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Abstract Big biological data contains a large amount of life science information, yet extract

ing meaningful insights from this data remains a complex challenge. The hidden Markov model 

(HMM), a statistical model widely utilized in machine learning, has proven effective in addres

sing various problems in bioinformatics. Despite its broad applicability, a more detailed and 

comprehensive discussion is needed regarding the specific ways in which HMMs are employed 

in this field. This review provides an overview of the HMM, including its fundamental concepts, 

the three canonical problems associated with it, and the relevant algorithms used for their res

olution. The discussion emphasizes the model’s significant applications in bioinformatics, 

particularly in areas such as transmembrane protein prediction, gene discovery, sequence 

alignment, CpG island detection, and copy number variation analysis. Finally, the strengths 

and limitations of the HMM are discussed, and its prospects in bioinformatics are predicted. 

HMMs can play a pivotal role in addressing complex biological problems and advancing our un

derstanding of biological sequences and systems. This review can provide bioinformatics re

searchers with comprehensive information on HMM and guide their work.
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Introduction

Today, hidden Markov models (HMMs) are distinguished 

among the numerous statistical methods and algorithms 

employed in bioinformatics. HMMs are statistical frame

works designed to represent a Markov process with hidden, 

unobservable states. Owing to their capacity to capture 

dependencies between adjacent symbols, HMMs are inher

ently well-suited for sequence-related analyses and have 

been extensively utilized in bioinformatics applications 

since the 1980s.1

HMMs were initially utilized for protein structure pre

diction, where they demonstrated significant success in 

correctly identifying α-helices and β-barrel configurations in 

transmembrane proteins.2,3 Soon after, HMMs were widely 

adopted for genome annotation and powered gene predic

tion tools such as GENSCAN,4 which continue to exhibit 

strong performance today.5 Furthermore, HMMs were 

extensively applied to multiple sequence alignment and 

form the foundation of the Pfam database.6 With the 

completion of the Human Genome Project and the rapid 

advancement of high-throughput sequencing technologies, 

the availability of large-scale genomic datasets shifted the 

application of HMMs from traditional sequence modeling to 

the interpretation of complex genomic signals.7,8 During this 

period, HMMs found novel applications in Cytosine-guanine 

di-nucleotide (CpG) island prediction9,10 and copy number 

variation (CNV) detection,11,12 further reinforcing their sig

nificance in bioinformatics. In addition, HMMs are well 

suited for genetic mapping,13 phylogenetic analysis,14 and 

signal peptide prediction.15 Despite being such a powerful 

and widely used tool, HMMs still lack a clear and accessible 

introduction that matches their significance in the field.

In this paper, we systematically introduce HMMs, 

including their definitions, the three fundamental prob

lems, and the corresponding algorithms. After outlining the 

core concepts of HMMs, we further examine their applica

tions across five key areas of bioinformatics: trans

membrane protein prediction, gene finding, multiple 

sequence alignment, CpG island prediction, and CNV 

detection, along with the commonly employed tools in each 

domain. Our objective is to offer readers a structured and 

comprehensive understanding of HMMs, thereby fostering a 

deeper appreciation of their underlying principles and 

diverse applications.

Hidden Markov model and the relevant 

concepts

Introduction of the hidden Markov model

HMMs, developed by Baum and associates in the 1960s, are 

statistical models that describe double-embedded stochastic 

processes, in which a hidden Markov chain controls the 

generation of observable data16—18 (Fig. 1). HMMs are widely 

used in modeling sequence data owing to their ability to 

describe complex relationships between hidden and 

observable variables.19 They are based on two key 

assumptions:

Homogeneous Markov property: The state at time t 

depends only on the state at time t — 1, and it is inde

pendent of any previous state or observation.

Observation independence: Observations depend only 

on the current state and are independent of any other state 

or observation.

For an in-depth discussion of the theoretical principles 

and algorithmic approaches of HMMs, readers are directed 

to Vidyasagar’s monograph, Hidden Markov Processes: 

Theory and Applications to Biology (2014). This work is an 

invaluable resource for researchers in systems theory and 

bioinformatics, providing a detailed examination of both 

the theoretical and algorithmic dimensions of HMMs.20

Hidden Markov model parameters

i) State space (Q): The set of all possible states, 

Q � {q1, q2 …, qN}, where N is the number of states.

ii) State sequence (X ): A sequence of states of length T, 

denoted as X � (x1, x2 …, xT).

iii) Observation space (V): The set of all possible 

observable symbols, V � {v1, v2 …, vM}, where M is 

the number of possible symbols.

Figure 1 The two stochastic processes in the hidden Markov model: the generation of hidden states and their corresponding 

observations. The top panel shows the hidden state sequence, whereas the bottom panel represents the observation sequence.
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iv) Observation sequence (O): A sequence of observable 

symbols corresponding to the state sequence, O �

(o1, o2, …, oT).

v) Initial state distribution (π): The probability distri

bution over the states at time t � 1, πi � P (x1 � qi), 

i � 1, 2 …, N.

vi) Transition probability matrix (A): The probabilities 

of transition between states, aij � P (xt+1 � qj | 

xt � qi), resulting in an N × N matrix.

vii) Emission probability matrix (B): The probabilities of 

emitting observable symbols given a state, bj(k) � P 

(ot � vk | xt � qj), forming an N × M matrix.

