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KEYWORDS Abstract Big biological data contains a large amount of life science information, yet extract-
Copy number ing meaningful insights from this data remains a complex challenge. The hidden Markov model
variation detection; (HMM), a statistical model widely utilized in machine learning, has proven effective in addres-
CpG island sing various problems in bioinformatics. Despite its broad applicability, a more detailed and
prediction; comprehensive discussion is needed regarding the specific ways in which HMMs are employed
Gene finding; in this field. This review provides an overview of the HMM, including its fundamental concepts,
Hidden Markov the three canonical problems associated with it, and the relevant algorithms used for their res-
models; olution. The discussion emphasizes the model’s significant applications in bioinformatics,
Sequence alignment; particularly in areas such as transmembrane protein prediction, gene discovery, sequence
Transmembrane alignment, CpG island detection, and copy number variation analysis. Finally, the strengths
protein prediction and limitations of the HMM are discussed, and its prospects in bioinformatics are predicted.

HMMs can play a pivotal role in addressing complex biological problems and advancing our un-
derstanding of biological sequences and systems. This review can provide bioinformatics re-
searchers with comprehensive information on HMM and guide their work.
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Introduction

Today, hidden Markov models (HMMs) are distinguished
among the numerous statistical methods and algorithms
employed in bioinformatics. HMMs are statistical frame-
works designed to represent a Markov process with hidden,
unobservable states. Owing to their capacity to capture
dependencies between adjacent symbols, HMMs are inher-
ently well-suited for sequence-related analyses and have
been extensively utilized in bioinformatics applications
since the 1980s."

HMMs were initially utilized for protein structure pre-
diction, where they demonstrated significant success in
correctly identifying a-helices and B-barrel configurations in
transmembrane proteins.”* Soon after, HMMs were widely
adopted for genome annotation and powered gene predic-
tion tools such as GENSCAN,* which continue to exhibit
strong performance today.” Furthermore, HMMs were
extensively applied to multiple sequence alignment and
form the foundation of the Pfam database.® With the
completion of the Human Genome Project and the rapid
advancement of high-throughput sequencing technologies,
the availability of large-scale genomic datasets shifted the
application of HMMs from traditional sequence modeling to
the interpretation of complex genomic signals.”’® During this
period, HMMs found novel applications in Cytosine-guanine
di-nucleotide (CpG) island prediction®'® and copy number
variation (CNV) detection,'""? further reinforcing their sig-
nificance in bioinformatics. In addition, HMMs are well
suited for genetic mapping,' phylogenetic analysis,™ and
signal peptide prediction.' Despite being such a powerful
and widely used tool, HMMs still lack a clear and accessible
introduction that matches their significance in the field.

In this paper, we systematically introduce HMMs,
including their definitions, the three fundamental prob-
lems, and the corresponding algorithms. After outlining the
core concepts of HMMs, we further examine their applica-
tions across five key areas of bioinformatics: trans-
membrane protein prediction, gene finding, multiple
sequence alignment, CpG island prediction, and CNV
detection, along with the commonly employed tools in each
domain. Our objective is to offer readers a structured and

Figure 1

comprehensive understanding of HMMs, thereby fostering a
deeper appreciation of their underlying principles and
diverse applications.

Hidden Markov model and the relevant
concepts

Introduction of the hidden Markov model

HMMs, developed by Baum and associates in the 1960s, are
statistical models that describe double-embedded stochastic
processes, in which a hidden Markov chain controls the
generation of observable data'®~'® (Fig. 1). HMMs are widely
used in modeling sequence data owing to their ability to
describe complex relationships between hidden and
observable variables.” They are based on two key
assumptions:

Homogeneous Markov property: The state at time t
depends only on the state at time ¢t — 1, and it is inde-
pendent of any previous state or observation.

Observation independence: Observations depend only
on the current state and are independent of any other state
or observation.

For an in-depth discussion of the theoretical principles
and algorithmic approaches of HMMs, readers are directed
to Vidyasagar’s monograph, Hidden Markov Processes:
Theory and Applications to Biology (2014). This work is an
invaluable resource for researchers in systems theory and
bioinformatics, providing a detailed examination of both
the theoretical and algorithmic dimensions of HMMs.2°

Hidden Markov model parameters

i) State space (Q): The set of all possible states,
Q ={q1, g2 ..., qn}, where N is the number of states.
ii) State sequence (X ): A sequence of states of length T,
denoted as X = (x4, X2 ..., X7).
iii) Observation space (V): The set of all possible
observable symbols, V = {v4, v, ..., vy}, where M is
the number of possible symbols.

hidden Markov chain

observed observation sequence

The two stochastic processes in the hidden Markov model: the generation of hidden states and their corresponding

observations. The top panel shows the hidden state sequence, whereas the bottom panel represents the observation sequence.
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iv) Observation sequence (0): A sequence of observable
symbols corresponding to the state sequence, O =
(01, 072, ..., OT).

v) Initial state distribution (w): The probability distri-
bution over the states at timet =1, m; = P (x4 = qj;),
i=1,2..,N.

vi) Transition probability matrix (A): The probabilities
of transition between states, a;; = P (Xep1 = qj |
X¢ = qj), resulting in an N x N matrix.

vii) Emission probability matrix (B): The probabilities of
emitting observable symbols given a state, bj(k) = P
(0 = vk | X¢ = qj), forming an N x M matrix.

