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Abstract

HIV protease, an aspartyl protease crucial to the life cycle of HIV, is the target of many drug development programs. Though
many protease inhibitors are on the market, protease eventually evades these drugs by mutating at a rapid pace and
building drug resistance. The drug resistance mutations, called primary mutations, are often destabilizing to the enzyme
and this loss of stability has to be compensated for. Using a coarse-grained biophysical energy model together with
statistical inference methods, we observe that accessory mutations of charged residues increase protein stability, playing a
key role in compensating for destabilizing primary drug resistance mutations. Increased stability is intimately related to
correlations between electrostatic mutations – uncorrelated mutations would strongly destabilize the enzyme. Additionally,
statistical modeling indicates that the network of correlated electrostatic mutations has a simple topology and has evolved
to minimize frustrated interactions. The model’s statistical coupling parameters reflect this lack of frustration and strongly
distinguish like-charge electrostatic interactions from unlike-charge interactions for &90% of the most significantly
correlated double mutants. Finally, we demonstrate that our model has considerable predictive power and can be used to
predict complex mutation patterns, that have not yet been observed due to finite sample size effects, and which are likely
to exist within the larger patient population whose virus has not yet been sequenced.
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Introduction

Proteins evolve through random mutagenesis and their evolu-

tionary selection is constrained by structural, functional and

environmental factors [1]. Thermodynamic stability is by far the

most important structural factor, as most proteins need to be

folded in order to function. The stability range for each protein,

however, is narrow and is estimated experimentally to be around

10 kcal/mol, which is of the order of three hydrogen bonds [2]. As

a result of this marginal stability, proteins operate ‘‘on a knife’s

edge’’ [3], whereby a single highly deleterious mutation could

potentially lead to decreased stability and loss of activity [4]. By the

same token, a single stabilizing mutation could be advantageous

from an evolutionary point of view. For example, more stable

forms of cytochrome P450 allowed for greater exploration of

mutational space in directed evolution experiments than sequences

without stabilizing mutations [5]. This increased ‘‘evolvability’’ is

not just limited to directed evolution experiments, but may be a

general property of proteins evolving under selective pressure [6].

In fact, recent experimental work on HIV protease has shown that

accessory mutations compensate for the loss of stability due to

destabilizing primary drug resistance mutations, helping the virus

evade drugs [7]. This stabilizing effect can have an external source

as well: Hsp90, a molecular chaperone, buffers deleterious

mutations, allowing for polymorphisms to appear and new traits

to evolve [8]. As a result of this work and prior research by other

groups, it is now widely recognized that thermodynamic stability is

intimately linked with the evolvability of a protein [9–11].

Even though the process of mutagenesis is random, the genetic

and structural constraints mentioned above, coupled with func-

tional selection, ensure that certain mutations in evolving proteins

are associated with each other in a highly non-random fashion

[12]. These correlated mutations are an inherent property of

evolving amino acid sequences, and an evolutionary signature of

viable proteins. A multitude of methods have been developed to

identify such pairs and groups of mutations [13], some of which

have been applied to HIV protease sequences to locate pairs or

groups of coevolving residues [14–16]. Our previous work on

higher-order correlations showed that for HIV-1 protease,

including at least pair correlations is essential for reproducing

statistical patterns of primary and accessory mutations observed in

protease sequences from patients undergoing anti-retroviral

therapy [17].

It is tempting to attribute sequence correlations to effects arising

from protein stability constraints [18], and several groups have

tried to connect sequence correlations with protein energetics on a

detailed atomic level. For example, Zhang et al. applied Bayesian

networks to infer therapeutically relevant and conditionally

dependent sets of resistance mutations in HIV protease and

reverse transcriptase and then used molecular simulations to
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model the specific interactions that cause resistance [19].

Ranganathan et al. have attempted to explain mutational

coevolution by connecting statistical free energies from multiple

sequence alignments to differences in experimental folding free

energies [20]. Some of these results have been difficult to replicate

[21], and are still a topic of active debate in the community

[22,23]. Thus while studies that link mutational correlations to

thermodynamic constraints have made great progress [12,19,24–

26], a consensus linking protein energetics and mutational

correlation patterns has not yet emerged. These observations

have motivated us to explore how correlated mutations in HIV

protease are connected to energetics via their impact on protein

stability.