HMMs offer a robust framework for modeling sequences, 

characterized by the parameter set λ � (A, B, π). The 

hidden state sequence is determined by π and A, whereas 

the observable sequence is governed by B.21

Three basic problems and corresponding algorithms

As a statistical model, the HMM offers robust theoretical 

support for sequence modeling. In practical applications, it 

can address the following three fundamental problems:

i) Evaluation problem

Given an HMM λ � (A, B, π) and an observation sequence 

O � {o1, o2, …, oT}, the likelihood P (O | λ) is calculated, 

which represents the probability of the observation 

sequence under the given model λ. This problem is crucial 

for model evaluation and can be efficiently solved via the 

forward algorithm or its complementary counterpart, the 

backward algorithm.

Forward algorithm

The forward algorithm efficiently calculates P (O | λ) 

(starting from the beginning of the sequence) through dy

namic programming. The method introduces an auxiliary 

variable αt (i) � P (o1, o2, …, ot, xt � qi | λ), which rep

resents the probability of observing a partial sequence of 

emissions o1, o2, …, ot and a state xt � qi at time t. The 

algorithm’s detailed equations are as follows:

i) Initialization:

α1(i)� πi ·bi(o1); i� 1;2; :::;N 

ii) Recursion:

αt+1(j)�

(
∑N

i�1

αt(i)·aij

)

·bj(ot+1); i�1;2; :::;N;

t� 1;2; :::;T − 1 

iii) Termination:

P(O|λ)�
∑N

i�1

αT(i)

Backward algorithm

The backward algorithm computes P (O | λ) by considering 

paths starting from the end of the sequence. The algo

rithm’s detailed equations are as follows:

i) Initialization:

ßT(i)�1; i�1;2; :::;N 

ii) Recursion:

ßt(i)�
∑N

j�1

aij ·bj(ot+1)· ßt+1(j); t�T − 1;T − 2; :::;1 

iii) Termination:

P(O|λ)�
∑N

i�1

πi ·bi(o1)·ß1(i)

ii) Decoding problem

Given λ and O, the most likely hidden state sequence 

X � {x1, x2, …, xT} is determined. This corresponds to 

finding the maximum a posteriori (MAP) estimate of the 

state sequence, which is typically solved using the Viterbi 

algorithm.

Viterbi algorithm

The Viterbi algorithm finds the most likely state sequence 

X*.22,23 This algorithm employs two auxiliary variables, 

δ and Ψ. δt (i) represents the probability of the most 

probable partial path reaching state i at time t. Ψt (i) re

cords the preceding state of i at the end of the locally 

optimal path. Ψt (i) enables the reconstruction of the state 

sequence that yields the highest partial probability δt +1 (i) 

at time t + 1. The algorithm is composed of the following 

four main steps:

i) Initialization:

δ1(i)� πi ·bi(o1); i�1;2; :::;N 

ψ1(i)� 0; i�1;2; :::;N 

ii) Recursion:

δt(i)� max
1≤j≤N

(
δt− 1(j) ·aji

)
·bj(ot); i�1;2; :::;N 

ψt(i)�argmax
1≤j≤N

(
δt− 1(j)·aji

)
; i� 1;2; :::;N 

iii) Termination:

P∗ � max
1≤i≤N

δT(i)

x∗
T �argmax

1≤i≤N
δT(i)

iv) Backtracking:

x∗
t � ψt+1

(
x∗

t+1

)
; t�T − 1;T − 2; :::;1 

The states in the optimal path are obtained by 

backtracking the antecedent states according to the 

variable Ψt (i). Finally, we can obtain the optimal path 

X∗ � (x∗
1 , x∗

2 , …, x∗
T ).

iii) Learning problem

The objective is to estimate the model, specifically the 

two parameters: the transition probability and the emission 

probability. Furthermore, it is assumed that the number of 

states, N, in the underlying HMM is known. The model pa

rameters must be optimized to maximize P (λ | O).
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Supervised learning algorithm

It is assumed that the training data contain both observa

tion and state sequences. In this case, the parameters of 

the HMM are usually estimated based on frequency.

If state i is at time t, state j is at time t+1, and the 

frequency of transitions between states in the sample is Aij. 

The estimation of the state transition probability is esti

mated as follows: 

a
∧

ij �
Aij

∑N

j�1

Aij

; i�1;2; :::;N; j�1;2; :::;N 

Estimation of the observation probability bj(k): If the 

frequency of state j emitting observation k in the sample is 

Bj(k), then the probability of state j emitting observation k 

is as follows: 

b
∧

j(k)�
Bj(k)

∑M

k�1

Bj(k)

; j�1;2; :::;N; k�1;2; :::;M 

The initial state probability πi is estimated as the rela

tive frequency of state qi occurring at the initial position 

across the S samples.

