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1 General Properties of Markov Processes

Suppose a system can be described by an element of some state space S. Let X be a random variable taking
values in S. The state of the system over time will be described by some sequence, {X(t1), X(t2), X(t3), . . .}.
Thus, the state is given by a random function X(t) which maps times to values in S. This function X(t) is
said to be a stochastic process.1

In general, the distribution of this variable at different times is described by a hierarchy of functions:

P1(x1, t1)
P2(x1, t1; x2, t2)

...
Pn(x1, t1; . . . ; xn, tn)

...

(1.1)

The function Pn(x1, t1; . . . ; xn, tn) is the probability (or probability density) that X takes on values
x1, . . . , xn at times t1, . . . , tn, respectively. There is an infinite number of such functions, since in general
there may be arbitrarily high correlations of the state of the system at different times.

From this hierarchy we can also generate conditional probabilities of the form:

Pi|j(xj+1, tj+1; . . . ; xj+i, tj+i|x1, t1; . . . ; xj , tj) =
Pj+i(x1, t1; . . . ; xj+i, tj+i)

Pj(x1, t1; . . . ; xj , tj)
. (1.2)

These are particularly revelant to Markov processes, which are a specific class of stochastic processes with
a wide range of applicability to real systems. They are defined as stochastic processes such that

P1|j(xj+1, tj+1|x1, t1; . . . ;xj , tj) = P1|1(xj+1, tj+1|xj , tj). (1.3)

In this sense a Markov process is “memoryless”: the probability of X taking a certain value now depends
only one of its previous values, not all of them.23 Then whole hierarchy is specified by only two functions,
P1(x, t) and P1|1(x2, t2|x1, t1), since every Pn can be constructed recursively from these two functions using
the Markov property:

Pn(x1, t1; . . . ; xn, tn) = P1|n−1(xn, tn|x1, t1; . . . ;xn−1, tn−1) Pn−1(x1, t1; . . . ; xn−1, tn−1)
= P1|1(xn, tn|xn−1, tn−1) Pn−1(x1, t1; . . . ; xn−1, tn−1).

(1.4)

The two functions P1 (the single-time probability distribution, which will generally be referred to as
“the” probability distribution) and P1|1 (the “transition probability”) must satisfy three conditions for the
Markov process to be well-defined:

1. The Chapman-Kolmogorov condition:

P1|1(x3, t3|x1, t1) =
∑
x2

P1|1(x3, t3|x2, t2) P1|1(x2, t2|x1, t1). (1.5)

1See [1] for a more detailed discussion on the physical setting of stochastic processes.
2Note the previous observation on which one conditions does not have to be immediately previous one. Conditioning on any

previous observation fully determines the system. That is, P1|j(xj+1, tj+1|x1, t1; . . . ; xj , tj) = P1|1(xj+1, tj+1|xi, ti) for all
i = 1, . . . , j.

3The condition of being Markovian depends on the state space S under consideration. For instance, a random walk with
constant probability of stepping right or left is clearly Markovian when the state space is simply the current position. However,
a random walk with persistence – for example, one in which the probability of stepping right or left depends on the previous
step – is not Markovian when the state space is the current position, but it is Markovian if the state space is enlarged to
include both the current position and the previous position. In principle, such a procedure can be implemented to embed many
non-Markovian processes into a Markovian process with a bigger state space. However, this is often not useful in practice.
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2. The time-evolution equation:

P1(x2, t2) =
∑
x1

P1|1(x2, t2|x1, t1) P1(x1, t1). (1.6)

3. And finally two normalization conditions:

1 =
∑
x

P1(x, t), 1 =
∑
x2

P1|1(x2, t2|x1, t1). (1.7)

Two functions satisfying these properties are sufficient to define a Markov process.
Now we introduce two important definitions. A homogeneous process is one such that P1|1(x2, t2;x1, t1)

depends only on the time interval t2 − t1. A stationary process is one with homogeneous P1|1 and time-
independent P1. Therefore a stationary process describes systems in steady state: the probability of observing
it in any given state does not change with time. It is often possible to embed a merely homogeneous process
as a subensemble of a stationary process (and so the stationary process is approached as the steady state).
However, this is not always the case. [More details on this, with Wiener process as counterexample.]

If the process is homogeneous, it is especially convenient to formulate the model in the language of linear
algebra. We will use the bra-ket notation of quantum mechanics. Define a vector |x〉 for each state x ∈ S,
and define a vector space V as the span of all |x〉. The distribution P1(x, t) will be represented as components
π(x, t) of the ket |π(t)〉 in V with an expansion in the physical basis of states:

|π(t)〉 =
∑
x

π(x, t)|x〉. (1.8)

We will represent the transition probability P1|1 as matrix elements of an operator Π(t): P1|1(x2, t2|x1, t1) =
〈x2|Π(t2 − t1)|x1〉. (Here the homogeneity assumption is essential.) Hence the three conditions from before
can be recast in this notation:

1. The Chapman-Kolmogorov condition:

〈x3|Π(t3 − t1)|x1〉 =
∑
x2

〈x3|Π(t3 − t2)|x2〉 〈x2|Π(t2 − t1)|x1〉. (1.9)

2. The time-evolution equation:

π(x2, t2) =
∑
x1

〈x2|Π(t2 − t1)|x1〉π(x1, t1)

〈x2|π(t2)〉 =
∑
x1

〈x2|Π(t2 − t1)|x1〉〈x1|π(t1)〉

−→ |π(t2)〉 = Π(t2 − t1)|π(t1)〉.

(1.10)

3. And finally two normalization conditions:

1 =
∑
x

π(x, t), 1 =
∑
x2

〈x2|Π(t)|x1〉. (1.11)

Here the Chapman-Kolmorogov condition clearly implies that Π(t1)Π(t2) = Π(t1 + t2), which means that
Π(t) = Pt/τ for some constant operator P [2]. (The time scale τ is required for dimensional reasons.)

The set of physically normalized states |π(t)〉 neither span the whole space V nor do they constitute a
subspace, since the normalization condition does not allow for arbitrary scaling and linear combinations. Note
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A B
Figure 1: Examples of the hyperplane defining the set of physical states |π(t)〉 along with the state vectors
and uniform distribution. (A) N = 2, so the physical states constitute a line. (B) N = 3, so the states
constitute a plane.

that changes of basis will in general lead to coefficients that do not constitute a real probability distribution,
so the physical basis is special. The only change of basis preserving this property is a matrix U such that∑
x〈x|U|y〉 = 1, which is of course the same requirement satisfied by the time evolution matrix Π(t). Thus

time evolution can be a thought of as a probability-preserving change of basis, although we sometimes also
changes of basis in other contexts like permuting the states. The relationship between these pictures is the
same as the Schrödinger and Heisenberg pictures of quantum mechanics and will be discussed further in
Section 1.6.