Since current methods for predicting stability changes upon

mutation based on detailed atomic models are not sufficiently

accurate [27], we have chosen to focus instead on the electrostatic

part of the total energy for which a coarse-grained model of

electrostatics is appropriate. We find that this model captures

many important effects of mutations on energetics and stability of

HIV protease. We show that the average electrostatic stabilization

of HIV protease increases with the number of electrostatic

mutations (an electrostatic mutation changes the charge of that

mutating residue relative to the wild-type residue), consistent with

the hypothesis that accessory electrostatic mutations buffer the

destabilizing effects of primary drug-resistance mutations, most of

which are non-electrostatic mutations and are therefore not

modelled here. We demonstrate that correlations among electro-

static mutations are critical for stabilization; uncorrelated muta-

tions would strongly destabilize the protein. We show that our

method, which employs both electrostatic calculations and

sequence analysis based on statistical inference techniques, can

be used as a predictive tool for novel mutational patterns that have

not yet been observed. Finally, we comment on the structure of the

electrostatic mutation network of HIV protease. Energy landscape

theory, which provided the framework for understanding protein

folding through funnels, introduced the concept of a smooth,

minimally frustrated landscape for foldable, natural proteins

[28,29]. Our results indicate that the electrostatic interaction

network is minimally frustrated as is evident in the derived

statistical coupling parameters which strongly predict the under-

lying charge patterns, providing additional evidence that proteins

have evolved to minimize frustrated interactions.

Results

Effect of electrostatic mutations on protein stability
Our analysis of electrostatic mutation patterns is based on the

alignment of *45,000 HIV protease sequences from Christopher

Lee’s HIV Positive Selection Mutation Database (http://bioinfo.

mbi.ucla.edu/HIV) [30]. Each amino acid sequence in the Lee

database is converted into a charge signature, which is a three

letter alphabet representation of that sequence (+, 2, n)

corresponding to positively-charged, negatively-charged, and

neutral residues. These charge signatures are compared to the

wild-type charge signature to determine electrostatic mutations.

We examined all primary, accessory and polymorphic drug

resistance mutation positions (as designated by the Stanford HIV

database [31]) and limited our analysis to a subset of 18 positions

whose charged state mutates above a threshold frequency of

0.01%. Our model therefore includes more than 380 million states

or unique charge signatures involving these 18 positions (Figure 1).

Of the 18, 9 are sites which have been characterized as primary or

accessory drug resistance mutations while the rest are sites labeled

as polymorphic mutations. Mutations are labelled ‘‘polymorphic’’

if they are observed to mutate in the absence of drugs and whose

compensatory effect has not yet been experimentally verified, even

though drugs may have a significant affect on their correlations

with other mutating residues [31].

If we divide this database of charge signatures into subsets with

1, 2, 3… electrostatic mutations and calculate the electrostatic

contribution to the average folding free energy DGe, for each

subset, we find that on average the stability of the folded state

increases by &5 kcal/mol from 1 to 3 mutations and maintains

this level of stabilization beyond 3 mutations (Figure 2, black

curve). Since selective pressure in the presence of inhibitors often

leads to destabilizing primary drug resistance mutations [32,33],

the observed increase in electrostatic stability is due to energetic

compensation: destabilizing mutations occur due to selective

pressure and electrostatically active residues provide a ‘‘reservoir

of stability’’.

The observed stabilization requires not only the correct

frequencies of occurrence of each of the three possible charge

states at each position, but also the presence of correlations.

Generating random sequences with equal mutation frequencies for

the three charge states results in a substantial destabilization of the

protein (Figure 2, red curve). Introducing observed frequencies of

occurrence of each charge at every position improves the

stabilization relative to the previous model with equal mutation

frequencies, but still results in substantial destabilization (Figure 2,

blue curve). We refer to this latter model as the independent model

as it generates an alignment in which mutations at each position

occur independently with correct frequencies.

If pair correlations are introduced by preserving the observed

joint mutation frequencies (see Methods), substantial protein

stabilization occurs, and the energies predicted by this pair

correlation model (Figure 2, green curve) become comparable to

the energies of the observed sequences. The magnitude of the

difference between the observed and pair correlation model

average energies is less than 2 kcal/mol for sequences with ƒ5
mutations, suggesting that introducing pair correlations is suffi-

cient for explaining the observed energetic stabilization trends.

Overall, the difference between the independent model and the

pair correlation model is statistically significant given a sample size

corresponding to the numbers of sequences observed in the

database with those number of mutations (e.g. pv10{4 for

sequences with 4 or fewer mutations).

Author Summary

HIV is incurable because its enzymes evolve rapidly by
developing resistance mutations to retroviral inhibitors.
Most of these mutations work synergistically, but the
biophysical basis behind their cooperation is not well
understood. Our work addresses these important issues by
bridging the gap between the statistical modeling of HIV
protease subtype B sequences with the energetics of
mutations involving charged amino acids by showing that
electrostatic stability is intimately related to correlations.
Moreover, we demonstrate that our statistical model has
considerable predictive power and can be used to predict
complex mutation patterns that have not yet been
observed due to the finite sizes of the current sequence
databases. In other words, as the database size increases,
our model has the ability to predict the identities of the
high probability mutations patterns, which are more likely
to be observed. Knowing which currently unobserved
mutations are more likely to be observed can be very
advantageous in combating the disease.

