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1. Introduction

The fluctuation theorem refers to a set of exact relations describing the statistical
mechanics of systems away from equilibrium, generically expressed by the formula

p(+¥) >
p(=%) @

Here p(X) is the distribution of observed values of a quantity representing dissipation
or entropy production. The fluctuation theorem was originally formulated for non-
conservative forces but autonomous dynamics [1]-[5], such as a fluid subject to constant
shear, or a charged particle pushed through a thermal environment by a constant external
field. Related results have also been derived for the case of non-autonomous dynamics [6]—
[14], in which the system of interest is driven away from a stationary state by the external
forcing of a work parameter, as when a piston is pushed into a gas of particles. For further
extensions and unifying frameworks see [15]-[23], and for reviews, see [24]-[27].

In the current paper we present an exposition of transient fluctuation theorems within
the path-integral formalism of Langevin dynamics. We consider two distinct mechanisms
for achieving nonequilibrium behaviour: non-conservative forces (explicit violation of
detailed balance), and non-autonomous dynamics (external forcing), and we distinguish
the contributions that each of these factors makes to the fluctuation theorem. We will
show that when both mechanisms are present, the definition of ¥ is not unique, and there
arise two distinct fluctuation theorems.

In the following two sections, we specify the general class of Langevin dynamics we
consider in this paper, first using the Fokker—Planck formalism (section 2), then in the
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path-integral representation (section 3). In section 4 we derive a fluctuation theorem,
equation (43), by comparing the evolution of our system during a forward process (as an
external parameter is varied from an initial value A to a final value B) to its evolution
during the corresponding reverse process (B — A). In section 5 we obtain a different
fluctuation theorem, equation (51), by considering the effect of reversing not only the
protocol for varying the external parameter, but also the underlying dynamics. In section 6
we discuss physical interpretations of the quantities appearing in our results, and in
section 7 we illustrate these results using a simple model system with two degrees of
freedom. Finally, in section 8 we discuss the integrated fluctuation theorems that follow
immediately from equations (43) and (51); we present an alternative derivation of these
integrated results, which in turn leads to an extension of the fluctuation theorems derived
in sections 4 and 5.

2. Stochastic modelling and definitions

Consider an overdamped classical system described by the stochastic differential equation,

d
% = Bl A) + &Gt ), (2)
where x;, with ¢« = 1,..., N, denote a set of dynamical variables, and A\ represents

an externally controlled parameter. F' represents the deterministic component of the
dynamics; the stochastic component & is a d-correlated noise field, whose mean is zero
and whose pair correlation function is

(&i(0)&; (1)) = Gyo(t = 1), (3)

where G(x;\) is a symmetric, positive definite matrix. Equation (2) can be viewed
as the A — 0 limit of a Markov process with discrete time steps tx 1 — tx = A. In
the appendix, we specify this limiting procedure, and show that an ensemble of systems
governed by equation (2) is described by a probability density p(x,t), evolving under the
Fokker—Planck equation

I _ O'(F, Lo (p)] =

T (Fip) + 50" [Gi(9"p)] = Lap. (4)
Summation over repeated indices is implied. As the notation indicates, the Fokker—Planck
operator L) depends explicitly on the parameter A\. Throughout this paper we will assume
that when A is held fixed, p relaxes exponentially to a unique stationary distribution

P (x; A) = exp [—p(x; N)], (5)
hence
Lyexp|[—p(x;N)] =0 (6)

and all other eigenvalues of £, are negative and bounded away from zero.
For fixed A, the dynamics are specified by the vector field F' and the matrix field G.
Now let I'(z; \) denote the matrix inverse of G(z; \), i.e. "G}, = ¢}, and consider two
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vector fields, v(x; ) and A(x; \):
i )
vl = 2TV F, (7)

A" =" + 0. (8)
These will play an important role in the following analysis. In terms of v, equation (4)
becomes

dp

ot
where J(z,t) = (1/2)G(v — V)p is the current density. Substituting p = p® = e™%, we
get the stationary current density*:

50 [Gul? — )] = ', (9)

Ji (@) = 1GAe ™ = [F+1G; (8p)] e7?. (10)
This current is divergenceless:

oIS =0. (11)
If v can be written as the gradient of a scalar field, v(z;\) = —VU(x;\), then the

stationary state is p° oc eV, as seen by inspection of equation (9). It then follows

from equation (8) that A = 0, which in turn implies a vanishing stationary current,
J% = 0 (equation (10)). In this situation we say that the forces acting on the system are
conservative, or equivalently that detailed balance is satisfied, and we interpret p° oc eV
as an equilibrium (canonical) distribution. By contrast, if v # —V U, then the forces are
non-conservative, detailed balance is violated, and A, J* # 0. We will thus view A as an
indicator that distinguishes between conservative (A = 0) and non-conservative (A # 0)
forces.