In the case of a finite and discrete state space, the set of physical states is easy to visualize. Suppose
there are N total states in S. Then V = RN , and the probability vectors |π(t)〉 are confined to an (N − 1)-
dimensional hyperplane in the nonnegative quadrant. See Figure 1 for examples with N = 2, 3.

1.1 Discrete Time Processes

Since Π(t) = Pt/τ , let us assume there is some smallest time scale ∆t so that t = m∆t for some integer m
and Π(t) = Pm for some constant single-step transition matrix P. Then |π(t)〉 can be evolved forward in
time in increments of ∆t by repeated application of the P operator:

|π(t+m∆t)〉 = Pm|π(t)〉. (1.12)

Thus the matrix elements 〈x2|P|x1〉 give the transition probability from x1 to x2 in time step ∆t. The limit
of infinitesimal ∆t will be considered in the next section on continuous time processes.

1.1.1 Classification

Our first goal is to introduce the necessary definitions to classify discrete time processes and characterize
their steady states. First we define a set of equivalence classes for states in S.

Communication classes: We say that state y is accessible from state x (denoted x→ y) if it is possible
to reach state y from x in a finite number of steps. Mathematically, 〈y|Π(t)|x〉 > 0 for finite t. If both x→ y
and y → x (denoted x↔ y), then x and y fall within the same communication class of states. It can be
shown that ↔ defines an equivalence relation on the state space S, so we can break down the entire space
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Figure 2: Examples of directed graph representations of Markov processes. On top is a transition matrix P
with its corresponding graph. Here there are two communication classes, {A,B} and {C}. The class {A,B}
is closed, and the state C is sticky. It is not strongly connected, since it is not possible to access C from A.
On the bottom is a transition matrix and graph for the 1D random walk. This graph is strongly connected.

into a set of non-overlapping communication classes. If all S constitutes a single class, then the process is
irreducible; otherwise, it is reducible. A class may also be closed (or absorbing) if it is impossible to
reach a state outside the class once inside of it. The key feature of communication classes is that important
properties of individual states in each class will be shared by all states in that class – therefore, our job of
classifying processes boils down to classifying communication classes.

When the state space S is discrete, it is often convenient to visualize properties of the Markov process
using a directed graph representation. Nodes are drawn for each state in S, and for each pair of states x
and y, we connect their nodes by an arrow pointing from x to y if 〈y|P|x〉 > 0 and an arrow from y to x
if 〈x|P|Y 〉 > 0. Nodes for which 〈x|P|x〉 > 0 will also have arrows connecting to themselves. Informally,
we say such states are “sticky,” since it is possible to stick in that state for successive time steps. Therefore
two states are in the same communication class if there are arrows between them in both directions. Graphs
are said to be strongly connected if one can reach any x from any y in a finite number of steps. This is
equivalent to the process being irreducible, since it means that all states are in a single communication class.
See Figure 2 for examples.

Periodicity : The period of state x, denoted d(x), is the greatest common divisor of all integers m for
which 〈x|Pm|x〉 > 0. Therefore all closed paths containing x must have lengths that are multiples of d(x).
If d(x) > 1, then state x is periodic. If d(x) = 1, then state x is aperiodic. If 〈x|Pm|x〉 = 0 for all m, then
define d(x) = 0 – it is impossible to return to such a state having left it. Note that periodicity is a property
of an entire communication class, not just individual states.

If state x is sticky (i.e., 〈x|P|x〉 > 0), then x must be aperiodic. Thus, if any communication class has
a single sticky state, then the whole process must be aperiodic. In Figure 2, class {A,B} have period 2 in
the first example, while {C} is aperiodic (it is sticky). For the random walk, each state has period 2. The
existence of cyclic structure, however, is not sufficient to guarantee periodicity. It is often more convenient
to again think in graph theory terms and consider cycles on the graph, which are closed paths. In Figure

5



Figure 3: Examples of periodicities. (A) This graph clearly has cyclic structure, but because the two cycles
have lengths 2 and 3, their GCD is 1 and hence all states are aperiodic. (B) Adding an additional state
yields cycles of lengths 2 and 4, which makes the states periodic with period 2.

Figure 4: (A) The Markov process on the left is strongly ergodic in Markovian sense, and this means it also
satisfies the ergodic hypothesis of physics.

3A, state C is part of a 2-cycle (C → D → C) and a 3-cycle (C → A → B → C), but the GCD of these
cycles is 1 since they are coprime. Hence state C is aperiodic, and therefore all states also are since the
graph is strongly connected. Contrast this with Figure 3B, in which D is part of a 2-cycle (D → E → D)
and a 4-cycle (D → A→ B → C → D). These cycles have GCD 2, so all states are periodic with period 2.
Thus to determine periodicity, one must consider the set of all cycles on each class of states.

Transience and recurrence: A state x is transient if there is nonzero probability that the system will
never return to state x having started there. A state is recurrent if the system is guaranteed to return
eventually. In that case, the state is positive recurrent if the mean recurrence time is finite and null
recurrent if it is infinite. Again, recurrence and transience are class properties. Note that a recurrent class
must be closed. In Figure 2, states A and B are recurrent while state C is transient, since any step away
from C prevents future return. These properties will be discussed quantitative detail with more examples in
Section ??.

It can be shown that the above classifications are sufficient to characterize Markov processes for many
purposes, especially for determining their steady state properties. Thus a process can be classified as follows:

1. Determine the number of communication classes.

2. Characterize each class as either periodic or aperiodic, and as transient, null recurrent, or positive
recurrent.

If a class is both aperiodic and positive recurrent, we say it is strongly ergodic. If it is aperiodic
and null recurrent, it is weakly ergodic. This definition of ergodic is related to the standard “ergodic
hypothesis” of statistical mechanics, which says that the time average of a system’s observables is equivalent
to the average over the statistical ensemble in steady state. This will indeed be true for a Markov process
in steady state that is strongly ergodic (as defined here), but it will not be true for a process that is not
non-ergodic. For example, in Figure 4A, this process is strongly ergodic. So in steady state, an ensemble
average of some observable O would be∑

x

O(x) π̃(x) =
1
3

(O(A) +O(B) +O(C)), (1.13)

since the steady state distribution is 1/3 for each state by symmetry. However, if we took the average of O
at many successive time points, we would still expect this average to be 1

3 (O(A) +O(B) +O(C)), since in
steady state we expect the system to spend about 1/3 of its time in each state.