Correlated Electrostatic Mutations in HIV Protease
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Contribution of specific sequences to the average
protein stability and significant drug associations

We find that the observed electrostatic stabilization can be

attributed to a relatively small number of low-energy signatures

which are highly unlikely under the independent model but

become very probable once pair correlations are introduced

(Figure S1). For example, the well-studied pair of primary drug

resistance mutations, D30N-N88D [15,32], which occurs 2220

times in the Lee database, contributes &64% to the &5 kcal/mol

stabilization of the pair correlation model relative to the

independent model shown in Figure 2. Together, these top 10

double mutants account for &83% of the stabilization of the pair

correlation model relative to the independent model. Table S3 lists

the most statistically deviated pairs and Figure S7 depicts the

distance between the pairs on the structure of HIV protease. It is

interesting to note that 4 out of the top 10 most correlated pairs

are greater than 10 Angstroms apart.

With increasing numbers of mutations however, the stabiliza-

tion spreads among multiple patterns (Figure S1). For 3

electrostatic mutations, the top contributor D30N-N37D-N88D

is responsible for 20%, while the top 10 signatures account for

64% of the &8 kcal/mol stabilization of the pair correlation

model relative to the independent model. For 4 mutations, K20I-

D30N-N37D-N88D accounts for 10%, while the top 10 signatures

account for 33% of the stabilization. For 5 mutations, K20I-

D30N-E35Q-N37D-N88D accounts for 17% and the top 10

signatures account for 36% of the stabilization.

These stabilizing charge patterns are also strongly associated

with protease inhibitor therapies, as determined by our drug

association analysis (see Text S1). Most protease drug association

studies focus on point mutations or pairs of mutations [30,34]. Our

drug association analysis allows us to examine the significance of

drug association for patterns of more than two mutations. Table

S1 lists the most significant associations between drugs and charge

patterns of 2, 3 and 4 electrostatic mutations with the highest

probabilities as predicted by the pair correlation model. Most of

the patterns listed are strongly associated with at least one drug

and several are associated with many drugs. For example the

D30N-N88D double mutant and the D30N-N37D-N88D triple

mutant are both strongly associated with Nelfinavir monotherapy

and Indinavir-Nelfinavir combination therapy with pv10{7. We

also find strong association between drugs and patterns predicted

by the pair correlation model with more than three mutations. For

example K20I-D30N-N37D-N88D and K20I-D30N-E35Q-

N88D are both associated with Indinavir-Nelfinavir combination

therapy while K20I-D30N-H69Q-N88D is associated with

Ritonavir-Nelfinavir therapy with pv10{7.

Predicting novel mutational patterns
The ability to predict drug resistant mutation patterns is of great

therapeutic relevance. Approaches to predicting drug resistance

mutations based on biophysical modeling have recently been

proposed [35,36]. In contrast, our statistical-inference based

approach which includes pair correlations among mutations,

allows us to predict the probabilities of arbitrary charge signatures,

many of which have not yet been experimentally observed. Figure

S2 shows that most of the sequences with less than 5 mutations,

whose probabilities are significantly enhanced by pair correlations,

are observed in the Lee database, indicating that these mutational

patterns are routinely utilized by the virus. However, for 6

mutations the most stabilizing pattern, K20I-D30N-E35Q-N37D-

Q58E-N88D, was not observed (Figure S1). The probability of this

pattern under the pair correlation model is 1:2|10{5, too small

to appear frequently in a database of *45,000 sequences due to

finite sample size effects. However, if the size of the database were

to increase five-fold, the probability of observing at least one copy

of this pattern would be w0:90.

The proportion of sequences not observed in the Lee database

with significantly enhanced pair correlation model probabilities

increases greatly with the number of mutations, of which it is likely

that many are not observed because of finite sample size effects

(Figure S2). In order to test our ability to predict novel patterns of

favorable electrostatic mutations unobserved in the Lee database

due to finite sample size effects, we examined the contents of a

Figure 1. Structure of HIV protease subtype B. The backbone structure of HIV protease subtype B (PDB ID: 1NH0) is depicted in ribbon format.
The 18 electrostatically active residues are highlighted. Residue positions which have a predominantly negatively charged non-neutral residue in the
sequence database are depicted in red. Residues which have a predominantly positively charged non-neutral residue in the database are depicted in
blue.
doi:10.1371/journal.pcbi.1002675.g001

