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We develop theory for the dynamics and fluctuations in some cyclic and linear biochemical reactions. We
use the approach of maximum caliber, which computes the ensemble of paths taken by the system, given a few
experimental observables. This approach may be useful for interpreting single-molecule or few-particle experi-
ments on molecular motors, enzyme reactions, ion-channels, and phosphorylation-driven biological clocks. We
consider cycles where all biochemical states are observable. Our method shows how: �1� the noise in cycles
increases with cycle size and decreases with the driving force that spins the cycle and �2� provides a recipe for
estimating small-number features, such as probability of backward spin in small cycles, from experimental
data. The back-spin probability diminishes exponentially with the deviation from equilibrium. We believe this
method may also be useful for other few-particle nonequilibrium biochemical reaction systems.
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I. INTRODUCTION

We are interested in noise in chemical cycles that are
driven and out-of-equilibrium. Consider a cycle of s different
conformational states, for example of a protein. Some such
cycles are driven to “spin” in a “forward” direction, for ex-
ample by ATP hydrolysis. Examples include molecular mo-
tors, such as the F0F1 ATP synthase �1�; the HSP90 chaper-
one protein complex, which assists in protein folding �2,3�;
and circadian clock circuits, driven by changing phosphory-
lation states �4�. The dynamics are noisy because of small
particle numbers.

The kinetics of biochemical reactions are commonly
treated using master equations or continuum Fokker-Planck
equations �5�. In those approaches, the central quantities are
the full time-dependent particle distribution functions as well
as point statistics and correlations derived from the particle
distribution �6�. In contrast to master equations, we present a
method for treating small-system dynamics that centers on
ensembles of trajectories, rather than on particle distribution
functions �13�. Figure 1 shows an example of a single-
particle trajectory in a three-state system. We compute the
stochastic dynamics using a trajectory-based approach called
maximum caliber �MaxCal�. First introduced by E. T. Jaynes
�7–9�, MaxCal computes the ensemble of trajectories taken
by the system as follows �10,11�: �1� A dynamical partition
function Q is expressed as a sum over all the possible mi-
croscopic trajectories, �2� each trajectory has a statistical
weight depending on the states through which it passes, but
these statistical weights are unknown a priori, �3� experi-
mentally measurable quantities are expressed as averages
over those trajectories, �4� using measured first moments of
fluxes, we find the undetermined statistical weights, and thus
Q, then �5� other properties of the system are computed di-
rectly from Q, often as simple derivatives. In building our
trajectory ensemble, we assume that all transitions between
states are observable �12�; we do not model systems having
hidden states. MaxCal is, in principle, a powerful tool for
modeling stochastic dynamics, particularly for single-particle

and few-particle systems far from equilibrium. MaxCal is to
dynamical problems what maximum entropy is for problems
of equilibrium statistical mechanics and the method has been
validated in some simple experimental situations �14,15�.

II. MAXCAL APPROACH: A SIMPLE 2-STATE
DIFFUSION EXAMPLE

First, to illustrate MaxCal, we consider a simple problem
of two-state Markovian diffusion with state labels 0 and 1
�10,15�. Initially, N0 particles are in state 0 and N1 particles
in state 1. To keep the counting discrete, we partition time
into small intervals of length �t. Within �t, each particle may
either stay in its present state or jump to the other. A micro-
scopic system trajectory � is one particular possible time
trace of N such steps, over a total time N�t. As such, each
trajectory considered here is a discrete time Markovian pro-
cess. During that time course, a particular trajectory, �, will
have N10,� transitions from 0 to 1, N01,� from 1 to 0, N00,�
from 0 to 0 and N11,� from 1 to 1. The dynamical partition
function Q is the sum of statistical weights over all possible
trajectories,

Q = �
�

�00
N00,��11

N11,��10
N10,��01

N01,� = �
�

p�, �1�

where �ij with �i , j�=0 or 1 are the four statistical weights
for the corresponding types of transitions; they are undeter-
mined at first. Experimentally observable average quantities,
�Nij�, are used to parametrize the set ��ij	 appearing in Q
using the following recipe �10�

FIG. 1. �a� One possible time trajectory for a three-state cycle.
�b� A three-state cycle, showing the definitions of rates used below.
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�Nij� =
� ln Q

� ln �ij
. �2�

Our strategy throughout will be to compute other properties
or cumulants of the memoryless discrete time dynamics by
taking appropriate derivatives of Eq. �1�. Appendix A briefly
discusses the input constraints to MaxCal.