HMMs offer a robust framework for modeling sequences,
characterized by the parameter set A = (A, B, w). The
hidden state sequence is determined by =« and A, whereas
the observable sequence is governed by B.?'

Three basic problems and corresponding algorithms

As a statistical model, the HMM offers robust theoretical
support for sequence modeling. In practical applications, it
can address the following three fundamental problems:

i) Evaluation problem

Given an HMM A = (A, B, w) and an observation sequence
0 = {04, 04, ..., 07}, the likelihood P (O | 1) is calculated,
which represents the probability of the observation
sequence under the given model A. This problem is crucial
for model evaluation and can be efficiently solved via the
forward algorithm or its complementary counterpart, the
backward algorithm.

Forward algorithm

The forward algorithm efficiently calculates P (O | %)
(starting from the beginning of the sequence) through dy-
namic programming. The method introduces an auxiliary
variable a; (i) = P (04, 0y, ..., O¢, X¢ = q; | ), which rep-
resents the probability of observing a partial sequence of
emissions 04, 0y, ..., 0 and a state x, = q; at time t. The
algorithm’s detailed equations are as follows:

i) Initialization:
ai(i) = - bi(04),i=1,2,...,N

ii) Recursion:

e (j (Zat a,,>' 1(0611),1 = 1,2,...,N;

t=1,2,.,T -1

iif) Termination

OM ZO{T

Backward algorithm

The backward algorithm computes P (O | A) by considering
paths starting from the end of the sequence. The algo-
rithm’s detailed equations are as follows:

i) Initialization:
Br(i)=1,i=1,2,..,N

ii) Recursion

Z aU 0t+1
iii) Termination
P(O2) = Z - 1 (M)

ii) Decoding problem

B (), t=T—-1,T-2,...,1

Given A and O, the most likely hidden state sequence
X = {X4, X2, ..., X7} is determined. This corresponds to
finding the maximum a posteriori (MAP) estimate of the
state sequence, which is typically solved using the Viterbi
algorithm.

Viterbi algorithm

The Viterbi algorithm finds the most likely state sequence
X*.?22 This algorithm employs two auxiliary variables,
6 and W. 4, (i) represents the probability of the most
probable partial path reaching state i at time t. ¥, (i) re
cords the preceding state of i at the end of the locally
optimal path. ¥, (i) enables the reconstruction of the state
sequence that yields the highest partial probability &, 1 (i)
at time t + 1. The algorithm is composed of the following
four main steps:

i) Initialization:

61(’) =T bi(o1)7i = 1727"'7N
Y (i) =0,i=1,2,..,N
ii) Recursion:

6f(’) = {Qj'ag)l(\l(ét71 (J) ) aji) : bj(ot)7 i= 1527"'3N
¢t(l) = argp;jag)l(\l(ét71 (J) ' aji)7i = 1727 7N

iii) Termination:
P* = maxoér(i)

1<i<N

= argmaxér( i)

1<i<N

iv) Backtracking:
= Ve (X4),t

The states in the optimal path are obtained by
backtracking the antecedent states according to the
variable ¥, (i). Finally, we can obtain the optimal path
X+ = (X{, X3, ..., X7).

=T-1,T-2,...1

iii) Learning problem

The objective is to estimate the model, specifically the
two parameters: the transition probability and the emission
probability. Furthermore, it is assumed that the number of
states, N, in the underlying HMM is known. The model pa-
rameters must be optimized to maximize P (1 | O).
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Supervised learning algorithm

It is assumed that the training data contain both observa-
tion and state sequences. In this case, the parameters of
the HMM are usually estimated based on frequency.

If state i is at time t, state j is at time t+1, and the
frequency of transitions between states in the sample is A;;.
The estimation of the state transition probability is esti-
mated as follows:

aij = NA#J:'I727N' j:1’27“"N
> Ajj
j=1

Estimation of the observation probability b;(k): If the
frequency of state j emitting observation k in the sample is
B;j(k), then the probability of state j emitting observation k
is as follows:

A .
b; (k) _ B g0 Nk=1.2...M

M
k; B;(k)

The initial state probability ; is estimated as the rela-
tive frequency of state q; occurring at the initial position
across the S samples.

Baum-Welch algorithm for unsupervised learning

When the training data include only observation sequences
without corresponding state information, algorithms such
as the Baum-Welch method, a specialized expectation-
maximization algorithm, are employed.?* 2® This algorithm
iteratively refines parameter estimates to maximize the
likelihood of the observed data. It alternates between:

i) Expectation step (E-step): Compute the expected suf-
ficient statistics for the hidden states using current
parameters.

ii) Maximization step (M-step): Update the parameters to
maximize the likelihood.

