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Deep learning is a broad set of techniques that uses multiple layers of representation to automat-
ically learn relevant features directly from structured data. Recently, such techniques have yielded
record-breaking results on a diverse set of difficult machine learning tasks in computer vision, speech
recognition, and natural language processing. Despite the enormous success of deep learning, rel-
atively little is understood theoretically about why these techniques are so successful at feature
learning and compression. Here, we show that deep learning is intimately related to one of the
most important and successful techniques in theoretical physics, the renormalization group (RG).
RG is an iterative coarse-graining scheme that allows for the extraction of relevant features (i.e.
operators) as a physical system is examined at different length scales. We construct an exact map-
ping from the variational renormalization group, first introduced by Kadanoff, and deep learning
architectures based on Restricted Boltzmann Machines (RBMs). We illustrate these ideas using the
nearest-neighbor Ising Model in one and two-dimensions. Our results suggests that deep learning
algorithms may be employing a generalized RG-like scheme to learn relevant features from data.

A central goal of modern machine learning research
is to learn and extract important features directly from
data. Among the most promising and successful tech-
niques for accomplishing this goal are those associated
with the emerging sub-discipline of deep learning. Deep
learning uses multiple layers of representation to learn
descriptive features directly from training data [1, 2]
and has been successfully utilized, often achieving record
breaking results, in difficult machine learning tasks in-
cluding object labeling [3], speech recognition [4], and
natural language processing [5].

In this work, we will focus on a set of deep learning
algorithms known as deep neural networks (DNNs) [6].
DNNs are biologically-inspired graphical statistical mod-
els that consist of multiple layers of “neurons”, with units
in one layer receiving inputs from units in the layer be-
low them. Despite their enormous success, it is still un-
clear what advantages these deep, multi-layer architec-
tures possess over shallower architectures with a similar
number of parameters. In particular, it is still not well
understood theoretically why DNNs are so successful at
uncovering features in structured data. (But see [7–9].)

One possible explanation for the success of DNN ar-
chitectures is that they can be viewed as an iterative
coarse-graining scheme, where each new high-level layer
of the neural network learns increasingly abstract higher-
level features from the data [1, 10]. The initial layers of
the the DNN can be thought of as low-level feature de-
tecters which are then fed into higher layers in the DNN
which combine these low-level features into more abstract
higher-level features, providing a useful, and at times re-
duced, representation of the data. By successively apply-
ing feature extraction, DNNs learn to deemphasize irrel-
evant features in the data while simultaneously learning
relevant ones. (Note that in a supervised setting, such
as classification, relevant and irrelevant are ultimately
determined by the problem at hand. Here we are con-

cerned solely with the unsupervised aspect of training
DNNs, and the use of DNNs for compression [6].) In
what follows, we make this explanation precise.

This successive coarse-graining procedure is reminis-
cent of one of the most successful and important tools
in theoretical physics, the renormalization group (RG)
[11, 12]. RG is an iterative coarse-graining procedure
designed to tackle difficult physics problems involving
many length scales. The central goal of RG is to ex-
tract relevant features of a physical system for describing
phenomena at large length scales by integrating out (i.e.
marginalizing over) short distance degrees of freedom. In
any RG sequence, fluctuations are integrated out start-
ing at the microscopic scale and then moving iteratively
on to fluctuations at larger scales. Under this proce-
dure, certain features, called relevant operators, become
increasingly important while other features, dubbed irrel-
evant operators, have a diminishing effect on the physical
properties of the system at large scales.