[Counterexample of something that is non-ergodic in the Markov chain sense, and violates ergodic hy-
pothesis of physics?]

1.1.2 Steady State

Now we will use this scheme to classify steady state behavior. The steady state distribution is defined as

|π̃〉 = lim
m→∞

Pm|π(0)〉. (1.14)

6



Periodic Aperiodic
Transient Impossible Impossible
Null recurrent Impossible Impossible
Positive recurrent Steady state: oscillatory Steady state: unique

Example: circular random walk with
odd number of points

Example: circular random walk with
odd number of points

Periodic Aperiodic
Transient Steady state: null Steady state: null

Example: 1D asymmetric random walk
(no sticking)

Example: 1D asymmetric random walk
(with sticking)

Null recurrent Steady state: null Steady state: null
Example: 1D symmetric random walk
(no sticking)

Example: 1D symmetric random walk
(with sticking)

Positive recurrent Steady state: oscillatory Steady state: unique
Example: 1D random walk in potential
well (no sticking)

Example: 1D random walk in potential
well (with sticking)

Table 1: Classifications of discrete state space Markov processes, for a finite (top) or infinite (bottom) number
of states. The nature of the steady state is given along with an example.

There are three possibilities: the limit exists uniquely, there are multiple limiting distributions (depending
on the initial conditions |π(0)〉), or there is no limit at all. We would like to see which possibility is realized
for each type of Markov process.

First we consider irreducible processes (only one communication class). There are six possible classi-
fications regarding periodicity and transience/recurrence. We consider only discrete state spaces S so we
may use the language of graph theory developed thus far; continuous state spaces will be treated in a later
section. However, we will include both finite and infinite numbers of states. We catalogue the resulting 12
possibilities in Table 1.

What if the process is reducible, i.e., it has multiple communication classes? For a discrete, finite state
space, each class must be either positive recurrent or transient and periodic or aperiodic. All transient classes
will have zero contribution to the steady state, since all probability will eventually be “absorbed” by the
recurrent classes. Each recurrent class will have a linearly independent steady state distribution, and so any
properly normalized linear combination of these distributions will be a valid steady state. Hence there is an
infinite number of steady states.

1.2 Continuous Time Processes

Now we discuss the continuum limit of time. The evolution equation for a single time step is

|π(t+ ∆t)〉 = P|π(t)〉. (1.15)

Now by subtracting |π(t)〉 from both sides and dividing by ∆t we obtain

|π(t+ ∆t)〉 − |π(t)〉
∆t

=
1

∆t
(P− 1)|π(t)〉, (1.16)

where 1 is the identity operator. Taking the limit ∆t→ 0,

∂t|π(t)〉 = W|π(t)〉, where W = lim
∆t→0+

1
∆t

(P− 1). (1.17)
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[How is this limit well-defined?] The matrix elements of W can be expressed specifically as

〈x|W|y〉 =


lim

∆t→0+

1
∆t
〈x|P|y〉, x 6= y

lim
∆t→0+

− 1
∆t

∑
z 6=x

〈z|P|x〉 = −
∑
z 6=x

〈z|W|x〉, x = y

(1.18)

since the diagonal elements of P are 〈x|P|x〉 = 1 −∑y 6=x〈y|P|x〉. Equation 1.17 is known as the master
equation. If we hit both sides by 〈x| to expand into components, we may write it as

∂tπ(x, t) =
∑
y

〈x|W|y〉 π(y, t)

=
∑
y 6=x

〈x|W|y〉 π(y, t) + 〈x|W|x〉 π(x, t)

=
∑
y 6=x

(〈x|W|y〉 π(y, t)− 〈y|W|x〉 π(x, t)).

(1.19)

This version of the master equation is perhaps the most illuminating: clearly we can interpret the off-diagonal
elements of W as rates, where the first term on the right-hand side of Equation 1.19 is the probability flux
into state x, and the second term is the probability flux out of state x. Thus the master equation is
essentially a continuity equation.

The general solution to the master equation is

|π(t)〉 = etW|π(0)〉 = Π(t)|π(0)〉. (1.20)

This is obvious from the discrete time case. There the time evolution operator is Π(t) = Pt/∆t, so

Π(t) = lim
∆t→0+

Πt/∆t = lim
∆t→0+

(1 + ∆tW)t/∆t = etW. (1.21)

The above solution is for a homogeneous process where W is time-independent. It is however easy to
generalize to inhomogeneous cases where the master equation is

∂t|π(t)〉 = W(t)|π(t)〉. (1.22)

Then the general solution is

|π(t)〉 = T {e
R t
0 dτ W(τ)}|π(0)〉, (1.23)

where the matrix elements of the time evolution operator are defined as

〈x|T {e
R t
0 dτ W(τ)}|y〉 = 〈x|y〉+

∫ t

0

dτ 〈x|W(τ)|y〉+
1
2

∫ t

0

dτ1

∫ t

0

dτ2 〈x|T {W(τ2)W(τ1)}|y〉+ · · · . (1.24)

The notation T {· · · } is the time-ordering operator. This is required since the rate matrices at different times
do not commute in general (i.e., W(t1)W(t2) 6= W(t2)W(t1)).

1.2.1 Waiting Times and Discrete Time Embedding

Continuous time processes can be embedded in a corresponding discrete time processes. A sample realization
of a continuous time process consists of a series of discrete jump events alternating with random waiting
times. [Some figure with sample realization of a path.] How are these waiting times distributed? The
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probability of remaining in state x after an infinitesimal time step ∆t is 1 + ∆t〈x|W|x〉. Suppose we want
the probability that the system stays in state x for finite total time t = m∆t. Then

Prob(X(τ) = x, ∀ τ ∈ [0, t)|X(0) = x) = lim
m→∞

(
1 +

t

m
〈x|W|x〉

)m
= et〈x|W|x〉. (1.25)

Therefore these waiting times are exponentially distributed. Obviously if 〈x|W|x〉 is a large negative number,
that means there is a large flow out of state x, and hence the waiting times to leave state x will tend to be
short; conversely, if 〈x|W|x〉 is smaller in magnitude, there is smaller flow out, and hence the waiting times
will tend to be longer.

