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We present a pedagogical discussion of the maximum entropy method for the analytic continu-
ation of Matsubara-time or -frequency quantum Monte Carlo data to real frequencies. Bayesian
methods are employed to recast this daunting inverse problem into one of optimizing the pos-
terior probability of a real-frequency spectral function. Bayesian methods are also used to
optimize the inputs. We develop the formalism, present a detailed description of the data qual-
ification, sketch an efficient algorithm to solve for the optimal spectra, give cautionary notes
where appropriate, and present a detailed case study to demonstrate the method.

1 Introduction

Most quantum Monte Carlo (QMC) simulations produce Green’s functions G of Matsubara
imaginary time τ = it or frequency iωn. However, real-frequency results are crucial since
most experiments probe dynamical quantities, including transport, densities of states, nuclear
magnetic resonance, inelastic scattering, etc. Thus, the inability to extract real-frequency or
real-time results from Matsubara (imaginary) time QMC simulations presents a significant lim-
itation to the usefulness of the method. The relation between G(τ) and A(ω) = − 1

π
ImG(ω) is

linear and surprisingly simple

G(τ) =

∫
dωA(ω)K(τ, ω) , (1)

or equivalently

G(iωn) =

∫
dωA(ω)K(iωn, ω) . (2)

These two equations are related through a Fourier transform of the kernel and the Green func-
tion. For example, for a Fermionic single-particle Green’s function G, K(τ, ω) = e−τω/(1 +

e−βω) and K(iωn, ω) = 1/(iωn − ω) [1]. These equations are equivalent since the Fourier
transform is a unitary transformation. Despite this simplicity, inversion of these equations is
complicated by the exponential nature of the kernel. For finite τ and large ω the kernel is expo-
nentially small, so that G(τ) is insensitive to the high frequency features of A(ω). Equivalently,
if we approximate both G and A by equal-length vectors and K by a square matrix, then we
find that the determinant of K is exponentially small, so that K−1 is ill-defined. Apparently,
there are an infinite number of A that yield the same G.
Previous attempts to address this problem include least-squares fits, Pade approximants and
regularization. However, these techniques tend to produce spectra A with features which are
overly smeared out by the regularization, or have parameters that are difficult to determine. In
the least squares method, Schüttler and Scalapino [1] approximated the spectrum with a set of
box functions. The location and weight of these functions was determined by minimizing the
least-squares misfit between the spectrum and the QMC data. However, as the number of box
functions is increased to better resolve features in the spectrum, the fit becomes unstable and
noisy. In the Pade method [2], G (or rather its Fourier transform) is fit to a functional form,
usually the ratio of two polynomials, which is then analytically continued formally by replacing
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iωn → ω + i0+. This technique works when the data G is very precise, as when analytically
continuing Eliashberg equations, or when the fitting function is known a priori. However, it is
generally unreliable for the continuation of less-precise QMC data to real frequencies. A more
useful approach is to introduce a regularization to the kernel, so that K−1 exists. This method
was developed by G. Wahba [3], and employed by White et al. [4] and Jarrell and Biham [5].
They used similar methods to minimize (G−KA)2 subject to constraint potentials which intro-
duce correlations between adjacent points in A and impose positivity. The stochastic analytic
continuation method of Sandvik and Beach [6, 7] treats the least squares measure of Schüttler
as a thermodynamic potential and introduces a temperature to control the regularization.
In the Maximum Entropy Method (MEM) we employ a different philosophy. Using Bayesian
statistics, we define the posterior probability of the spectra A given the data G, P (A|G). We
find the spectra which maximizes P (A|G) ∝ P (A)P (G|A) with the prior probability P (A)

defined so that A has only those correlations that are required to reproduce the data G. To
define the likelihood function P (G|A), we take advantage of the statistical sampling nature of
the QMC process.
In this chapter, we will present a short pedagogical development of the MEM to analytically
continue QMC data. A more detailed review has been presented previously [8], and to the
extent possible, we will follow the notation used there. This chapter is organized as follows:
In Sec. 2, we will present the MEM formalism. In Sec. 3, the Bryan MEM algorithm will be
sketched, which has been optimized for this type of problem. In Sec. 4, we will illustrate these
techniques with the spectra of the Periodic Anderson and Hubbard models, described below,
and finally in Sec. 5, we will conclude.

2 Formalism

2.1 Green’s functions

When a system is perturbed by an external field which couples to an operator B, the linear
response to this field is described by the retarded Green’s function

G(t) = −iΘ(t)
〈[
B(t), B†(0)

]
±

〉
(3)

where the negative (positive) sign is used for Boson (Fermion) operators B and B†, and makes
reference to the Dirac (anti)commutator. The Fourier transform, G(z), of G(t) is analytic in the
upper half plane, and its real and imaginary parts are related by

G(z) =

∫
dω

−1
π

ImG(ω)

z − ω
. (4)

The Matsubara-frequency Green’s function G(iωn) is obtained by letting z → iωn in Eq. (4).
This may be Fourier transformed to yield a relation between the Matsubara-time Green’s func-
tion produced by the QMC procedure, and −1

π
ImG(ω)

G(τ) =

∫
dω

−1
π

ImG(ω)e−τω

1± e−βω
. (5)
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2.2 Bayesian statistics

We use our QMC algorithm to generate a set Ḡi
l of i = 1, . . . , Nd estimates for the Green’s

function at each time τl or frequency ωl, l = 1, . . . , L. Since many functions A correspond to
the same data Ḡ, we must employ a formalism to determine which A(ω) is the most probable,
given the statistics of the data and any prior information that we have about A. To quantify the
conditional probability ofA given the data, and our prior knowledge, we use Bayesian statistics.
If we have two events a and b, then according to Bayes theorem the joint probability of these
two events is

P (a, b) = P (a|b)P (b) = P (b|a)P (a) , (6)

where P (a|b) is the conditional probability of a given b. The probabilities are normalized so
that

P (a) =

∫
dbP (a, b) and 1 =

∫
daP (a) . (7)

In our problem, we search for the spectrum A which maximizes the conditional probability of
A given the data Ḡ,

P (A|Ḡ) = P (Ḡ|A)P (A)/P (Ḡ) . (8)

Typically, we call P (Ḡ|A) the likelihood function, and P (A) the prior probability of A (or
the prior). Since we work with one set of QMC data at a time, P (Ḡ) is a constant during this
procedure, and may be ignored. The prior and the likelihood function require significantly more
thought, and will be the subject of the next two subsections.