In general, it is impossible to carry out the renormal-
ization procedure exactly. Therefore, a number of ap-
proximate RG procedures have been developed in the
theoretical physics community [12–15]. One such ap-
proximate method is a class of variational “real-space”
renormalization schemes introduced by Kadanoff for per-
forming RG on spin systems [14, 16, 17]. Kadanoff’s
variational RG scheme introduces coarse-grained auxil-
iary, or “hidden”, spins that are coupled to the physical
spin systems through some unknown coupling parame-
ters. A parameter-dependent free energy is calculated for
the coarse-grained spin system from the coupled system
by integrating out the physical spins. The coupling pa-
rameters are chosen through a variational procedure that
minimizes the difference between the free energies of the
physical and hidden spin systems. This ensures that the
coarse-grained system preserves the long-distance infor-
mation present in the physical system. Carrying out this

http://arxiv.org/abs/1410.3831v1


2

procedure results in an RG transformation that maps the
physical spin system into a coarse-grained description in
terms of hidden spins. The hidden spins then serve as
the input for the next round of renormalization.
The introduction of layers of hidden spins is also a cen-

tral component of DNNs based on Restricted Boltzmann
Machines (RBMs). In RBMs, hidden spins (often called
units or neurons) are coupled to “visible” spins describing
the data of interest. (Here we restrict ourselves to binary
data.) The coupling parameters between the visible and
hidden layers are chosen using a variational procedure
that minimizes the Kullback-Leibler divergence (i.e. rela-
tive entropy) between the “true” probability distribution
of the data and the variational distribution obtained by
marginalizing over the hidden spins. Like in variational
RG, RBMs can be used to map a state of the visible
spins in a data sample into a description in terms of hid-
den spins. If the number of hidden units is less than the
number of visible units, such a mapping can be thought
of as a compression. (Note, however, that dimensional
expansions are common [18].) In deep learning, individ-
ual RBMs are stacked on top of each other into a DNN
[6, 19], with the output of one RBM serving as the input
to the next. Moreover, the variational procedure is often
performed iteratively, layer by layer.
The preceding paragraphs suggest an intimate connec-

tion between RG and deep learning. Indeed, here we con-
struct an exact mapping from the variational RG scheme
of Kadanoff to DNNs based on RBMs [6, 19]. Our map-
ping suggests that DNNs implement a generalized RG-
like procedure to extract relevant features from struc-
tured data.
The paper is organized as follows. We begin by re-

viewing Kadanoff’s variational renormalization scheme
in the context of the Ising Model. We then introduce
RBMs and deep learning architectures of stacked RBMs.
We then show how to map the procedure of variational
RG to unsupervised training of a DNN. We illustrate
these ideas using the one- and two-dimensional nearest-
neighbor Ising models. We end by discussing the impli-
cation of our mapping for physics and machine learning.

I. OVERVIEW OF VARIATIONAL RG

In statistical physics, one often considers an ensemble
of N binary spins {vi} that can take the values ±1. The
index i labels the position of spin vi in some lattice. In
thermal equilibrium, the probability of a spin configura-
tion is given by the Boltzmann distribution

P ({vi}) =
e−H({vi})

Z
, (1)

where we have defined the Hamiltonian H({vi}), and the
partition function

Z = Trvie
−H({vi}) ≡

∑

v1,...vN=±1

e−H({vi}). (2)

Note throughout the paper we set the temperature equal
to one, without loss of generality. Typically, the Hamil-
tonian depends on a set of couplings or parameters,
K = {Ks}, that parameterizes the set of all possible
Hamiltonians. For example, with binary spins, the K

could be the couplings describing the spin interactions of
various orders:

H[{vi}] = −
∑

i

Kivi−
∑

ij

Kijvivj−
∑

ijk

Kijkvivjvk+. . . .

(3)
Finally, we can define the free energy of the spin system
in the standard way:

F v = − logZ = − log
(

Trvie
−H({vi})

)

. (4)

The idea behind RG is to find a new coarse-grained
description of the spin system where one has “integrated
out” short distance fluctuations. To this end, let us intro-
duce M < N new binary spins, {hj}. Each of these spins
hj will serve as a coarse-grained degree of freedom where
fluctuations on small scales have been averaged out. Typ-
ically, such a coarse-graining procedure increases some
characteristic length scale describing the system such as
the lattice spacing. For example, in the block spin renor-
malization picture introduced by Kadanoff, each hi rep-
resents the state of a local block of physical spins, vi.
Figure 1 shows such a block-spin procedure for a two-
dimensional spin system on a square lattice, where each
hi represents a 2 × 2 block of visible spins. The result
of such a coarse-graining procedure is that the lattice
spacing is doubled at each step of the renormalization
procedure.
In general, the interactions (statistical correlations)

between the {vi} induce interactions (statistical corre-
lations) between the coarse-grained spins, {hj}. In par-
ticular, the coarse-grained system can be described by a
new coarse-grained Hamiltonian of the form

