many applications, such
as ground-to-satellite high-data-rate communication links
and lidar operation. The two-frequency mutual coher-
ence function (MCF) is necessary to obtain such pulse
propagation characteristics as the instantaneous inten-
sity of the pulse and the coherence bandwidth; in general,
it provides a complete description of the second moment
of the field.

In weak turbulence the Rytov approximation has been
used by many authors to obtain an analytical expression
for the MCF with the Kolmogorov spectrum of refractive-
index fluctuations or modifications thereof (for a recent
application to Gaussian beam pulses, see Refs. 1 and 2).

The theory of pulse propagation in strongly turbulent
media has also been investigated by many researchers us-
ing a variety of analytical and computational techniques.
In particular, an assumption of the Gaussian spectrum of
refractive-index fluctuations leads to a quadratic struc-
ture function when the spatial separation of observation
points in a plane perpendicular to the direction of propa-
gation is small compared with the width of the
Gaussian.3,4

The quadratic problem has a closed-form analytic solu-
tion: Sreenivasiah et al.4,5 solved the parabolic equation
satisfied by the two-frequency MCF under the Markov
approximation.6 Their solution is valid for wideband
pulses and in the strong fluctuation regime. A narrow-
band approximation to this result is obtained when the
original equation is expanded in the wave-number differ-
ence D in the beginning, and the resulting system of equa-
tions solved via Green’s function techniques.7

Path integrals provide an especially elegant and pow-
erful method for finding the two-frequency, two-position
MCF. Once the parabolic (small-angle scattering) ap-
proximation is made, path-integral formulation is pos-

sible; in the quadratic case the problem becomes isomor-
phic to that for a particle in the harmonic-oscillator
potential. This path integral is solved in many standard
texts.8,9

Dashen10 showed the solution for the one-position MCF
in the case of a spherical wave (point source). Rose and
Besieris provided a systematic functional integral treat-
ment of Nth-order multifrequency coherence functions for
the quadratic turbulence structure function.11,12 Their
approach results in closed-form expressions for multifre-
quency, multiposition coherence functions of any order,
with the deterministic background represented by a poly-
nomial of up to second degree. More recently, Gozani13

derived a formal path-integral solution to the explicit
time-domain second-moment equation applicable to ul-
trashort pulsed beams.

It is well known that the assumption of Gaussian spec-
trum of refractive-index fluctuations may lead to some
conceptual difficulties and the absence of important quali-
tative effects.14,15

However, the problem of finding analytical expressions
for a multifrequency, multiposition MCF in the case of the
Kolmogorov spectrum of refractive-index fluctuations has
proven more elusive. Neither the path integral nor the
corresponding parabolic equation can be solved exactly;
only approximate, numeric, or asymptotic expressions can
be derived. Numerical results for the two-frequency
MCF with the Kolmogorov spectrum were obtained by
Sreenivasiah,3 Lee and Jokipii,16 and others. Furutsu17

solved the irradiance space–time transport equation for a
plane-wave pulse and obtained convergent series repre-
sentations for the two-frequency MCF and the instanta-
neous intensity of the pulse. More recently, Oz and
Heyman18–22 used the modal expansion method to solve
the parabolic equation for the two-frequency MCF. They
found approximate solutions for the plane wave, the point
source, and the beam wave (for the one-position MCF
only).
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Finally, Fante23 used the extended Huygens–Fresnel
(HF) principle to find the two-position, two-frequency
MCF in a turbulent medium.

In this paper we use a path-integral variational
approach8 for the evaluation of two-frequency, two-
position MCFs with general power-law turbulence struc-
ture functions. The rest of the paper is organized as fol-
lows. Section 2 is devoted to the development of the
formal path-integral solution for the two-frequency MCF.
In Section 3 we derive exact plane-wave, spherical wave,
and Gaussian beam MCFs for the quadratic spectrum of
refractive-index fluctuations. These results, although al-
ready available in the literature,4,5,11,12 will form the
starting point for our variational approach. In Section 4
we obtain a general variational expression for the MCF
with arbitrary power-law structure functions. In Section
5 we apply this expression to the point-source, the plane-
wave, and the Gaussian beam pulse propagation in Kol-
mogorov turbulence; we compare some of our results with
those available from other authors, including calculations
based on the use of the extended HF principle.23 The ex-
pressions we obtain contain an integral over the initial
source distribution, which we solve numerically for the
plane-wave and the Gaussian beam cases. Finally, in
Section 6 we briefly summarize our conclusions and dis-
cuss future applications of the path-integral variational
technique.

2. PATH-INTEGRAL APPROACH TO THE
NORMALIZED MUTUAL COHERENCE
FUNCTION WITH A GENERAL POWER-LAW
STRUCTURE FUNCTION

Consider an electromagnetic wave propagating in a ran-
dom medium along the z axis; using the parabolic (quasi-
optical) approximation and neglecting depolarization and
backscatter, we obtain the following scalar equation for a
wave amplitude6,24:

2ik
]u~r, z, k !