An illustrative example using boxes and balls is provided
in the supplementary materials to explain the HMM prob-
lems and algorithms in detail.

The application and tools of HMM in bioinformatics

The HMM is a widely utilized modeling approach for linear
problems, such as time series data and biological sequences.
Initially applied in the field of speech recognition, ' it has
proven particularly valuable for modeling biological se-
quences.' Proteins and DNA, as essential biological macro-
molecules, are fundamentally represented by sequences.
Typically, distinct substructures in a biological sequence
correspond to specific functions, with different functional
regions often exhibiting unique statistical characteristics.
This is the statistical foundation underlying the success of
HMMs and has proven to be very effective in analyzing bio-
logical sequences.” We elaborate on how the three funda-
mental problems of HMMs are applied in bioinformatics from
five application perspectives, and introduce representative
tools commonly used in each. Details of the tools mentioned
in the review are shown in the supplementary table.

Transmembrane protein prediction

Transmembrane proteins are a class of proteins that span
the phospholipid bilayer of cellular membranes and play
critical roles in various biological processes.?”” They func-
tion as channels for the transport of ions across membranes
and serve as targets for numerous drug molecules, including
those involved in nerve signaling, hormonal regulation, and
receptor activity.”® The secondary structure of the majority
of transmembrane proteins is alpha-helical, with beta-
barrel structures representing a notable exception. These
beta-barrel transmembrane proteins are currently found
exclusively in gram-negative bacteria, mitochondria, and
chloroplasts.?’

To understand the specific functions of transmembrane
proteins, we need to understand their topology, that is, the
orientation of the transmembrane protein relative to the
membrane and the number and specific positions of the
transmembrane segment.?’ However, predicting the struc-
ture of transmembrane proteins using chemical or physical
methods remains challenging.®'** Currently, known trans-
membrane protein structures represent only a small frac-
tion of entries in the Protein Data Bank.>* Consequently, a
variety of statistical and bioinformatics approaches for
transmembrane protein prediction have been developed
over the past decades.>* Among these, methods based on
HMMs have demonstrated outstanding performance.>~3°

HMMs were initially applied to the prediction of trans-
membrane proteins. This is a standard decoding problem
that can be solved by the Viterbi algorithm in HMMs (Fig. 2).
First, the structural states of a transmembrane protein
need to be defined. According to its position relative to the
cell membrane, a transmembrane protein can be simply
divided into three states: Outside (0), Membrane (M), and
Inside (I). In this way, it can be transformed into a hidden
Markov process, namely, the hidden transmembrane pro-
tein position sequence and the visible amino acid obser-
vation sequence. Unlike other parts outside the membrane,
the transmembrane segments of transmembrane proteins
are hydrophobic. Therefore, amino acid residues with
stronger hydrophobicity are more preferred to occur in the
transmembrane segments. This provides a statistical basis
for the recognition of transmembrane proteins. After
evaluating the parameters of the HMM, the Viterbi algo-
rithm can be used to identify the optimal state path of a
new transmembrane protein.

HMMTOP is a powerful transmembrane protein predic-
tion server that performs well in multiple comparisons with
similar tools.*>*" Owing to its powerful properties,
HMMTOP is one of the most used prediction tools in trans-
membrane protein-related studies. For example, Shao et al
used HMMTOP2.0 to predict the transmembrane helical
regions in the atomic models of the small capsid proteins
P16, P17, and P18.%% Jiang et al used HWMTOP to predict the
protein motifs of Cowpea mild mottle virus TGBp2 and re-
ported that TGBp2 has two transmembrane domains near
the N-terminus and C-terminus.?

HMM-TM (http://bioinformatics.biol.uoa.gr/HMM-TM) is
a method for predicting transmembrane alpha-helical pro-
teins that allows the integration of experimentally vali-
dated prior topological information specific to the
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Structure states defined for a typical transmembrane protein

Outside (O)

—> Extracellular Fluid —
®
& — o0 (] (@] o o0
£=
2] oo ) ) oo
Cytoplasm
Inside (1)
l convert to a hidden Markov process
Transmembrane protein sequence
..E G L.M K W..S S A..
L O202>20 .. M2>M2>M L T2 1T2>T
Position sequence relative to cell membrane
l Parameter estimation
HMM + parameters /ng

Viterbi algorithm

States

Observations

Output the optimal state path

} } '

Outside Membrane Inside

] Sequence Segmentation

Figure 2 The decoding problem and Viterbi algorithm in
transmembrane prediction. The amino acid sequence of the
transmembrane protein and its corresponding positions on the
cell membrane are transformed into a hidden Markov process.
After evaluating the parameters, the Viterbi algorithm is used
to identify the optimal state sequence.

sequences under analysis.>> Compared with HMMTOP, HMM-
TM introduces enhancements to the prediction algorithm by
incorporating precise positional information for segments
of the predicted sequence, while maintaining the proba-
bilistic framework essential for HMM decoding. Addition-
ally, HMM-TM supports TMRPres2D, the Transmembrane
Protein Re-Presentation in 2 Dimensions tool, which facili-
tates the automated generation of standardized, high-res-
olution two-dimensional graphical representations of
alpha-helical transmembrane proteins.*?