H
RG[{hj}] = −

∑

i

K̃ihi−
∑

ij

K̃ijhihj−
∑

ijk

K̃ijkhihjhk+. . . ,

(5)

where {K̃} describe interactions between the hidden
spins, {hj}. In the physics literature, such a renormal-
ization transformation is often represented as mapping
between couplings, {K} → {K̃}. Of course, the exact
mapping depends on the details of the RG scheme used.
In the variational RG scheme proposed by Kadanoff,

the coarse graining procedure is implemented by con-
structing a function, Tλ({vi}, {hj}), that depends on a
set of variational parameters {λ} and encodes (typically
pairwise) interactions between the physical and coarse-
grained degrees of freedom. After coupling the auxiliary
spins {hj} to the physical spins {vi}, one can then inte-
grate out (marginalize over) the visible spins to arrive at a
coarse-grained description of the physical system entirely
in terms of the {hj}. The function Tλ({vi}, {hj}) then
naturally defines a Hamiltonian for the {hj} through the
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FIG. 1. Block spin renormalization. In block spin renormalization [14], a physical system is coarse grained by introducing
new “block” variables which describe some “effective” behavior of a block of spins. For example, in the figure, four adjacent
spins are grouped into 2 x 2 blocks. The system is then described in terms of these new block variables. This scheme is then
iterated to create even new block variables that average over an even larger set of the original spins. Notice the lattice spacing
doubles after each iteration.

expression

e−H
RG
λ [{hj}] ≡ Trvie

Tλ({vi},{hj})−H({vi}). (6)

We can also define a free energy for the coarse grained
system in the usual way

Fh
λ = − log

(

Trhi
e−H

RG
λ({hi})

)

. (7)

Thus far we have ignored the problem of choosing the
variational parameters λ that define our RG transfor-
mation Tλ({vi}, {hj}). Intuitively, it is clear we should
choose λ to ensure that the long-distance physical observ-
ables of the system are invariant to this coarse graining
procedure. This is done by choosing the parameters λ
to minimize the free energy difference, ∆F = Fh

λ − F v,
between the physical and coarse grained systems. Notice
that

∆F = 0 ⇐⇒ Trhj
eTλ({vi},{hj}) = 1 (8)

Thus, for any exact RG transformation, we know that

Trhj
eTλ({vi},{hj}) = 1 (9)

In general, it is not possible to choose the parame-
ters λ to satisfy the condition above and various varia-
tional schemes (e.g. bond moving) have been proposed
to choose λ to minimize this ∆F .

II. RBMS AND DEEP NEURAL NETWORKS

We will show below that this variational RG procedure
has a natural interpretation as a deep learning scheme

based on a powerful class of energy-based models called
Restricted Boltzmann Machines (RBMs) [6, 20–23]. We
will restrict our discussion to RBMs acting on binary data
[6] drawn from some probability distribution, P ({vi}),
with {vi} binary spins labeled by an index i = 1 . . .N .
For example, for black and white images each spin vi
encodes whether a given pixel is on or off and the distri-
bution P ({vi}) encodes the statistical properties of the
ensemble of images (e.g the set of all handwritten digits
in the MNIST dataset).
To model the data distribution, RBMs introduce new

hidden spin variables, {hj} (j = 1 . . .M) that couple to
the visible units. The interactions between visible and
hidden units are modeled using an energy function of the
form