]z
1 Du~r, z, k ! 1 k2ẽu~r, z, k ! 5 0,

(1)

where k 5 v^e&1/2/c is the wave number; v is the wave
frequency; D 5 ]2/]x2

1 ]2/]y2; r 5 (x, y) denotes loca-
tion in the plane perpendicular to the direction z of wave
propagation; u(r, z, k) is an electric field component with
the free-space phase factored out: E(r, z, t)
5 u(r, z, k)exp(ikz 2 ivt); and ẽ 5 (e 2 ^e&)/^e&, where
e is the dielectric permittivity and ^e& is its average over
random medium fluctuations. For simplicity, we restrict
ourselves to the case of homogeneous and nondispersive
background medium.

The wave amplitude is subject to the initial condition

u~r, z 5 0, k ! 5 u0~r!.

Wave equation (1) has the following functional integral
solution25,26

u~R, Z, k !

5 E d2R0u0~R0!E D
2sd@s~0 ! 2 R0#d@s~Z! 2 R#

3 expH ik

2
E

0

Z

dzF S ds

dz
D 2

1 ẽ~s, z !G J . (2)

We start by computing a spherical wave MCF; the
plane-wave and beam wave MCFs will be obtained from it
by integration over the initial source distribution (as-
sumed to be at z 5 0). We define the normalized spheri-
cal wave MCF as follows (all z labels will be dropped for
brevity from now on):

Gp
N~R1 , R2 , R1

0, R2
0; k1 , k2!

[
^u~R1 , R1

0, k1!u*~R2 , R2
0, k2!&

u f~R1 , R1
0, k1!u f*~R2 , R2

0, k2!
, (3)

where

u f~R, R0, k ! 5 2

ik

2pZ
expS ik

2Z
uR 2 R0u2D

is a solution to the free-space parabolic wave equation.
Use of the Markov approximation6 for dielectric permit-

tivity fluctuations in homogeneous and isotropic media
amounts to asserting that

^ ẽ~r, z !ẽ~r8, z8!& 5 d ~z 2 z8!A~ ur 2 r8u, z !.

In all calculations below, we assume for simplicity that
the transverse correlation function A is not explicitly de-
pendent on z or the wave number (within the bandwidth
of interest). Then we obtain for the normalized MCF in
Eq. (3):

Gp
N

5 expF2

~k1 2 k2!2
ZA~0 !

8
G I$Ap%

I$0%
, (4)

where

I$Ap% 5 E
f

D
2s1E

f

D
2s2 expH E

0

Z

dzF ik1

2
ṡ1

2~z !

2

ik2

2
ṡ2

2~z ! 1

k1k2

4
Apus1~z ! 2 s2~z !upG J ,

(5)

˙ [ d/dz, and * fD
2s implies path integration with end

points fixed at prespecified positions by appropriate d
functions [cf. Eq. (2)]. Note that we restricted ourselves
to the power-law correlation function expansion in Eqs.
(4) and (5):

A~s! . A~0 ! 1 Apusup, with 1 , p < 2.

p 5 5/3 corresponds to Kolmogorov turbulence, and p

5 2 represents the Gaussian spectrum of refractive-
index fluctuations.

Using the orthogonal transformation of variables10
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v 5 s1 2 s2 ,

u 5 ~k1s1 2 k2s2!/~k1 2 k2!,

we obtain for Eq. (5):

I$Ap% [ Iu$0%Iv$Ap%

5 E
f

D
2u expF i

2
~k1 2 k2!E

0

Z

dzu̇2GE
f

D
2v

3 expF E
0

Z

dzS 2

i

2

k1k2

k1 2 k2

v̇2
1

k1k2

4
ApuvupD G .

(6)

Therefore

Gp
N~R1 , R2 , R1

0, R2
0; k0 , D ! 5 expF2

D2
ZA~0 !

8
G Iv$Ap%

Iv$0%
,

(7)

where

Iv$Ap%

Iv$0%

5

E
f

D
2v expF E

0

Z

dzS 2

i

2

k1k2

k1 2 k2

v̇2
1

k1k2

4
ApuvupD G

E
f

D
2v expF E

0

Z

dzS 2

i

2

k1k2

k1 2 k2

v̇2D G
.

(8)

We introduce the difference and the average of the
wave numbers through

k0 5 ~k1 1 k2!/2,

D 5 k1 2 k2 .

We remark here that one can expand all paths subject
to the imposed boundary conditions as follows:

v~z ! 5

z

Z
~R1 2 R2! 1 S 1 2

z

Z
D ~R1

0
2 R2

0!

1 (
n51

`

an sinS np
z

Z
D . (9)

If the last term on the right-hand side of Eq. (9) is ne-
glected, the path integrals cancel out in the expression for
Gp

N :

Gp
N~R1 2 R2 , R1

0
2 R2

0; k0 , D !