Another important distinction is that between autonomous and non-autonomous
dynamics. The former refers to the situation in which we observe the evolution of the
system with A held fixed, while the latter denotes the case when the parameter is varied
externally according to some schedule ;.

Throughout this paper we will consider processes during which the system evolves
over a time interval —7 < t < +7, and we will generally assume that initial conditions
are sampled from the stationary state:

p(x, —7) = exp [—p(z; A-)] (12)

(See however the end of section 6 as well as [17, 18] for discussions of more general initial
conditions.) If the forces are conservative and the dynamics autonomous, then the system
remains in equilibrium over the interval of observation: p(x,t) o< exp[—U(x; Mixed)]-
However, if we have either non-conservative forces or non-autonomous dynamics, or both,
then we achieve nonequilibrium behaviour, for which fluctuation theorems can be derived.

Finally, rearranging equation (10) to express F as a function of G, ¢, and J*, we
can rewrite the Fokker—Planck operator explicitly in terms of the stationary density and
current:

Lap=—0 (J3efp) — L0 [Giye 29 (e9p)] . (13)

2

* For a Brownian particle in one dimension, analogues of our equations (10) and (8) are given by equations (2)
and (3) of [28].

doi:10.1088,/1742-5468 /2006 /08 /P03001 4


http://dx.doi.org/10.1088/1742-5468/2006/08/P08001

Path-integral analysis of fluctuation theorems for general Langevin processes

Figure 1. Depiction of the illustrative model described in the text. The point r
is the location of a Brownian particle inside a harmonic well, kq?/2, centred at

7). The grey arrow represents the angular drift force f (q)@, also centred at ).

By considering various choices of (divergenceless) J*°, while keeping G' and ¢ fixed, we
explore a family of stochastic dynamics with a common stationary density but different
stationary currents. If £, corresponds to a given choice of {J°, ¢, G}, then we will use
the notation £, to denote the Fokker—Planck operator corresponding to {—J% o,G}. By
equation (10), the deterministic component of the dynamics associated with L, is given by

Fy=—F —G;¥p. (14)

Using the path-integral formalism discussed in the following sections (equation (48) in
particular) it is straightforward to establish that

Py(x', At|lz)p® () = Py(z, Atja)p®(x) (15)

for any At > 0, where P, and P, are transition probabilities associated with the dynamics
generated by £, and L, respectively. Recognizing each side as a joint probability for
observing a pair of events (separated by a time interval At) in the stationary state,
equation (15) is interpreted as follows: if we generate an infinitely long trajectory using
the dynamics £, and we then replace this trajectory by its time-reversed image, x; — x_,
then the new trajectory will be statistically indistinguishable from a trajectory generated
by L. In particular the two trajectories will be characterized by the same stationary
density, p°, but opposite currents, £J°. When two stochastic dynamics are related by
equation (15), we say that the one is the reversal [29], or the p°-dual [30], of the other.
This natural pairing of Fokker—Planck operators (L, EA)\) will play an important role in
section 5, where the analysis is very similar to that carried out by Crooks for discrete-time
Markov processes [12]. Note that £, = £, when J° = 0; in this case equation (15) is just
the familiar statement of detailed balance associated with conservative forces.

As a simple illustrative model, shown in figure 1, consider a particle in two dimensions,
r = (z,y), with

k 1 A 2
F(r;)\) = —?1 + §f(Q)9, Gij(r;\) = ;51']‘- (16)

Here g = r — 7, is the displacement of the particle relative to a point ), = (A, 0); and the
unit vector 6 is normal (oriented 90° counterclockwise) to the unit vector ¢ = q/q. When
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f =0, equation (16) describes a Brownian particle in a harmonic well centred at 7y, with
spring constant k > 0, friction coefficient v > 0, and temperature kg7 = 1. When f(q)
is positive (negative), this particle experiences an additional counterclockwise (clockwise)
drift around the point 7. For this model, we have®:

pSoce A= ()8, JS:%f(q)ée*"- (17)

Thus the stationary state is characterized by a Gaussian distribution, p°, and an average
angular drift around the point ry. If £, denotes the Fokker-Planck operator for a given
choice of k, 7, and f(q), then L, is obtained by reversing the direction of the angular
drift:

Ly ko tf@) = Ly ko —f) (18)

We will use this model in section 7 to illustrate the central results of this paper.