E({vi}, {hj}) =
∑

i

bjhj +
∑

ij

viwijhj +
∑

i

civi, (10)

where λ = {bj, wij , ci} are variational parameters of the
model. In terms of this energy function, the joint prob-
ability of observing a configuration of hidden and visible
spins can be written as

pλ({vi}, {hj}) =
e−E({vi},{hj})

Z
. (11)

This joint distribution also defines a variational distribu-
tion for the visible spins

pλ({vi}) =
∑

{hj}

pλ({vi}, {hj}) = Trhj
pλ({vi}, {hj})

(12)
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as well as a marginal distribution for hidden spins them-
selves:

pλ({hj}) =
∑

{vj}

pλ({vi}, {hj}) = Trvipλ({vi}, {hj}).

(13)
Finally, for future reference it will be helpful to define a
“variational” RBM Hamiltonian for the visible units:

pλ({vi}) ≡
e−H

RBM
λ [{vi}]

Z
, (14)

and an RBM Hamiltonian for the hidden units:

pλ({hj}) ≡
e−H

RBM
λ [{hj}]

Z
. (15)

Since the objective of the RBM for our purposes is
unsupervised learning, the parameters in the RBM are
chosen to minimize the Kullback-Leibler divergence be-
tween the true distribution of the data P ({vi}) and the
variational distribution pλ({vi}):

DKL(P ({vi})||pλ({vi}) =
∑

{vi}

P ({vi}) log

(

P ({vi})

pλ({vi})

)

.

(16)
Furthermore, notice that when the RBM exactly repro-
duces the visible data distribution

DKL(P ({vi})||pλ({vi})) = 0. (17)

In general it not possible to explicitly minimize the
DKL(P ({vi})||pλ({vi})) and this minimization is usually
performed using approximate numerical methods such as
contrastive divergence [24]. Note that if the number of
hidden units is restricted (i.e. less than 2N), the RBM
cannot be made to match an arbitrary distribution ex-
actly [9].
In a DNN, RBMs are stacked on top of each other so

that, once trained, the hidden layer of one RBM serves as
the visible layer of the next RBM. In particular, one can
map a configuration of visible spins to a configuration
in the hidden layer via the conditional probability distri-
bution, pλ({hj}|{vi}). Thus, after training an RBM, we
can treat the activities of the hidden layer in response
to each visible data sample as data for learning a second
layer of hidden spins, and so on.

III. MAPPING VARIATIONAL RG TO DEEP

LEARNING

In variational RG, the couplings between the hid-
den and visible spins are encoded by the operators
Tλ({vi}, {hj}). In RBMs, an analogous role is played
by the joint energy function E({vi}, {hj}). In fact, as we
will show below, these objects are related through the
equation,

T({vi}, {hj}) = −E({vi}, {hj}) +H[{vi}], (18)

where H[{vi}] is the Hamiltonian defined in Eq. 3 that
encodes the data probability distribution P ({vi}). This
equation defines a one-to-one mapping between the vari-
ational RG scheme and RBM based DNNs.
Using this definition, it is easy to show that the Hamil-

tonian H
RG
λ [{hj}], originally defined in Eq. 6 as the

Hamiltonian of the coarse-grained degrees of freedom
after performing RG, also describes the hidden spins
in the RBM. This is equivalent to the statement that
the marginal distribution pλ({hj}) describing the hidden
spins of the RBM is of the Boltzmann form with a Hamil-
tonian H

RG
λ [{hj}]. To prove this, we divide both sides of

Eq. 6 by Z to get

e−H
RG
λ [{hj}]

Z
=

Trvie
Tλ({vi},{hj})−H({vi})

Z
. (19)

Substituting Eq. 18 into this equation yields

e−H
RG
λ [{hj}]

Z
= Trvi

e−E({vi},{hj})

Z
= pλ({hj}). (20)

Substituting Eq. 15 into the right-hand side yields the
desired result

H
RG
λ [{hj}] = H

RBM
λ [{hj}]. (21)