5 expF2

D2
ZA~0 !

8
GexpFk1k2

4
Ap

3 E
0

Z

dzU z

Z
~R1 2 R2! 1 S 1 2

z

Z
D ~R1

0
2 R2

0!UpG .

(10)

Equation (10) leads to the extended HF principle for-
mulation for the two-frequency, two-position MCF.23 The
omission of all propagation path deviations from the

straight line, however, is a heuristic approximation that
cannot be justified under arbitrary conditions.26,27

3. EXACT SOLUTIONS FOR QUADRATIC
TURBULENCE

In this section we shall find exact analytical expressions
for plane-wave, spherical wave, and Gaussian beam two-
frequency MCFs in the case of the quadratic structure
function ( p 5 2).

We start by taking the path integral in the expression
for Iv$A2%. We note in passing that one way to find the
* fD

2v . . . path integral would be to use the expansion (9)
in it, leading to the replacement of * fD

2v by
Pn51

` *d2an .8,10 However, once we recognize that the
path integral in question is isomorphic to that of a two-
dimensional harmonic oscillator, we can write down the
expression for Iv$A2% at once using standard solutions
provided in Refs. 8 and 9:

Iv$A% 5 S ik1k2

2pDZ
D h

sin h
expH S 2

ik1k2

2DZ
D h

sin h

3 @~j 2
1 p2!cos h 2 2jp#J . (11)

Then the normalized quadratic MCF is

G2
N~p, j; k0 , D !

5 expF2

D2
ZA~0 !

8
G h

sin h
expF ik1k2

2DZ
~j 2 p!2G

3 expH S 2

ik1k2

2DZ
D h

sin h
@~j 2

1 p2!cos h 2 2jp#J .

(12)

We used the following notation in Eqs. (11) and (12):

R 5 ~R1 1 R2!/2, p 5 R1 2 R2 ,

R0
5 ~R1

0
1 R2

0!/2, j 5 R1
0

2 R2
0,

and h 5 Z @2(i/2)A2D#1/2.
With this result, we are in a position to compute spheri-

cal wave, plane-wave, and Gaussian beam quadratic
MCFs (the expressions for which were previously ob-
tained in Refs. 4, 5, 11, and 12). In particular, we imme-
diately obtain for two point sources located at R1

0 and R2
0

G2
sph~R, R0, p, j; k0 , D !

5 u f~R1 , R1
0, k1!u f*~R2 , R2

0, k2!

3 G2
N~R, R0, p, j; k0 , D !

5

k0
2

2 D2/4

~2pZ!2

h

sin h
expF2

D2
ZA~0 !

8
G

3 expF iD

2Z
~R 2 R0!2GexpF ik0

Z
~R 2 R0!~p 2 j!G

3 expF ik0
2

2DZ
~p 2 j!2GexpH 2

i

2

k0
2

2 D2/4

DZ

h

sin h

3 @~j 2
1 p2!cos h 2 2jp#J . (13)

2076 J. Opt. Soc. Am. A/Vol. 19, No. 10 /October 2002 Alexandre V. Morozov



Furthermore, we derive for a unit-amplitude plane wave

G2
pl~p; k0 , D ! 5 E d2R0E d2jG2

sph~R, R0, p, j; k0 , D !

5 expF2

D2
ZA~0 !

8
G 1

cos h

3 expF i

2

~k0
2

2 D2/4!h

DZ
tan h p2G . (14)

Note that there is no R dependence in the plane-wave
case.

Finally, for a Gaussian beam of unit amplitude at its
center we obtain

G2
Gaus~R, p; k0 , D !

5 E d2R0E d2j expF2S 1

W0
2

1 i
k1

2F0
D uR1

0u2G
3 expF2S 1

W0
2

2 i
k2

2F0
D uR2

0u2G
3 G2

sph~R, R0, p, j; k0 , D !, (15)

where W0 is the beam size at Z 5 0 and F0 is the phase-
front radius of curvature (both are assumed for simplicity
to be independent of the wave number).

Taking the initial source distribution integrals, we eas-
ily derive

where

1/F̃ 5 1/F0 2 1/Z,

a 5 2/W0
2

1 iD/2F̃,

b 5 2/W0
2

1 i~D/2F0 2 2k0
2/DZ!.

Some of the important simplified cases include a beam

focused at Z (1/F̃ 5 0) and a plane wave (1/F0 5 0,
1/W0

2
5 0). In the latter case, the general expression

(16) reduces to Eq. (14).

4. VARIATIONAL APPROACH TO PATH
INTEGRALS FOR GENERAL POWER-LAW
STRUCTURE FUNCTIONS

In this section we derive a generalized expression for the
normalized spherical wave MCF, applicable to the arbi-
trary power-law spectrum of refractive-index fluctuations.
We employ a path-integral variational approach origi-
nally developed in Ref. 8 for the problem of electrons in a
polar crystal.