Correlated Electrostatic Mutations in HIV Protease

PLOS Computational Biology | www.ploscompbiol.org 3 September 2012 | Volume 8 | Issue 9 | e1002675



separate database, the drug-annotated Stanford database which

contains HIV protease subtype B sequences from various sources

[31]. Figure 3 plots the probabilities of sequences using the pair

correlation model, P2, as a function of the observed probabilities

in the Lee database. Sequences are also shaded according to a

gradient that represents how often the sequence occurs in the

Stanford database, relative to the Lee database. The plot shows

that sequences with the highest predicted P2 probabilities that are

unobserved in the Lee database are largely shaded red, indicating

that most are observed in the Stanford database. In fact, of the top

25 most probable sequences predicted by the pair correlation

model that are not found in the Lee database, 19 are present in the

Stanford database (Table S2). Most of these sequences are also

significantly associated with drug therapies (e.g. pv0:05). As the

predicted P2 probability decreases, the shading of the dots

gradually changes to green, indicating that sequences with the

lowest predicted P2 probabilities are unobserved in both the Lee

and the Stanford database. Thus our approach exhibits consid-

erable predictive power. If we examine other sequences in the tail

of the Lee probability distribution that are observed once, twice,

three times etc in the Lee database, we notice a similar trend;

sequences with higher predicted P2 probabilities are present in the

Stanford database at much higher frequencies than sequences with

lower predicted P2 probabilities, even though the pair correlation

model was parameterized on the Lee database. This result strongly

suggests that the pair correlation model is a much better predictor

of actual sequence probabilities than using the sequence counts

from the databases themselves, because of finite sample size effects.

In other words, the tail of the distribution is very well represented

by the pair correlation model.

Structure of the electrostatic mutation network
Determining the statistical field and coupling parameters

(written as li and lij for simplicity) that best fit the pair correlation

model given a set of observed univariate and bivariate marginals

(Pobs
i and Pobs

ij ), is known in the literature as the inverse Ising

problem. As described in the Methods, we iteratively determine

these parameters using a graph-theoretic inference algorithm,

called belief propagation (BP) [37–39], a method which has

recently been applied by other research groups to study protein

conformational entropy and protein-protein interactions [40,41].

Within the BP framework, we apply a mean field model which

Figure 2. Average electrostatic free energy of folding as a function of the number of electrostatic mutations. Each point on a curve
corresponds to

PNm

n~1 PnDGn
e , where Nm is the number of sequences with m electrostatic mutations, Pn is the probability of the nth sequence under a

given model conditional upon the number of mutations, and DGn
e is its electrostatic folding energy (Equation (1); see Methods). All points are plotted

relative to
PN1

n Pn
obsDGn

e , the average DGe of observed sequences with one electrostatic mutation. The black curve shows the average energies of
observed sequences (Pn

obs~1=Nm), the red curve represents the average energies of sequences under a model in which each charge state occurs
with equal frequency, the blue curve shows the average energies of sequences under a model in which each charge state occurs with frequencies
observed in the data, and the green curve represents the average energy of sequences under a pair correlation model which preserves observed pair
frequencies. The error bars on the black curve are the standard errors of the mean of observed sequences. Note that
Nm~f13470,4798,1515,337,50,11g for m~1 . . . 6.
doi:10.1371/journal.pcbi.1002675.g002

Correlated Electrostatic Mutations in HIV Protease
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includes pair correlations in the Bethe approximation to estimate

the bivariate marginals, Pbethe
ij (Ai,Aj) [38,42,43]. In the statistical

physics community ‘‘mean field’’ in often used to refer to a class of

approximations whereby the free energy of the system is written in

terms of the marginals up to a given order, the corresponding

mean field model at the pair correlation level is the Bethe

approximation. However, it is well known that while Pbethe
ij is exact

and converges to Pobs
ij on acyclic networks, Pbethe

ij only approxi-

mates Pobs
ij and can become unstable on cyclic networks [44]. For

the electrostatic correlation network of HIV protease, we observe

that the belief propagation algorithm converges quickly to the

observed bivariate marginals (Figure S3). The convergence

towards the observed probabilities for triplets and larger multiplets

is also well approximated, a result that is non-trivial since the

Bethe approximation is a pair-level approximation and does not

guarantee the convergence for marginals beyond pairs [45]. For

trivariate marginals, the correlation coefficient between Pbethe
ijk and

Pobs
ijk is 0.98 while for four mutations, the correlation coefficient

between Pbethe
ijkl and Pobs

ijkl is 0.90 (Figure S3). This close correlation

between observed and predicted marginals argues for a simple

network structure and suggests that for this system, the Bethe

approximation is a good approximation and by implication the

electrostatic mutation network is minimally frustrated.