For multiple independent particles, the system dynamical
partition function factorizes into

Q = q0
N0q1

N1 �3�

where qi, the dynamical partition function for individual par-
ticles originating at state i, is

qi = �1 1 �GN
�i,0

�i,1
� �4�

and the column vector on the right hand side of the above
specifies the system’s initial condition while G is a transition
matrix with matrix elements Gij =�ij with i , j=0,1. For a
single time step, N=1, we have

Q = ��00 + �10�N0��11 + �01�N1. �5�

The approach is to obtain from experiments the average for-
ward and backward fluxes from state 0 to 1 and 1 to 0,
�J10�=� ln Q /� ln �10 and �J01�=� ln Q /� ln �01, respec-
tively. From those, we obtain �10 and �01 using the following
two equations

�Nij� � �Jij� = Nj�ij/��ij + � j j� . �6�

These two equations fully determine Q since �00 and �11 are
eliminated using N0= �N00�+ �N10� and N1= �N11�+ �N01�
yielding �00=1−�10 and �11=1−�01. In this case, Q=1 and
�10 and �01 are jump probabilities.

The average net flux from 0 to 1, defined as
�J���J10−J01�, is

�J� = �10N0 − �01N1. �7�

The fluctuations, �J2�c= �J2�− �J�2 �where c is for cumulant�,
are given by

�J2�c = �10�1 − �10�N0 + �01�1 − �01�N1. �8�

Microfluidics experiments have confirmed the validity of
these expressions for symmetrical diffusion processes where
�01=�10 �14�.

III. TREATING OTHER REACTION TOPOLOGIES

A. Forced diffusion in a linear string of states

Now, we generalize beyond two states to illustrate
the methods we will need in later sections. Consider
a long linear string of interconnected identical states,
. . .↔−1↔0↔1. . ., as occurs in linear molecular motors. We
first express the two unknown statistical weights in terms of
two variables � and v,

�10 � � + v/2; �01 � � − v/2. �9�

This change of variables is convenient because � corre-
sponds to a directionless diffusion coefficient and v corre-

sponds to the average drift velocity that would arise in a
diffusion equation with drift �Smoluchowski equation�. For
small �t the average net instantaneous flux between any two
states, say 0 and 1, is �J�= �v /2��N0+N1�+��N0−N1� and the
fluctuations are �J2�c= �v /2��N0−N1�+��N0+N1�. Invoking
particle conservation at state 0, we find

N0�t + �t� − N0�t� = ��N−1 − 2N0 + N1� + v/2�N−1 − N1� ,

�10�

which reduces, in the limit of small steps and many states, to
the Smoluchowski equation,

�c

�t
= − �

�c

�x
+ D

�2c

�x2 , �11�

where c is the particle number at location or site x, the drift
velocity is ����x /�t�v and D���x2 /�t��.1 This simply
shows that the Caliber approach reduces, as it should, to
Smoluchowski equation, and is not unexpected �16,17�. For
example, by constraining both the average flux and average
energy, R. M. L. Evans derives the Fokker-Planck equation
for driven systems and shows how equilibrium detailed-
balance conditions are modified by rare subensembles of tra-
jectories exhibiting net flux after some long time � �17�.

B. Dynamics of three cycles

In MaxCal, the 3-state cycle is a straightforward generali-
zation of the two-state problem. In this case, 6 hopping
fluxes from state i to j, �Ni→j�, are obtained by averaging
over repeated experiments or, in MaxCal, averaged over the
trajectory ensemble. The indices i and j are equal to 0, 1, or
2, so we have 6 constraints �15�. While studying a system
with 6 arbitrary rate coefficients gives little general insight,
we illustrate here our general results by focusing instead on a
subproblem characterized by two rates. All three forward
rates are �+� and all three backward rates are �−�. � is an
intrinsic rate identical in the forward and backward direc-
tions and � is the degree to which detailed balance is broken
�which need not be small�. We believe this is among the
simplest out-of-equilibrium systems having a small number
of parameters. For example, in biology, large � may represent
a high ATP concentration. Following the MaxCal procedure
above, we find that in the 1↔2 branch of the three cycle, the
average net flux, J=N21−N12, and flux fluctuations are

�J� = �1 + 2N��/3

�J2�c =
2N

9
�� − 2�2� , �12�

where the net average flux is the average number of particles
going from sites 1 to 2 from which we subtract the number