3. Path integral formalism

The main theoretical tool that we will use in this paper is the path-integral representation
of Langevin dynamics [31,32]. Let X = {x;}77 denote a trajectory that specifies the
evolution of the system from —7 to +7. When A is held fixed, the conditional probability
of observing this trajectory, given the initial microstate x_,, is

+T7

Py [X|x_.] = Nexp {—/ dt Sy (e, T4 A) (19)

Si(m,i; \) = 3(# — F)IY(d; — F) + $0°F. (20)
As discussed in the appendix, the continuous-time integral in equation (19) is interpreted
as the limit of a discrete sum, using mid-point (Stratonovich) discretization.
Imagine that the system evolves as ) is varied externally from an initial value A\ =

to a final value )\ET = B, according to a schedule, or protocol, \Y'. We refer to this as the
forward process, indicated by the superscript F. During this process, the system satisfies

d

dt
The conditional probability of observing a trajectory X is obtained by a straightforward
generalization of equation (19):

1
2

vy = Fi(a; ) + &t 25 A)). (21)

+T
P [X|w_] = Nexp {— [ as )| (22)

-7

If we sample x_, from the stationary distribution p®(x; A) (equation (12)), the net
(unconditional) probability of observing the trajectory X is

PFIX] = pi(@_)PF [X]a_], (23)
where pS(z_,) = p*(@_; A).

® Note that p° is unaffected by the angular drift force f(q)é This non-generic feature of our model arises from
the fact that the flow f(q)8/v is everywhere parallel to the contours of the harmonic potential kq?/2.
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Along with the forward process, we will consider a reverse process, during which the
parameter is manipulated from B to A. Specifically, during the reverse process we have

S = R )+ &t 2], (24)
where
AR \F (25)

The conditional and unconditional probabilities of observing a trajectory X during this
process are given by the analogues of equations (22) and (23):

+7
PR [X|m_7_] — Nexp |:—/ dt8+($t, mt7 )\?) (26)

PHX] = pp(z—) P [X|z_]. (27)

Here we have assumed the same underlying stochastic dynamics—that is, the same family
of Fokker—Planck operators L£,—for the reverse process as for the forward process; the
only distinction between the two processes is the protocol for varying A.

4. Fluctuation theorem for reversed protocol

Now let XT = {IBI }*T denote the time-reversed ‘conjugate twin’ of a trajectory X:
xl =x_,, (28)

and let us compare the probability of observing a trajectory X during the forward process
with that of its twin X during the reverse process. Using equations (25), (26) and (28),
we get

PR [X”:L'T,T] = N exp {— /+T AtS, (x], &) )\5)} = N exp {— /+T dtS_(xy, 2 A} |,
- - (29)
where
S_(x, ;) =S (x, —x; N). (30)
The definitions of v, A, and S; then give us
Sy =8 =—ip =i; (Fp—A), (31)

which combines with equations (22) and (29) to yield

% — oo [ ' dtiset) (32)

where [ " denotes evaluation along the forward protocol and trajectory X. When the
diffusion tensor is a constant, G(x; \) = 2DJ;;, this ratio is equivalent to a result derived
previously by Seifert (equation (14) of [18]), and extended to inertial systems by Imparato
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and Peliti (equation (34) of [22]). From equation (32), we obtain
s

[
PYX] _ pa(z)PY[X|@] = ex ) 07
PR e e ~ow (20 [ ). .

—T

where
F
Ap=p(x;;B) —p(x_; A) = de (A ot ;| . (34)

Let us now rewrite equation (33) so that the quantity in the exponent is manifestly a
sum of contributions representing non-autonomous dynamics and non-conservative forces.
Defining

L Op
yF = dtNF =2
/ )N (35)
we obtain
P¥(X] F !
[ et B Y CA .
"X exp < +/ de (36)

A non-zero value of Y¥ is a signature of non-autonomous dynamics (equation (35)),
whereas A # 0 indicates non-conservative forces (section 2). Thus we associate the
two terms, Y and [ "dz - A, with the two mechanisms for achieving nonequilibrium
behaviour identified at the end of section 2. Let R denote the sum of these two terms:

REX]=YF + /F dx - A. (37)

When the dynamics are autonomous and the forces conservative, both terms are equal
to zero, hence P[X] = P[XT]: in equilibrium, any sequence of events is as likely as the
reverse sequence; see for example the discussion following equation (13) of [33].

For the reverse process we similarly define

R . a(p R

YR z/ th}}a, R = YR+/ dx - A. (38)
The quantities Y and R are odd under time-reversal, in the following sense:

YRIXT) = - vFX], RRXT = —R¥[X]. (39)

With this formalism in place, we now derive a fluctuation theorem for R = Y+ [ da- A.