Another strong indicator of the lack of frustration in the

electrostatic mutation network of HIV protease is that the

statistical coupling parameters of the (Bethe) mean field model

are able to distinguish like-charge patterns from unlike-charge

patterns with high accuracy (Figure 4). We find that the sign of lij ,

a quantity derived from the sequence analysis alone, is able to

correctly predict the charge patterns for &90% of the top 35 most

Figure 3. Comparison of the sequence probabilities in the tail of the Lee database and the pair correlation model with the sequence
probabilities in the Stanford database. The probabilities of sequences under the pair correlation model, P2 , predicted using the Bethe
approximation, are plotted as a function of the sequence probabilities from the Lee database, PLEE . Sequences with a probability of 0 in the Lee
database, i.e. unobserved sequences, are plotted to the left of the abscissa break. Every sequence is shaded using a color gradient corresponding to
PST=PLEE , which represents the number of times the sequence occurs in the Stanford database, relative to its probability in the Lee database.
Sequences that occur frequently in the Stanford database as compared to the Lee database have a higher ratio and are shaded red, while the
sequences that do not occur as frequently in the Stanford database as compared to the Lee database have a lower ratio and are shaded blue.
Sequences that are shaded green have equal probabilities in both databases. Sequences unobserved in the Lee database (leftmost row in the graph),
but observed in the Stanford database have a ratio that is artificially set to equal 4, which corresponds to the color red. Unobserved Lee sequences
that are also unobserved in the Stanford database are shaded green because PST ~PLEE~0. Sequences with probabilities v10{4 are shaded
according to the average value of PST=PLEE for a window of 10 sequences around the sequence of interest. Sequences with probabilities v10{7 or
w10{3 are not shown. The indices (0), (1), (2), etc mark the locations of sequences observed zero, once, twice (etc) in the Lee database. Each dot
corresponds to a unique sequence.
doi:10.1371/journal.pcbi.1002675.g003

Correlated Electrostatic Mutations in HIV Protease
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significantly correlated charge pairs (pv10{4.), reflecting the

evolutionary optimization of the protein electrostatic interaction

network (Figure 4). Moreover, Figure 4 also indicates that the

magnitude of lij correlates with the spatial distance between

residues. Of the top ten pairs of residues with the largest statistical

coupling parameters, nine are situated close to one another

(v10 Å) in the folded structure of the HIV protease homodimer.

In this context, we note that Morcos et al. [46] used a similar

approach to infer spatial contacts between residues of many

proteins, through an analysis of the coupling parameters of a

corresponding mean field model.

Discussion

Our results suggest that electrostatic interactions play an

important role in the coevolution of mutations in HIV protease.

The extent to which electrostatics influences protein stability has

been the subject of debate in the literature [47–53]. One

experimental study of protease has minimized the role of

electrostatics in favor of the impact of compensatory mutations

on protein flexibility [54]. Others have suggested that buried

charges play a more important role in protein function than

stability [55,56]. We recognize that electrostatics is only part of the

total energy, and that contributions to stability from van der Waals

interactions, hydrogen bonding and hydrophobic effects are

significant. Nonetheless, long-range electrostatics is likely to have

a substantial effect on protein stability [50,52,57–59].

Our results support the proposal that the presence of

correlations among electrostatic mutations arises from the contra-

ints imposed by the need to maintain the stability of the folded

protein. HIV protease is under strong selection pressure from

drugs. As a result of the initial build up of drug resistance, protease

becomes less stable [32]. We hypothesize that electrostatic

mutations not only bring the protein back to a more viable state,

but may give the protein more ‘‘breathing room’’ on the

evolutionary fitness landscape. Manipulating the charge distribu-

Figure 4. Distance between like and unlike-charge pairs as a function of the statistical coupling parameter, lij . The statistical coupling
parameter lij is a fitting parameter that describes the statistical interaction energy between pairs of states. Since the Bethe mean field pair correlation
model is a good approximation for this data, a negative lij indicates that a pair of states is enhanced (positively correlated), while a positive lij

indicates that a pair of states is suppressed (negatively correlated). Using simple electrostatics, we observe that like-charge patterns (blue) are mostly
suppressed while unlike-charge patterns (red) are enhanced. The sign of lij is able to correctly predict the charge patterns for &90% of the top 35

most significantly correlated charge pairs out of a total of 135 pairs. The p-value for the statistical significance of this result is &10{5 . The reason
there are 135 pairs is as follows: For each pair of residues, there are 4 possible sets of like and unlike charge combinations, resulting in a total of 612
like/unlike charge pair combinations. However, not all pairs exist in the database or are significantly correlated. Filtering results in 135 pairs with
probability greater than 0.001%.
doi:10.1371/journal.pcbi.1002675.g004

Correlated Electrostatic Mutations in HIV Protease
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tion of HIV protease is complex and we find that uncorrelated

mutations would tend to strongly destabilize the enzyme, contrary

to the stability gain observed in the database. Therefore, we

propose that sets of electrostatic mutations occur together,

increasing the ‘‘evolvability’’ of a protein by providing a ‘‘reservoir

of stability’’ which allows it to escape epistatic traps along

evolutionary pathways towards higher fitness [18].