2.3 Prior probability

We can define a prior probability for positive-definite normalizable spectra. For Bosonic Green’s
functions, we may define positive definite spectra if we redefine the kernel, e.g.,

K(τ, ω) =
ω[e−τω + e−(β−τ)ω]

1− e−βω
or K(iωn, ω) =

ω2

ω2 + ω2
n

(9)

with A(ω) = −1
πω

ImG(ω) ≥ 0 for Bosons. We modified the kernel to account for the symmetry
of the Bosonic dataG(τ) = G(β−τ) orG(iωn) = G(−iωn) and the spectrumA(ω) = A(−ω).
Note that the kernel is non-singular at ω = 0 and the spectral density A(ω) is positive definite.
For Fermionic Green’s functions the spectra are already positive definite

K(τ, ω) =
exp(−τω)

1 + exp(−βω)
or K(iωn, ω) =

1

iωn − ω
(10)

with A(ω) = −1
π

ImG(ω) ≥ 0 for Fermions. We may also define positive definite spectra for
more exotic cases, such as for the Nambu off-diagonal Green function G12. Since the corre-
sponding spectrum A12(ω) = −1

π
ImG12(ω) is not positive definite, we enforce positivity by

adding a positive real constant b

G12(τ) + b

∫
dωK(τ, ω) =

∫
dωK(τ, ω) (A12(ω) + b) . (11)



Maximum Entropy Method 13.5

Here, we may incorporate the symmetry of the spectrum A12(ω) = −A12(−ω) and the data
G12(τ) = −G12(β − τ) by modifying the kernel

K(τ, ω) =
e−τω − e−(β−τ)ω

1 + exp(−βω)
. (12)

With this kernel, the equation takes the canonical form Eq. (1), if we identify

A(ω) = A12(ω) + b , and G(τ) = G12(τ) + b

∫
dωK(τ, ω) . (13)

The value of b is determined by optimizing its posterior probability as discussed below. In each
of the Bosonic, Fermionic and Anomalous cases,∫ ∞

−∞
dωA(ω) <∞ . (14)

Although not required, it is convenient to normalize each of the spectral functions to one. This
is possible if we know the integral of the spectrum from other QMC measurements or if we
know the high frequency limit analytically (see Sec. 4.6). These positive-definite normalized
spectra A may be reinterpreted as probability densities.
Skilling [10] argues that the prior probability for such an unnormalized probability density
is proportional to exp(αS) where S is the entropy defined relative to some positive-definite
function m(ω)

S =

∫
dω
[
A(ω)−m(ω)− A(ω) ln (A(ω)/m(ω))

]
≈

N∑
i=1

Ai −mi − Ai ln (Ai/mi) , (15)

where Ai = A(ωi) dωi, i = 1, . . . , N . Thus, the prior is conditional on two as yet unknown
quantities m(ω) and α

P (A|m,α) = exp (αS) . (16)

m(ω) is called the default model since, in the absence of data Ḡ, P (A|Ḡ,m, α) ∝ P (A|m,α),
so the optimal A is equal to m. The choice of α will be discussed in Sec. 3.5.
Rather than trying to repeat Skilling’s arguments here for the entropic form of P (A|m,α), we
argue that this form yields the desired effects:

1. it enforces positivity of A,

2. it requires that A only have correlations which are required to reproduce the data Ḡ, and

3. it allows us to introduce prior knowledge about the the spectra (e.g., exact results at high
frequencies) in the default model.

The first effect follows from the form of P (A|m,α), assuming that m is positive definite. The
third effect will be discussed in Sec. 4.5.
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Fig. 1: f -electron local Green’s function Ḡf (τ = β/2) plotted as a function of the QMC step
for a symmetric periodic Anderson Model with U = 2, V = 0.6, and β = 20.

2.4 Likelihood function

The form of the likelihood function is dictated by the central limit theorem, which for the
purposes of this chapter may be illustrated with the following example. Suppose we use our
QMC algorithm to generate Nd measurements of the Green’s function Ḡi

l (where l is an integer
from 1 to L, and i an integer from 1 to Nd). According to the central limit theorem, if each of
these measurements is completely independent of the others, then, in the limit of large Nd, the
distribution of Ḡl will approach a Gaussian, and the probability of a particular value Gl is given
by

P (Gl) =
1√
2πσ

e−χ
2/2 , (17)

where

χ2 =
1

σ2

(
1

Nd

Nd∑
i=1

Ḡi
l −Gl

)2

=
1

σ2

(〈
Ḡl

〉
−Gl

)2
, σ2 =

1

Nd(Nd − 1)

∑
i

(〈
Ḡl

〉
− Ḡi

l

)2
,

and the angular brackets indicate an average over the bins of data
Of course, in the QMC process each of the measurements is not independent of the others.
Correlations exist between adjacent measurements (Ḡi

l and Ḡi+1
l ) in the QMC process, and

between the errors of the Green’s function at adjacent time slices (Ḡi
l and Ḡi

l+1) at the same
QMC step. The removal of these correlations is the most critical step in the MEM analytic
continuation procedure.
Correlations between adjacent measurements are illustrated in Fig 1 where measurements of
Ḡf (τ = β/2) are plotted as a function of the QMC step. Clearly, the data from adjacent
QMC steps is correlated and the data are skewed since the Green’s function is bounded from
below (Ḡi

l > 0). As a result the data are not Gaussianly distributed, as shown in Fig. 2(a).
Here, a histogram of the data is compared to a Gaussian fit. The deviations from a Gaussian
are quantified by the moments of the distribution. The most relevant ones in the present case
are the skewness (third moment) and kurtosis (fourth moment) which measure the degree of
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Fig. 2: Distribution of the data shown in Fig. 1 (a) and after rebinning (b). The solid line
is a Gaussian fit. In (b) the data was processed by packing it sequentially into bins of 30
measurements each.

asymmetry around the mean and the pointedness (or flatness) of the distribution relative to the
Gaussian [12]. The data are clearly not Gaussianly distributed, and display significant skew and
kurtosis. To deal with this difficulty, we rebin the data. For example, we set Ḡ1

l equal to the
average of the first 30 measurements, Ḡ2

l equal to the average of the next 30 measurements, etc.
It is well approximated by a Gaussian fit (the solid line).
The bin size, here 30 measurements, must be chosen large enough so that the bin-averages are
uncorrelated, but small enough so that sufficient bins remain to calculate the likelihood function.
To determine the smallest bin size that yields uncorrelated data we quantify the deviation of the
distribution from a Gaussian by measuring moments of the distribution. Of course, because the
data are a finite set, each of these measured moments has some standard deviation (proportional
to 1/

√
Nbins). Thus, one way to determine if the skewness and kurtosis of a distribution are

acceptably small is to measure these values relative to what is expected from a Gaussian dis-
tribution. We will use such relative values. As the bin size increases, the relative kurtosis and
skewness decrease monotonically, indicating the convergence of the distribution to a Gaussian.
This behavior is shown in Fig. 3a for the G(τ = β/2) data.
In addition, Fig. 3b shows that the error estimate also converges as the bin size increases. Here,
the error estimate is given by