Let p"(R) denote the distribution of R values for an ensemble of realizations of the forward
process, and define p®(R) analogously for the reverse process. Then

o'(R) = [ DXPIXIS (R - F(X)) (10)
= / DXP" XM exp (R"[X]) 6 (R — R"[X]) (41)
= exp(R) / DX'PHXTS (R+ RYXT), (42)

doi:10.1088,/1742-5468 /2006 /08 /P03001 8
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where DX = Hszo dNz) specifies an integral over all possible trajectories X (see
appendix). We have used equation (36) to get from the first line to the second, and
equation (39) to get to the third. Note also the change of variables, DX — DXT.
Recognizing the final integral as p®(—R), we obtain the desired fluctuation theorem [18]:

P (+R)

AR = exp(R). (43)

5. Fluctuation theorem for reversed protocol and dynamics

The evolution of the system is influenced by both the protocol for varying A, and the
stochastic dynamics that define the Langevin transition rates. In the previous section we
assumed that the forward and reverse processes are defined by conjugate protocols but the
same underlying dynamics (equations (21), (24)). Thus the reverse process was defined
relative to the forward process by the replacement

{L0 N} = {L A (44)
In this section we obtain a different fluctuation theorem by imagining that the reverse
process is characterized by a reversal of both the protocol and the underlying dynamics.
Specifically, we imagine that during the forward process the system satisfies
equation (21), as in the previous section. However, for the reverse process, we take
d .
%= Fi(x; AR + &t a5 AN, (45)

where F' = —F — GV (equation (14)), rather than equation (24). Thus the reverse
process is now defined by the replacement

{L0, N} = {2, AT} (46)

In this situation the conditional probability of a trajectory X during the reverse process

1S
+7

PR [X[z_] = N exp {— | s ). (47)
where $+ is defined as its counterpart Sy, but with F' replaced by F. Let us similarly
define S_(z,a; \) = Sy (x, —@; \) (as in equation (30)). By direct evaluation we obtain
SJr — 37 = xzazap -+ e“’@i [(E — %Gwﬁj) e*“’} = .I‘ZaZQO, (48)
since the quantity in square brackets is just the 7th component of the divergenceless
stationary current (equation (10)).
Repeating the steps of section 4, but with equation (48) in place of equation (31), we

get
PY[X|z_,]| ( /F o )
A (= dtioie), 49
PR [XT|$JLT] XPp J ¥ ( )
and in turn
PrX] co i oA dp
ARX] = exp <Ag0 — / dtz;0 cp) = exp (/ dt)\fa) =exp (Y"). (50)

doi:10.1088,/1742-5468 /2006 /08 /P03001 9
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This is identical to equation (36), except that the term [ "dz+ A no longer appears inside

the exponent on the right-hand side. In effect, by using L, for the reverse process,
equation (45), we have ‘gauged away’ the non-conservative contribution arising from
A (compare equations (31) and (48)), leaving only the non-autonomous contribution
associated with the variation of .

Equation (50) leads to the analogue of equation (43):

pr(+Y
ﬁ =exp(Y), (51)
where p" is the distribution of Y values for the forward process (£, Al'), and p% is defined
similarly for the reverse process (EA,\,)\F). This is a continuous-time analogue of the
fluctuation theorem obtained by Crooks for discrete-time processes (our equations (49)
and (51) correspond to equations (13) and (20) of [12]).

We thus see that two different fluctuation theorems (equations (43), (51)) emerge
naturally in the Langevin formalism that we have considered. The relationship between
these two results can be appreciated by separately considering the three different
combinations for achieving nonequilibrium behaviour.

e Non-conservative forces, autonomous dynamics (A # 0, A= 0). In this case Y =0
by definition, hence equation (51) has no meaning. Thus we get a unique fluctuation
theorem, equation (43), for a quantity R = [ da - A associated with the violation of
detailed balance.

e Conservative forces, non-autonomous dynamics (A = 0, \ £ 0). In this case £, = Ly
and Y = R. Thus equation (43) is equivalent to equation (51), so we again obtain
a unique fluctuation theorem, this time for the quantity Y = R = [ dt)\&p/ o\
associated with external forcing.

e Non-conservative forces, non-autonomous dynamics (A # 0, X # 0). Equations (43)
and (51) now represent two different, but equally valid, fluctuation theorems, for the
distinct quantities Y = [ dtAdp/ON and R =Y + [ dx - A.

The non-uniqueness of the fluctuation theorem in the third case listed above is
analogous to a result obtained by Fingerle for a relativistic, cosmological model: in that
situation two distinct fluctuation theorems arise, depending on whether or not the cosmic
expansion is inverted for the reverse process [34].

6. Physical interpretations

To this point our analysis has been mostly abstract and mathematical. For the Langevin
process defined by equation (2), we have derived two fluctuation theorems, and in section 8
below, closely related integrated fluctuation theorems are obtained. In the present section
we briefly discuss physical interpretations of the quantities appearing in these results.