Now we can embed this continuous time process in a discrete time process where the time steps are the
waiting times between jumps (even though these are random). We will define the discrete time transition
matrix P as follows. First, diagonal elements must be zero, because by construction a jump occurs at
each time step. The only exception is when the state is absorbing in the original process, in which case
〈x|W|x〉 = 0. Then 〈x|P|x〉 = 1. So

〈x|P|x〉 =

 0, if 〈x|W|x〉 6= 0

1, if 〈x|W|x〉 = 0
(1.26)

Now the off-diagonal elements 〈x|P|y〉 must give the probability of transitioning from y to x given that the
system leaves state x:

〈x|P|y〉 = lim
∆t→0

〈x|Π(∆t)|y〉
1− 〈x|Π(∆t)|x〉 = −〈x|W|y〉〈x|W|x〉 . (1.27)

1.2.2 Classification

The classification of continuous time processes now can rely on classification of the embedding in a discrete
time process. All the definitions of communication classes, recurrence, and transience carry over, with two
exceptions. The first is that while the embedding may exhibit periodicity, it has no direct consequences for
the continuous time process in regard to the steady state. Thus we do not discuss it here. Secondly, while a
continuous time process is recurrent if and only if the embedding is recurrent, this correspondence does not
hold for positive and null recurrence. That is, the embedding may be null recurrent even if the continuous
time process is positive recurrent. [Example? See Schinazi 1999.] Besides this, the communication classes
and the recurrence or transience of a class in a continuous time process are the same as the embedding.

Therefore, for any irreducible, finite state space must be positive recurrent and hence has a unique steady
state.

1.3 Spectral Expansions

It is often convenient to analyze spectral properties of the Markov process. Assume the single time-step evo-
lution operator P (for discrete time processes) has eigenvalues λ0, λ1, . . . , λN with right and left eigenvectors
|λj〉 and 〈λj |. (If P is symmetric, then these eigenvectors are related by a simple transpose. However, in
general that will not be true.) For the continuous time rate matrix W let the spectrum be µ0, µ1, . . . , µN .
Then the time evolution operators have the spectral expansions

Discrete time: Pm =
N∑
j=0

λmj |λj〉〈λj | (1.28)

Continuous time: etW =
N∑
j=0

eµjt|µj〉〈µj |. (1.29)
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Clearly the leading eigenvalue of P must be 1 and all other eigenvalues must be smaller than 1; the
leading eigenvalue of W must be 0 and all other eigenvalues must be negative. The left eigenvector with
eigenvalue 1 (for P) or 0 (for W) is simply the state with 1 as each coefficient:

Discrete time: 〈1| =
∑
x

〈x| (1.30)

Continuous time: 〈0| =
∑
x

〈x| (1.31)

(1.32)

The right eigenvector with leading eigenvalue will be the steady state |π̃〉. Hence

Discrete time: Pm =
∑
x

|π̃〉〈x|+
N∑
j=1

λmj |λj〉〈λj | (1.33)

Continuous time: etW =
∑
x

|π̃〉〈x|+
N∑
j=1

eµjt|µj〉〈µj |. (1.34)

Therefore in the infinite time limit, all the sub-leading eigenvalue terms disappear:

Discrete time: lim
m→∞

Pm =
∑
x

|π̃〉〈x| (1.35)

Continuous time: lim
t→∞

etW =
∑
x

|π̃〉〈x|. (1.36)

So in both cases 〈y|Π(∞)|x〉 = π̃(y).
Suppose a left eigenvector with eigenvalue λ has the expansion

〈λ| =
∑
x

`λ(x)〈x|. (1.37)

Then by definition 〈λ|Π(t) = etλ〈λ|. If we hit both sides by |x〉 to extract components,

〈λ|Π(t)|x〉 = etλ〈λ|x〉∑
y

`λ(y)〈y|Π(t)|x〉 = etλ`λ(x)

E[`λ(X(t))|X(0) = x] = etλ`λ(x).

(1.38)

Therefore any function f(X) satisfying E[f(X(t))|X(0) = x] = etλf(x) is a left eigenvector with eigenvalues
λ.

1.4 Detailed Balance and Reversibility

The coefficients of the steady state distribution |π̃〉 =
∑
x π̃(x)|x〉 must satisfy the condition

0 =
∑
y 6=x

(〈x|W|y〉 π̃(y)− 〈y|W|x〉 π̃(x)) (1.39)
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for all y ∈ S. (In this section, we will focus on continuous time processes. However, these results generally
apply to discrete time processes as well.) Clearly it is a sufficient, but not necessary, condition that the
function π̃(x) satisfies

〈x|W|y〉 π̃(y) = 〈y|W|x〉 π̃(x). (1.40)

If this condition is met, the system is said to obey detailed balance. Note that the quantity 〈x|W|y〉 π(y, t)
describes the probability flux from state y to state x at time t. Hence the detailed balance condition means
that in steady state, the fluxes between each pair of state balance. If detailed balance is not obeyed, however,
then there is a net current between states even in steady state. Thus there is some cycle in the state space
supporting a net current.

Detailed balance is also interpreted as time reversibility in the following sense. Say we have a system
in steady state. Then the probability of transitioning from state x to state y in time t is 〈y|Π(t)|x〉π̃(x).
But detailed balance implies that this equals the probability of the reverse transition, y to x, in time t:
〈x|Π(t)|y〉π̃(y). Hence, the dynamics of the system in steady state look the same forward or backward.
Obviously this will not be a true in a system without detailed balance; in that case there will be net currents
flowing through S, and forward and backward in time will be distinguishable.

1.4.1 Self-Adjoint Symmetry and Spectral Decomposition

Detailed balance also serves as an important symmetry property of Markov processes. For quantum mechan-
ics and other systems described by linear algebra, the relevant symmetry property of operators is usually
Hermiticity or transpose symmetry. For Markov processes, however, this property is too strong. Suppose
W is symmetric. Then any constant function π̃(x) trivially satisfies the steady state condition in Equation
1.39. Thus, a symmetric rate matrix always yields a uniform distribution. In most cases, this is not very
interesting.

Detailed balance provides a more useful symmetry property. Besides the fact that it allows for a nontrivial
steady state, it guarantees that W is diagonalizable and hence has a spectral decomposition. First we show
this explicitly but less elegantly, and then we show a more elegant argument. We conclude with a specific
example for the two state system.