HMMpTM (http://bioinformatics.biol.uoa.gr/HMMpTM) is
a transmembrane protein topology prediction tool based on
HMM that combines post-translational modification and
topology prediction of alpha-helical transmembrane pro-
teins.** Phosphorylation and glycosylation are the most
common post-translational modifications in eukaryotes®
and occur in a specific manner in cells. In transmembrane
proteins, glycosylation sites are usually located in the

extramembrane space, whereas phosphorylation sites are
located in the cytoplasmic region. Therefore, glycosylation
and phosphorylation sites provide valuable information for
predicting the orientation of transmembrane proteins
relative to their membrane.*® Although HMMpTM was orig-
inally developed to predict the topological structure of
transmembrane proteins, its capacity to identify phos-
phorylation and glycosylation sites is also noteworthy. Sara
Savage et al classified HMMpTM as a predictive tool for
phosphorylation sites and kinase substrates.*”  Tri-
antaphyllopoulos et al employed HMMpTM not only to pre-
dict transmembrane topology but also to identify potential
phosphorylation and glycosylation sites in solute carrier
family 11 A1 (SLC11A1).%®

Currently, due to the absence of transmembrane helix
predictors, signal peptides are frequently misidentified as
transmembrane helices.*>“?°° This misprediction occurs
because both transmembrane and signal peptide regions
are characterized by the hydrophobicity of their residues,
which is highly similar in both regions.’" Phobius
(https://phobius.sbc.su.se/) is a combined predictor of
transmembrane helices and signal peptides that is based
on the HMM, which can overcome this limitation. In a
recent study, Tirincsi et al used Phobius to predict the
topological structure of a protein. They reported that the
targeting receptor hSnd2 contains four transmembrane
helices, with both the N-terminus and C-terminus in the
cytosol.>?

Beta-barrel proteins are more difficult to predict topo-
logically than are alpha-helices. Although these methods
have not been the focus of computational methods, they
play important roles in bacteria, chloroplasts, and mito-
chondria.>* PRED-TMBB (http://bioinformatics.biol.uoa.gr/
PRED-TMBB) is the first freely accessible HMM-based tool for
predicting the topology of beta-barrel outer membrane
proteins.>>> In addition, Hayat et al®® and Tsaousis®’
developed other HMM-based methods aimed at predicting
beta-barrel transmembrane proteins.

Gene finding

With the successful completion of the Human Genome
Project®® and advances in sequencing technology, many
measured but unannotated DNA sequences are generated
daily. Efficient and accurate computational techniques
are essential for annotating DNA sequences.’® Gene
identification, a key challenge in genome annotation,
involves detecting coding regions or genes within the
sequenced DNA. After this problem is solved, further
specific functional annotation of the genome can be
performed.®®

Given the observed sequence of a protein-coding gene,
we employed an HMM to predict the positions of exons,
introns, and other critical functional regions and loci. This
is also a decoding problem within the HMM framework, as
the locations of these functional elements are not directly
observable from the sequence. As shown in Figure 3A,
eukaryotic genes are composed of coding and noncoding
regions. Coding regions mainly contain exons and introns.
Noncoding regions contain specific sequences and sites that
play important roles in gene expression, such as enhancers,
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Figure 3  An example of a hidden Markov model (HMM). (A) Schematic diagram of eukaryotic gene structure. (B) The overall
process of using the HMM to predict eukaryotic genes. (C) HMM architecture for predicting eukaryotic genes. (D) The submodel of

the coding region.

promoters, terminators, transcription start sites, and
transcription termination sites. After outlining the struc-
ture of eukaryotic genes, HMM is employed for their pre-
diction, with the detailed process depicted in Figure 3B. In
Figure 3C, each rectangle, diamond, or circle represents a
functional unit (state) of a gene or genomic region,
including the intergenic region, promoter, terminator, 5

untranslated region, 3’ untranslated region, start codon,
stop codon, E;;; initial exon, Ex (k = 1, 2, ...) internal exon,
Eterm terminal exon, and I, (k = 1, 2, ...) introns.

