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HE success or failure of a mutant gene in a population is dependent not only 
Ton selectio2 but also on chance. This fact was first treated quantitatively by 
FISHER (1922) who later (1930) worked out the probability of ultimate survival 
of a mutant gene for the case of genic selection (i.e. no dominance). Equivalent 
results have been obtained by HALDANE (1927) and WRIGHT (1931). Also the 
probability was estimated for a recessive mutant gene by HALDANE (1927) and 
WRIGHT ( 1942). 

The present author (KIMURA 1957) extended these results to include any level 
of dominance. The probability of eventual fixation, U ( p )  , was expressed in terms 
of the initial frequency, p ,  the selection coefficients, and the effective population 
number. This function was used by ROBERTSON (1960) in his theory of selection 
limits in plant and animal breeding. 

The purpose of this note is to present a more general formula for ~ ( p )  which 
exompasses random fluctuations in selection intensity as well as random drift 
because of small population number. It will also be used to solve a question 
relating to “quasi-fixation” posed by the author in 1955. 

Derivation of the formula: Consider a population in which the frequency of 
the allele A is p (0 5 p 5  1 ) . We assume that the population is sufficiently large 
and the change in p per generation sufficiently small that the change in p through 
time may be satisfactorily approximated by a continuous stochastic process. 

L-t u(p,t)  be the probability that allele A will be fixed (i.e. its frequency 
becomes 1 ) during a time interval t (conveniently measured in generations) , 
given that p is the initial frequency of A.  From the nature of Mendelian mecha- 
nism of inheritance, the process of change in p is Markovian, i.e. the frequency 
distribution of A in the next generation is determined by the frequency of A in 
the present generation and is not depeiident on the way in which the present 
gene frequency was attained. Thus we have 

u(p,t+dt) = j- f (p ,p+Sp;St )u(p+Sp, t )d(Sp)  

where f f p , p + S p ; S t )  is the probability density of the change Irom p to p+Sp 
during short time interval St and the integration is over all possible values of Sp. 
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Here we assume that the probability density depends on p and 6t but not on t (i.e. 
the process is temporary homogeneous). 

Expanding U (p+6p,t) in the right side of the above equation in terms of Sp and 
putting 

lim - (6p)f(p7p+6p;6t)d(6p) = M 

s t 4 0  lim ~ J ( i S p ) ' f ( p , p i s p ; 6 t ) d ( s p i  at = V 

s t 4 0  at 'S 

but neglecting higher order terms involving (6p) S. (6p) *, etc., we have 

Since time is conveniently measured in generations, we substitute M 

S P  S P  S P  

and 
V are the mean and the variance of the 
change of p per generation. The probability u(p,t) may then be obtained by 
solving the above partial differential equation (known as the Kolmogorov back- 
ward equation) with boundary conditions: 

S P  
for M and V ,  where M and V 

U ( O , t ) = = O ,  u(l , t)= 1. 

We are especially interested in the present paper in the ultimate probability 
of fixation defined by 

U ( P I  = lim U (P,t> 7 
t - t  m 

for which &/at = 0 and which therefore satisfies the equation 

with boundary conditions: 

u(O)=O, u ( l ) =  1. 

The equation may readily be solved to give 

(3)  

where 

(4) 
in which Ma,  and VSx are the mean and the variance of the change in gene 

frequency, 2, per generation. Formula ( 3 )  gives the probability of fixation of 
allele A when its initial frequency is p. It has a pleasing simplicity and generality 
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comparable to WRIGHT'S (1938, 1949) well-known formula for the frequency 
distribution of genes at equilibrium. In my notation, this is 

( 5 )  
n 

where (o (x )  is the probability density of the gene frequency x and C is a constant 
chosen such that 

$ l $ 7 ( X ) d z  = 1 
0 

From the derivation it may be seen that formula ( 3 )  holds not only for sexually 
reproducing diploid organisms, but also for haploid or polyploid organisms and 
asexually reproducing plants. 

Finally, the chance of fixation of an individual mutant gene in a randomly 
mating diploid population is given by 

1 
2N U = U(-), ( 6 )  

where N is the number of reproducing individuals in the population. 
Some applications: The simplest case is genic selection in which A has a con- 

stant selective advantage s over its alleles in a randomly mating population of 
size N .  If the frequency of A is z, then the mean and the variance in the rate of 
change in x per generation are 

M S Z  = s x ( ~  - X) 
(7) 

SO that 2M8,/V8, = 4Ns, G ( x )  = e-4Nsz and we obtain from (3) 
{VS,  = ~ ( l  - x ) / ( ~ N )  

For I 2Ns I < 7, the right side of the above equation may be expanded in terms of 
4Ns as follows: 

(9) 

= p + 2 N ~ p ( l  - p ) + -  (2Ns)' p ( p  - 1 )  ( 2 p  - 1 ) + .  . . 
3 

where the + i ( p ) ' s  are Bernoulli polynomials. Thus for a small value of 2Ns, 
~ ( p )  - p is 2N times sp( 1 - p ) .  In other words, the total advance is 2N times 
the change in the first generation as pointed out by ROBERTSON (1960) .  

The probability of fixation of an individual mutant gene is obtained from 
(8) byputtingp= 1 / ( 2 N ) .  

( 1 0 )  
If we assume that Is1 is small, we obtain 

( 1 1 )  U = ( 2 s ) / ( l  - e-4N8) 

U = ( 1  - e-")/( 1 - 
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as a good approximation. This agrees with the result obtained by FISHER (1930) 
and WRIGHT (1931). This formula is good even for negative s, though U for such 
a case is very small unless lNsl is not large. For a positive s and very large N we 
obtain the known result that the probability of ultimate survival of an ad- 
vantageous mutant gene is approximately twice the selection coefficient ( HAL- 
DANE 1927). On the other hand, if we let s+  O in ( lo ) ,  we obtain U = 1/2N, 
the result known for a neutral gene. 