1For a small enough time interval �t, the ratio � /�t is small but
finite. As �t is reduced, the probability of jump � shrinks while
� /�t remains constant. In other words, the factor of � appears in
D= ��x2 /�t�� because of the arbitrariness in selecting the size of
our time window. We may remove this arbitrariness by fixing �t to
�t�� so that D is now equivalent to the usual diffusion coefficient.
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going from sites 2 to 1 within interval of length N�t. In the
presence of a single particle at site 1�at t=0�, for an undriven
system, �=0, in the long-time limit a net particle exchange
will have occurred between states 1 and 2. From Eq. �12� we
see that when �=0, or all rates are the same, the net particle
exchange from site 1 to 2 is 1/3, and that from 1 to 3 is 1/3
as well. Also, under such conditions, the fluctuations are un-
bounded in time, �J2�c / �J�O�N�. This is because the num-
ber of transitions 1→2 increases linearly with time N. How-
ever, the ratio �J2�c / �J� becomes bounded as the system is
driven away from equilibrium.

C. Dynamics of s-state cycles

Now, consider a cyclic network with s states. Again, we
express the statistical weights in the forward direction as
�+� and the backward direction as �−�. MaxCal gives as
the average flux and the fluctuations �in the long-time limit,
N→��,

�J� =
2N

s
� and �J2�c =

2N

s2 �� − 2�2� . �13�

We compute a noise-to-signal quantity �s for an arbitrary
network of s states as

�s =
�J2�c

�J�2 =
1

N

 �

2�2 − 1� . �14�

It is useful to express our results in terms of r, a constant
ratio of forward to backward rates,

r = 
� + �

� − �
�s

. �15�

This also means that in order to hold r fixed for any cycle
size, i.e., same driving force for any cycle size, we need to
rescale � as follows

��r� = �
1 −
2

r1/s + 1
� . �16�

Since, from Eq. �16�, increasing the number of states s de-
creases the value of �, the noise �s increases for fixed values
of r and �. The main conclusion is that, for our particular
Markov site model, the noise, �s, in an s cycle, increases
with the number of states, s, in the cycle, and decreases the
harder the cycle is driven �i.e., greater r�. We illustrate this
quantitatively by solving Eqs. �14� and �16� numerically and
depict the result for different s and � in Fig. 2. An interesting
biological implication is that there may be optimal sizes for
biochemical cycles. On the one hand, larger cycles may be
useful for performing particular complex biochemistry, but
keeping cycles smaller reduces noise. It is not clear whether
there are such evolutionary forces.

Above, we have computed only averages and variances of
the flux. We are also interested in the full distribution of rates
with the intent of deriving a flux fluctuation ratio. A recent
approach to expressing the magnitudes of nonequilibrium
fluctuations has been through fluctuation theorems, either for
continuous systems �18–21� or for systems with discrete
chemical states �22–26�, of interest here. Our method does

not require near-equilibrium assumptions �27�, and in prin-
ciple, the method of MaxCal applies equally well to non-
Markovian dynamics �10,16� and systems having spatial cor-
relations. In contrast to other nonequilibrium relations, such
as those dealing with work �28,29� or entropy �30–32�, our
fluctuation ratio is expressed in terms of a simple directly
measurable quantity, the flux.2

IV. FLUX-FLUCTUATION RATIO

In the spirit of earlier flux fluctuation ratios �11,14�, we
write a ratio, P�J ;N�t� / P�−J ;N�t� where P�J ;N�t� is the
probability of observing net flux J over a total time of N�t.
For multistate systems, we are interested in the net flux Jij
from state j to i during a time interval N�t; that is, the num-
ber of particles going from j to i from which we subtract the
number going from i to j. The distribution function
P�Jij ;N�t� is

P�Jij;N�t� = Q�/Q , �17�

where Q� is the sum over microtrajectories that specifically
have net flux Jij between states i and j, where Q is

Q = �
m

qm
Nm �18�

and where qm is the dynamical partition function for state m
with Nm particles initially. We can write the restricted sum
Q� which includes only those trajectories having net flux Jij
between states i and j as follows:

2In the limit of many particles, the functional form of our flux-
fluctuation ratio derives from the limiting distribution of trajecto-
ries, which also follows from the central limit theorem.