We developed a specialized HMM submodel for the coding
region (Fig. 3D), in which each square and circle denotes a
hidden state, with the accompanying labels indicating their
respective biological annotations. Each state can emit one
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of the four bases, A, C, T, or G, and its emission probability
is indicated above it. The three yellow hidden states
correspond to the start codon, which is ATG in eukaryotes;
hence, they are labeled A, T, and G. The green hidden
states represent exons, while the blue hidden states denote
stop codons. Since mRNA is translated by codons comprising
three bases, each codon encodes a specific amino acid. In
the exon region, we further illustrate that the codon unit
and the hidden states representing exons in the model form
a cyclic structure. The red hidden state corresponds to an
intron, characterized by a self-loop transition. The states
labeled 5 and 3 represent the 5 and 3’ splice sites,
respectively. The start and end states do not emit any
bases, but they are incorporated to complete the model
structure. The hidden state sequence and state path are
displayed below in Figure 3D.

GENSCAN (http://argonaute.mit.edu/GENSCAN.html) is
an HMM-based program for the genetic prediction of the
position and exon-intron structure of genes in genomic se-
quences from a variety of organisms.*¢" Additionally, it
takes into account the significant variations in gene density
and structure across different GC compositional regions of
the human genome. GenScan employs a generalized hidden
Markov model (GHMM)®? (where the state represents an
arbitrary sub-model of the output variable length sequence)
to create distinct sub-models tailored to the unique char-
acteristics of each gene region. Each state can generate
observations of a specific length based on a given probability
distribution, greatly enhancing the accuracy and reliability
of the predictions. As one of the most widely used gene-
prediction tools, its results are highly precise.®*** GEN-
ESCAN has been used to predict the gene structure of Pop-
ulus euphratica® and Xingguo gray goose genes.®®

AUGUSTUS (http://bioinf.uni-greifswald.de/augustus/)
predicts genes in eukaryotic genomic sequences based on a
GHMM.%:¢%67 |t features a flexible mechanism for inte-
grating external information, such as EST alignments and
protein alignments, which can significantly enhance the
accuracy of prediction results.®® It is powerful and has
collaborated with many genome researchers.®®’° For
example, Srivastava et al used AUGUSTUS to annotate
protein-coding genes in Amphimedon queenslandica,
helping explain the complexity of animal evolution.”’

GeneMark (http://opal.biology.gatech.edu/GeneMark/
) is a suite of gene prediction programs designed for the
analysis of prokaryotic, eukaryotic, and viral genomic se-
quences.”? It enables accurate and efficient identification
of genes within genomic DNA. GeneMark has been
predominantly utilized for annotating prokaryotic ge-
nomes and played a pivotal role in the annotation of the
first fully sequenced bacterial genome, Haemophilus
influenzae, as well as the archaeal genome of Meth-
anococcus jannaschii.

HMMGene (https://services.healthtech.dtu.dk/
services/HMMgene-1.1/) is a program for the prediction of
genes in anonymous DNA via HMM' and is mainly used for
vertebrate and Caenorhabditis elegans gene prediction.”>
Krogh et al used the HMMGene gene finder to annotate the
3 MB Adh region of Drosophila melanogaster and reported
that database matching significantly improved the perfor-
mance of the gene finder.”*

Sequence alignment

Sequence alignment forms the foundation of sequence
analysis and is one of the most fundamental and crucial
techniques in bioinformatics. The goal of sequence align-
ment is to identify the maximum number of matching res-
idues between two or more sequences using mathematical
models or algorithms. The results of this comparison reflect
the similarity between the sequences and their biological
characteristics. Evolutionary theory serves as the theoret-
ical basis for sequence alignment. Numerous biological
observations demonstrate that different nucleic acid and
protein sequences may have originated from a common
sequence and evolved independently through genetic
variation of residues. As a result, determining whether an
organism’s sequence belongs to a specific family is a com-
mon analysis in multiple sequence alignment.”® Sequence
alignment can also identify conserved sequence fragments
associated with structure and can be used for protein
functional domain identification,”® secondary structure
prediction,”” and phylogenetic analysis.”®

HMMs have an outstanding performance in the recogni-
tion of protein families. This exactly corresponds to the
learning problem of HMMs, and it can be perfectly solved
using the Baum-Welch algorithm (Fig. 4A). After collecting
the known sequences of protein family A, through multiple
sequence alignment, the conserved positions of the se-
quences belonging to the same protein family can be
identified, and the statistical characteristics of the protein
family can be constructed, which provides a basis for the
subsequent construction of HMMs. The model parameters
are estimated using the Baum-Welch algorithm, which is a
form of the expectation-maximization algorithm. This al-
gorithm first needs to initialize the parameters of the
model, and then uses the method of maximizing expecta-
tions to continuously iterate the parameters of the model
until the model stabilizes. Through the above operations,
an HMM exclusive to protein family A can be obtained,
which has a strong recognition ability for sequences
belonging to protein family A.

After the HMM construction of protein family A is
completed, in the face of a new set of unrecognized se-
quences, it is an evaluation problem to determine which
sequences belong to protein family A. These sequences are
input into the constructed HMM, and each sequence is
scored through the forward algorithm. After setting a
threshold, it is possible to determine which sequences
belong to protein family A and which do not (Fig. 4B).