The absence of frustration could reflect evolutionary optimiza-

tion of the electrostatic interaction network in HIV protease under

selection pressure from drugs, or it could be a general property of

protein electrostatic interaction networks. Indeed, natural proteins

tend not to be frustrated systems [29,60] – they are fine-tuned

biological machines with restricted evolutionary pathways [18].

Within these pathways, proteins are highly robust and the physics

underlying their folding display a kind of simplicity [29,61–63].

Our conclusions based on a coarse-grained electrostatics model

combined with statistical inference techniques reflect this lack of

frustration. In future work we will study our algorithm on

interaction networks with a larger alphabet size and different

network topologies. In this context, we note that Balakrishnan et

al. used an alternative learning algorithm that a solved similar

problem but determined the optimal graph topology for the

network [64].

Our statistical analysis of HIV sequences captures biophysical

constraints in the form of a statistical network of correlated

mutations. Even though the model is based on pairwise

correlations, it captures the higher-order effects and correctly

predicts the probabilities of sequences found in the tail of the

distribution. The fact that many of these patterns are also strongly

associated with protease inhibitors from patients undergoing

antiretroviral therapy, highlights the clinical relevance of our

method. Other mutation patterns that we predict are likely to exist

within patients whose virus has not yet been sequenced. Having

knowledge of these unique, but as yet unobserved patterns, can be

important for the design of future inhibitors to combat drug

resistance.

In this work, we go beyond a purely statistical approach to

modeling patterns of electrostatic mutations, and show that the

statistical results are entirely consistent when viewed in the context

of a structure based energy model. Though electrostatics is only

part of the total energy, our work has highlighted its importance

and provided support for the proposal that correlated electrostatic

mutations provide a reservoir of stability for HIV protease as it

builds resistance to drugs.

Methods

HIV sequence databases
45,161 aligned HIV-1 DNA nucleotide sequences were

downloaded from Christopher Lee’s HIV Positive Selection

Mutation Database (http://bioinfo.mbi.ucla.edu/HIV) on March

4th, 2008 [30]. This database of sequences, which we call the Lee

database, consists primarily of HIV-1 subtype B samples

sequenced by Specialty Laboratories Inc from 1999 to mid-

2002. These sequences are not annotated. [30]. The amino acid

sequences were converted into strings of characters ‘‘n’’, ‘‘2’’ and

‘‘+’’, indicating whether a given residue is neutral, negatively or

positively charged at pH = 6 (i.e. His, Arg, and Lys are positively

charged, while Asp and Glu are negatively charged). A second

database of subtype B sequences, which we call the Stanford

database, was downloaded from the Stanford HIV database on

April 7th, 2010 [31]. This database consists of drug annotated

sequences collected primarily from more than 900 literature and

GenBank references. This drug-annotated dataset was used to

associate correlated mutation patterns with specific anti-retroviral

therapies (see SI). The univariate and bivariate marginals

extracted from the Lee database and from the Stanford database

are effectively the same (correlation coefficient of 0.999), indicating

that our results would be unchanged if we used the Stanford

database to parameterize the model. Moreover, at a 20 letter

amino acid alphabet level, there is little redundancy between the

databases as only 7.63% of the sequences are present in both

databases.

To locate electrostatic mutations, the resulting charge signatures

were compared to the HIV-1 subtype B consensus sequence from

the Los Alamos National Laboratory HIV sequence database.

This consensus sequence was used to define the wild-type charge

signature. We define an electrostatic mutation as an amino acid

mutation which changes the charge at a certain position along the

protein sequence, relative to the wild-type amino acid at that

position (e.g. D30N and N88D). In contrast, the L90M and R8K

are not considered to be electrostatic mutations.

We examined all the primary, accessory and polymorphic drug

resistance mutations positions (as designated by the Stanford

database [31]) and included all electrostatic mutations above a

threshold frequency of 0.01%. The 18 positions included are the

primary drug resistance mutatation sites D30 and N88, accessory

mutation sites K20, E34, E35, K43, Q58, L63, and Q92, and

polymorphic mutation sites Q7, T12, G16, Q18, N37, Q61, H69,

K70, and I72.

Calculation of electrostatic folding free energies
The electrostatic energy of protein folding DGe was estimated as

DGe~G(f )
e {G(u)

e ð1Þ

where G(f )
e and G(u)

e are electrostatic free energies of the folded and

unfolded states, computed using an Analytical Generalized Born

(AGB) model [65]. The folded state electrostatic free energy G(f )
e

was calculated by placing unit charges corresponding to a

particular charge signature onto the most-distal sidechain carbon

atom of the corresponding wild-type amino acid within a dimer

crystal structure (PDB ID 1NH0). All other sidechain atoms

remain neutral, although a partial charge dipole of +0:4e is

placed on every backbone amide and carbonyl group to retain the

helix dipole effects [66].