0 1 2 3 4 5log10 r
−3

−2

−1

0

1

2

3

4

s=3s=10δ
s

log
10

FIG. 2. �Color online� �s, the ratio of flux variance to average
flux squared of a s-state cycle as a function of r, the driving force to
spin the cycle, for cycle sizes s=3�lower curve� and s=10. In the
figure we use �=0.4 and N=100. The particular parameters are
selected to illustrate features of out-of-equilibrium system. See The
dynamics of three-cycles for more details.
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Q� = �
m�i,j

qm
Nm� dz

2	i
zJij−1qî

Niqĵ

Nj , �19�

where the loop, which circles the origin, collapses all mi-
crotrajectories in the dynamical partition function for which
the flux differs from Jij, q̂i�qi�� jiz

−1 ,�ijz� and the flux dis-
tribution characteristic function is qî

Niqĵ

Nj, see supplementary
materials for more details. When there are more than a few
particles, this flux characteristic function is approximately
Gaussian. In that case, by substituting z=exp�i
� the treat-
ment of the integral is standard �33� and the dominant con-
tributions are near 
0, leading to

P�Jij;N�t�
P�− Jij;N�t�

= exp
2�Jij�Jij

�Jij
2 �c

� . �20�

This flux-fluctuation ratio holds for any state topology, in-
cluding cycles in any forcing regime for arbitrary time when
all states are accounted for. For cycles, it says that “back-
wards” fluctuations become exponentially less probable with
increasing “spin rate” �Jij�. By backward, we mean situations
in which a cycle transiently spins counterclockwise if there is
a net driving force to spin clockwise resembling situations
described in terms of “Maxwell’s Demon” or “bad actors”
�11�. When N=1, and the flux is between two states i and j
the mean net flux and standard deviations are given by Eqs.
�7� and �8� while mean net flux and standard deviations for
arbitrary N are

�Jij� =
��10N0 − �01N1��1 − �1 − �10 − �01�N�

�10 + �01
�21�

�Jij
2 �c = ��10�01�N0 + N1� + �1 − �1 − �10 − �01�N�

��N0�10
2 + N1�01

2 �	
�1 − �1 − �10 − �01�N�

��10 + �01�2 . �22�

V. DISCUSSION

We describe here nonequilibrium fluctuations in linear
and cyclic chemical reactions using the approach of maxi-
mum caliber. MaxCal quantifies the rate at which fluctua-
tions increase with the number of states and decrease with r,
the driving force away from equilibrium. For example, mo-
lecular motors driven at high speed should have small flux
fluctuations. We believe this approach may be useful, for a
broad range of systems, for exploring how noise and fluctua-
tions in small biochemical systems can be predicted from
readily computed experimental observables.

ACKNOWLEDGMENTS

We appreciate the support from NIH �Grant No. GM-
34993� to K.D. S.P. thanks the FQRNT for its financial sup-
port as well as J. van Drie and G. Peterson for their insights.
K.G. acknowledges an FRF Grant from DU for financial sup-
port.

APPENDIX A

We remark here on our choice of constraints for MaxCal.
As constraints, we use first-moment quantities such as �Nij�.

The number of constraints that are needed to solve a MaxCal
problem depends on the number of independent statistical
weights that must be determined for a given model. We could
have used combinations of sums and differences of first mo-
ments. Sums and differences would be represented by the
corresponding changes in Eq. �2� and would lead to the same
set of statistical weights. As long as the constraints involve
some linear combination of first-moment quantities, the
choice of what to constrain is simply a matter of conve-
nience. The general three-state-cycle problem we discussed
would require three forward and three backward rate coeffi-
cients, and therefore would require six constraints in Max
Cal. However, we have illustrated our method on a simpler
problem that requires only one forward and one backward
rate constant, hence the two constraints in which we fix �
and �. In addition, we note that our first-moment constraints
lead to the correct master equation formulation of the dy-
namics considered.

Could we have used higher-moment constraints, such as
�Nij

2 � instead of first-moment constraints? Following Gibbs
�35� and others �34�, we note that constraints must be exten-
sive based on arguments that the equilibrium distribution
function cannot depend on how a system and bath are di-
vided and that constraints must also be conserved quantities
�36�. Briefly, we note that such requirements are well-known
for equilibrium. The entropy must be a function,
S�U , V , N� of conserved quantities such as energy, volume,
or particle number, in order to be a useful extremum prin-
ciple. S�U2� has no value as a variational principle, because
U2 is not conserved in exchanges between states. Similarly,
the constraints we use for dynamics are average fluxes, not
higher cumulants like variances.