We start by analytically continuing expressions for G2
N

and Gp
N according to the following rules:

z 5 iz̄,

Ap 5 2iĀp .

This implies that

h 5 iZ̄S 2

Ā2D

2
D 1/2

[ ih̄.

We observe that since the plane-wave coherence band-

width is given by k2,coh 5 28/(Ā2Z̄
2) in the Gaussian fluc-

tuations case,5,18 h̄ 5 2(D/k2,coh)1/2. This variable arises
naturally as a result of reducing the differential equation
for the two-frequency plane-wave MCF to its universal
form.5

Consequently, we obtain for Iv$Ap% (for simplicity, we
shall drop all overbars used in the analytical continuation
from now on)

Iv$Ap% 5 E
f

D
2v expS 2E

0

Z

dzLpD , (17)

where

Lp 5

k1k2

2~k1 2 k2!
v̇2

2

k1k2

4
Apuvu2. (18)

We can specify k1 . k2 here (or D . 0) without any loss
of generality.

G2
Gaus~R, p; k0 , D ! 5

k1k2

4Z
2

h

sin h
expF2

D2
ZA~0 !

8
G S ik1k2

2DZ
ah cot h 1

ab

4
1

k0
2

4F̃2D 21

3 expS iD

2Z
R

2D expS ik0

Z
R • pD expS ik0

2

2DZ
p2D expF ~DR 1 k0p!2

4aZ
2 GexpS 2

ik1k2

2DZ
h cot h p2D

3 exp5 2

Fk1k2

DZ

h

sin h
p 2

k0
2

DZ
p 2

k0

Z
R 1

ik0

2aF̃Z

~DR 1 k0p!G 2

S 2ik1k2

DZ
h cot h 1 b 1

k0
2

aF̃2D 6 , (16)
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where the ^. . .& symbol stands for a normalized expecta-
tion value with respect to L2 .

The variational principle states that

exp~J ! [ K expF2

k1k2

4
E

0

Z

dz~A2uvu2
2 Apuvup!G L

> expF K 2

k1k2

4
E

0

Z

dz~A2uvu2
2 Apuvup!L G .

(20)

This statement is akin to a simple one-dimensional in-
equality ^ex& > e ^x&.

Therefore we found an estimate for the power-law nor-
malized spherical wave MCF:

Gp
N > G2

N exp~J !. (21)

We find the best approximation to Gp
N by maximizing

the right-hand side of relation (21) with respect to the free
parameters of the Gaussian problem, which include the
strength of the quadratic turbulence and the width of the
dielectric permittivity fluctuation spectrum.

In what follows, we derive an analytical expression for
J using the Fourier expansion of the correlation function
A(r) in isotropic turbulence:

Aprp . ~2p !E d2kFp~k !@exp~ikr! 2 1#. (22)

After substituting Fourier expansion (22) into the ex-
pression for J, one obtains the following path integral in
its numerator:

Jnum [ S p

2
D k1k2E

f

D
2v expS 2E

0

Z

dzL2D E d2kC~k !

3 E
0

Z

dz8H expF ikE
0

Z

dzv~z !d ~z 2 z8!G 2 1J ,

(23)

where C(k) 5 Fp(k) 2 F2(k).
We note that the functional integral in Eq. (23) is iso-

morphic to that for the harmonic oscillator under the in-
fluence of the external force (minus the free quadratic La-
grangian for which the solution was obtained in the
previous sections). Taking this integral,8,9 we immedi-
ately see that

Jnum 5 S k1k2

2
D 2 h

DZ sinh h
expH 2

k1k2

2DZ

h

sinh h

3 @~j 2
1 p2!cosh h 2 2jp#J

3 E
0

Z

dz8E d2kC~k !@exp~ikr!exp~2k2L̂2! 2 1#,

(24)

where

r 5 Fp sinhS h
z8

Z
D 1 j sinhS h

Z 2 z8

Z
D GY sinh h,

L̂2
5 S DZ

4k1k2
D F cosh h

2 coshS h
Z 2 2z8

Z
D GY h sinh h.

Therefore

J 5

p

2
k1k2E

0

Z

dz8E d2kC~k !

3@exp~ikr!exp~2k2L̂2! 2 1#. (25)

We can see from Eq. (25) that L̂2 introduces an extra
length scale into the problem, along with the Gaussian
and the power-law (Kolmogorov) cutoffs. We will discuss
its physical significance in Section 5.

Relation (21) and Eq. (25) constitute the main result of
this section.