Baum-Welch algorithm for unsupervised learning

When the training data include only observation sequences 

without corresponding state information, algorithms such 

as the Baum-Welch method, a specialized expectation- 

maximization algorithm, are employed.24—26 This algorithm 

iteratively refines parameter estimates to maximize the 

likelihood of the observed data. It alternates between:

i) Expectation step (E-step): Compute the expected suf

ficient statistics for the hidden states using current 

parameters.

ii) Maximization step (M-step): Update the parameters to 

maximize the likelihood.

An illustrative example using boxes and balls is provided 

in the supplementary materials to explain the HMM prob

lems and algorithms in detail.

The application and tools of HMM in bioinformatics

The HMM is a widely utilized modeling approach for linear 

problems, such as time series data and biological sequences. 

Initially applied in the field of speech recognition,19 it has 

proven particularly valuable for modeling biological se

quences.1 Proteins and DNA, as essential biological macro

molecules, are fundamentally represented by sequences. 

Typically, distinct substructures in a biological sequence 

correspond to specific functions, with different functional 

regions often exhibiting unique statistical characteristics. 

This is the statistical foundation underlying the success of 

HMMs and has proven to be very effective in analyzing bio

logical sequences.1 We elaborate on how the three funda

mental problems of HMMs are applied in bioinformatics from 

five application perspectives, and introduce representative 

tools commonly used in each. Details of the tools mentioned 

in the review are shown in the supplementary table.

Transmembrane protein prediction

Transmembrane proteins are a class of proteins that span 

the phospholipid bilayer of cellular membranes and play 

critical roles in various biological processes.27 They func

tion as channels for the transport of ions across membranes 

and serve as targets for numerous drug molecules, including 

those involved in nerve signaling, hormonal regulation, and 

receptor activity.28 The secondary structure of the majority 

of transmembrane proteins is alpha-helical, with beta- 

barrel structures representing a notable exception. These 

beta-barrel transmembrane proteins are currently found 

exclusively in gram-negative bacteria, mitochondria, and 

chloroplasts.29

To understand the specific functions of transmembrane 

proteins, we need to understand their topology, that is, the 

orientation of the transmembrane protein relative to the 

membrane and the number and specific positions of the 

transmembrane segment.30 However, predicting the struc

ture of transmembrane proteins using chemical or physical 

methods remains challenging.31,32 Currently, known trans

membrane protein structures represent only a small frac

tion of entries in the Protein Data Bank.33 Consequently, a 

variety of statistical and bioinformatics approaches for 

transmembrane protein prediction have been developed 

over the past decades.34 Among these, methods based on 

HMMs have demonstrated outstanding performance.35—39

HMMs were initially applied to the prediction of trans

membrane proteins. This is a standard decoding problem 

that can be solved by the Viterbi algorithm in HMMs (Fig. 2). 

First, the structural states of a transmembrane protein 

need to be defined. According to its position relative to the 

cell membrane, a transmembrane protein can be simply 

divided into three states: Outside (O), Membrane (M), and 

Inside (I). In this way, it can be transformed into a hidden 

Markov process, namely, the hidden transmembrane pro

tein position sequence and the visible amino acid obser

vation sequence. Unlike other parts outside the membrane, 

the transmembrane segments of transmembrane proteins 

are hydrophobic. Therefore, amino acid residues with 

stronger hydrophobicity are more preferred to occur in the 

transmembrane segments. This provides a statistical basis 

for the recognition of transmembrane proteins. After 

evaluating the parameters of the HMM, the Viterbi algo

rithm can be used to identify the optimal state path of a 

new transmembrane protein.

HMMTOP is a powerful transmembrane protein predic

tion server that performs well in multiple comparisons with 

similar tools.40,41 Owing to its powerful properties, 

HMMTOP is one of the most used prediction tools in trans

membrane protein-related studies. For example, Shao et al 

used HMMTOP2.0 to predict the transmembrane helical 

regions in the atomic models of the small capsid proteins 

P16, P17, and P18.42 Jiang et al used HMMTOP to predict the 

protein motifs of Cowpea mild mottle virus TGBp2 and re

ported that TGBp2 has two transmembrane domains near 

the N-terminus and C-terminus.2

HMM-TM (http://bioinformatics.biol.uoa.gr/HMM-TM) is 

a method for predicting transmembrane alpha-helical pro

teins that allows the integration of experimentally vali

dated prior topological information specific to the 
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sequences under analysis.35 Compared with HMMTOP, HMM- 