Our approximation of the denatured state is a maximally

extended structural representation of chain A from 1NH0, with

backbone dihedral angles set to 1800 (except for prolines) and

sidechain rotamer states set to all-trans. Similarly to the folded

state, charges on the unfolded state are placed on the most-distal

sidechain carbon atom and backbone dipoles are switched on. See

SI Methods for further implementation details.

Statistical modeling of sequence probabilities
As in our previous work [17], we make use of a Potts model to

capture the effects of pair interactions between residues. Since our

electrostatic data consists of sequences with three possible charge

states at each site, we use a 3-letter alphabet (+, 2, n), for

positively-charged, negatively charged, and neutral residues.

Including all three charge states in our study leads to

318~387,420,489 possible charge signatures for 18 positions.

For each signature we calculate P1, the independent model

probability, and P2, the pair correlation model probability.

Specifically, we fit the frequencies of charge states at each position

and the joint frequencies of charge states at pairs of positions to the

3-state Potts model:
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P2(A1A2 . . . AN )~
1

Z
exp½

XN

i~1

li(Ai){
XN

ivj

lij(Ai,Aj)� ð2Þ

where A1A2 . . . AN is a sequence of z’s, {’s or n’s of length N, i,j
are position indices, li and lij are the fitting parameters for the

fields and couplings, and Z is the partition function. The

independent model, obtained by setting all lij~0, corresponds

to P1(A1A2 . . . AN )~P(A1)P(A2) . . . P(AN ). For the equal fre-

quency model in Figure 2, we set P(Ai)~1=3,Vi.

The joint probability distribution given by the Potts model has

the largest entropy constrained by the univariate (independent

model) or both univariate (Pobs
i ) and bivariate (Pobs

ij ) marginals

from the data [67]. To solve the inverse Ising problem, we

implemented an efficient graph-theoretic inference algorithm

called belief propagation (BP) [37–39]. Our algorithm employs a

two-step procedure: first, all the univariate and bivariate marginals

are determined for a given set of li and lij in the Bethe

approximation within BP [38,42,43]. Second, the predicted

marginals are compared to the observed marginals to determine

updated li and lij via gradient descent [39]. See the supporting

information for further information about the algorithm.

Supporting Information

Figure S1 Contribution of individual sequences to the
average electrostatic folding energy. Each contribution is

given by DGeP, where DGe is the electrostatic folding energy of a

given sequence (see Methods) and P is its probability under the

independent or pair correlation model conditional upon the

number of mutations. Red: mutation patterns observed in the Lee

database [30], black: mutation patterns not observed in the Lee

database. Several outliers are labeled explicitly by their mutation

pattern. Mutations are represented as aNb, where N is the residue

number and a and b are one of the 3 charged states (+, 2, n). The

straight line on each diagram is a plot of x~y. Sequences below

this line have P1vP2, resulting in DGeP1wDGeP2 (DGev0). For

these sequences, the electrostatic stabilization is greater under the

pair correlation model than under the independent model.

(TIF)

Figure S2 Comparison of sequence probabilities under
the independent and pair correlation model. The proba-

bility of a given sequence under the pair correlation model, P2, is

plotted against the probability of the same sequence under the

independent model, P1, for all sequences with 1 through 6 electrostatic

mutations. Both independent and pair correlation model probabilities

are renormalized and are conditional upon the number of mutations.

Red: mutation patterns observed in the Lee database [30], black:

mutation patterns not observed in the Lee database. Several outliers

are labeled explicitly by their mutation pattern. Mutations are

represented as aNb, where N is the residue number and a and b
are one of the 3 charged states (+,2, n). The straight line on each

diagram is a plot of x~y. Sequences below this line have P1vP2.

(TIF)

Figure S3 Comparison between the observed and
predicted mutivariate marginals for 2, 3 and 4 muta-
tions. Predicted marginals determined using belief propagation in

the Bethe approximation are plotted against the observed

marginals for sets of 2, 3, and 4 mutations. The correlation

between Pbethe
ij and Pobs

ij is 1:00. The correlation between Pbethe
ijk

and Pobs
ijk is 0:98. The correlation between Pbethe

ijkl and Pobs
ijkl is 0:90.

(TIF)

Figure S4 Distribution of pair correlation model prob-
abilities for sequences in the tail of the Lee distribution
that are observed (red) or unobserved (blue) in the
Stanford database. The histogram in red is the distribution of

pair correlation model probabilities for sequences found in the tail

of the Lee database that also exist in the Stanford database. The

histogram in blue is the distribution of pair correlation model

probabilities for sequences that are not observed in the Stanford

database. The null hypothesis which states that the means of these

two distributions are equal, has a low p-value of v10{4,

indicating that the null hypothesis must be rejected. Therefore,

the difference between the means of these two distributions is

statistically significant.