5. VARIATIONAL SOLUTIONS FOR
KOLMOGOROV TURBULENCE

A. Normalized Spherical Wave Mutual Coherence
Function
In this subsection we shall use C(k)—the difference in di-
electric permittivity fluctuation spectra between Kolmog-
orov ( p 5 5/3) and Gaussian ( p 5 2) turbulence—to find
J and eventually G5/3

N .
In the case of the Kolmogorov spectrum, F5/3

e (k) is
known to be6,28

F5/3
e ~k ! 5 0.033Ce

2k211/3 exp~2k2/km
2 !, (26)

Now consider

Gp
N

G2
N

5

E
f

D
2v expS 2E

0

Z

dzL2D expF2

k1k2

4
E

0

Z

dz~A2uvu2
2 Apuvup!G

F E
f

D
2v expS 2E

0

Z

dzL2D G
[ K expF2

k1k2

4
E

0

Z

dz~A2uvu2
2 Apuvup!G L , (19)
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where Ce
2 is the dielectric permittivity structure constant

and km 5 5.92/l0 . Equation (26) corresponds to A5/3

5 21.46Ce
2 (l0 ! r ! L0). Here l0 is the inner scale

size of turbulence, and L0 is the outer scale size of turbu-
lence. This approximation can be extended to all values
of r in the following range of propagation distances28:

10.26Ce
22k0

22L0
25/3

! Z ! 10.26Ce
22k0

22l0
25/3 .

In the case of the Gaussian spectrum,4

F2
e ~k ! 5

^e1
2&l3

8pAp
expS 2

1

4
k2l2D , (27)

where ^e1
2& is the variance and l is the characteristic scale

size of the Gaussian fluctuations. We can assume that

^e1
2& is related to the structure constant via28

^e1
2& 5

C̃Ce
2L0

2/3

Ap
.

The outer scale size of turbulence is introduced here to

make C̃ dimensionless in a way that formally resembles
the Kolmogorov dielectric permittivity variance; the
variational approach is independent of the actual value of
L0 unless it is introduced into the Kolmogorov spectrum.

Equation (27) corresponds to A2 5 2C̃Ce
2L0

2/3/l (r

! l). We will use C̃ and l as our variational parameters,
tuning them to maximize the right-hand side of relation
(21).

The difference of Eqs. (26) and (27) gives C(k), which
we now substitute into Eq. (25):

J 5 p2k1k2E
0

Z

dz8E
0

`

kdk@F5/3
e ~k ! 2 F2

e ~k !#

3 @exp~2k2L̂2!J0~kr ! 2 1#

[ p2k1k2Ce
2E

0

Z

dz8$@I5/3~L̂2, r ! 2 I5/3~0, 0 !#

2 @I2~L̂2, r ! 2 I2~0, 0 !#%, (28)

where

I5/3 5 0.033E
0

`

kdkk211/3 exp@2k2~1/km
2

1 L̂2!#J0~kr !,

I2 5

C̃L0
2/3l3

8p2 E
0

`

kdk exp@2k2~l2/4 1 L̂2!#J0~kr !.

J0(z) is the zeroth-order Bessel function.
Taking the integrals above, we obtain for Eq. (28)

J 5 p2k1k2Ce
2E

0

Z

dz8H 0.033G~25/6!

2

3 @ k̃m
25/3

1F1~25/6, 1; 2k̃m
2 r2/4! 2 km

25/3#

2

C̃L0
2/3l

4p2 F l2

l2
1 4L̂2 S 1 2

r2

l2
1 4L̂2D 2 1G J ,

(29)

where l0 ! r ! l, L0 and k̃m
2

5 km
2 /(1 1 L̂2km

2 ). Here
G(z) is the gamma function and 1F1(a, c; z) is the con-
fluent hypergeometric function of the first kind.

Finally, we are in a position to write down the normal-
ized spherical wave MCF for Kolmogorov turbulence:

Gp
N >

h

sinh h
exp~J !expF2

1

8
D2

ZA~0 !GexpFk1k2

2DZ
~j 2 p!2G

3 expH S 2

k1k2

2DZ
D h

sinh h
@~j 2

1 p2!cosh h 2 2jp#J ,

(30)

where the expression for J was obtained in Eq. (29). We
recall that28

A~0 ! 5 0.7816Ce
2L0

5/3 .

The right-hand side of relation (30) should be maxi-

mized with respect to C̃ and l to obtain the best approxi-
mation for Gp

N . However, inspection of Eq. (29) and rela-

tion (30) shows that they in fact depend only on C̃/l, once

l @ r, L̂ for all values of z8. We can then fix l at some

large constant value and vary only C̃ whenever numerical
maximization is called for below.

Finally, we obtain the D 5 0 limiting form of Gp
N and

show that it reduces to an exact expression in this case.
First, it is easy to show that

lim
D→0

G2
N

5 expS 1

4
k0

2 A2ZE
0

1

dtur8u2D
5 expF 1

12
k0

2 A2Z~j 2
1 p2

1 jp!G , (31)

where

r8 5 tp 1 ~1 2 t !j.