Equation (2) can be used to model the microscopic evolution of a system in contact
with a thermal reservoir at temperature 7', in the overdamped limit, with A\ playing the
role of an externally manipulated work parameter. The stationary state is then given by
the Boltzmann-Gibbs distribution p® = e?"~V) with 3 = (kgT)~'; hence

p(x; ) = BU(z; \) — BF(N), (52)
doi:10.1088,/1742-5468 /2006 /08 /P0OS001 10
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where U(x; \) represents the internal energy of the system, and F(\) is the parameter-
dependent free energy. (We leave implicit the temperature dependence of F.) We
generically expect detailed balance to hold in such an equilibrium state, hence the
dynamics are conservative: A, J° = 0. Under these circumstances, we get

Y:R:ﬁ(/wﬁy—AF):mmw (53)

1))
where AF = F(B) — F(A), and Wgss = W — AF' is physically interpreted as dissipated
work [7]. There is no distinction between equations (43) and (51) in this situation; both
are equivalent to the Crooks fluctuation theorem [10], and the corresponding integrated
result (equation (64) below) is the nonequilibrium work theorem,

(e = e FAF, (54)

When A # 0, the dynamics are non-conservative. To gain insight into the physical
meaning of the vector field A, consider an overdamped, one-dimensional Brownian particle
at temperature 7', with periodic boundary conditions (see for example figure 1 of [21]):

ou

i ===+ (), (55)

where 7 > 0 and f are constants; U(x;\) is a periodic potential; and the noise term
satisfies (C(0)C(t)) = 2vkgT(t). When X is held fixed the system relaxes to p° = e %.
Comparing with equation (2), and using the definition of A (which for this example is a
scalar field), we obtain

A=B(-U+f)+¢, (56)

where the primes denote 9/0x. In previous studies of this example by Hatano and Sasa [14]
and Speck and Seifert [21], the quantity Q. = 3 [ dzA was identified as the ‘house-
keeping heat’, a concept introduced earlier by Oono and Paniconi [35]. In the stationary
state, Qi represents the heat absorbed by the external reservoir; this fluctuating quantity
grows linearly with time, on average, and can be viewed as the thermodynamic price that
must continually be paid to maintain the system away from equilibrium. Equivalently,
BQuk = f dxA is the increase in the entropy of the reservoir. We speculate that this
interpretation remains valid more generally: when equation (2) models a system in contact
with thermal surroundings, perhaps including multiple heat baths, [ da- A is the entropy
generated in these surroundings, in the stationary state. This interpretation emphasizes
the physical connection between entropy generation and the violation of detailed balance.

We see that Y can be interpreted as dissipated work (in units of kg7") when the
dynamics are conservative, and [ da - A as the entropy generation needed to maintain a
nonequilibrium stationary state. For the non-autonomous, non-conservative case, we do
not have simple thermodynamic interpretations of Y and R. However, we can provide
some intuition regarding the difference between these quantities by considering a quasi-
static process, with A varied slowly from A to B. Then Y — 0 [14], whereas [dz - A
can be expected to grow diffusively, with slowly changing drift and diffusion constants.
Hence as 7 — oo, the distribution of Y values tends to a delta-function, while the mean
and variance of the distribution of R values scale like 7.

Finally, let us briefly consider a generalization of equation (43). The quantity Ay
appearing in equation (33) is essentially a boundary term [18], arising from the ratio of

doi:10.1088,/1742-5468 /2006 /08 /P03001 11
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the probabilities of sampling the initial conditions of the conjugate pair of trajectories,
X and XT. If we choose to sample initial conditions from distributions other than the
stationary distribution, p°, then this term must correspondingly be modified. Specifically,
consider a family of normalized distributions gy(x) = exp[—u(x; )|, where ¥ (x; \) is
arbitrary (apart from the normalization condition). Now imagine that we define our
forward (reverse) process by sampling the initial conditions from g4 (¢g) rather than pS
(p5). The boundary term in equation (33) then changes from Ay to A, which ultimately
leads to the result

F W
P (+RY) _ P
m = exp(R"), (57)
where
RVF = / dtAF af d:v - AY, AV = v + V1, (58)

and similarly for the reverse process. Equation (57) thus generalizes equation (43) to
allow for initial conditions sampled from arbitrary distributions.