σ =
√(〈

Ḡ2
〉
− 〈Ḡ〉2

)
/(Nbins − 1) (18)

where angular brackets indicate an average over the bins of data. Because correlations between
successive Monte Carlo measurements always make this error-estimate smaller than the actual
value, this error estimate should initially increase monotonically with bin size, as shown. This
behavior is easily understood by considering a perfectly correlated sample where the data in
each bin is identical. Clearly, for this perfectly correlated sample, the error estimate would be
zero. As the bins become uncorrelated, the error estimate increases. With independent data
and a large number of equally sized bins, eventually σ2 ∼ 1/Nbins. However, with a fixed
amount of data, as is typical with a QMC simulation, increasing the bin size decreases Nbins

proportionally, and the error estimate can saturate as illustrated in Fig. 3b. Thus, the saturation
of the error estimate indicates that the correlations between Monte Carlo measurements, i.e.,
between bin averages, have been removed. The point at which saturation occurs in a plot like
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Fig. 3: Relative kurtosis and skew (a) and error bar (b) of the data shown in Fig. 1 as a function
of bin size. Here the total amount of data is fixed, so increasing the bin size decreases Nbins

proportionately. As the bin size increases to about 30, the relative kurtosis and skew decrease
to roughly zero and the error bar saturates, indicating that the bins are uncorrelated samples
and that the data has become Gaussianly distributed.

Fig. 3b provides a useful first estimate of the minimum bin size required to remove correlations
between the bins. In general, one should perform this test for the Green’s function at all times
τl; however, we have found it is often sufficient to perform this test at only a few times. For the
remainder of this section, we will assume that the bin size is sufficiently large so that both the
error estimate and the moments of the distribution have converged to values which indicate that
the data are both statistically independent and Gaussian-distributed.
Now, only the errors in the Green’s function Ḡ at adjacent time slices remain correlated. This
correlation may be seen by comparing the results from a single measurement with the essentially
exact values obtained from averaging over many measurements. Such a comparison is shown
in Fig. 4 where, if the result from a single measurement differs from the essentially exact result
at a certain value of τ , then the results at adjacent values of τ also tend to deviate from the exact
results in a similar way. These correlations of the error in Matsubara time are characterized by
the covariance

Clk =
1

Nbins(Nbins − 1)

Nbins∑
j=1

(
〈
Ḡl

〉
− Ḡj

l )(
〈
Ḡk

〉
− Ḡj

k) . (19)

IfC is diagonal, then according to the central limit theorem, the likelihood function is P (Ḡ|A) =

exp[−χ2/2] where

χ2 =
L∑
l=1

(
Ḡl −

∑
jKl,jAj

σl

)2

. (20)

and σ2
l are the diagonal elements of C. However, in general, the covariance matrix Cij is not

diagonal because errors at different values of τ are correlated. To define a meaningful measure
of how well Ai reproduces the data, we must find the transformation U which diagonalizes the
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Fig. 4: Ḡf (τ) from one measurement compared to Ḡf (τ) obtained from the average over 800
bins of data, each containing 1520 measurements. If the result from a single measurement at
a certain point differs from the essentially exact result obtained by averaging over many bins,
then the results at adjacent points also deviate from the exact results.

covariance matrix
U−1CU = σ′2i δij . (21)

Both the data and kernel are now rotated into this diagonal representation

K′ = U−1K Ḡ′ = U−1Ḡ . (22)

and each measurement Ḡ′i is statistically independent. Therefore, we can use

χ2 =
∑
l

(
Ḡ′l −

∑
jK

′
l,jAj

σ′l

)2

. (23)

to measure the misfit between the spectrum and the data and to define the likelihood function.

Cautionary Notes. We find that the proper preparation of the data by removing correlations
is the most critical step in the MEM procedure. If the data are uncorrelated or the covariance
is calculated and diagonalized correctly, then the resulting spectra will be reliable (however, for
weak data, it will show a significant bias towards the default model). If not, then the Gaus-
sian form of the likelihood function is unjustified and the resulting spectra will generally have
spurious features.
However, care must be taken when calculating and diagonalizing the covariance. First, Since
the set of data is finite, it is necessary to balance the need of removing the correlations in
imaginary-time with the need of removing the correlations between Monte Carlo steps. To
remove the correlations in Monte Carlo steps the bin size must be large; however, to calculate
the covariance accurately, many bins of data are required. If there are not enough bins of data,
then the covariance and (as shown in Fig. 5) its eigenvalue spectrum can become pathological.
The reason for this pathology is that when we diagonalize the covariance matrix, we are asking
for L independent eigenvectors. We must have enough bins of data to determine these directions
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Fig. 5: Eigenvalue spectra of the covariance of Gf for different numbers of bins of data. Each
bin contains 100 measurements and L = 41. When Nbins . 2L, σ′2l develops a sharp break.

so that Nbins must be greater than or equal to L. In fact, since the information contained in a
given bin of data is not completely independent from the other bins, we must have Nbins > L.
Otherwise, as shown in Fig. 5, where L = 41, the eigenvalue spectrum displays a sharp break
when Nbins < L, indicating that only a finite number of directions, less than L, are resolved.
The small eigenvalues after the break are essentially numerical noise and yield artifacts in the
spectra. Simply throwing away the small eigenvalues and their associated eigenvectors does
not cure the difficulty since the small eigenvalues and eigenvectors contain the most precise
information about the solution. Thus, the only reasonable thing to do is to increase the number
of bins. Empirically, we find that we need

Nbins ≥ 2L (24)

in order to completely remove the pathology of the sharp break in the eigenvalues [13]. Second,
as illustrated in Fig. 4 adjacent data in time tend to be highly correlated. These correlations
grow as the time step used in the QMC calculation is reduced, making the rows and columns of
the covariance more correlated. Eventually, the covariance becomes ill conditioned and cannot
be diagonalized. Such severe oversampling of the Green function data does not provide more
information, but a small time step may be useful for other reasons (such as reducing Trotter
errors). In this case we can fix the problem by eliminating some fraction of the data e.g., taking
the data from every other time step.

2.5 Details of the MEM Formalism

We will now construct the formalism to locate the most likely spectrum Â and set the value of
α. The first step is to normalize the likelihood function P (Ḡ|A) and the prior P (A|α,m). Here
it will be necessary to integrate over the space of all spectra Ai. This is done with Gaussian
approximations to the integrals. Following Skilling and Bryan [14], we employ a measure
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dNA/
∏

i

√
Ai which amounts to a change of variables to a space where the entropy S, Eq. (15),

has no curvature [8]. For example, the normalized prior probability is

P (A|α,m) =
1

ZS
exp

{
α
(
−
∑

Ai lnAi/mi − Ai +mi

)}
(25)

where

ZS =

∫
dNA∏
i

√
Ai

exp
{
α
(
−
∑

Ai lnAi/mi − Ai +mi

)}
. (26)

The integrand is maximized when S = 0, i.e., when A = m. We approximate the in-
tegral by expanding the argument of the exponent to second order around this maximum,
S ≈ 1

2
δAT ∇∇S|A=m δA = −1

2
δAT {1/m} δA, where {1/m} is the diagonal matrix with

finite elements composed of 1/mi, and δA is the vector A−m.