These results also provide a natural interpretation for
variational RG entirely in the language of probability
theory. The operator Tλ({vi}, {hj}) can be viewed as
a variational approximation for the conditional probabil-
ity of the hidden spins given the visible spins. To see
this, notice that

eT({vi},{hj}) = e−E({vi},{hj})+H[{vi}]

=
pλ({vi}, {hj})

pλ({vi})
eH[{vi}]−H

RBM
λ [{vi}]

= pλ({hj}|{vi})e
H[{vi}]−H

RBM
λ [{vi}] (22)

where in going from the first the line to the second
line we have used Eqs. 11 and 14. This implies that
when an RG can be performed exactly (i.e. the RG
transformation satisfies the equality Trhj

eTλ({vi},{hj}) =
1), the variational Hamiltonian is identical to the true
Hamiltonian describing the data, H[{vi}] = H

RBM
λ [{vi}]

and T({vi}, {hj}) is exactly the conditional proba-
bility. In the language of probability theory, this
means that the variational distribution pλ({vi}) ex-
actly reproduces the true data distribution P ({vi}) and
DKL(P ({vi})||pλ({vi}) = 0.
In general, it is not possible to perform the variational

RG transformation exactly. Instead, one constructs a
family of variational approximations for the exact RG
transform [14, 16, 17]. The discussion above makes it
clear that these variational distributions work at the
level of the Hamiltonians and Free Energies. In con-
trast, in the Machine Learning literature, these varia-
tional approximations are usually made by minimizing
the KL divergence DKL(P ({vi})||pλ({vi}) = 0. Thus,
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FIG. 2. RG and deep learning in the one-dimensional Ising Model. (A) A decimation based renormalization trans-
formation for the ferromagnetic 1-D Ising model. At each step, half the spins are decimated, doubling the effective lattice
spacing. After, n successive decimations, the spins can be described using a new 1-D Ising models with a coupling Jn between
spins. Couplings at a given layer are related to couplings at a previous layer through the square of the hyberbolic tangent
function. (B) Decimation-based renormalization transformations can also be realized using the deep architecture where the
weights between the n + 1 and n-th hidden layer are given by Jn. (C) Visualizing the renormalization group flow of the
couplings for 1-D Ferromagnetic Ising model. Under four successive decimations or equivalently as we move up four layers in
the deep architecture, the couplings (marked by red dots) get smaller. Eventually, the couplings are attracted to stable fixed
point J = 0.

the two approaches employ distinct variational approxi-
mation schemes for coarse graining. Finally, notice that
the correspondence does not rely on the explicit form of
the energy E({hj}, {vj}) and hence holds for any Boltz-
mann Machine.

IV. EXAMPLES

To gain intuition about the mapping between RG
and deep learning, it is helpful to consider some sim-
ple examples in detail. We begin by examining the one-
dimensional nearest-neighbor Ising model where the RG
transformation can be carried out exactly. We then nu-
merically explore the two-dimensional nearest-neighbor
Ising model using an RBM-based deep learning architec-
ture.

A. One dimensional Ising Model

The one-dimensional Ising model describes a collection
of binary spins {vi} organized along a one-dimensional
lattice with lattice spacing a. Such a system is described
by a Hamiltonian of the form

H = −J
∑

i

vivi+1, (23)

where J is a ferromagnetic coupling that energetically
favors configurations where neighboring spins align. To
perform a RG transformation, we decimate (marginalize
over) every other spin. This doubles the lattice spacing
a → 2a and results in a new effective interaction J (1) be-
tween spins (see Figure 2). If we denote the coupling af-
ter performing n successive RG transformations by J (n),

then a standard calculation shows that these coefficients
satisfy the RG equations

tanh [J (n+1)] = tanh2 [J (n)], (24)

where we have defined J (0) = J [14]. This recursion
relationship can be visualized as a one-dimensional flow
in the coupling space J from J = ∞ to J = 0. Thus,
after performing RG the interactions become weaker and
weaker and J → 0 as n → ∞.