TM introduces enhancements to the prediction algorithm by 

incorporating precise positional information for segments 

of the predicted sequence, while maintaining the proba

bilistic framework essential for HMM decoding. Addition

ally, HMM-TM supports TMRPres2D, the Transmembrane 

Protein Re-Presentation in 2 Dimensions tool, which facili

tates the automated generation of standardized, high-res

olution two-dimensional graphical representations of 

alpha-helical transmembrane proteins.43

HMMpTM (http://bioinformatics.biol.uoa.gr/HMMpTM) is 

a transmembrane protein topology prediction tool based on 

HMM that combines post-translational modification and 

topology prediction of alpha-helical transmembrane pro

teins.44 Phosphorylation and glycosylation are the most 

common post-translational modifications in eukaryotes45

and occur in a specific manner in cells. In transmembrane 

proteins, glycosylation sites are usually located in the 

extramembrane space, whereas phosphorylation sites are 

located in the cytoplasmic region. Therefore, glycosylation 

and phosphorylation sites provide valuable information for 

predicting the orientation of transmembrane proteins 

relative to their membrane.46 Although HMMpTM was orig

inally developed to predict the topological structure of 

transmembrane proteins, its capacity to identify phos

phorylation and glycosylation sites is also noteworthy. Sara 

Savage et al classified HMMpTM as a predictive tool for 

phosphorylation sites and kinase substrates.47 Tri

antaphyllopoulos et al employed HMMpTM not only to pre

dict transmembrane topology but also to identify potential 

phosphorylation and glycosylation sites in solute carrier 

family 11 A1 (SLC11A1).48

Currently, due to the absence of transmembrane helix 

predictors, signal peptides are frequently misidentified as 

transmembrane helices.3,49,50 This misprediction occurs 

because both transmembrane and signal peptide regions 

are characterized by the hydrophobicity of their residues, 

which is highly similar in both regions.51 Phobius 

(https://phobius.sbc.su.se/) is a combined predictor of 

transmembrane helices and signal peptides that is based 

on the HMM, which can overcome this limitation. In a 

recent study, Tirincsi et al used Phobius to predict the 

topological structure of a protein. They reported that the 

targeting receptor hSnd2 contains four transmembrane 

helices, with both the N-terminus and C-terminus in the 

cytosol.52

Beta-barrel proteins are more difficult to predict topo

logically than are alpha-helices. Although these methods 

have not been the focus of computational methods, they 

play important roles in bacteria, chloroplasts, and mito

chondria.53 PRED-TMBB (http://bioinformatics.biol.uoa.gr/ 

PRED-TMBB) is the first freely accessible HMM-based tool for 

predicting the topology of beta-barrel outer membrane 

proteins.54,55 In addition, Hayat et al56 and Tsaousis57

developed other HMM-based methods aimed at predicting 

beta-barrel transmembrane proteins.

Gene finding

With the successful completion of the Human Genome 

Project58 and advances in sequencing technology, many 

measured but unannotated DNA sequences are generated 

daily. Efficient and accurate computational techniques 

are essential for annotating DNA sequences.59 Gene 

identification, a key challenge in genome annotation, 

involves detecting coding regions or genes within the 

sequenced DNA. After this problem is solved, further 

specific functional annotation of the genome can be 

performed.60

Given the observed sequence of a protein-coding gene, 

we employed an HMM to predict the positions of exons, 

introns, and other critical functional regions and loci. This 

is also a decoding problem within the HMM framework, as 

the locations of these functional elements are not directly 

observable from the sequence. As shown in Figure 3A, 

eukaryotic genes are composed of coding and noncoding 

regions. Coding regions mainly contain exons and introns. 

Noncoding regions contain specific sequences and sites that 

play important roles in gene expression, such as enhancers, 

Figure 2 The decoding problem and Viterbi algorithm in 

transmembrane prediction. The amino acid sequence of the 

transmembrane protein and its corresponding positions on the 

cell membrane are transformed into a hidden Markov process. 

After evaluating the parameters, the Viterbi algorithm is used 

to identify the optimal state sequence.
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promoters, terminators, transcription start sites, and 

transcription termination sites. After outlining the struc

ture of eukaryotic genes, HMM is employed for their pre

diction, with the detailed process depicted in Figure 3B. In 

Figure 3C, each rectangle, diamond, or circle represents a 

functional unit (state) of a gene or genomic region, 

including the intergenic region, promoter, terminator, 5′

untranslated region, 3′ untranslated region, start codon, 

stop codon, Einit initial exon, Ek (k � 1, 2, …) internal exon, 

Eterm terminal exon, and Ik (k � 1, 2, …) introns.

We developed a specialized HMM submodel for the coding 

region (Fig. 3D), in which each square and circle denotes a 

hidden state, with the accompanying labels indicating their 

respective biological annotations. Each state can emit one 

Figure 3 An example of a hidden Markov model (HMM). (A) Schematic diagram of eukaryotic gene structure. (B) The overall 

process of using the HMM to predict eukaryotic genes. (C) HMM architecture for predicting eukaryotic genes. (D) The submodel of 

the coding region.
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of the four bases, A, C, T, or G, and its emission probability 

is indicated above it. The three yellow hidden states 

correspond to the start codon, which is ATG in eukaryotes; 

hence, they are labeled A, T, and G. The green hidden 

states represent exons, while the blue hidden states denote 

stop codons. Since mRNA is translated by codons comprising 

three bases, each codon encodes a specific amino acid. In 

the exon region, we further illustrate that the codon unit 

and the hidden states representing exons in the model form 

a cyclic structure. The red hidden state corresponds to an 

intron, characterized by a self-loop transition. The states 

labeled 5 and 3 represent the 5′ and 3′ splice sites, 

respectively. The start and end states do not emit any 

bases, but they are incorporated to complete the model 

structure. The hidden state sequence and state path are 

displayed below in Figure 3D.