ZS ≈
∫

dNA∏
i

√
Ai

exp

{
α

(
−1

2
δAT {1/m} δA

)}
. (27)

We define a change of variables, so that dyi = dAi/
√
Ai and find

ZS ≈
∫
dNy exp

{
α

(
−1

2
δyT{m}1/2 {1/m} {m}1/2δy

)}
= (2π/α)N/2 (28)

The likelihood function must also be normalized

P (Ḡ|A) = e−χ
2/2/ZL (29)

where

χ2 =
∑
l

(
Ḡ′l −

∑
iK
′
liAi
)2

σ′2l
(30)

where K ′ and Ḡ′ are the kernel and data rotated into the data space where the covariance is
diagonal, and σ′2l are the eigenvalues of the covariance. If we let Gl =

∑
iK
′
liAi, then

ZL =

∫
dLG exp

{
1

2

L∑
l=1

(
Ḡ′l −Gl

)2
σ′2l

}
= (2π)L/2

∏
l

σ′l (31)

Using Bayes theorem, we find

P (A,G|m,α) = P (G|A,m, α)P (A|m,α)

= P (A|G,m, α)P (G|m,α) (32)

or

P (A|G,m, α) ∝ P (G|A,m, α)P (A|m,α) =
exp(αS − χ2/2)

ZSZL
(33)

Since the normalization factors ZS and ZL are independent of the spectrum, for fixed α and
data, the most probable spectrum Â(α) is the one which maximizes Q = αS − χ2/2. An
algorithm to find this spectrum is discussed in Sec. 3. However, the question of how to select α
and the default model remains.
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2.5.1 Selection of α

The selection of α strongly affects the choice of the optimal spectrum [15] since α controls the
competition between S and χ2. If α is large, the entropy term is emphasized and the data cannot
move the spectrum far from the model. If α is small, then the least square misfit between the
spectrum and the data is minimized so that χ2 � L. The numerical error in the QMC data then
begins to dominate the solution and the spectra displays random oscillations and noise. Thus, it
is important to find a sensible way of selecting α. Typically, α is selected in one of three ways
described below.

Historic MEM [16,14] In the historic method, α is adjusted so that χ2 = L. The justification
for this is that if the spectrum is known and the data was repeatedly measured, then the misfit
between the data and the spectrum χ2 = L on average. However, the data are only measured
once and the spectrum is not known a priori. Also, setting χ2 = L tends to under-fit the data
since good data can cause structure in the spectrum which reduces χ2 from L. Thus, there is
little reason to believe that α can be chosen without input from the data itself.

Classic MEM [15] A more appropriate method of setting α is to choose the most probable
value, defined by maximizing

P (α|Ḡ,m) =

∫
dNA∏
i

√
Ai
P (A,α|Ḡ,m) . (34)

The integrand

P (A,α|Ḡ,m) = P (A|Ḡ,m, α)P (α) ∝ exp(αS − χ2/2)

ZSZL
P (α) (35)

involves the prior probability of α. Jeffreys [17] argues that since χ2 and S have different units,
α is a scale factor. He asserts that in lieu of prior knowledge, it should have the simplest scale
invariant form P (α) = 1/α. Thus,

P (α|Ḡ,m) =

∫
dNA∏
i

√
Ai

exp(αS − χ2/2)

ZSZLα
=

ZQ
ZSZLα

(36)

ZQ is calculated in a similar fashion as ZS . We expand about the maximum of Q at A = Â so
that exp{αS −χ2/2} ≈ exp{Q(Â) + 1

2
δAT ∇∇Q|Â δA} = exp{Q(Â) + 1

2
δAT{1

2
∇∇χ2|Â−

{α/Â}}δA}. We again make a Gaussian approximation to the integral, and if λi are the eigen-
values of 1

2
{A1/2} ∇∇χ2|Â {A1/2}, then

P (α|Ḡ,m) =
1

Wα

∏
i

(
α

α + λi

)1/2
eQ(Â)

α
(37)

where

Wα =

∫
dα

α

∏
i

(
α

α + λ

)1/2

eQ(Â) . (38)



Maximum Entropy Method 13.13

0 20 40 60 80 100

α

0.00

0.01

0.02

0.03

0.04
P

(α
|G

,m
)

Fig. 6: The posterior probability P (α|Ḡ,m) as a function of α for the periodic Anderson
model data presented in Fig. 1. Since P (G|I) is unknown, the magnitude of the ordinate is also
unknown. The distribution is wide, so many reasonable values of α exist. The distribution is
also skewed, so the value of α at the peak is not representative of the mean.

The optimal α, α̂, may be determined by the condition

∂P (α|Ḡ,m)

∂α
= 0 . (39)

For strong data, P (α|Ḡ,m) is dominated by the product and expQ(Â) so that

− 2α̂S ≈
∑
i

λi
α̂ + λi

. (40)

Each λi which is much greater than α̂ contributes one to the sum and hence one to the number
of good observations in the data. If the number Ngood = −2α̂S is large, then P (α|Ḡ,m) is very
sharp and the spectra corresponding to α = α̂ is a good approximation of the spectra which has
been properly averaged over P (α|Ḡ,m).

Bryan’s Method [19] that Ngood � L. Then P (α|Ḡ,m) is a broad and highly skewed distri-
bution. For example, P (α|Ḡ,m) for the data shown in Fig. 1 is plotted in Fig. 6. The distribution
is wide, so many reasonable values of α exist. The distribution is also skewed, so the value of
α at the peak is not representative of the mean. To deal with this, Bryan [19] calculates the
optimal spectrum Â(α) for each α. The solution is taken to be

Ā =

∫
dαÂ(α)P (α|Ḡ,m) . (41)

These three MEM methods will produce essentially identical results if the data are uncorrelated
and precise. However, when the data are less precise but still uncorrelated, the method suggested
by Bryan, averaging Â(α) weighted by P (α|G,m), generally produces more acceptable results
and converges to a good result faster than the classic method and much faster than the historic
method as the data is improved. A further advantage of the averaging is that it allows an accurate
relative assessment of the posterior probability (

∫∞
0
dαP (m|G,α)) of the default model. This

information is invaluable in determining which default model yields the most likely A.
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Cautionary Notes. Some care must be used when working with Classic MEM and Bryan’s
method. Both rely on the accuracy of Eq. (37) for P (α|Ḡ,m), which is calculated with a
Gaussian approximation which is only accurate if Q is a sharply peaked function in the space
of all images. This approximation clearly fails when α → 0. Here there is no regularization
and infinitely many spectra will produce the same Q, so it is flat, not sharply peaked, in these
directions. In this case, the algorithm can reach a run-away condition where it tends toward
small values of α, the approximation for P (α|Ḡ,m) fails causing the calculation to tend towards
ever smaller values of α. This condition is easily identified in the calculation, and it can be cured
by increasing the quality of the data or by choosing a better default model (a Bryan or classic
MEM calculation with a perfect default model will always tend toward a solution with large α),
using the methods described below, or the annealing method described in the example Sec. 4.5.