Second,

lim
D→0

J 5

p

2
k0

2
ZE

0

1

dtE d2kC~k !@exp~ikr8! 2 1#

5

1

4
k0

2
ZE

0

1

dt@A5/3ur8u5/3
2 A2ur8u2#. (32)

Combining Eqs. (31) and (32) gives us

G5/3
N

5 expS 1

4
k0

2A5/3ZE
0

1

dtur8u5/3D , (33)

which is a correct form of the MCF when D 5 0.24,28 One
can easily obtain, for example, a well-known expression
for the plane-wave MCF by performing straightforward
integrations over the initial source distribution:

G5/3
pl ~p! 5 G5/3

N ~p, p! 5 exp~
1
4 k0

2 A5/3Zupu5/3!. (34)

In the following subsections, we will find G5/3
N by carry-

ing out its maximization with respect to C̃ and l numeri-
cally; we will also reverse the analytical continuation
used in the formulation of the variational principle and
integrate when necessary over initial source distributions
to obtain spherical wave, plane-wave, and Gaussian beam
two-frequency MCFs in Kolmogorov turbulence.
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In the interests of clarity, we shall omit the
exp$2@D2

ZA(0)#/8% prefactor from all further results, un-
less explicitly indicated otherwise.

B. Spherical Wave Mutual Coherence Function
We start by exploring some special cases related to the
two-frequency MCF of two point sources located in the
z 5 0 plane. The spherical MCF will serve as a basis for
the other two, which can be derived by integrating over
initial point-source distributions.

We provide an illustration of the variational technique
by choosing both the source and the observation points to

be at the origin: R 5 0W , R0
5 0W , p 5 0W , and j 5 0W .

This will prove to be a simple example to consider; the
method, however, is in no way limited to this special case.

We obtain, after analytical continuation back into com-
plex space,

G5/3
sph~0W ; k0 , D !

5

k1k2

~2pZ!2

h

sin h
expXk1k2Ce

2E
0

Z

dz8H C̃L0
2/3l

L̂2

l2
1 4L̂2

2 0.11p2km
25/3@~1 1 L̂2km

2 !5/6
2 1#J C, (35)

where

L̂2
5

i

4

DZ

k1k2

cos h 2 cosS h
Z 2 2z8

Z
D

h sin h
.

Comparison of G5/3
N (C̃ 5 0) with G5/3

N (C̃ 5 C̃max) for a
wide range of input parameters leads us to believe that
the former is sufficient when only qualitative estimates
are required; Eq. (35) then simplifies further to become

G5/3,0
sph ~0W ; k0 ,D !

5

k1k2

~2pZ!2
expH 20.11p2k1k2Ce

2

3 E
0

Z

dz8km
25/3@~1 1 L̂2km

2 !5/6
2 1#J , (36)

where

L̂2~t ! 5 2

iDZ

2k1k2

t~1 2 t !.

We see that when Re,Im(L̂2km
2 ) @ 1 for any t (regions for

which Re,Im(L̂2km
2 ) ! 1 do not contribute to the integral),

we obtain qualitatively

G5/3,0
sph ; exp@2~D/k5/3,coh!5/6#, (37)

where k5/3,coh 5 6.703Ce
212/5

Z
211/5k0

22/5 is the plane-wave
coherence bandwidth wave number.18,22,28

In Fig. 1 we plot the magnitude and phase of

G5/3
sph(0W ; k0 , D)/G5/3

sph(0W ; k0 , D 5 0) as a function of the dif-
ference wave number normalized by the coherence
bandwidth18,28:

Dn [ ~D/k5/3,coh!5/11.

We show the results given by Eq. (35), its approxima-

tion [Eq. (36)] with C̃ 5 0, and the extended HF
principle.23 The full variational result corresponds to the
point-source two-frequency Kolmogorov MCF obtained
earlier in Ref. 20 via modal expansion techniques,
whereas an approximate expression [Eq. (36)] provides a
qualitatively useful estimate superior to the HF expres-
sion derived in Ref. 23, which fails to capture any varia-
tion in this limit.

At this point, we elucidate further the physical mean-

ing of L̂(z8), first introduced in Eq. (24). Consider an av-

erage value of L̂2 over the propagation path:

^L̂2& [ E
0

1

dtL̂2~t ! 5

i

4

DZ

k1k2

h cos h 2 sin h

h2 sin h
. (38)

We expect h to be of O(1) in most cases, and thus essen-
tially

^L̂2& ;
DZ

k1k2

;
D

k0

Zl0 ,

where k0 is the central wave number and l0 5 2p/k0 is
the central wavelength. We recognize AZl0 as the mea-
sure of the extent of diffractional spreading at the screen
located at Z; it is well known6 that AZl0 ! l0 has to hold

for geometrical optics to be valid; this leads to ^L̂2&km
2

! 1 (since D/k0 < 1). Consequently, Eq. (29) simplifies
significantly because k̃m

2
→ km

2 in this case.
However, in many problems of practical interest dif-

fractional effects are important, which means that unless

D/k0 is extremely small, k̃m
2

→ L̂22. Thus in a number of
cases the following hierarchy of relevant scales emerges:

l0 ! Re,Im^L̂& ! upu, uju ! l,L0 . (39)