As a specific example, suppose there exists a natural decomposition fv = —VU + f,
where f cannot be expressed as the gradient of a scalar field; for example, imagine a
Brownian particle exploring a potential landscape U(x; A), but also subject to a non-
conservative force f(x;A). This is a generalization of the one-dimensional example
discussed above (equation (55)). Now suppose we sample initial conditions from the
canonical distribution ¢ o exp(—BU), rather than the stationary distribution p® =
exp(—¢p). This corresponds to the choice ¢ = [U, where for simplicity we have
incorporated the free energy F(A) into the definition of U(x;\). The quantity RY
appearing in equation (57) then becomes

R¥F 5/ thtF— +ﬁ/ dz - f. (59)
oA

We thus get a fluctuation theorem for a quantity RY that is physically interpreted as the
sum of contributions due to the external variation of a conservative potential, U, and
the path integral of a non-conservative force, f. Neither term depends on the stationary
distribution ¢. This result was originally obtained by Kurchan, first for autonomous
dynamics [4] (R¥ = 3 [dz - f), and more recently for non-autonomous dynamics [19],
assuming a spatlally independent diffusion coefficient.

7. lllustrative example

In this section we illustrate the fluctuation theorems derived above, using the example
introduced at the end of section 2. We begin with the autonomous case. If f(q) = 0,
then we simply have a Brownian particle fluctuating in equilibrium in a two-dimensional
harmonic well. When f(g) > 0, the particle is subject to an additional angular drift,
oriented counterclockwise. Let us picture this drift to be the result of a vortex in the
surrounding thermal medium, centred at . In this case the integral

/d:c-A = /dt'ﬁt-éf(qt) = C[X] (60)
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provides a measure of the counterclockwise motion of the particle. We will refer to C as the
circulation associated with a given trajectory X. Since we are considering autonomous
dynamics, we have R = C (see equation (37)), and equation (43) becomes

p(+C)

o—C) exp(C). (61)
Here p(C) is the probability distribution of observing a circulation C, over the interval
of observation, assuming initial conditions sampled from the stationary distribution
(equation (17)). Since A is fixed, there is no distinction between the forward and reverse
process. Equation (61) implies that positive values of circulation are more likely than
negative values, as expected: the particle tends to flow with, rather than against, the
vortex.

Now consider the case of non-autonomous dynamics, but conservative forces, f(q) = 0.

For specificity, imagine that during the forward process we vary A at a constant rate from
A to B; for example, we move the point ) rightwards along the x-axis. Thus we drag the
Brownian particle through a thermal medium, by moving the harmonic potential in which
it is trapped. During the reverse process we go from B back to A, at the same speed.
Since the forces are conservative (A, J° = 0, hence £, = L)), there is no distinction
between the predictions of section 4 and those of section 5; moreover there is no tendency
for the particle to circulate in one direction or the other. We have

R:Yz/dt'g—f:—k/dx(xt—xt), (62)

where x; is the z-component of the particle’s position at time ¢. Physically, —k(x—\) dA is
the incremental work required to displace the potential well by an amount d\; hence Y is
equal to the total external work performed during a realization of either the forward or the
reverse process (in units of temperature, since kg7 = 1 for this example). Equations (43)
and (51) are identical in this situation, and are expressed as

pr(+Y)

pH(=Y)
Positive values of work are more likely than negative values, in agreement with the second
law of thermodynamics.

Having obtained one prediction for the case of autonomous dynamics and non-
conservative forces (equation (61) for C), and another for conservative forces and non-
autonomous dynamics (equation (63) for Y'), we now consider the combination of non-
autonomous dynamics and non-conservative forces. Thus r) now specifies the moving
centre of both a harmonic well and a vortex in the thermal medium. Let £, denote the
stochastic dynamics for a given choice f(q) > 0, describing a counterclockwise vortex;
then £, corresponds to the replacement f — —f, describing a clockwise vortex.

If we use L for both the forward and the reverse processes (equations (21), (24)), then
this amounts to dragging the particle either rightwards (A — B) or leftwards (B — A),
but in either case the particle tends to circulate counterclockwise around the moving
point 7. The fluctuation theorem in this situation, equation (43), involves the quantity
R =Y +C, with external work Y and circulation C as defined by equations (62) and (60)
above. On the other hand, if we use £ for the reverse process (equation (45)), then the

= exp(Y). (63)
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particle tends to circulate counterclockwise as it is dragged rightwards during the forward
process, but clockwise as it is dragged leftwards during the reverse process. In this case
the applicable fluctuation theorem is equation (51) for the work Y’; the circulation C no
longer contributes to the quantity appearing in the fluctuation theorem.