2.6 Model selection

Bayesian statistics may also be employed to select the default model. I.e. if we must choose
between different models, or set parameters used to define a default model function, then we
choose these models or parameters based upon the posterior probability of the model

P (m|Ḡ) =

∫
dαP (α|m, Ḡ)P (m) . (42)

We see no a priori reason to favor one default model over another, so we typically set the prior
probability of the model P (m) =constant. Then the integrand in Eq. (42) is given by Eq. (37)
so that

P (m|Ḡ) ∝ Wα . (43)

Since the prior probability of the model is unknown, P (m|Ḡ) determines only the relative
probability of two models and, by inference, the relative probability of their corresponding
spectra.

Cautionary Notes. It can be tempting to try very informative models, such as the uncorre-
lated spectrum with sharp distinct features. Such default models will often have high posterior
probabilities P (m|Ḡ) but should nevertheless be avoided unless one can be sure, i.e., certain,
that the sharp features are real. For example, a model with a delta function peak, has a huge
amount of information, whereas the information from the QMC data is quite finite and may
not be able to correct a wrong delta-function feature in the model. In this respect, again, the
annealing technique described later is ideal.

2.7 Error propagation

To absolutely quantify the spectrum, we need to assign error bars to it. In the quadratic approx-
imation, the probability of the spectral density is

P (A|Ḡ,m, α) ∝ e−
1
2
δAT ·∇∇Q|Â·δA , (44)
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thus the covariance of the spectral density is

〈δA(ω)δA(ω′)〉 = − (∇∇Q|Â)−1 . (45)

It is not possible to assign error bars to each point in the spectral density since this matrix is
generally not diagonal. Thus errors between different points are strongly correlated. Also, Ai
represents the spectral probability within some region of finite width and hence lacks meaning
at a specific value of ω. However, it is possible to assign error bars to integrated functions of
the spectral density such as [18],

H =

∫
dωA(ω)h(ω) . (46)

where h(ω) is an arbitrary function of ω. The error of H may be associated with the covariance
of the spectral density 〈δA(ω)δA(ω′)〉〈

(δH)2
〉

=

∫ ∫
dωdω′ h(ω)h(ω′) 〈δA(ω)δA(ω′)〉 . (47)

The matrix ∇∇Q|Â is readily available because it is used as the Hessian of the Newton search
algorithm typically used to find the optimal spectral density.

Cautionary Notes. Care should be taken in the interpretation of the error bars, especially if a
highly informative default model is used. Suppose for example the data is weak, but a default
model in essentially exact agreement with the data is used, then as discussed above, a large
α solution will be found corresponding to a Q with small curvature in the space of images,
and hence very small error bars. This does not necessarily mean that the resulting spectrum is
accurate though, it just means that the default model is one of many which is consistent with
the weak data. Unless the information in a default model is known to be accurate (such as
the spectra from a higher temperature, or one which becomes exact at high frequencies), such
highly informative default models should generally be avoided.

3 Bryan’s method: a MEM algorithm

We will now sketch Bryan’s numerical algorithm to find the optimal spectrum. For a more de-
tailed description, we refer the reader to his paper [19]. We have found his algorithm to be very
appropriate for the numerical analytic continuation problem for two reasons: First, due to the
exponential nature of the kernel which relates A to the data Ḡ, we typically have L � Ngood.
Thus, the problem is usually “oversampled.” Bryan tailored his numerical algorithm [19] to this
type of problem by working in a reduced space whose dimension is determined by singular-
value-decomposition of the kernel K and is equal to the largest possible number of good, i.e.
numerically significant, singular values which may parametrize the solution. The dimension of
this space is usually much less than the number of Ai, and we found the computational advan-
tage over methods that use the entire space determined by the number of Ai to be significant.
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Second, for the analytic continuation problem, the approximation of setting α equal to its op-
timal value is questionable because of the wide range of reasonably acceptable values of α.
Bryan deals with this by calculating a result which is averaged over P (α|G,m).

3.1 Typical algorithms

What distinguishes Bryan’s numerical algorithm from its predecessors is the way in which the
space of possible solutions is searched. Typical algorithms search for an optimal A by stepping
through the entire space of A

A→ A+ δA (48)

with
δA = −(∇∇Q)−1∇Q . (49)

The Hessian (∇∇Q)−1 is

(∇∇Q)−1 = (α∇∇S −∇∇L)−1 =
(
α{A}−1 −∇∇L

)−1
. (50)

where {A} is a diagonal matrix with the elements of A along its diagonal. It may conceptually
be expanded using the binomial theorem so that (∇∇Q)−1 may be written as a power series in
{A}∇∇L. Thus, δA may be written as a combination of {A}∇Q = {A} (α∇S −∇L), and
powers of {A}∇∇L acting on {A}∇S and {A}∇L. Each of these vectors defines a direction
in which the search can proceed. Typically, between three and ten directions are used; however,
these directions are often inappropriate for the problem at hand, because as mentioned earlier,
the space of all possible solutions is too large for such oversampled data.

3.2 Singular-space algorithm

To alleviate this problem, Bryan performs a singular-value decomposition (SVD) of the kernel
K, i.e., K = V ΣUT where U and V are orthogonal matrices and Σ is a diagonal matrix,
and works in the resulting singular space. To see that this space still contains the solution, we
consider

∇L =
∂F

∂A

∂L

∂F
= KT ∂L

∂F
(51)

where F = KA. We see that ∇L lies in the vector space defined by the columns of KT . We
next perform a SVD on K and assume the diagonal elements of Σ are ordered from largest to
smallest. The smallest elements are essentially zero (to the numerical precision of the computer)
since the kernel is effectively singular. However, s of the elements are assumed finite. Now the
vector space spanned by the columns of KT is the same as the space spanned by the columns of
U associated with the non-singular values. Bryan calls this reduced space the singular space.
Thus, to the precision that can be represented on the computer, {A}∇L and all of the search
directions formed by acting with {A}∇∇L lie in the singular space spanned by the columns
of {A}Us, where Us is the singular space projection of U . The only direction not in this space
is {A}∇S. Thus, Bryan’s algorithm works in at most an s + 1-dimensional subspace of the
N -dimensional space of A.
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In this singular space, the condition for an extremum of Q, ∇Q = 0, is