Fig. 1. l0 5 0.6943 mm, Z 5 10 km, and Ce
2

5 4.856
3 10214 m22/3. Absolute magnitude and phase of G5/3

sph(R 5 R0

5 p 5 j 5 0; k0 , D ) / G 5/3
sph ( R 5 R0

5 p 5 j 5 0; k0 , D 5 0 )

versus Dn . Solid curves, C̃ 5 C̃max ; dashed curves, C̃ 5 0;
dashed–dotted curves, HF approximation.
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The middle inequality allows us to replace 1F1 in Eq.
(29) by its asymptotic expansion, valid for uzu @ 129:

1F1~25/6, 1;z ! .
~2z !5/6

G~11/6!
1

exp~z !z211/6

G~25/6!
. (40)

Moreover, we can omit the second term on the right-
hand side of expression (40) by the following argument:

When C̃ 5 0, 2p < 2k̃m
2 r2/4 < 2p/2, and the exponen-

tial term is negligible. We can imagine increasing C̃

from 0 to C̃max in some smooth way; the phase of the 1F1

argument may then cross the negative imaginary axis,
making the real part of the argument positive. This will
happen first in the vicinity of t 5 1/2 (the middle of the
propagation path). However, even in this case the rapid
oscillations produced by the exponential term in expres-
sion (40) will average out to zero in the process of integra-
tion over t. This argument breaks down if the phase

crosses the positive real axis as C̃ increases; however, this
would lead to huge nonphysical contributions to the inte-
gral and is consequently never chosen by the variational
procedure.

Keeping the above argument in mind and utilizing in-
equalities (39), we can considerably simplify Eq. (29) for
J:

J 5 20.365k1k2Ce
2
ZE

0

1

dturu5/3

1

k1k2Ce
2C̃L0

2/3
Z

4l
E

0

1

dturu2, (41)

where r is the complex version of the definition intro-
duced below Eq. (24).

We see that in this case, the C̃ 5 0 limit correctly re-
produces the HF expression23

J 5 20.365k1k2Ce
2
ZE

0

1

dtur8u5/3, (42)

whereas Eq. (41) provides a systematic improvement over
the HF limit.

C. Plane-Wave Mutual Coherence Function
After integrating over the uniform initial source distribu-
tion, we obtain the following result for a unit-amplitude
plane-wave two-frequency MCF:

G5/3
pl ~p; k0 , D ! 5

ik1k2

2pZD
E d2jG5/3

N ~p, j; k0 , D !

3 expF2

ik1k2

2DZ
~p 2 j!2G . (43)

For computational efficiency, we use a simplified Eq.
(41) to compute G5/3

N with arbitrary p, j. As the results
below clearly indicate, this simplification does not intro-
duce a significant error, except in the asymptotic regime.

In Fig. 2 we show the magnitude and phase of
G5/3

pl (p; k0 , D) as a function of Dn . To enable direct com-
parison with previous results,3,18,22,28 we define

jn [ ~2k0
4 A5/3/2D !3/11upu

and plot G5/3
pl with jn 5 0, 1, 2. We also plot jn 5 0 from

Ref. 28 for comparison. As we can see, the agreement is
quite good everywhere except in the asymptotic regime, in
which it can be improved by use of the lowest-order-mode
results from Ref. 22 or by use of the full Eq. (29) for J in-
stead of the simplified one [Eq. (41)] in the integrand of
Eq. (43).

D. Gaussian Beam Mutual Coherence Function
Computations for G5/3

Gaus are no more difficult than those
for G5/3

pl within the current framework; in fact, we expect
the two-dimensional initial source distribution integral to
converge better than that for the plane-wave case. We
obtain the following expression for the Gaussian beam
two-frequency MCF:

G5/3
Gaus~R, p; k0 , D !

5

k1k2

4paZ
2

expS iD

2Z
R2D E d2jG5/3

N ~p, j; k0 , D !

3 expS 2

g

4
j 2D expF iD

8Z
~p 2 j!2G

3 expF ik0

Z
R~p 2 j!G

3 expF2

1

4a S D

Z
R 1

k0

F̃
j 1

k0

Z
pD 2G , (44)

where a and F̃ were defined after Eq. (16) and
g 5 2/W0

2
1 iD/2F0 . The simplified Eq. (41) was used

again for computations in this section.
In Fig. 3 we show the magnitude and phase of

G5/3
Gaus(R, p; k0 , D)/G5/3

Gaus(R, p; k0 , D 5 0) as a function
of Dn for a number of different input parameters. We
choose l0 5 0.6943 mm, Z 5 10 km, and Ce

2
5 4.856

3 10214 m22/3 for all numerical examples to follow.