APPENDIX B

Here we give the details required to derive Eq. �12�. For
such three-cycles systems, we construct a transition matrix,
G, as follows:

G = ��00 �01 �02

�10 �11 �12

�20 �21 �22
� , �B1�

which is valid for any set of jump probabilities from site to
site. From this transition matrix, we construct Q, as we had
done in Eq. �4�,

Q = �1 1 1 �GN��i,0

�i,1

�i,2
� . �B2�

To take the Nth power of G, we first diagonalize G. The
diagonal G raised to the Nth power is then related to the GN

as follows:

GN = SGD
NS−1, �B3�

where S is the similarity transformation used to diagonalize
the matrix. The eigenvalues and eigenvectors are too long to
write out explicitly and found on MATHEMATICA. We use this
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form for G to compute the expressions given in Eq. �12�. We
calculate all this by taking the appropriate derivatives. To be
explicit

�J� =
� ln Q

� ln �10
−

� ln Q

� ln �01
�B4�

and

�J2�c =
�2 ln Q

� ln �10
2 +

�2 ln Q

� ln �01
2 −

�2 ln Q

� ln �10 � ln �01
. �B5�

These expressions are too long to write out explicitly. On the
other hand, the case we considered in this section were
simple. This is because we set �00=1−2�, �11=1−2�,
�22=1−2�, �10=�+�, �20=�−�, �01=�−�, �21=�+�,
�02=�+�, and �12=�−� after taking the derivatives. The
simplified expressions are given in the main body. The curve
for �J2�c / �J�2 for the three cycle is plotted in Fig. 2.

APPENDIX C

Here we give more detail in deriving our general expres-
sion for the flux fluctuation ratio Eq. �20�. The generality of
the derivation that follows is required to verify that our flux
fluctuation ratio does indeed take the form of Eq. �20� in any
force regime for any state topology.

For ease of reference, we recall

P�Jij;N�t� = Q�/Q , �C1�

where Q in the above is Q=�mqm
Nm and qm is the dynamical

partition function for state m with Nm particles initially. In
addition, Q� is the sum over microtrajectories having net flux
Jij between states i and j. Specifically for the case of a single
time-step, N=1, we have

Q� = �
m�i,j

qm
Nm �

l,p=0

Ni,Nj

�l−p,Jij


N0

l
�
N1

p
��10

l �01
p �00

N0−l�11
N1−p. �C2�

In the above, we substitute the Kronecker delta, �l−p,Jij
, by

� dz
2	i z

l−p−Jij−1. This immediately returns,

Q� = �
m�i,j

qm
Nm� dz

2	i
zJij−1qî

Niqĵ

Nj , �C3�

where q̂i�qi�� jiz
−1 ,�ijz�. There is now an easy way of see-

ing that P�Jij ;N�t�=Q� /Q will give a Gaussian for suffi-
ciently large particle number. This is done by recognizing
that m�z�� q̂i

Niq̂j
Nj is the flux characteristic function and

c�z�� log�m�z�� the corresponding cumulant generating
function. A Gaussian is obtained by expanding the cumulant
generating function in powers of z �the variable conjugate to
flux� to second order and carrying through with the integra-
tion. Higher order corrections are small when particle num-
bers, Ni and Nj, are large enough.

To see this explicitly for a single time step, we substitute
z for exp�i
� in the previous expression. By dividing the
resulting expression by Q, we find for P�Jij ;1�t�

P�Jij;1�t� =
1

q0
N0q1

N1
�

−	

	 d


2	
eiJij
ec�exp�i
��. �C4�

Next, for large particle number, c(exp�i
�) is expanded to
second order around 
=0. This yields

c„exp�i
�…  − i�Jij�
 −
1

2
�Jij

2 �c

2 + O�
3� . �C5�

The above was obtained by plugging in the explicit form for
c(exp�i
�) as log(q̂i

Ni�� jie
−i
 ,�ije

i
�� q̂j
Nj�� jie

−i
 ,�ije
i
�).

Expanding the latter in powers of 
 it is recognized that the
first- and second-order coefficients of 
 are identical to those
of Eqs. �7� and �8�.

The coefficient of the third order term in 
 is the skew-
ness of the distribution which is small when Ni and Nj are
large enough. Furthermore, since the integral quickly decays
away from 
=0, the limits of the integrand are extended
from −	 to 	 to −� to �. In other words, we have

P�Jij;1�t� = �
−�

� d


2	
eiJij
e−i�Jij�
−1/2�Jij

2 �c
2
. �C6�

Upon integration, the above returns

P�Jij;1�t� =
1

�2	�Jij
2 �c

exp�−
�Jij − �Jij��2

2�Jij
2 �c

� . �C7�

The ratio of P�Jij ;N�t� over P�−Jij ;N�t� for arbitrary time
steps is presented in the main body as Eq. �20�.
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