A straightforward procedure is to show how W is similar to another matrix V that is transpose symmetric.
Hence it is diagonalizable and we can spectrally decompose W using V. Assuming W obeys detailed balance,
let us define a symmetric matrix V = Λ−1WΛ, where 〈x|Λ|y〉 = δxy

√
π̃(x). So

〈x|V|y〉 =
∑
z,w

〈x|Λ−1|z〉〈z|W|w〉〈w|Λ|y〉 =
∑
z,w

δxz√
π̃(x)

〈z|W|w〉δwy
√
π̃(y) =

√
π̃(y)
π̃(x)

〈x|W|y〉, (1.41)

which can easily be shown to be symmetric. Therefore V has a real set of eigenvalues {λ} and a complete
basis of eigenvectors {|λ〉V}. The eigenvalues are the same as those of W, since the two matrices are related
by a similarity transformation. The eigenvectors are related in the following manner. Let the right and left
eigenvectors of V be expressed as

|λ〉V =
∑
x

aλ(x)|x〉, 〈λ|V =
∑
x

aλ(x)〈x|. (1.42)

The coefficients are the same since they are related by a transpose for symmetric V. Then it can be shown
that the right and left eigenvectors of W are

|λ〉W =
∑
x

√
π̃(x) aλ(x)|x〉, 〈λ|W =

∑
x

aλ(x)√
π̃(x)

〈x|. (1.43)

Note that the right and left eigenvectors of W are associated by a factor of the steady state.
Assume the eigenvectors |λ〉V are normalized according to the Euclidean inner product (, )E :
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(|λ〉V, |λ′〉V)E =
∑
x

aλ(x)aλ′(x) = δλ,λ′ . (1.44)

So now we can make the spectral expansion of V:

etV =
∑
λ

eλt|λ〉V〈λ|V. (1.45)

The notation |λ〉〈λ| precisely refers to the outer product of |λ〉 with itself. This is not important here, but
will be later. Then since etW = ΛetVΛ−1,

〈x|etW|y〉 = 〈x|ΛetVΛ−1|y〉 =
∑
λ

eλt〈x|Λ|λ〉V〈λ|VΛ−1|y〉

=
∑
λ

√
π̃(x)
π̃(y)

eλt〈x|λ〉V〈λ|Vy〉

=
∑
λ

√
π̃(x)
π̃(y)

aλ(x) aλ(y) eλt.

(1.46)

The time-dependent probability distribution can thus be written as

π(x, t) =
∑
y

〈x|etW|y〉 π(y, 0) =
∑
y

π(y, 0)
∑
λ

√
π̃(x)
π̃(y)

aλ(x) aλ(y) eλt

=
∑
λ

√
π̃(x) aλ(x) eλt

∑
y

aλ(y)√
π̃(y)

π(y, 0).

(1.47)

Note that we could have spectrally decomposed W directly:

〈x|etW|y〉 =
∑
λ

eλt|λ〉W〈λ|W

=
∑
λ

eλt〈x|
(∑

z

√
π̃(z) aλ(z)|z〉

)(∑
w

aλ(w)√
π̃(w)

〈w|
)
|y〉

=
∑
λ

√
π̃(x)
π̃(y)

aλ(x) aλ(y) eλt.

(1.48)

The reason this is more confusing in the above format is that it’s not clear how to normalize the eigenvectors
of W – they were not normalized according to the Euclidean inner product. However, it is clear how to
normalize the eigenvectors of V (Euclidean metric), and we can define the eigenvectors of W with the proper
normalization using the eigenvectors of V.

Now, however, we show a more elegant approach which avoids construction of V. That is, we can deal
with W directly if we define a new inner product, different from the Euclidean one, under which W is truly
self-adjoint in the mathematical sense. Define the “Markovian”4 inner product (, )M as

(|π1(t)〉, |π2(t)〉)M ≡
∑
x

π1(x, t) π2(x, t)
π̃(x)

. (1.49)

4This term is my own invention, but the procedure is not.
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This satisfies all the conditions of an inner product. Now for this inner product,

(|π1(t)〉,W|π2(t)〉)M =
∑
x

π1(x, t)
π̃(x)

∑
y

〈x|W|y〉 π2(y, t)

=
∑
x,y

π1(x, t)
π̃(x)

〈x|W|y〉 π2(y, t)

=
∑
x,y

π1(x, t)
π̃(y)

〈y|W|x〉 π2(y, t)

=
∑
y

(∑
x

〈y|W|x〉 π1(x, t)

)
π2(y, t)
π̃(y)

= (W|π1(t)〉, |π2(t)〉)M .

(1.50)

The third line of the above is where the detailed balance assumption is used. Thus, W is self-adjoint under
the Markovian inner product, and hence we can apply the spectral theorem using this inner product. That
is, it has a real set of eigenvalues, and a complete basis of eigenvectors that is orthonormal according to the
Markovian inner product. Let the right eigenvectors have the expansion

|λ〉W =
∑
x

bλ(x)|x〉. (1.51)

Then orthonormality and completeness mean that the coefficients satisfy∑
x

bλ(x) bλ′(x)
π̃(x)

= δλ,λ′ ,
∑
λ

bλ(x) bλ(y)
π̃(y)

= δx,y. (1.52)

Therefore the spectral decomposition is

〈x|etW|y〉 =
∑
λ

etλ
bλ(x) bλ(y)

π̃(y)
. (1.53)

Identifying bλ(x) =
√
π̃(x) aλ(x) shows this is equivalent to the previous formulation. Now the time-

dependent distribution can be written (in terms of bλ(x))

π(x, t) =
∑
λ

bλ(x) eλt
∑
y

bλ(y)
π̃(y)

π(y, 0). (1.54)

Since b0(x) = π̃(x),

π(x, t) = π̃(x) +
∑
λ<0

bλ(x) eλt
∑
y

bλ(y)
π̃(y)

π(y, 0). (1.55)

As a simple example of this expansion for detailed balance systems, we use the 2×2 case (which trivially
obeys detailed balance), with steady state and Λ and V matrices:

W =
[
−b a
b −a

]
, |π̃〉 =

1
a+ b

[
a
b

]
(1.56)

Λ =
1√
a+ b

[ √
a 0

0
√
b

]
, V =

[
−b

√
ab√

ab −a

]
. (1.57)

These coordinates are all in the physical basis. The eigenvalues are 0 and µ ≡ −a− b. Now the eigenvectors
of V are (normalized according to the Euclidean inner product):
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|0〉V =
1√
a+ b

[ √
a√
b

]
, |µ〉V =

1√
a+ b

[
−
√
b√
a

]
. (1.58)

The eigenvectors of W are (normalized according to the Markovian inner product):

|0〉W =
1

a+ b

[
a
b

]
, |µ〉W =

√
ab

a+ b

[
−1
1

]
. (1.59)

These can readily be plugged into the preceding results to confirm the known result:

etW =
1

a+ b

[
a+ be−(a+b)t a(1− e−(a+b)t)
b(1− e−(a+b)t b+ ae−(a+b)t

]
. (1.60)

1.4.2 Steady State Computation

Another chief advantage of detailed balance is that it can make computation of the steady state much easier if
the rates are known, using Equation 1.40. In general, if there are N discrete states, then Equation 1.40 gives
N(N − 1)/2 equations for each pair of states. However, we only need N − 1 of these plus the normalization
condition to fix the steady state distribution.