The HMMER web server (http://www.ebi.ac.uk/Tools/
hmmer) is a collaborative project between the HMMER al-
gorithm developers, led by Sean Eddy of Harvard University,
and the HMMER Web Services team led by Rob Finn of EMBL-
EBI. HMMER performs sequence homology searches in
sequence databases and alignments using profile-hidden
Markov models. Commonly used in conjunction with data-
bases such as Pfam, HMMER facilitates sequence queries
similar to those conducted with BLAST. The tool offers four
search algorithms—phmmer, hmmscan, hmmsearch, and
jackhmmer—each with distinct query and target database
configurations. These algorithms allow users to define
two types of thresholds: significance and reporting cut-offs.
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Collect the known sequences of protein family A
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seq3 —=
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ﬂset of candidate sequences for protein family A

seq 1

seq 2
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seq n-1

\_ e

‘ Input into the HMM
v

Observations T

Sequence scoring

ﬂMM results (sorted by score, descending)

Sequence
name Score Matched
seq3 1153 7
L _s_eq_1_ o f’7_2_ ______ N matching threadhold > 50
seq n-1 35.1 x
seqn 11.3 X
seq 2 35 x

Figure 4 Applications of the learning and evaluation problems in protein family identification. (A) The learning problem and the
Baum-Welch algorithm are used in constructing the hidden Markov model (HMM) of protein family A. After discovering the statistical
characteristics of protein family A through multiple sequence alignment, the parameters were obtained with the help of the Baum-
Welch algorithm to construct the HMM of protein family A. (B) The evaluation problem and forward algorithm are used in the
identification of protein family A. A set of sequences is input into the HMM of protein family A, and each sequence is scored to

determine whether it belongs to protein family A.

By inputting a sequence in FASTA format or uploading a file,
users can select the target databases for the search. The
output includes visual representations of sequence
matches, annotated features, and the distribution of
significant hits. HMMER supports searches across a wide
range of target databases and integrates cross-referencing
with resources hosted by EMBL-EBI. Additionally, it
provides a comprehensive application programming inter-
face and a dedicated category viewer for enhanced user
interaction.®7%-%

Pfam (http://pfam.xfam.org/) is a database of protein
family collections, each of which is represented by multiple
sequence alignments and HMMs. A protein molecule com-
prises multiple structurally specific and functionally
distinct regions, which serve as the fundamental units of
protein functional domains. The function of a protein is
determined by the combination of its domains, and proteins
sharing the same domain typically belong to the same
family. In this database, protein families are classified into

families, clans, and proteomes. A clan refers to a group of
families that share similar three-dimensional structures or
common motifs. Proteomes provide comprehensive infor-
mation on all protein families within a given species. Pfam
consists of two primary components. The first part, Pfam-A,
contains curated families, and each family has a related
profile HMM that can be used for sequence alighment and
database search. The protein family in each Pfam-A con-
sists of four elements: i) annotation, ii) seed alignhment, iii)
profile HMM, and iv) complete alignhment. To make Pfam
more comprehensive, sequences not included in Pfam-A
were automatically clustered in the second part, Pfam-B,
via the Domainer algorithm. The Pfam database, version
37.1, contains 23,794 families and 751 clans.®' 83

CpG island detection

CpG sites are regions in the DNA sequence where guanine
follows cytosine in the linear arrangement of nucleotides


http://pfam.xfam.org/
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from the 5 to 3’ direction. In mammals, CpG exists in two
forms: one is dispersed throughout the DNA sequence, while
the other is highly concentrated, referred to as CpG
islands.’™ In 1987, Gardiner-Garden and Frommer first
described and defined CpG islands in detail. CpG islands have
three main characteristics: i) they are more than 200 bp in
length; ii) the GC content is more than 50%; and iii) the ratio
of actual CpG content to expectations (ObsCpG/ExpCpG) is
greater than 0.6.% In 2002, Takai and Jones revised the
definition as follows: the length should be more than 500 bp,
the GC content should not be less than 55%, and the actual
CpG content-to-expected ratio should be more than 0.65.%

CpGs have many important biological functions. It is a
target of DNA methylation and is the main object of
epigenetic research. In vertebrates, most CpG di-
nucleotides are dispersed, and the remaining CpGs tend to
cluster in CpG island regions.'® CpG islands, which are
frequently located near gene promoters, participate in the
regulation of gene expression and are associated with
cancer.®® In recent years, several HMM-based CpG island
prediction methods have emerged.