This RG transformation also naturally gives rise to the
deep learning architecture shown in Figure 2. The spins
at a given layer of the DNN have a natural interpretation
as the decimated spins when performing the RG trans-
formation in the layer below. Notice that the coupled
spins in the bottom two layers of the DNNs in Fig. 2B
form an “effective” one-dimensional chain isomorphic to
the original spin chain. Thus, marginalizing over spins in
the bottom layer in the DNN is identical to decimating
every other spin in the original spin systems. This im-
plies that the “hidden” spins in the second layer of the
DNN are also described by the RG transformed Hamil-
tonian with a coupling J (1) between neighboring spins.
Repeating this argument for spins coupled between the
second and third layers and so on, one obtains the deep
learning architecture shown in Fig. 2B which implements
decimation.

The advantage of the simple deep architecture pre-
sented here is that it is easy to interpret and requires no
calculations to construct. However, an important short-
coming is that it contains no information about half of
the visible spins, namely the spins that do not couple to
the hidden layer.
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FIG. 3. Deep learning the 2D Ising model A Deep Neural Network with four layers of size 1600, 400, 100, and 25 spins was
trained using samples drawn from a 2D Ising model slightly above the critical temperature, J/(kBT ) = 0.408. B Visualization
of the effective receptive fields for the top layer of spins. Each 40 by 40 pixel image depicts the effective receptive field of one of
the 25 spins in the top layer (see material and methods)C Visualization of effective receptive fields for each of the 100 spins in
the middle layer calculated as in B. D The effective receptive fields get larger as one moves up the Deep Neural Network. This
is consistent with what is expected from the successive application of block renormalization. E Three representative samples
drawn from the 2D Ising model at J = 0.408 and their reconstruction from the trained DNN. Samples were reconstructed from
DNNs as in [6].

B. Two dimensional Ising Model

We next applied deep learning techniques to numeri-
cally coarse-grain the two-dimensional nearest-neighbor
Ising model on a square lattice. This model is described
by a Hamiltonian of the form

H [{vi}] = −J
∑

〈ij〉

vivj , (25)

where 〈ij〉 indicates that i and j are nearest neigh-
bors and J is a ferromagnetic coupling that favors
configurations where neighboring spins align. Unlike
the one-dimensional Ising model, the two dimensional
Ising model has a phase transition that occurs when
J/(kBT ) = 0.4352 (recall we have set β = T−1 = 1).
At the phase transition, the characteristic length scale of
the system, the correlation length, diverges. For this rea-
son, near a critical point the system can be productively
coarse-grained using a procedure similar to Kadanoff’s
block spin renormalization (see Fig. 1) [14].

Inspired by our mapping between variational RG and
DNNs, we applied standard deep learning techniques to
samples generated from the 2D Ising model for J = 0.408,
just above the critical temperature. 20, 000 samples were
generated from a periodic 40 × 40 2D Ising model using
standard equilibrium Monte Carlo techniques and served
as input to an RBM-based deep neural network of four
layers with 1600, 400, 100, and 25 spins respectively (see
Fig. 3A). We furthermore imposed an L1 penalty on the
weights between layers in the RBM and trained the net-
work using contrastive divergence [24] (see Materials and
Methods). The L1 penalty serves as a sparsity promot-
ing regularizer that encourages weights in the RBM to
be zero and prevents overfitting due to the finite num-
ber of samples. In practice, it ensures that visible and
hidden spins interact with only a small subset of all the
spins in an RBM. (Note that we did not use a convolu-
tional network that explicitly builds in spatial locality or
translational invariance.)

The architecture of the resulting DNN suggests that it
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is implementing a coarse-graining scheme similar to block
spin renormalization (see Fig. 3). Each spin in a hidden
layer couples to a local block of spins in the layer below.
This iterative blocking is consistent with Kadanoff’s in-
tuitive picture of how coarse-graining should be imple-
mented near the critical point. Moreover, the size of
the blocks coupling to each hidden unit in a layer are of
approximately the same size (Fig. 3B,C), and the char-
acteristic size is increasing with layer (Fig. 3D). Sur-
prisingly, this local block spin structure emerges from the

training process, suggesting the DNN is self-organizing

to implement block spin renormalization. Furthermore,
as shown in Fig. 3E, reconstructions from the coarse
grained DNN can qualitatively reproduce the macro-
scopic features of individual samples despite having only
25 spins in the top layer, a compression ratio of 64.