α∇S −∇L = 0→ −α ln (Ai/mi) =
∑
j

Kji
∂L

∂Fj
. (52)

Thus, the solution may be represented in terms of a vector u

ln (A/m) = KTu . (53)

Unless K is of full rank, so that s = N , the components of u will not be independent. However,
since KT and U share the same vector space and since most of the relevant search directions lie
in the singular space, Bryan proposes that the solution be represented in terms of U and u as

Ai = mi exp
∑
n

Uinun . (54)

Thus, to the precision to which it may be represented on the computer and determined by SVD,
the space u must contain the solution defined by ∇Q = 0, and the search can be limited to this
s-dimensional space.
Bryan’s algorithm proceeds by first reducing all the relevant matrices to the singular space. With
the definitions K = V ΣUT and log(A/m) = Uu, the condition for an extremum becomes

− αUu = UΣV T ∂L

∂F
, (55)

or
− αu = ΣV T ∂L

∂F
≡ g , (56)

where each of these matrices and vectors has been reduced to the singular space (u is now a
vector of order s, Σ is an s × s diagonal matrix, etc.). Bryan then uses a standard Newton’s
search to find the solution in the singular space, starting from an arbitrary u. The increment at
each iteration is given by

Jδu = −αu− g , (57)

where J = αI + ∂g/∂u is the Jacobian matrix, I the identity matrix, and

∂g

∂u
= ΣV T ∂

2L

∂F 2

∂F

∂A

∂A

∂u
. (58)

With the definition W = ∂2L/∂F 2 (which is just the diagonal matrix with elements 1/σ′2l ),
M = ΣV TWVΣ, and T = UTAU . M and T are symmetric s × s matrices, the Jacobian
J = αI +MT , and

(αI +MT ) δu = −αu− g (59)

At each iteration δumust be restricted in size so that the algorithm remains stable. Thus, another
parameter µ (a Marquart-Levenberg parameter) is added

[(α + µ)I +MT ] δu = −αu− g (60)
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and adjusted to keep the step length δuTTδu below some the limit

δuTTδu ≤
∑
i

mi (61)

so the search is within the range of validity of a local quadratic expansion of Q.
This search can be made more efficient if Eq. (60) is diagonalized, so that of the order of s
operations are required for each α µ pair. First, we diagonalize T

TP = PΓ (62)

where P is an orthogonal matrix and Γ is diagonal with finite elements γi. Then we define

B = {γ1/2}P TMP{γ1/2} (63)

and solve the second eigenvalue equation

BR = RΛ (64)

where R is orthogonal and Λ the diagonal matrix with finite elements λi. Finally, to diagonalize
Eq. (60) we define

Y = P{γ−1/2}R . (65)

Then Y −TY −1 = T , and Y −1MY −T = Λ, so that

Y −1 [(α + µ)I +MT ] δu = [(α + µ)I + Λ]Y −1δu = Y −1 [−αu− g] (66)

which yields s independent equations for Y −1δu. Again, as these equations are iterated, µ must
be adjusted to keep the step length

δuTTδu =
∣∣Y −1δu∣∣2 ≤∑

i

mi . (67)

3.3 Selection of α

The value α is adjusted so that the solution iterates to either a fixed value of χ2 (for historic
MEM) or to a maximum value of P (α|G,m) given by Eq. (37) (for classic MEM). Then, A is
obtained from

Ai = mi exp

(
s∑

n=1

Uinun

)
. (68)

Alternatively, Bryan suggests that one may start the algorithm with a large α for which P (α|Ḡ,m)

is negligibly small, and then iterate to α ≈ 0 so that the averaged spectrum may be approxi-
mated

〈A〉 =

∫ ∞
0

dαP (α|G,m)Â(α) (69)

where Â(α) is the optimal spectrum (that for which ∇Q = 0) for the value of α specified
in the argument. This latter step may be necessary when P (α|G,m) is not a sharply peaked
distribution. In fact this is usually the case, as may be seen in Fig. 6.



Maximum Entropy Method 13.19

3.4 Error propagation

As discussed in Sec. 3.7, it is possible to assign error bars to integrated functions of the spectrum
H =

∫
dωA(ω)h(ω)

〈
(δH)2

〉
=

∫ ∫
dωdω′ h(ω)h(ω′) 〈δA(ω)δA(ω′)〉 , (70)

where
〈δA(ω)δA(ω′)〉 = − (∇∇Q|Â)−1 . (71)

This is the inverse of the Hessian of the algorithm discussed above and is easily calculated in
terms of singular-space quantities

− ∇∇Q|Â = {1/A}UY −T{αI + Λ}Y −1UT{1/A} . (72)

Its inverse

− (∇∇Q|Â)−1 = {A}UY
{

1

α + λ

}
Y TUT{A} (73)

may be used to calculate the error of H ,
√

(δH)2 for any α. In principle, one should average
the error over P (α|m, Ḡ); however, we find that it is generally adequate to calculate the error
of the spectrum at the optimal α̂.
We close this section with several practical comments: On a workstation, finding the optimal
spectrum by searching in the singular space requires only a few minutes of computer time.
This efficiency is in sharp contrast with the amount of computer we needed [20] even on a
“supercomputer” for standard Newton algorithms [14] or simulated annealing methods that use
the full space of A. We found it essential to use 64 bit arithmetic to obtain stable results.
Also, we use LINPACK’s [21] singular-value decomposition routine to do the SVD and also to
compute any eigenvalues and eigenvectors. The SVD routine in Numerical Recipes [22] and
the EISPACK [23] eigenvalue-eigenvector routine RS are not as stable.

4 Case study

In this section, we will demonstrate that it is possible to extract spectral densities from quantum
Monte Carlo data that are essentially free from artifacts caused by over fitting to the data and
have only small and controllable amounts of statistical error. We will use as an example the
electronic spectral densities of the infinite-dimensional periodic Anderson model (PAM). We
have already qualified the local Greens function data to remove correlations using the procedure
discussed in Sec. 2.4, so we can begin to process the data to obtain the single-particle density
of states spectral function.
For the majority of this section, we will consider particle-hole symmetric dataG(τ) = G(β−τ),
and spectra A(ω) = A(−ω). This prior information may be imposed on the solution by con-
structing a symmetric kernel and default models. We will use three symmetric default models:
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Fig. 7: A sequence of spectral densities generated from increasingly accurate data with a Gaus-
sian model (dashed line). Every time the number of bins of data is doubled, the error is reduced
by 1/

√
2. As Nbins increases beyond 2L = 82, spurious structures are quickly suppressed.

two non-informative models — the flat model m(ω) = constant and a simple Gaussian

m(ω) =
1

Γ
√
π

exp[−(ω/Γ )2] (74)

and also a third one obtained from second-order perturbation theory in U [24, 25]. The kernel
for symmetric Fermionic Green’s functions may be modified to reflect the symmetry and the
associated integral may be restricted to positive frequencies