(TIF)

Figure S5 Distribution of the number of sampled
sequences not observed in the Lee database. 13,286

sequences, corresponding to the size of the Stanford database,

were randomly sampled from the probability distribution de-

scribed by the pair correlation model. The distribution of the

number of sequences not observed in the Lee database for each of

the 1,000 simulations, is plotted as a frequency distribution. The

sample average for this distribution is 124.2 and the standard

deviation is 10.6. The actual number of sequences in the Stanford

database that are not observed in the Lee database is 128 (plotted

as a straight red line), a number which lies well within 1 standard

deviation of the sample mean.

(TIF)

Figure S6 Distribution of the number of unique se-
quences for sample sizes equal to the size of Stanford
and Lee databases. 13,286 and 45,161 sequences, correspond-

ing to the sizes of the Stanford and Lee databases, were each

randomly sampled from the probability distribution described by

the pair correlation model. The distribution of the number of

unique sequences for 1,000 simulations for both sampling

distributions is plotted as a histogram. The sample average for

the Stanford-sized sample distribution is 452.9 and the standard

deviation is 14.3. The sample average for the Lee-sized sample

distribution is 862.1 and the standard deviation is 18.7. The

number of unique sequences in the Stanford database is 431 while

the number of unique sequences in the Lee database is 828, both

of which lie within 1.4 standard deviations of their respective

sample means.

(TIF)

Figure S7 Structure of HIV protease subtype B and the
spatial distances between highly correlated pairs. The

backbone structure of HIV protease subtype B (PDB ID: 1NH0) is

depicted in ribbon format. Similar to Figure 1, the 18

electrostatically active residues are highlighted. Residue positions

which have a predominantly negatively charged non-neutral

residue in the sequence database are depicted in red. Residues

which have a predominantly positively charged non-neutral

residue in the database are depicted in blue. Addititionally, the

distances between the top 5 most correlated pairs of residues are

depicted as dashed lines. The pairs are 30–88, 20–35, 16–63, 18–

20 and 20–92.

(TIF)

Table S1 Electrostatic mutation patterns with the
highest probabilities under the pair correlation model
and the drug combinations they are most strongly
associated with. Shown are the top 5 patterns with 2, 3 and

4 electrostatic mutations for which the pair correlation model

predicted probability, P2, is the highest, together with the drug

Correlated Electrostatic Mutations in HIV Protease
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combination they are most significantly associated with. Drug

combinations are listed in order of treatment. The test of statistical

association between drugs and electrostatic mutation patterns is

based on the the Stanford database [31] (SI Methods). The

proportion of sequences with the mutation pattern and exposed to

a specific drug was compared to the proportion of sequences with

the same mutation pattern but exposed to no drugs. The null

hypothesis is that that the two proportions are equal, and the p-

value to test the significance of this hypothesis is listed alongside

the drug combination. NFV: Nelfinavir, IDV: Indinavir, SQV:

Saquinavir, RTV: Ritonavir, APV: Amprenavir. The acronym PI,

protease inhibitor, is used in the Stanford database when the drug

was unknown. The D30N,N37D,Q61E,N88D pattern is not

significantly associated with any drug combination.

(PDF)

Table S2 Prediction of novel electrostatic mutation
patterns. Shown are 25 electrostatic mutation patterns with

the highest probabilities under the pair correlation model that are

not observed in the Lee database [30]. P2 is the probability of the

sequence under the pair correlation model, NLEE is the number of

times the mutation pattern was found in the Lee database [30],

NST is the number of times the mutation pattern was found in the

Stanford database [31]. If the sequence is found in the Stanford

database, it may be significantly associated with specific drugs

combinations. The drug combinations listed are in order of

treatment and have strong p-values of association with the

mutation pattern. The test of statistical association between drugs

and electrostatic mutation patterns is described in SI Methods.

NFV: Nelfinavir, IDV: Indinavir, SQV: Saquinavir, RTV:

Ritonavir, APV: Amprenavir. The acronym PI, protease inhibitor,

is used in the Stanford database when the drug was unknown.

(PDF)

Table S3 The most statistically deviated pairs of
mutations. The 10 most statistically deviated double mutations

in the Lee database relative to the independent model. The

measure used to test for deviation is dev(i,j)~

Pij(M,M){Pi(M)Pj(M)
� �2

Pij(M,M)
where Pij(M,M) is the joint

probability of a double mutation at positions i and j while

Pi(M) is the univariate marginal of a mutation at position i. The

double mutant charge states and the distance between charges is

also listed.

(PDF)

Text S1 Text S1 consists of the supplementary infor-
mation to the main text. In this supplementary information,

we describe our algorithm in greater detail.

(PDF)
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