8. Integrated fluctuation theorems and further extensions

Multiplying both sides of equation (43) by p*(—R) exp(—R), then integrating with respect
to R, and performing similar manipulations on equation (51), we are led to the integrated
results,

exp(-R) =1, (exp(-Y))¥ =1, (64)

where the angular brackets denote an average over realizations of the forward process. For
the general case of non-autonomous and non-conservative dynamics, with initial conditions
sampled from the stationary state, these results have been discussed by Hatano and
Sasa [14] (for Y), and by Speck and Seifert [21] (for R). Unlike equations (43) and (51), the
integrated fluctuation theorems can be stated without any reference to the reverse process,
suggesting that they can be derived by some means other than a comparison between
forward and reverse processes. We now sketch such a derivation, which in turn leads to a
further generalization of both integrated and non-integrated results (equations (70), (71)).
We assume our system obeys the equation of motion

d

dt
where )\; denotes a protocol for varying the parameter A\. For a trajectory generated
during this process, consider the variable

x; = Fy(a; \) + &(t 2 M), (65)

! ;5 O . 1 iAj
Wy = dt )\a+aw-A+§a(a—1)GijAA : (66)

-7

where « is a constant, and the integrand is evaluated along the trajectory. For a = 0 and
1, we get w, = W and R, respectively.
Now consider a function

G(x,t) = (0(x — ;) exp(—wy)), (67)

where the average is taken over an ensemble of realizations of the process, and x; is
the microstate at time ¢ during a given realization. This function can be viewed as
a ‘weighted’ phase space density, in which each realization carries a time-dependent
statistical weight exp(—wy); similar constructions have been considered in [8,13,17,22].
Following a procedure analogous to the derivation of equation (4) in the appendix, we
obtain an evolution equation for this density:

) 0 | |
G =16 Aa—fg +ad (G AIG) | (68)

The first term on the right represents the dynamical component of the evolution
(equation (4)), while the other two arise from the weight exp(—w;) assigned to each
trajectory in the ensemble. Using equations (6), (10), and (11), we see by inspection that
the ansatz G(x,t) = exp[—p(x; \;)] solves equation (68). Thus when initial conditions
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are sampled from the stationary distribution p(z; A_,), we have

(0(x — @) exp(—wy)) = exp [—p(@; A)] - (69)
Setting ¢ = +7 and integrating both sides with respect to x, we get
(exp(—w,)) = 1. (70)

This represents a family of predictions—parameterized by the value of a—that are all
satisfied for the same process, equation (65). For the choices @ = 1,0, equation (70)
reduces to equation (64).

Since equation (70) generalizes equation (64) to arbitrary «, it is natural to search
for a corresponding extension of equations (43) and (51). Such a result indeed exists, and
is given by

P (+wr)

pa(—wr)
Here p' and p2 denote ensemble distributions of w, for a forward and a reverse process.
The forward process is defined as earlier, for the protocol Af' and a family of Fokker—Planck
operators £y < {J°, ¢, G}. The reverse process uses A} and

where J? = (2a — 1)J®. The derivation of equation (71) follows the same steps as in
sections 4 and 5, starting from a generalization of equations (31) and (48),

Sy — 8% =i (0'p — aA") — Ja(a — 1)G, A4, (73)

= exp(wr). (71)

with &% defined for L§, as S_ and S_ were defined for £, and £,. For a = 1,0
we get JJ = 4J° and equation (71) reduces to the fluctuation theorems derived
earlier (equations (43), (51)). Further generalizations are relatively obvious—for instance,
replacing equation (72) by LE « {K, p, G}, where K (x; )\) is an arbitrary divergenceless
vector field—and will not be pursued here.

9. Discussions and conclusions

There has been considerable recent interest in understanding fluctuation theorems within
a Langevin framework [18, 19, 22], [36]-[41]. This interest has been motivated in part by
experiments involving systems that are naturally modelled using Langevin dynamics, such
as externally manipulated biomolecules [42]-[44], optically trapped colloids [45]-[49], or
a torsional pendulum [50,51]. In the present paper, using the path-integral framework,
we have emphasized the separate contributions of two distinct sources of nonequilibrium
behaviour: non-conservative forces and non-autonomous dynamics.

We conclude with a specific physical example where the exact relations discussed
above apply. Consider a macromolecule, such as a polymer, that is subject to thermal
noise and is manipulated externally (for instance using optical tweezers or atomic-force
microscopy) on a timescale comparable to its relaxation scale. If such an experiment is
carried out with the molecule immersed in a stationary, equilibrium solution, then we
have the situation of conservative forces and non-autonomous dynamics. As pointed out
by Hummer and Szabo [13] and subsequently verified in [42,43], such experiments can be
used to reconstruct the free energy landscape of the macromolecule.
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We can imagine broadening the scope of these investigations to include non-
conservative forces, for instance by manipulating a molecule subject to shear [52,53]
and/or chaotic [54,55] flows. If such flows are accurately modeled as Markovian noise—
that is, if the correlations of the flow decay on a timescale that is very short in comparison
with the relaxation time of the macromolecule—then the results we have derived in this
paper ought to apply directly. When the shear or chaotic flows are non-Markovian, then a
suitable modification of our formalism would be needed. A natural starting point for such
a modification is the recent progress achieved in the understanding of polymer stretching
and particle separation in chaotic flows [56, 57].