Next, I shall consider a more general case of zygotic selection under random 
mating. Let s and sh be, respectively, the selective advantage of mutant homozy- 
gote and the heterozygote, then 

M8z=sx(1 -x)[h+(1-2h)x]  
VSz = x ( l  - x)/(2N) 

G ( x )  = e-zcD,z (1-a) -2cz  

(12) 

and therefore 

where c = Ns and D = 2h ~ 1. Thus we obtain 

which is the formula given by the present author in a previous paper (KIMuRA 

1957). 
For a completely recessive gene h = 0 or D = - 1 and we have 

P 1 

(14) u ( p )  = J" e-"fZdx / J e-2czz& 
0 0 

If s is positive and small but N s  is large, the above formula leads approximately to 

for p = 2, giving the probability of fixation of individual mutant genes which 

is advantageous but completely recessive. It is interesting to note that the more 
exact value given here in (15) lies between v's/N, the value obtained by 
HALDANE (1927) by treating this as a branching process and ds/(2N),  ob- 
tained by WRIGHT (1942) with his method of integral equations. WRIGHT'S 
numerical approximation, 1.1-\/s/2N, is very close to (15). 

I shall now investigate the effect of random fluctuation of selection intensity 
on the fixation of mutant genes. 

The simplest situation is again genic selection in which the mutant gene A 
has a selective advantage s over its alleles, but s is now a random variable with 
mean ? and variance V,%. Thus ( 7 )  may be replaced by 

(16) 

to give 

2N 
~ 

M,z=?x(l  -x) 
v*z=vsx2(1 - x ) * + x ( l  -x)/(2N) 
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where 

and 
k = 2s / V, 

hl = (1 -I- .\/1+4r) /2 
A, = ( 1  - .\/1+4r) /2 

where r = 1/(2NV,). 

we have 
There are several interesting special cases. First, if s = 0, then G(x) =1 and 

U(P) = p  
a result which might be expected, since the gene is neutral on the average. 
Secondly, if # 0, then k # 0 and I shall consider the following three cases: 
( 1 ) r+ m , (2) r = 2 and (3) r+ 0. In all these cases, we assume that 0 < V, < 1 
and therefore r > 1/(2N). We will also assume that S is positive but small. 

Case 1 .  Consider the situation in which r is very large or equivalently 2NV, is 
very small. Then, approximately 

2M,x / Vax 4NS[1 - 2NV,x(l - x)]. 

Assuming further that N s  is large but 8N2SV, is very small, we have 

(18) 

namely the probability of fixation of a favorable gene is reduced by V, due to 
random fluctuation in s. 

U = 2s - v,, 

Case 2.  Here we consider a special case in which r = 2 ,  or equivalently 
Vs =1/ (4N). For this case 

~ ( x )  = ( 2  - x)k/3(1+ x)+3 

If k is very small, U is approximately 1/(2N), while if k is very large it is nearly 
2s. For an intermediate value of k such as k = 3, we obtain 

U = [ N ( 3  log 2 - 1)]-’ 

which is roughly 0.9/N or 2.4s. 

Case 3 .  We now come to a more interesting case in which r is very small, 
namely V, > 1/(2N). In this case, as r approaches 0, hl and h2 approach 1 and 0, 
respectively. Here the situation is rather delicate and we restrict our consideration 
to the behavior of ~ ( p )  for an intermediate value of p .  For such a value of p 
which is neither very close to 0 nor 1, the effect of random sampling of gametes 
in reproduction may be ignored for a large population ( N  + CO ) , so that we can 
write 

keeping in mind that fixation here means strictly “quasifixation” (cf. KIMURA 
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1954), though in actual cases the prefix "quasi" may be unnecessary. because 
random sampling of gametes is always at work in the subterminal class. 
Then we have 

It may readily be seen that if k 2 1, both denominator and numerator of the 
above formula are divergent, which may be interpreted as showing that u ( p )  = 1 
for all p > 0. This agrees with the obvious fact that once the advantageous mu- 
tant gene has reached the stage where it is represented by sufficiently many 
individuals, it will almost certainly be led to fixation by natural selection. On the 
other hand, if 0 5 k < 1, the integral in the denominator converges and we get 

This shows that if 0 5 2: < V 9 ,  then u ( p )  < 1, namely there is a finite chance 
that gene A will be lost from the population by random fluctuation in selection 
intensity (plus random sampling of gametes in the neighborhood of z = 0) even 
if the gene is advantageous on the average. This gives an affirmative answer to 
the question posed by the present author in 1955: 

"When 5 and V,5 are of the same order of magnitude. o r  ? (> 0) is much 
smaller than V8,  is quasi-fixation still possible on the side of the dis- 
advantageous class?" 

For a small value of p (still assuming that N -+ m and 1 /N Q p Q l ) ,  we have 
approximately 

As an example, if 5 is 1/10 of V ,  and if the initial frequency is one percent, the 
chance of fixation is about three percent. 

Application of a similar method for the case of a completely recessive advan- 
tageous gene leads to a rather unexpected result that there is no finite chance 
of its loss if p > 1/N, where N + m . 

SUMMARY 

The probability of ultimate fixation of a gene in a population is treated as a 
continuous stochastic process and the solution is given as a function of the initial 
frequency and the mean and variance o€ the gene frequency change per genera- 
tion. The formula is given by equation ( 3 ) .  

The formula is shown to include previous results as special cases and is applied 
to solve problems where there is random fluctuation in selection intensity. It is 
also used to show some circumstances under which, even in a large population, 
an advantageous gene may be lost because of fluctuating selective values. 
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