GENSCAN (http://argonaute.mit.edu/GENSCAN.html) is 

an HMM-based program for the genetic prediction of the 

position and exon-intron structure of genes in genomic se

quences from a variety of organisms.4,61 Additionally, it 

takes into account the significant variations in gene density 

and structure across different GC compositional regions of 

the human genome. GenScan employs a generalized hidden 

Markov model (GHMM)62 (where the state represents an 

arbitrary sub-model of the output variable length sequence) 

to create distinct sub-models tailored to the unique char

acteristics of each gene region. Each state can generate 

observations of a specific length based on a given probability 

distribution, greatly enhancing the accuracy and reliability 

of the predictions. As one of the most widely used gene- 

prediction tools, its results are highly precise.63,64 GEN

ESCAN has been used to predict the gene structure of Pop

ulus euphratica5 and Xingguo gray goose genes.65

AUGUSTUS (http://bioinf.uni-greifswald.de/augustus/) 

predicts genes in eukaryotic genomic sequences based on a 

GHMM.60,66,67 It features a flexible mechanism for inte

grating external information, such as EST alignments and 

protein alignments, which can significantly enhance the 

accuracy of prediction results.68 It is powerful and has 

collaborated with many genome researchers.69,70 For 

example, Srivastava et al used AUGUSTUS to annotate 

protein-coding genes in Amphimedon queenslandica, 

helping explain the complexity of animal evolution.71

GeneMark (http://opal.biology.gatech.edu/GeneMark/ 

) is a suite of gene prediction programs designed for the 

analysis of prokaryotic, eukaryotic, and viral genomic se

quences.72 It enables accurate and efficient identification 

of genes within genomic DNA. GeneMark has been 

predominantly utilized for annotating prokaryotic ge

nomes and played a pivotal role in the annotation of the 

first fully sequenced bacterial genome, Haemophilus 

influenzae, as well as the archaeal genome of Meth

anococcus jannaschii.

HMMGene (https://services.healthtech.dtu.dk/ 

services/HMMgene-1.1/) is a program for the prediction of 

genes in anonymous DNA via HMM1 and is mainly used for 

vertebrate and Caenorhabditis elegans gene prediction.73

Krogh et al used the HMMGene gene finder to annotate the 

3 MB Adh region of Drosophila melanogaster and reported 

that database matching significantly improved the perfor

mance of the gene finder.74

Sequence alignment

Sequence alignment forms the foundation of sequence 

analysis and is one of the most fundamental and crucial 

techniques in bioinformatics. The goal of sequence align

ment is to identify the maximum number of matching res

idues between two or more sequences using mathematical 

models or algorithms. The results of this comparison reflect 

the similarity between the sequences and their biological 

characteristics. Evolutionary theory serves as the theoret

ical basis for sequence alignment. Numerous biological 

observations demonstrate that different nucleic acid and 

protein sequences may have originated from a common 

sequence and evolved independently through genetic 

variation of residues. As a result, determining whether an 

organism’s sequence belongs to a specific family is a com

mon analysis in multiple sequence alignment.75 Sequence 

alignment can also identify conserved sequence fragments 

associated with structure and can be used for protein 

functional domain identification,76 secondary structure 

prediction,77 and phylogenetic analysis.78

HMMs have an outstanding performance in the recogni

tion of protein families. This exactly corresponds to the 

learning problem of HMMs, and it can be perfectly solved 

using the Baum-Welch algorithm (Fig. 4A). After collecting 

the known sequences of protein family A, through multiple 

sequence alignment, the conserved positions of the se

quences belonging to the same protein family can be 

identified, and the statistical characteristics of the protein 

family can be constructed, which provides a basis for the 

subsequent construction of HMMs. The model parameters 

are estimated using the Baum-Welch algorithm, which is a 

form of the expectation-maximization algorithm. This al

gorithm first needs to initialize the parameters of the 

model, and then uses the method of maximizing expecta

tions to continuously iterate the parameters of the model 

until the model stabilizes. Through the above operations, 

an HMM exclusive to protein family A can be obtained, 

which has a strong recognition ability for sequences 

belonging to protein family A.

After the HMM construction of protein family A is 

completed, in the face of a new set of unrecognized se

quences, it is an evaluation problem to determine which 

sequences belong to protein family A. These sequences are 

input into the constructed HMM, and each sequence is 

scored through the forward algorithm. After setting a 

threshold, it is possible to determine which sequences 

belong to protein family A and which do not (Fig. 4B).