A more powerful result can be obtained if the rates 〈x|W|y〉 obey certain symmetries. Suppose first that
the rates only depend on the difference x− y (translation invariance). Then detailed balance implies

π̃(x)
π̃(y)

=
〈x|W|y〉
〈y|W|x〉 ≡ ψ(x− y). (1.61)

But since

π̃(x)
π̃(y)

× π̃(y)
π̃(z)

=
π̃(x)
π̃(z)

, (1.62)

this implies that ψ(x− y)ψ(y − z) = ψ(x− z), or ψ(a)ψ(b) = ψ(a+ b). This constrains the functional form
of ψ to be an exponential function: ψ(x) = ecx for some constant c. Then

π̃(x)
π̃(y)

= ψ(x− y) = ec(x−y) (1.63)

so π̃(x) = ecx/Z for some normalization Z. Hence the symmetry of the rates combined with detailed balance
completely constrains the form of the steady state.

Similarly, if the rates 〈x|W|y〉 only depend on the ratio x/y (scale invariance), a similar argument shows
that ψ(x) = xν for some constant ν. Then the steady state must have the form π̃(x) = xν/Z.

1.4.3 Detailed Balance in Physical Systems

It can be shown that detailed balance is required of certain physical systems. Suppose we have a closed, clas-
sical system with a Markovian macroscopic stochastic process Y ({q}, {p}) that depends on the microscopic
phase space coordinates {q}, {p}. We will show this process obeys detailed balance provided the microscopic
Hamiltonian and macroscopic variable Y are both even functions of all momenta.5

Denote phase space coordinates of the entire system by x = (q1,p1, . . . ,qN ,pN ). Hence the stochastic
process can be written Y (x). Define the time-reversal transformation by

x→ x̄ = (q1,−p1, . . . ,qN ,−pN ) (1.64)

[to be continued.....]

5If there is a magnetic field or an overall rotation of the system, this argument can be modified to yield a symmetry similar
to detailed balance. See van Kampen.
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1.5 Entropy and the Approach to Steady State

The existence of a steady state solution to the master equation is obvious, either from physical intuition or
from mathematical proof using the theorems of Perron and Frobenius. In this section we investigate how
the system approaches the steady state.

Our first task is to construct an entropy function (known more generally as a Lyapunov function). The
goal is to show that this function increases monotonically over time. Assume a normalized, nonnegative
steady state solution π̃(x). (We assume an irreducible process on a finite state space, which means there are
no transient states.) Now take any function f(k) such that f(k) ≥ 0 and f ′′(k) > 0 for all k ≥ 0. Hence
f(k) is a nonnegative convex function. Now we define the time-dependent function H(t) as

H(t) = −
∑
x

π̃(x)f(kx,t), where kx,t = −π(x, t)
π̃(x)

. (1.65)

Note that H(t) ≤ 0 for all t. We will show that H(t) increases monotonically but can never be positive, and
thus it approaches a limit.

So we consider the time derivative:

∂tH(t) = −
∑
x

π̃(x) f ′(kx,t) ∂tkx,t = −
∑
x

f ′(kx,t) ∂tπ(x, t)

= −
∑
x

f ′(kx,t)
∑
y

(〈x|W|y〉 π(y, t)− 〈y|W|x〉 π(x, t))

= −
∑
x,y

f ′(kx,t) 〈x|W|y〉 π(y, t) +
∑
x,y

f ′(kx,t) 〈y|W|x〉 π(x, t)

= −
∑
x,y

f ′(kx,t) 〈x|W|y〉 π(y, t) +
∑
x,y

f ′(ky,t) 〈x|W|y〉 π(y, t)

= −
∑
x,y

(f ′(kx,t)− f ′(ky,t)) 〈x|W|y〉 π(y, t)

= −
∑
x,y

(ky,tf ′(kx,t)− ky,tf ′(ky,t)) 〈x|W|y〉 π̃(y)

(1.66)

Now we are going to add some terms that sum to zero. It can be shown that

∑
x,y

ax,t 〈x|W|y〉 π̃(y) =
∑
x

ax,t

(∑
y

〈x|W|y〉 π̃(y)

)
= 0 (1.67)

∑
x,y

ay,t 〈x|W|y〉 π̃(y) =
∑
y

ay,t π̃(y)

(∑
x

〈x|W|y〉
)

= 0 (1.68)

Choosing ax,t = f(kx,t)− kx,tf ′(kx,t), we add the zero sum

−
∑
x,y

〈x|W|y〉 π̃(y) (ax,t − ay,t)

= −
∑
x,y

〈x|W|y〉 π̃(y) ([f(kx,t)− f(ky,t)]− [kx,tf ′(kx,t)− ky,tf ′(ky,t)]) (1.69)

to the above expression for dH/dt to get

∂tH(t) = −
∑
x,y

[f(kx,t)− f(ky,t) + (ky,t − kx,t)f ′(kx,t)] 〈x|W|y〉 π̃(y). (1.70)
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By a geometric argument, one can show that the quantity in [. . .] is always nonpositive, and therefore dH/dt
is always nonnegative. So H(t) increases monotonically.

But since H(t) is bounded from above by zero, then it must tend to a limit as t → ∞, in which case
dH/dt → 0. For pairs of states x, y such that 〈x|W|y〉 6= 0, this requires that kx,t = ky,t. Since we are
assuming irreducibility (one communication class), this means kx,t = constant for all states. This will only
be true if π(x, t) is proportional to π̃, and the normalization condition then means they are equal.

This argument is for any nonnegative convex function f(k), but in physics we choose f(k) = k log k
yielding the standard entropy functional

H(t) = −
∑
x

π(x, t) log
(
π(x, t)
π̃(x)

)
. (1.71)

A key reason this function is used is because it makes entropy “extensive” in the sense that entropies of
separate systems add. That is, suppose we have system 1 with states x ∈ S1 and system 2 with states y ∈ S2.
Then the entropy of the combined system is

H1+2(t) = −
∑
x∈S1

∑
y∈S2

π1(x, t)π2(y, t) log
(
π1(x, t)
π̃1(x)

π2(y, t)
π̃2(y)

)

= −
∑
x∈S1

π1(x, t) log
(
π1(x, t)
π̃1(x)

)
−
∑
y∈S2

π2(y, t) log
(
π2(y, t)
π̃2(y)

)
= H1(t) +H2(t).

(1.72)

Note that this entropy is time-dependent quantity and it actually tends to zero as the system approaches
steady state. So strictly speaking, for thermodynamic systems the total “generalized entropy” is of the form
S(t) = kH(t) + Seq, where k is Boltzmann’s constant and Seq is the constant equilibrium entropy. So H(t)
really describes the difference between non-equilibrium and equilibrium entropy.