G(τ) =

∫ ∞
0

dωA(ω)
e−τω + e−(τ−β)ω

1 + e−βω
. (75)

4.1 Convergence of spectra

To minimize the effects of statistical errors, the accuracy of the data needs to be increased until
the spectral density has converged. This is demonstrated in Fig. 7, where the accuracy of the
data are improved by increasing the number of bins of data. Here, a Gaussian default model is
used whose width Γ = 1.6 (chosen by an optimization procedure to be discussed below). Each
time the number of bins of data is doubled, the accuracy of the data increases by 41%. The
spectral densities corresponding to the smallest number of bins of data have spurious features
associated with over fitting. These features are associated with difficulties in calculating the
covariance matrix, as discussed in Sec. 2.4. As Nbins increases beyond 2L = 82, the spurious
structure is quickly suppressed. By the time 800 bins of data have been used, the spectral density
appears to be converged to within several line widths.

4.2 Default model selection

One may also test the dependence of the spectral density on the default model by changing its
parameters or by using different models. The best model is the one with the largest posterior
probability, calculated by assuming that the prior probability of the default model is flat, so
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Fig. 8: Dependence of the spectral density upon the default model. The width Γ of the Gaussian
default model (a) is varied, producing a series of spectral densities (b). In the inset to (a) is the
posterior probability of the default model P (m|Ḡ), produced by integrating the joint probability
P (A,α,m|Ḡ) over α and A, is plotted as a function of Γ . The normalization of P (m|Ḡ) is
unknown because it depends upon the probability of the data and the prior probability of the
default model which are unknown.

that P (A,α,m|Ḡ) ∝ P (A,α|Ḡ,m). Then P (m|Ḡ) is obtained by integrating P (A,α,m|Ḡ)

over A and α. The effects of varying the default model parameters are shown in Fig. 8a where
the same data set is analytically continued with Gaussian default models whose widths satisfy
1.0 < Γ < 2.4. The posterior probability P (m|Ḡ) of these default models, shown in the
inset, is peaked around Γ ≈ 1.6 (We note that the normalization of P (m|Ḡ) is unknown,
since the prior probability of the default model and data are unknown). The resulting spectral
densities are shown in Fig. 8b and are found to depend only weakly upon the default model.
It is also possible to optimize the perturbation theory default model and hence to optimize the
corresponding spectral densities. In the optimization of the default for the PAM spectra, the
d-f -hybridization V may be treated as a variational parameter.

4.3 Error propagation

In Fig. 9, we compare the optimal spectral densities obtained with the optimal perturbation the-
ory, Gaussian, and flat default models. (The flat default model, with no adjustable parameters, is
not optimized.) The posterior probabilities for each result indicate that the perturbation theory
default model produces by far the most probable spectral density. However, we note that the
qualitative features of the spectral density change little with the default model even though a
large variety of default models were used. This independence is one signature of good data!
As a final test of the quality of the spectral density, one can evaluate its error in different intervals
of frequency. In Fig. 9, we chose to assign error bars to the integrated spectral density (h(ω) =
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Fig. 9: The f-electron density of states Af (ω) generated using (a) a perturbation theory, (b) a
Gaussian, and (c) a flat default model. These models are shown as insets to each graph. The
data points indicate the integrated spectral weight within 10 non-overlapping regions of width
indicated by the horizontal error bar. The vertical error bar indicates the uncertainty of the
integrated weight within each region.

1) over different non-overlapping regions. The width of the region centered at each error bar
is indicated by the horizontal spread of the error bar, the spectral weight within this region is
indicated by the value of the data point, while the estimate of the uncertainty is indicated by
the vertical spread. The perturbation theory default model yields the most precise spectra at all
frequencies, consistent with the posterior probabilities of the models.

4.4 Two-particle spectra

There are special difficulties associated with the calculation of spectral densities associated with
two-particle Green’s functions. These difficulties include noisier and more correlated data and
the lack of a good default model. The latter problem stems from the traditional difficulties of
performing perturbation theory for two-particle properties.
As an example, we will analytically continue the local f -electron dynamic spin susceptibility
χ′′(ω) of the symmetric PAM. The Monte Carlo data χ(τ) = 2 〈S−(τ)S+(0)〉 is related to
χ′′(ω) by

χ(τ) =

∫ ∞
0

dω
ω[e−τω + e−(β−τ)ω](χ′′(ω)/ω)

1− e−βω
. (76)

To construct a model we will employ an alternative to perturbation theory, and construct a
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Fig. 10: χ′′(ω)/ω for V = 0.6, U = 2 and β = 20 for the PAM generated using a default model
defined by two moments of the spectral density. The data points indicate the integrated spectral
weight within 10 non-overlapping regions of width indicated by the horizontal error bar. The
vertical error bar indicates the uncertainty of the integrated weight within each region.

default model from different moments of the spectral function. They will be used as constraints
to the principle of maximum entropy. The moments used to generate the default model are

1

2
χ(ω = 0) =

∫ ∞
0

dω(χ′′(ω)/ω) . (77)

χ(τ = 0) =

∫ ∞
0

dω (χ′′(ω)/ω)ω coth(βω/2) . (78)

The (unnormalized) model is then generated by maximizing the entropy subject to these con-
straints imposed with Lagrange multipliers λ0 and λ1 and is easily found to be

m(ω) = exp[λ0 + λ1ω coth(βω/2)] (79)

where λ0 and λ1 are determined by the constraint equations above.
Clearly this procedure may be generalized to utilize an arbitrary number of measured moments
and often provides a better default model than perturbation theory. However, as shown in
Fig. 10, the final spectral density can differ significantly from the default model when defined
in this way. Nevertheless, the error bars indicate that the spectral density is trustworthy.

4.5 Annealing method

Occasionally we have reason to calculate a series of spectra for a variety of temperatures, e.g.
for the calculation of transport coefficients. If this set is sufficiently dense, then starting from
a perturbation theory default at high temperature, we may use the resulting spectra as a default
model for the next lower temperature. As far as we know, this procedure has no Bayesian jus-
tification; however, it has significant physical motivation. At sufficiently high temperatures,
perturbation theory often becomes exact. Thus, this annealing procedure may be initialized
with an essentially exact result. Furthermore, as the temperature is lowered, we expect the high
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Fig. 11: The evolution of the d-electron density of states of the asymmetric PAM when U = 1.5,
V = 0.6 nd = 0.6, and nf = 1.0. At high temperatures, as shown in the inset, the spectra
is in essentially exact agreement with second-order perturbation theory. In addition, the d-
electron states far from the Fermi surface are weakly renormalized by the strong electronic
correlation on the f -orbitals. Thus, as the temperature is lowered, the low-frequency spectra
change continuously, whereas the high frequency features change very little.

frequency features of many spectra to freeze out (this is an essential assumption behind the nu-
merical renormalization group method). Thus, the QMC is only required to supply information
about the low-frequency features. Since QMC is a discrete sampling procedure in Matsub-
ara time, according to Nyquist’s theorem QMC only provides information below the Nyquist
frequency ωN = π/∆τ . Thus, perturbation theory provides the high-frequency information,
QMC the low-frequency information, and MEM provides a natural method for combining these
information sources.
For example, the evolution of the d-electron density of states of the asymmetric PAM is shown
in Fig. 11. At high temperatures, as shown in the inset, the spectra is in essentially exact
agreement with second-order perturbation theory. In addition, the d-electron states far from the
Fermi surface are weakly renormalized by the strong electronic correlation on the f -orbitals.
Thus, as the temperature is lowered, the low-frequency spectra change continuously, whereas
the high frequency features change very little.