The HMMER web server (http://www.ebi.ac.uk/Tools/ 

hmmer) is a collaborative project between the HMMER al

gorithm developers, led by Sean Eddy of Harvard University, 

and the HMMER Web Services team led by Rob Finn of EMBL- 

EBI. HMMER performs sequence homology searches in 

sequence databases and alignments using profile-hidden 

Markov models. Commonly used in conjunction with data

bases such as Pfam, HMMER facilitates sequence queries 

similar to those conducted with BLAST. The tool offers four 

search algorithms―phmmer, hmmscan, hmmsearch, and 

jackhmmer―each with distinct query and target database 

configurations. These algorithms allow users to define 

two types of thresholds: significance and reporting cut-offs. 
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By inputting a sequence in FASTA format or uploading a file, 

users can select the target databases for the search. The 

output includes visual representations of sequence 

matches, annotated features, and the distribution of 

significant hits. HMMER supports searches across a wide 

range of target databases and integrates cross-referencing 

with resources hosted by EMBL-EBI. Additionally, it 

provides a comprehensive application programming inter

face and a dedicated category viewer for enhanced user 

interaction.6,79,80

Pfam (http://pfam.xfam.org/) is a database of protein 

family collections, each of which is represented by multiple 

sequence alignments and HMMs. A protein molecule com

prises multiple structurally specific and functionally 

distinct regions, which serve as the fundamental units of 

protein functional domains. The function of a protein is 

determined by the combination of its domains, and proteins 

sharing the same domain typically belong to the same 

family. In this database, protein families are classified into 

families, clans, and proteomes. A clan refers to a group of 

families that share similar three-dimensional structures or 

common motifs. Proteomes provide comprehensive infor

mation on all protein families within a given species. Pfam 

consists of two primary components. The first part, Pfam-A, 

contains curated families, and each family has a related 

profile HMM that can be used for sequence alignment and 

database search. The protein family in each Pfam-A con

sists of four elements: i) annotation, ii) seed alignment, iii) 

profile HMM, and iv) complete alignment. To make Pfam 

more comprehensive, sequences not included in Pfam-A 

were automatically clustered in the second part, Pfam-B, 

via the Domainer algorithm. The Pfam database, version 

37.1, contains 23,794 families and 751 clans.81—83

CpG island detection

CpG sites are regions in the DNA sequence where guanine 

follows cytosine in the linear arrangement of nucleotides 

Figure 4 Applications of the learning and evaluation problems in protein family identification. (A) The learning problem and the 

Baum-Welch algorithm are used in constructing the hidden Markov model (HMM) of protein family A. After discovering the statistical 

characteristics of protein family A through multiple sequence alignment, the parameters were obtained with the help of the Baum- 

Welch algorithm to construct the HMM of protein family A. (B) The evaluation problem and forward algorithm are used in the 

identification of protein family A. A set of sequences is input into the HMM of protein family A, and each sequence is scored to 

determine whether it belongs to protein family A.
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from the 5′ to 3′ direction. In mammals, CpG exists in two 

forms: one is dispersed throughout the DNA sequence, while 

the other is highly concentrated, referred to as CpG 

islands.10 In 1987, Gardiner-Garden and Frommer first 

described and defined CpG islands in detail. CpG islands have 

three main characteristics: i) they are more than 200 bp in 

length; ii) the GC content is more than 50%; and iii) the ratio 

of actual CpG content to expectations (ObsCpG/ExpCpG) is 

greater than 0.6.84 In 2002, Takai and Jones revised the 

definition as follows: the length should be more than 500 bp, 

the GC content should not be less than 55%, and the actual 

CpG content-to-expected ratio should be more than 0.65.85

CpGs have many important biological functions. It is a 

target of DNA methylation and is the main object of 

epigenetic research. In vertebrates, most CpG di

nucleotides are dispersed, and the remaining CpGs tend to 

cluster in CpG island regions.10 CpG islands, which are 

frequently located near gene promoters, participate in the 

regulation of gene expression and are associated with 

cancer.86 In recent years, several HMM-based CpG island 

prediction methods have emerged.

CpG island prediction methods can be categorized into 

four main types: window-based, density-based, distance/ 

length-based, and HMM-based approaches.87 Durbin et al 

proposed a specific methodology for applying HMMs to CpG 

island prediction.1 The HMM framework addresses two 

central problems in CpG island prediction: determining 

whether a short genomic sequence originates from a CpG 

island, and identifying CpG islands within long genomic 

sequences. For the first problem, two separate HMMs, 

model+ and model—, are constructed using sequences with 

known CpG and non-CpG islands, respectively. The com

bined model consists of four hidden states: A+, C+, T+, and 

G+. To accommodate sequence length modeling, the start 

and end states were incorporated into the HMM structure. 