One particular question of interest is whether the matrix elements of etW converge to their steady state
values monotonically. This is certainly not true in general – none of the matrix elements from the cyclic
3× 3 system converge monotonically. But what if the system obeys detailed balance? Denoting the steady
state as

|π̃〉 ≡
∑
j

π̃j |j〉, (1.73)

we define detailed balance to be

〈i|W|j〉π̃j = 〈j|W|i〉π̃i. (1.74)

Now if a = b, then the coefficients are strictly positive, and this function must be monotonically decreasing
in time. This can be seen by taking the time derivative, and noting that all eigenvalues λα are non-positive,
so the function must be decreasing at all times.

However, this monotonicity is not guaranteed for the off-diagonal elements, even with detailed balance.
Indeed, consider the system

W =

 −µ µ 0
µ −µ− ε ε
0 ε −ε

 , (1.75)

where µ > ε; for instance, take µ = 1 and ε = 10−1. Then the off-diagonal terms 〈2|etW|1〉 = 〈1|etW|2〉 are
non-monotonic. This is because the different relaxation times mean a system starting in state 1 or 2 quickly
equilibrates between these two states (since their transitions rates are high), ignoring state 3. But after a
longer time they equilibrate with state 3 and the probability drops to its final steady state. Therefore the
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existence of monotonic (or nearly monotonic) off-diagonal probabilities depends more subtly on the time
scales of the system. In this case, the probability from a “fast” state (1 or 2) to a “slow” state (3) is
monotonic, but the probability from a fast state to another fast state is not.

1.6 The Backward Equation and Observables

The master equation describes how the probability distribution of states propagates forward in time. A
related equation, the backward equation, is obtained by taking the transpose of the rate matrix:

∂t|φ(t)〉 = W†|φ(t)〉, ∂tφ(x, t) =
∑
y

〈x|W†|y〉 φ(y, t). (1.76)

The general solution to this equation is

φ(x, t) =
∑
y

〈x|etW† |y〉 φ(y, 0) =
∑
y

φ(y, 0) 〈y|etW|x〉. (1.77)

It is clear that a constant function, φ(x, t) = C, is a steady state solution:

∂tφ(x, t) =
∑
y

〈x|W†|y〉 φ(y, t) = C
∑
y

〈y|W|x〉 = 0. (1.78)

Alternatively, this can be seen by writing the backward equation as

∂tφ(x, t) =
∑
y

〈x|W†|y〉 φ(y, t)

=
∑
y

〈x|W†|y〉 φ(y, t)− φ(x, t)
∑
y

〈y|W|x〉

=
∑
y

〈x|W†|y〉 (φ(y, t)− φ(x, t)),

(1.79)

where we have added 0 =
∑
y〈y|W|x〉 in the second line. Now this makes it clear that for a finite, discrete

state space, the largest component of φ must decrease and the smallest component must increase. This
means all components must tend to a single constant as t→∞.

One chief use of the backward equation is to describe observables. Let O be a function that maps each
state x to some observable quantity O(x). Assume it is numerical so we may define the average value of O
at time t:

〈O〉t =
∑
x

O(x) π(x, t). (1.80)

Inserting the formal solution of the master equation for π(x, t),

〈O〉t =
∑
x

O(x) π(x, t)

=
∑
x

O(x)
∑
y

〈x|etW|y〉π(y, 0)

=
∑
y

(∑
x

O(x)〈x|etW|y〉
)
π(y, 0)

=
∑
y

O(y, t)π(y, 0)

= 〈O(t)〉0.

(1.81)
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It is clear that O(y, t) ≡ ∑
xO(x)〈x|etW|y〉 is a solution to the backward equation. This procedure is

equivalent to the transition between the Schrödinger picture (observables are time-independent while state
vectors evolve in time) and the Heisenberg picture (state vectors are time-independent while observables
evolve in time) of quantum mechanics. Apparently observables are solutions of the backward equation, and
their infinite time limit is a constant!

This yields an interesting angle on proving the convergence to a steady state distribution for π(x, t).
Suppose we have a “Heisenberg picture” observable O(x, t) that tends to the constant C as t→∞. Hence

lim
t→∞

∑
x

O(x, t)π(x, 0) = C
∑
x

π(x, 0) = C

= lim
t→∞

∑
x

O(x) π(x, t).
(1.82)

[How does this argue for a steady state limit of φ(x, t)?]

1.7 Martingales

Martingales are a special class of stochastic processes with the property

E[X(t+ 1)|X(t) = x] = x. (1.83)

That is, if the system is in state x now, then its expected value in the next step is also x. Thus, it is a
sort of “unbiased” process. Indeed, this also means that the Fokker-Planck equation for the process has no
drift term (no first derivative term), since that term contains the first jump moment, which is zero for a
martingale. Moreover, this doesn’t only related the state now and the state one step from now. Since for a
discrete time process,

E[X(t+ 1)|X(t) = x] =
∑
x

x 〈x|P|y〉 = y, (1.84)

we can multiply both sides by 〈y|P|z〉 and sum over y to obtain

∑
y

∑
x

x 〈x|P|y〉〈y|P|z〉 =
∑
y

y 〈y|P|z〉
∑
x

x 〈x|P2|z〉 = z = E[X(t+ 2)|X(t) = z].
(1.85)

Hence it is generally true (for both discrete and continuous time processes)

E[X(t+ ∆t)|X(t) = x] = x. (1.86)

So if the system is in state x at some point, then the expected state at any later time is also x.
One property of martingales is that they must have multiple steady states. This is because the martingale

property is ∑
x

x 〈x|P|y〉 = y, (1.87)

which means there is a left eigenvector
∑
x x〈x| with eigenvalue 1. But we also know there is another

left eigenvector with eigenvalue 1,
∑
x〈x|. Therefore there must also be two linearly independent right

eigenvectors with eigenvalue 1, and hence two linearly independent steady states. [See Wright-Fisher or
Moran model for examples.]
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This can be used to argue that the fixation of a neutral mutation in any martingale population model
must be x0/N , the initial mutant frequency. Suppose we have a martingale on a state space X = 0, 1, . . . , N ,
and 0 and N are absorbing states. Then

x0 =
∑
x

x〈x|Π(∞)|x0〉 = N〈N |Π(∞)|x0〉 (1.88)

and hence 〈N |Π(∞)|x0〉 = x0/N .

1.8 The Deterministic Limit

The master equation describes how the full probability distribution of some stochastic process evolves over
time. However, it is often useful to consider the limit when the stochastic fluctuations are small and the
stochastic quantity becomes deterministic in its evolution.