Fig. 2. Absolute magnitude and phase of G5/3
pl ( p; k0 , D) versus

Dn . Solid curves, jn 5 0; dashed curves, jn 5 1; dashed–
dotted curves, jn 5 2; long-dashed–dotted curves, a jn 5 0 nu-
merical solution from Ref. 28.
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Figure 3(a) shows the results for a collimated beam
with uRu 5 upu 5 0 and different aperture sizes W0. We
find that, unlike the Gaussian turbulence case,4 the W0

5 1-m curve is still substantially different from the
plane-wave curve, especially in absolute magnitude; how-
ever, the W0 5 10-m curve virtually coincides with it. In
our calculations, the bandwidth is maximum when W0

5 4 cm; its value is substantially higher than that for a
point source.

In Fig. 3(b) we plot off-axis (uRu 5 15 cm) and on-axis
(uRu 5 0 cm) curves for W0 5 10 cm and W0 5 25 cm.
We observe that the bandwidth decreases as we move
away from the beam axis. This effect is less pronounced
for W0 5 25 cm, since results for collimated beams
should approach those for a plane wave with increasing
aperture sizes.

Finally, the focused beam case is illustrated in Fig. 3(c).
The uRu 5 upu 5 0 absolute magnitude curve, and both
phase curves are the same for W0 5 10 cm and W0

5 25 cm. This also holds in the Gaussian turbulence
case.4 We can explain this effect by applying Eq. (44) to
the focused beam:

G5/3
Gaus,f~R, p; k0 , D !

5

k1k2W0
2

8pZ
2

expF iD

2Z
S R2

1

p2

4
D G

3 expF2

W0
2

8Z
2

~DR 1 k0p!2GE d2jG5/3
N ~p, j; k0 , D !

3 expS 2

j 2

2W0
2D expS 2

iD

4Z
jpD expF ik0

Z
R~p 2 j!G .

(45)

In most practical situations, W0 @ lcor , where lcor is the
correlation length associated with G5/3

N . But then the in-
tegral in the expression above is virtually independent of
W0 . The only W0 dependence left is in the second expo-
nent on the right-hand side of Eq. (45). This exponent
does not affect the phase and goes to 0 when uRu 5 upu
5 0.

Fig. 3. l0 5 0.6943 mm, Z 5 10 km, and Ce
2

5 4.856
3 10214 m22/3. (a) Absolute magnitude and phase of G5/3

Gaus(R
5 p 5 0; k0 , D)/G5/3

Gaus(R 5 p 5 0; k0 , D 5 0) versus Dn for a
collimated beam. Solid curves, W0 5 4 cm; dashed curves, W0

5 10 cm; dashed–dotted curves, W0 5 25 cm; long-dashed
curves, W0 5 1 m; long-dashed–dotted curves, W0 > 10 m. (b)
Absolute magnitude and phase of G5/3

Gaus(R, p

5 0; k0 , D)/G5/3
Gaus(R, p 5 0; k0 , D 5 0) versus Dn for a colli-

mated beam. W0 5 10 cm: solid curves, R 5 0 cm, dashed
curves, R 5 15 cm. W0 5 25 cm: dashed–dotted curves,
R 5 0 cm; long-dashed–dotted curves, R 5 15 cm. (c) Absolute
magnitude and phase of G5/3

Gaus(R, p 5 0; k0 , D)/G5/3
Gaus(R, p

5 0; k0 , D 5 0) versus Dn for a beam focused at Z. Solid
curves, W0 5 10 and 25 cm and R 5 0 cm. Dashed phase curve,
W0 5 10 and 25 cm and R 5 15 cm. Dashed absolute magnitude
curve, W0 5 10 cm and R 5 15 cm. Long-dashed–dotted abso-
lute magnitude curve, W0 5 25 cm and R 5 15 cm.
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6. CONCLUSIONS

In this paper we have used a path-integral variational
technique to find the two-frequency mutual coherence
function with nonquadratic turbulence structure func-
tions. The method we developed is quite general with re-
spect to the initial source distribution and the spectrum of
refractive-index fluctuations. In particular, it may form
a basis for the systematic study of the effects that inner
and outer scale sizes and more realistic atmospheric tur-
bulence models30 have on pulse propagation in the atmo-
sphere.

We would like to emphasize as well that the variational
method presented in this paper is essentially analytical;
even though one-dimensional numerical maximization

was carried out to find C̃max , analytical approximations

can be used as a rough guess of its value; even setting C̃

5 0 produces results overall superior to the extended
Huygens–Fresnel expression. However, in general, we
still have to integrate numerically over the initial source
distribution (this is true as well for the extended HF and
other approximate expressions).

In this paper the variational method was applied to
finding spherical wave, plane-wave, and Gaussian beam
MCFs in Kolmogorov turbulence. Results obtained in
such a way agree quite well with those previously pub-
lished by other authors for plane and spherical waves.
Moreover, the nature of the method allows us to extend it
relatively easily to the Gaussian beam propagation prob-
lem. In this way, we obtain a number of results not pre-
viously available in the literature, with two observation
points at arbitrary off-axis locations, separated by arbi-
trary distances (within the range of applicability of the
Kolmogorov turbulence model).
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