The target regions of model+ were marked as CpG islands, 

and those of model− were marked as non-CpG islands. In 

the model+, A+, C+, T+, and D+ emit corresponding bases 

with a probability of 1, whereas the start and end states do 

not emit any symbols. The details of the model− are the 

same as those of model+. Finally, we calculate the score of 

a given sequence via the following formula: 

Score(X)� log
P(X|CpG island)

P(X|non CpG island)
�
∑L

i�1

log
a+

xi− 1xi

a−
xi− 1xi 

Where L is the length of the given sequence, a+
xi− 1xi 

is the 

transition probability of model+, and a−
xi− 1xi 

is the transition 

probability of model− . The larger the score is, the more 

likely the sequence is to be a CpG island.

To address the second problem, it is necessary to inte

grate model+ and model— to create a new model. This new 

model consists of eight states, with each state emitting a 

corresponding symbol. These eight states can transition 

between each other. After the training set was selected, 

the Baum-Welch algorithm was used to estimate the model 

parameters, and the Viterbi algorithm was applied to solve 

the optimal path.

The UCSC Genome Browser (https://genome.ucsc.edu/) 

is the browser most used to download CpG islands.10 The 

CpG island data were based on the definitions proposed by 

Gardiner-Garden and Frommer. An appropriate algorithm 

was designed to search for CpG island regions that met the 

criteria to produce the list. The Table Browser tool was 

used to download CpG island data in bulk from the Genome 

Browser database. The data included information such as 

the specific position on the chromosome, length, number of 

CpG dinucleotides, GC content, and the O/E ratio. The 

most prevalent form of DNA methylation involves the 

addition of a methyl group to the 5-position of cytosine 

within the 5′-C-phosphate-G-3’ (CpG) dinucleotide, a pro

cess catalyzed by DNA methyltransferases. Methylated 

CpGs constitute about 70 %—80 % of all CpG sites in the 

human genome.88 In contrast, CpG islands located in the 

promoter regions of many highly expressed genes tend to 

remain unmethylated.84 The methylation status of CpG 

sites in promoter regions is closely associated with gene 

expression levels. Aberrant DNA methylation can lead to 

cell differentiation and is implicated in various pathological 

conditions, including cancer, mental disorders, and devel

opmental abnormalities.89 DNA methylation primarily reg

ulates gene expression through neighboring differentially 

methylated sites, which collectively form differentially 

methylated regions (DMRs). Currently, the two principal 

techniques used to assess genome-wide methylation status 

are methylation arrays and bisulfite sequencing.90 Many 

tools have been developed to detect DMRs based on the 

data detected by these two methods. Herein, we introduce 

several HMM-based tools for DMR detection.

DMRMark is a free R package on the Comprehensive R 

Archive Network (CRAN) that can detect DMRs from 

methylation array data based on a non-homogeneous hid

den Markov model (NHMM). Chen et al developed a method 

based on NHMM to detect DMRs from bisulfite paired 

sequencing data and provided an R package called BSDMR. 

In both the case and control groups, the BDRMR model 

performs well in predicting DMRs in paired WGBS data from 

patients with colon cancer.91

Mao et al developed a new algorithm based on HMM to 

detect different regions of DNA methylation in MBDCap-seq 

data.92 ImaneSaif et al employed an HMM-based algorithm 

to predict DNA methylation in the promoter regions of 

tumor suppressor genes, aiming to provide early diagnosis 

for patients at risk of developing cancer.93

Copy number variation detection

CNV is a type of structural variation in the genome char

acterized by segments greater than 1 kb in length.94 These 

variations result from genomic rearrangements, such as 

non-allelic homologous recombination, leading to duplica

tions or deletions in the genomic structure, which corre

spond to gains or losses in copy number.95 As a significant 

form of genetic variation, CNVs are strongly associated with 

various diseases that have substantial impacts on human 

health, including neurological disorders, metabolic dis

eases, and cancer.94 Early detection of CNVs enables the 

identification of large-scale DNA sequence alterations in 

the genome, providing a critical foundation for the diag

nosis and treatment of these conditions.

Next-generation sequencing offers a source of data for 

the detection of CNVs. Microarray technology can also be 

employed in detecting CNVs.96 CNV detection uses signal 

intensity data observed by microarrays to determine the 
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hidden copy number of each locus in the genome. The three 

HMM-based methods commonly used for CNV detection 

utilizing log R ratio (LRR) and B allele frequency (BAF) data 

from microarrays are QuantiSNP,97 PennCNV,98 and Gen

oCN.99 These tools, similar to sequence-based approaches, 

employ HMMs to classify copy number alterations into three 

fundamental states: deletion, normal, and gain. By inte

grating emission probabilities derived from both LRR and 

BAF signals, these methods enable the accurate identifi

cation and characterization of CNVs across the genome. 

Several tools for detecting CNVs are described below.