CpG island prediction methods can be categorized into
four main types: window-based, density-based, distance/
length-based, and HMM-based approaches.®” Durbin et al
proposed a specific methodology for applying HMMs to CpG
island prediction." The HMM framework addresses two
central problems in CpG island prediction: determining
whether a short genomic sequence originates from a CpG
island, and identifying CpG islands within long genomic
sequences. For the first problem, two separate HMMs,
model™ and model™, are constructed using sequences with
known CpG and non-CpG islands, respectively. The com-
bined model consists of four hidden states: A*, C*, T*, and
G*. To accommodate sequence length modeling, the start
and end states were incorporated into the HMM structure.
The target regions of model™ were marked as CpG islands,
and those of model™ were marked as non-CpG islands. In
the model™, A", C*, T*, and D™ emit corresponding bases
with a probability of 1, whereas the start and end states do
not emit any symbols. The details of the model™ are the
same as those of model™. Finally, we calculate the score of
a given sequence via the following formula:

. L ar
P(X|CpG island) Z log D1
i=1

Score(X) = logP(X |non_CpG island)= a

Xi—1Xj

Where L is the length of the given sequence, a; . is the
transition probability of model”, and a,, _, is the transition
probability of model™. The larger the score is, the more
likely the sequence is to be a CpG island.

To address the second problem, it is necessary to inte-
grate model™ and model™ to create a new model. This new
model consists of eight states, with each state emitting a
corresponding symbol. These eight states can transition
between each other. After the training set was selected,
the Baum-Welch algorithm was used to estimate the model
parameters, and the Viterbi algorithm was applied to solve
the optimal path.

The UCSC Genome Browser (https://genome.ucsc.edu/)
is the browser most used to download CpG islands.’® The
CpG island data were based on the definitions proposed by
Gardiner-Garden and Frommer. An appropriate algorithm
was designed to search for CpG island regions that met the

criteria to produce the list. The Table Browser tool was
used to download CpG island data in bulk from the Genome
Browser database. The data included information such as
the specific position on the chromosome, length, number of
CpG dinucleotides, GC content, and the O/E ratio. The
most prevalent form of DNA methylation involves the
addition of a methyl group to the 5-position of cytosine
within the 5-C-phosphate-G-3’ (CpG) dinucleotide, a pro-
cess catalyzed by DNA methyltransferases. Methylated
CpGs constitute about 70 %—80 % of all CpG sites in the
human genome.®® In contrast, CpG islands located in the
promoter regions of many highly expressed genes tend to
remain unmethylated.®* The methylation status of CpG
sites in promoter regions is closely associated with gene
expression levels. Aberrant DNA methylation can lead to
cell differentiation and is implicated in various pathological
conditions, including cancer, mental disorders, and devel-
opmental abnormalities.®” DNA methylation primarily reg-
ulates gene expression through neighboring differentially
methylated sites, which collectively form differentially
methylated regions (DMRs). Currently, the two principal
techniques used to assess genome-wide methylation status
are methylation arrays and bisulfite sequencing.”® Many
tools have been developed to detect DMRs based on the
data detected by these two methods. Herein, we introduce
several HMM-based tools for DMR detection.

DMRMark is a free R package on the Comprehensive R
Archive Network (CRAN) that can detect DMRs from
methylation array data based on a non-homogeneous hid-
den Markov model (NHMM). Chen et al developed a method
based on NHMM to detect DMRs from bisulfite paired
sequencing data and provided an R package called BSDMR.
In both the case and control groups, the BDRMR model
performs well in predicting DMRs in paired WGBS data from
patients with colon cancer.”"

Mao et al developed a new algorithm based on HMM to
detect different regions of DNA methylation in MBDCap-seq
data.”? ImaneSaif et al employed an HMM-based algorithm
to predict DNA methylation in the promoter regions of
tumor suppressor genes, aiming to provide early diagnosis
for patients at risk of developing cancer.”

Copy number variation detection

CNV is a type of structural variation in the genome char-
acterized by segments greater than 1 kb in length.®* These
variations result from genomic rearrangements, such as
non-allelic homologous recombination, leading to duplica-
tions or deletions in the genomic structure, which corre-
spond to gains or losses in copy number.?® As a significant
form of genetic variation, CNVs are strongly associated with
various diseases that have substantial impacts on human
health, including neurological disorders, metabolic dis-
eases, and cancer.®® Early detection of CNVs enables the
identification of large-scale DNA sequence alterations in
the genome, providing a critical foundation for the diag-
nosis and treatment of these conditions.

Next-generation sequencing offers a source of data for
the detection of CNVs. Microarray technology can also be
employed in detecting CNVs.”® CNV detection uses signal
intensity data observed by microarrays to determine the
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hidden copy number of each locus in the genome. The three
HMM-based methods commonly used for CNV detection
utilizing log R ratio (LRR) and B allele frequency (BAF) data
from microarrays are QuantiSNP,”” PennCNV,*® and Gen-
oCN.”? These tools, similar to sequence-based approaches,
employ HMMs to classify copy number alterations into three
fundamental states: deletion, normal, and gain. By inte-
grating emission probabilities derived from both LRR and
BAF signals, these methods enable the accurate identifi-
cation and characterization of CNVs across the genome.
Several tools for detecting CNVs are described below.