V. DISCUSSION

Deep learning is one of the most successful paradigms
for unsupervised learning to emerge over the last ten
years. The enormous success of deep learning techniques
at a variety of practical machine learning tasks ranging
from voice recognition to image classification raises nat-
ural questions about its theoretical underpinnings. Here,
we have demonstrated that there is a one-to-one map-
ping between RBM-based Deep Neural Networks and
the variational renormalization group. We illustrated
this mapping by analytically constructing a DNN for the
1D Ising model and numerically examining the 2D Ising
model. Surprisingly, we found that these DNNs self or-
ganize to implement a coarse-graining procedure remi-
niscent of Kadanoff block renormalization. This suggests
that deep learning may be implementing a generalized
RG-like scheme to learn important features from data.
RG plays a central role in our modern understanding

of statistical physics and quantum field theory. A cen-
tral finding of RG is that the long distance physics of
many disparate physical systems are dominated by the
same long distance fixed points. This gives rise to the
idea of universality – many microscopically dissimilar sys-
tems exhibit macroscopically similar properties at long
distances Physicists have developed elaborate technical
machinery for exploiting fixed points and universality to
identify the salient long distance features of physics sys-
tems. It will be interesting to see, what, if any of this
more complex machinery can be imported to deep learn-
ing. A potential obstacle for importing ideas from physics
into the deep learning framework is that RG is commonly
applied to physical systems with many symmetries. This
is in contrast to deep learning which is often applied to
data with limited structure.
Recently, it was suggested that modern RG techniques

developed in the context of quantum systems such as ma-
trix product states and tensor networks have a natural
interpretation in terms of variational RG [17]. These new
techniques exploit ideas such as entanglement entropy

and disentanglers which create a features with a mini-
mum amount of redundancy. It is an open question to see
whether these ideas can be imported into deep learning
algorithms. Our mapping also suggests a route for apply-
ing real space renormalization techniques to complicated
physical systems. Real space renormalization techniques
such as variational RG have often been limited by their
inability to make good approximations. Techniques from
deep learning may represent a possible route for overcom-
ing these problems.

Appendix A: Learning Deep Architecture for the

Two-dimensional Ising Model

Details are given in the SI Materials and Meth-

ods. Stacked RBMs were trained with a variant
of the code from [6]. This code is available at
https://code.google.com/p/matrbm/. In particular,
only the unsupervised learning phase was performed. In-
dividual RBMs were trained with contrastive divergence
for 200 epochs, with momentum 0.5 using mini-batches of
size 100 on 40, 000 total samples from the 2D Ising model
with J = 0.408. Additionally, L1 regularization was im-
plemented, with strength 2× 10−4, instead of weight de-
cay. This L1 regularization strength was chosen to ensure
that one could not have all-to-all couplings between lay-
ers in the DNN. Reconstructions were performed as in [6].
See Supplementary files for a Matlab variable containing
the learned model.

Appendix B: Visualizing Effective Receptive Fields

The effective receptive field is a way to visualize which
spins in the visible layer that coupled to a given spin in
one of the hidden layers. We denote the effective recep-
tive field matrix of layer l by r(l) and the number of spins
in layer l by n(l), with the visible layer corresponding to
l = 0. Each column in r(l) is a vector that encodes the
receptive field of a single spin in hidden layer l. It can be
computed by convoluting the weight matrices W (l) en-
coding the weights wij between the spins in layers l − 1

and l . To compute r(l) first we set r(1) = W (1) and
used the recursion relationship rl = r(l−1)W (l) for l > 1.
Thus, the effective receptive field of a spin is a measure
of how much that hidden spin influences the spins in the
visible layer.
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