ExomeDepth is an R package available through CRAN.12,100

It accepts input files in BAM and BED formats and incorporates 

GC content correction along with a beta-binomial model to 

mitigate noise in CNV detection. There are three principal 

approaches for detecting CNVs from short-read sequencing 

data: split reads, paired-end reads, and read depth, with the 

read depth method proving particularly effective for exome 

data. ExomeDepth applies a robust beta-binomial model to 

read depth data and constructs an optimized reference 

exome set. Each exon is classified into one of three states: 

deletion, normal, or duplication. An HMM is then employed to 

detect CNVs across multiple exons, with each state transition 

corresponding to a specific exon within the human genome. 

The Viterbi algorithm was used to call CNVs in the genome. 

Blanco-Verea et al used ExomeDepth to detect CNVs in genes 

from patients with familial heart disease and reported three 

true CNVs in five individuals, namely, myosin heavy chain 11 

(MYH11), fibrillin 1 (FBN1), and PDMI7.11

XHMM is a suite of statistical and computational tools 

based on HMMs for detecting CNVs from exome sequencing 

data.101,102 Given the non-contiguous distribution of exons 

across the genome, depth of coverage serves as the primary 

source of information for CNV detection. However, noise and 

systematic biases complicate the interpretation of coverage 

data. XHMM addresses this challenge by employing PCA to 

reduce the influence of noise. The tool requires a C++

compiler and takes as input a reference genome in FASTA 

format, its corresponding BWA index file, and a list of exome 

targets in the “interval-list” format used by GATK. With a 

powerful HMM framework, XHMM can automatically call the 

copy number robustly and genotype CNVs across all samples. 

Lobon et al used XHMM to examine somatic CNVs in Parkin

son’s disease and reported that these mutations may affect 

genes that play a role in synaptic and neuronal processes.103

ExomeCopy (http://www.bioconductor.org/packages/2. 

12/bioc/html/exomeCopy.html) is an R package for 

detecting copy number variants via HMM. ExomeCopy em

ploys a negative binomial model to adjust for factors such 

as read depth, GC content, and window width, while uti

lizing an HMM framework to detect CNVs. It accepts BED 

and BAM files as input. This method has demonstrated 

reliability across various exome enrichment platforms and 

in detecting a wide range of CNV types and sizes.104

Compared with standardized and state-of-the-art segmen

tation methods, ExomeCopy exhibits greater sensitivity, 

particularly in identifying overlapping minority exon dupli

cations and heterozygous deletions in exome sequencing 

data. The tool formulates CNV detection as an optimization 

problem of the likelihood function over a limited set of 

parameters, thereby eliminating the need for arbitrary 

thresholding or preprocessing steps that could potentially 

impact downstream analyses. Overall, ExomeCopy is an 

excellent tool for detecting CNVs. Ravindran et al used it to 

detect CNVs in whole-exon sequencing data from Indian 

prostate cancer patients and revealed a new drug target, 

DNA polymerase theta (POLQ).105

Discussion

The HMM is a statistical model developed from the Markov 

chain and was first used in speech recognition.19 HMM was 

subsequently introduced into bioinformatics because of its 

incredible potential for biological sequence analysis.1 The 

HMM is underpinned by a robust mathematical foundation 

and offers a powerful framework for modeling and analyzing 

biological sequences. It effectively captures the inherent 

randomness of biological variables while simultaneously 

simulating their structural characteristics. With its strong 

capacity to model internal dependencies and stochastic 

signals, the HMM has proven to be a highly effective tool for 

bioinformatics modeling and prediction. It has been suc

cessfully applied to a wide range of biological challenges, 

including transmembrane protein prediction, gene discov

ery, sequence alignment, CpG island prediction, and CNV 

detection. In recent years, HMMs have also been extended to 

tackle more complex problems in bioinformatics, such as 

modeling metabolic networks106 and integrating multi-omics 

data.107 Currently, the HMM is one of the most widely used 

methods in bioinformatics, and this review introduces the 

concept of the HMM and its application in bioinformatics.

HMMs can generally solve biological problems after a 

corresponding specific HMM architecture is designed. 

However, capturing higher-level information is challenging 

owing to the linear nature of the HMM. For instance, in 

protein structure prediction, two residues that are spatially 

proximate in the folded conformation may be widely 

separated in the linear amino acid sequence. Due to its 

inherent linear architecture, the HMM is unable to capture 

long-range dependencies, making it insufficient for accu

rately predicting spatial relationships between distant 

residues in folded proteins. Moreover, HMMs require sub

stantial amounts of data to effectively estimate model 

parameters and mitigate the risk of overfitting.

Although the HMM has been extensively utilized in bioin

formatics, there remains considerable potential for 

enhancing its performance and computational efficiency. As 

the field of bioinformatics continues to advance rapidly, 

emerging research areas and novel problems are continually 

introduced, necessitating the development of more sophis

ticated and adaptable modeling approaches. The HMM 

should evolve and adapt to current advancements and 

emerging challenges and be combined with other models and 

algorithms, such as Bayesian theory,108 artificial neural 

networks,109,110 and support vector machines.111 HMM will 

likely play a more important role in bioinformatics applica

tions with the continuous development of science and 

technology in the future.
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