ExomeDepth is an R package available through CRAN. %1%
It accepts input files in BAM and BED formats and incorporates
GC content correction along with a beta-binomial model to
mitigate noise in CNV detection. There are three principal
approaches for detecting CNVs from short-read sequencing
data: split reads, paired-end reads, and read depth, with the
read depth method proving particularly effective for exome
data. ExomeDepth applies a robust beta-binomial model to
read depth data and constructs an optimized reference
exome set. Each exon is classified into one of three states:
deletion, normal, or duplication. An HMM is then employed to
detect CNVs across multiple exons, with each state transition
corresponding to a specific exon within the human genome.
The Viterbi algorithm was used to call CNVs in the genome.
Blanco-Verea et al used ExomeDepth to detect CNVs in genes
from patients with familial heart disease and reported three
true CNVs in five individuals, namely, myosin heavy chain 11
(MYH11), fibrillin 1 (FBNT), and PDMI7."!

XHMM is a suite of statistical and computational tools
based on HMMs for detecting CNVs from exome sequencing
data.”""%? Given the non-contiguous distribution of exons
across the genome, depth of coverage serves as the primary
source of information for CNV detection. However, noise and
systematic biases complicate the interpretation of coverage
data. XHMM addresses this challenge by employing PCA to
reduce the influence of noise. The tool requires a C++
compiler and takes as input a reference genome in FASTA
format, its corresponding BWA index file, and a list of exome
targets in the "interval-list” format used by GATK. With a
powerful HMM framework, XHMM can automatically call the
copy number robustly and genotype CNVs across all samples.
Lobon et al used XHMM to examine somatic CNVs in Parkin-
son’s disease and reported that these mutations may affect
genes that play a role in synaptic and neuronal processes. %

ExomeCopy (http://www.bioconductor.org/packages/2.
12/bioc/html/exomeCopy.html) is an R package for
detecting copy number variants via HMM. ExomeCopy em-
ploys a negative binomial model to adjust for factors such
as read depth, GC content, and window width, while uti-
lizing an HMM framework to detect CNVs. It accepts BED
and BAM files as input. This method has demonstrated
reliability across various exome enrichment platforms and
in detecting a wide range of CNV types and sizes.'®
Compared with standardized and state-of-the-art segmen-
tation methods, ExomeCopy exhibits greater sensitivity,
particularly in identifying overlapping minority exon dupli-
cations and heterozygous deletions in exome sequencing
data. The tool formulates CNV detection as an optimization
problem of the likelihood function over a limited set of
parameters, thereby eliminating the need for arbitrary
thresholding or preprocessing steps that could potentially

impact downstream analyses. Overall, ExomeCopy is an
excellent tool for detecting CNVs. Ravindran et al used it to
detect CNVs in whole-exon sequencing data from Indian
prostate cancer patients and revealed a new drug target,
DNA polymerase theta (POLQ).'%”

Discussion

The HMM is a statistical model developed from the Markov
chain and was first used in speech recognition.'” HMM was
subsequently introduced into bioinformatics because of its
incredible potential for biological sequence analysis.! The
HMM is underpinned by a robust mathematical foundation
and offers a powerful framework for modeling and analyzing
biological sequences. It effectively captures the inherent
randomness of biological variables while simultaneously
simulating their structural characteristics. With its strong
capacity to model internal dependencies and stochastic
signals, the HMM has proven to be a highly effective tool for
bioinformatics modeling and prediction. It has been suc-
cessfully applied to a wide range of biological challenges,
including transmembrane protein prediction, gene discov-
ery, sequence alignment, CpG island prediction, and CNV
detection. In recent years, HMMs have also been extended to
tackle more complex problems in bioinformatics, such as
modeling metabolic networks'® and integrating multi-omics
data.'” Currently, the HMM is one of the most widely used
methods in bioinformatics, and this review introduces the
concept of the HMM and its application in bioinformatics.

HMMs can generally solve biological problems after a
corresponding specific HMM architecture is designed.
However, capturing higher-level information is challenging
owing to the linear nature of the HMM. For instance, in
protein structure prediction, two residues that are spatially
proximate in the folded conformation may be widely
separated in the linear amino acid sequence. Due to its
inherent linear architecture, the HMM is unable to capture
long-range dependencies, making it insufficient for accu-
rately predicting spatial relationships between distant
residues in folded proteins. Moreover, HMMs require sub-
stantial amounts of data to effectively estimate model
parameters and mitigate the risk of overfitting.

Although the HMM has been extensively utilized in bioin-
formatics, there remains considerable potential for
enhancing its performance and computational efficiency. As
the field of bioinformatics continues to advance rapidly,
emerging research areas and novel problems are continually
introduced, necessitating the development of more sophis-
ticated and adaptable modeling approaches. The HMM
should evolve and adapt to current advancements and
emerging challenges and be combined with other models and
algorithms, such as Bayesian theory,'®® artificial neural
networks,'*>""% and support vector machines.”"" HMM will
likely play a more important role in bioinformatics applica-
tions with the continuous development of science and
technology in the future.
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