4.6 Matsubara frequency self-energy

We obtain high-quality estimates of the self-energy Σ(k, ω) by employing MEM directly to
the Matsubara-frequency self-energies calculated from continuous-time quantum Monte Carlo
(CTQMC) [26,27]. Since the self-energy lacks features due to the bare dispersion, its spectrum
generally has less features than the single-particle spectral function. Therefore, higher quality
results are obtained by directly analytically continuing the self energy and then constructing the
Green function via the Dyson equation [2].
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Fig. 12: Self energy spectra σ(k, ω) = − 1
π
Σ ′′(k, ω)/U2χσ,σ calculated by annealing for the

Hubbard model calculated with the DCA with U = 6t (4t = 1), t′ = 0, k = (0, 0) cluster size
Nc = 16 and filling n = 0.85 with an optimized Gaussian default model.

We illustrate this method with the self energy spectra of the 2D Hubbard model calculated with
the Dynamical Cluster Approximation (DCA). Since the DCA is a self consistent method, we
calculate the host Green’s function from the penultimate iteration very precisely so that its error
is negligible compared to the error measured in the last final iteration used to calculate the
binned data. It is convenient to normalize the non-Hartree part of the Σ(k, iωn) by U2χσ,σ,
where χσ,σ = 〈nσnσ〉−〈nσ〉2 = nσ(1−nσ) and is the local polarization of a single spin species
σ. The normalized spectrum of self-energy acts as a probability distribution:

Σ(k, iωn)−ΣH

U2χσ,σ
=

∫
dω

σ(k, ω)

iωn − ω
, (80)

where σ(k, ω) = − 1
π
Σ ′′(k, ω)/U2χσ,σ,

∫
dωσ(k, ω) = 1, using χσ,σ obtained from the Monte

Carlo process. Fig. 12 shows σ(K = (0, 0), ω) obtained by annealing, starting with a Gaussian
default model with width and location optimized as discussed above.

We conclude this section by noting that while the systematic preparation of the data described
in Sec. 2.4 and the qualification of the spectrum described in this section is time-consuming, we
believe that it is as important to the quality of the final result, as is an accurate MEM code.
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5 Conclusion

The Maximum Entropy Method is a precise and systematic way of analytically continuing
Matsubara-time quantum Monte Carlo results to real frequencies. Due to the exponential nature
of the kernel which relates the spectra and the data, there are many A which correspond to the
same Ḡ. With the MEM we employ Bayesian statistics to determine which of these is the most
probable. Bayesian inference is also used to assign error bars to integrals over the spectrum and
optimize the default model.
The posterior probability of the spectrum is given by the product of the prior probability and
the likelihood function. The entropic nature of the prior ensures that the only correlated devi-
ations from the default model which appear in the spectrum are those which are necessary to
reproduce the data. The form of the likelihood function is determined by the central limit theo-
rem, assuming that the data are statistically independent and Gaussianly distributed. Ensuring
these preconditions is the most critical step in the MEM procedure, and requires that the data
be systematically rebinned and that the data and the kernel be rotated into the space in which
the covariance of the data is diagonal.
Once the data has been properly characterized, we calculate the optimal spectrum using Bryan’s
algorithm which searches for a solution in the reduced singular space of the kernel. Bryan’s
method is more efficient than conventional techniques which search the entire spectral space.
For any search algorithm three different techniques can be employed to set the Lagrange pa-
rameter α which determines the relative weight of the entropy and misfit: the historic, classic or
Bryan’s averaging technique. With precise uncorrelated data, each returns essentially the same
spectrum, but with less-precise uncorrelated data, Bryan’s technique yields the best results.
Also, as the QMC data are systematically improved, images produced with Bryan’s technique
appear to converge more quickly than those produced by the other techniques.
Together, the techniques discussed in this chapter provide a powerful, accurate, and systematic
approach to the analytic continuation problem. In each case where we have employed these
techniques we have been able to produce spectra that are precise at low frequencies, and free
from spurious (unjustified) features at all ω.

5.1 Steps to ensure a robust MEM calculation

In this lecture we have summarized the proper implementation of MEM and given a number of
cautionary notes. As a parting discussion, these will be summarized here along with a few other
common sense rules of thumb.

1. Rebin your data to remove correlations in QMC time.

2. Generate sufficient bins of data so that Nbins
>∼ 2L where L is the number of Matsubara

times or frequencies used.

3. If a self consistent method, such as DCA, is used to generate the data, be sure that the
error in G from the previous iteration is negligible.
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4. When possible, normalize your data so that the spectrum integrates to one.

5. Calculate the covariance of the (renormalized) data making sure that: (1) the eigenvalue
spectrum is continuous (if not, increase Nbins), and (2) that the covariance matrix is well
enough conditioned to allow it to be diagonalized (if not, the data is oversampled in
Matsubara time).

6. Diagonalize the covariance and rotate the data and kernel into the diagonal frame.

7. Choose a good default model, hopefully you can use the annealing technique. Always use
a non-informative default model unless you are certain that the information in the model
is exact.

8. When possible, use Bryan’s MEM for marginalizing over α.

9. Systematically improve your data until the calculated spectrum converges.

10. When the annealing method is used, if the temperature step appears large, i.e. the spec-
trum changes abruptly, you may want to introduce data at additional intermediate temper-
atures.

11. If the annealing method is not used, try different non-informative default models. A
reliable result is independent of the model. You may also want to use the model with the
highest posterior probability (calculated when Bryan’s method is used).

Acknowledgment

We would like to acknowledge useful conversations and fruitful collaborations with J.E. Gu-
bernatis, A. Macridin, R.N. Silver, D. Sivia, and A.N. Tahvildarzadeh. We thank H. Chen who
performed the calculations of the self energy spectra in Sec. 4.6. This work was supported by
the National Science Foundation LA-SiGMA EPSCoR grant EPS-1003897.



13.28 Mark Jarrell

References
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