The feasibility of any realistic experiment along these lines will be constrained by
certain general considerations. While the theoretical predictions are expressed in terms
of infinitely many realizations, in a real experiment the number of measurements is
necessarily finite. At the same time, if the parameter A is varied rapidly, then averages
such as those in equation (64) might be dominated by realizations that are extremely
atypical. The faster the protocol for varying A, the more realizations we are likely to
need. This introduces an important consideration when choosing a protocol for externally
manipulating the system. Furthermore, in experiments with complex molecules we
inevitably have access to only a small fraction of the system’s degrees of freedom, such
as its end-to-end extension. Thus we must design an experimental setup in which the
quantities that we want to measure (Y, R) can be determined uniquely from the data to
which we have access. This might significantly limit the scope of the predictions that we
could hope to test.
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Appendix: Discretization scheme

A stochastic differential equation such as equation (2) remains ambiguous until we specify
the limiting procedure associated with the discretization of time (A — 0). In this appendix
we describe the discretization scheme that we adopt in this paper, and we sketch the steps
then taken to derive equation (4). To avoid a proliferation of vector and tensor indices,
we restrict ourselves to the one-dimensional case.

We imagine that the time interval [—7, 7] is cut into K > 1 equal segments of duration
A, delimited by the sequence {to,t1,...,tx}, where to = —7, tx = 7, and ty11 — tp = A.
The evolution of the dynamical variable z(¢) and external parameter A(t) is represented by
a discrete sequence: (z(t),\(t)) — (x(tx), A(tx)) = (x, Ax). The conditional probability

of the trajectory X = {xq,...,zx} is given by a product of transition rates:
PalX|zo] = [ [ Wi, ), (A1)
k
o A rey — \’
Wi(aw, o) = i@ exp | -5 (3 = F(@)) T(@) (A.2)
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where Ty = (zx + Tx11)/2, €k = Try1 — Tk, and primes denote derivatives. The prefactor
n is given by the function

(B2 -5E) (-3r). o

which guarantees normalization to first order in A:

/dkaWk(aﬁkH,xk) =1+ O(AQ) <A4)

In the limit A — 0, equations (A.1)—(A.3) define the Markov process that we have denoted
by equation (2). Our task is now to derive the master equation associated with this Markov
process.

Equation (A.2) uses a mid-point regularization scheme not only for the functions
F(z) and I'(z) inside the exponent, but also for the prefactor n(xz). Let us rewrite this
prefactor,

A ’

n(z) = n(x) (1 - EF/) ~ n(z)e 22, (A.5)
and incorporate the factor e=*"/2 inside the exponent in equation (A.2). Thus, to first
order in A,

A e 2 A
Wi (s, 71) = n(Ty) exp [—5 (Zk . F(Tk)> P@) - SF @) (A0

with n(x) as defined by equations (A.3), (A.5). This expression, combined with
equation (A.1), specifies the sense in which equation (19) is interpreted, with N =
[T, n(@). Note that N[X] = N[XT] (because we use the mid-point rule), and A
does not depend on the function F'(x). These properties lead to the cancellation of
normalization factors in equations (32) and (49), respectively.

To arrive at equation (4), we must evaluate

Prr1(z) = /dx'Wk(x,x')pk(x') = /deWk(x,x —&)pr(x —¢), (A7)
where pp, pry1 denotes the probability distribution at time t;, t;,;. Substituting

equation (A.6) into equation (A.7), and changing the variable of integration from e to

2 =1/ ——¢, (A.8)

P (z) = \/; / dz exp (-%2) pe(x)H(z, 2, V). (A.9)

We will not give the explicit, cumbersome expression for the function H defined by this
procedure, but we note that lima .o H(x, 2, \/Z) = 1. Thus we have factored out the
dominant Gaussian contribution to the integrand in equation (A.7), leaving a slowly

we get
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varying function of z. Expanding H in powers of VA, to O(A), and evaluating the
resulting Gaussian integrals (of the form [ dze=="/ 22™), we eventually obtain

/

r 1
Prt1 =pe — A (F’pk + Fp, + mm - fpﬁé) : (A.10)

where the p s, F', and I'; and their derivatives, are all evaluated at x. In the limit A — 0,
this becomes equation (4).

We emphasize that with a different choice of discretization—for instance, if we had
used a prefactor that is a function of z;, rather than the mid-point T,—we would have
obtained a different Fokker—Planck equation.
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