Suppose our stochastic process X(t) takes on numerical values in some state space S. Then we can define
averages

〈X〉t =
∑
x

x π(x, t). (1.89)

(Here X is used as a Schrödinger picture observable.) Now this quantity satisfies the differential equation:

∂t〈X〉t =
∑
x

x ∂tπ(x, t)

=
∑
x

x
∑
y

(〈x|W|y〉 π(y, t)− 〈y|W|x〉 π(x, t))

=
∑
x,y

(x− y)〈x|W|y〉 π(y, t).

(1.90)

Define the nth jump moment mn(y) as the nth moment of the probability distribution of jumps starting
from y:

mn(y) =
∑
x

(x− y)n 〈x|W|y〉. (1.91)

Hence m1(y) describes the mean change in X in one step starting from X = y. Therefore the deterministic
equation becomes

∂t〈X〉t =
∑
y

m1(y) π(y, t) = 〈m1(X)〉t, (1.92)

where m1(X) is a Schrödinger picture observable.
Assuming m1(X) is analytic function of X, we can expand in powers:

∂t〈X〉t = 〈m1(X)〉t = m1(〈X〉t) +
1
2
〈(X − 〈X〉)2〉t m′′1(〈X〉t) + · · · . (1.93)

This is now a differential equation for the deterministic time evolution of 〈X〉t. Often higher order terms in
the expansion can be ignored under certain limits and the deterministic equation reduces to

∂t〈X〉t = m1(〈X〉t). (1.94)

This is often justified by taking the system size to infinity, which usually causes the higher order fluctuation
terms to disappear.
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2 Markov Processes on 1D Lattices

An important class of Markov processes occur on 1D lattices. These are often called birth-death or generation-
recombination processes, although N. G. van Kampen’s less loaded term of “one-step” processes seems more
appropriate in general. The important aspect of these processes is that jumps can only occur between nearest
neighbors on the lattice, a property which both arises very naturally in many applications and also makes
them much simpler to study. They can be continuous or discrete in time, but here we will focus on continuous
time. Most results are essentially the same in both cases. [Insert figure with 1D lattice and rates.]

Since the states are a 1D lattice with only nearest-neighbor connectivity, the state space can be considered
on Z, with the states indexed by an integer n ∈ Z. Hence the only nonzero elements of the rate matrix are

〈n+ 1|W|n〉 = un

〈n− 1|W|n〉 = dn

〈n|W|n〉 = − un − dn,
(2.1)

where un is the rate “up” from n and dn is the rate “down” from n. Hence W is a tridiagonal matrix –
as a result some mathematicians call such processes “continuants” in reference to the polynomials arising in
these matrices’ determinants. State spaces on Z will be in one of three classes:

• Class I: finite lattice. Without loss of generality, we can let n ∈ {0, 1, . . . , N}.

• Class II: half-infinite lattice (n ∈ {0, 1, . . . ,∞}).

• Class III: infinite lattice (n ∈ {−∞, . . . ,−1, 0, 1, . . . ,∞}).

In all cases the master equation will be of the form

∂tπn(t) = un−1πn−1(t) + dn+1πn+1(t)− (un + dn)πn(t). (2.2)

For classes I and II, some modification of this equation may be necessary for n near or on the boundaries.

2.1 General Properties

2.1.1 Moments and Deterministic Equation

The moment functions as defined in Equation 1.91 are

mj(n) = un + (−1)jdn. (2.3)

Hence the deterministic equation is

∂tE[N(t)] = E[m1(N)] = E[uN]− E[dN]. (2.4)

2.1.2 Creation and Annihilator Operators

Since these processes move only one step at a time up and down a lattice, it is sometimes convenient to
study them in terms of creation and annihilation operators. Define function operators6

a†f(n) = f(n+ 1), af(n) = f(n− 1). (2.5)

Some redefinition is required when the range of n is not infinite. In any case, we can now rewrite the master
equation as

6These aren’t quite the same kind of objects as used in quantum mechanics – they are normalized differently and have
commutator zero instead of one. For the kinds of processes in this section, this is a convenient definition, but other definitions
(some more analogous to that of quantum mechanics) can be used in other settings.
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∂tπn(t) = [(a† − 1)dn + (a− 1)un]πn(t). (2.6)

The creation/annihilation operators act on un and dn as functions of n.

2.1.3 Currents and Steady State

Creation and annihilation operators can be used to deduce the steady state distribution very easily. The
steady state distribution π̃n satisfies

0 = [(a† − 1)dn + (a− 1)un]π̃n
= (a† − 1)(dn − aun)π̃n.

(2.7)

This implies that (dn − aun)π̃n is some n-independent quantity −J , so-called because it represents the net
probability current from n to n− 1:

J = un−1π̃n−1 − dnπ̃n = aunπ̃n − dnπ̃n. (2.8)

For state space classes I and II, when there is a boundary at n = 0, the steady-state master equation for
n = 1 implies that

u0π̃0 − d1π̃1 = 0. (2.9)

Hence J = 0 everywhere; this is not surprising since for probability to be conserved, net current has nowhere
to go at a boundary. Therefore

un−1π̃n−1 = dnπ̃n (2.10)

for all n, i.e., detailed balance or time reversibility is satisfied. This allows one to deduce the steady state:

π̃n =
un−1un−2 · · ·u0

dndn−1 · · · d1
π̃0, (2.11)

where π̃0 is chosen using normalization. If there is no boundary (class III), then we take as an ansatz the
above for n > 0 and the following for n < 0:

π̃(n) =
dn+1dn+2 · · · d0

unun+1 · · ·u−1
π̃(0). (2.12)

Substitution of this ansatz into the master equation shows that it is indeed a steady state for all n ∈ Z.
However, in the case of an infinite range, J may not be zero and hence the model may not be reversible:
there is a constant current from −∞ to +∞ which distinguishes the flow of time. In this case, a separate
but similar steady state equation may be derived.

2.2 Linear Rates

In general, the rates un and dn can be any numbers. However, in many cases they will depend linearly on n:

un = αn+ u0, dn = βn+ d0. (2.13)

Such cases arise very naturally in many systems, particularly those that describe noninteracting degrees of
freedom (more on this later). Their simplicity also allows for a general solution to the master equation,
which we derive here.
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2.2.1 Exact Solution

We first let n take all values in Z to facilitate calculations (we will address this afterward). Assume α, β 6= 0
and α 6= β. Then the master equation is

∂tπn(t) = (β(n+ 1) + d0)πn+1(t) + (α(n− 1) + u0)πn−1(t)− ((α+ β)n+ u0 + d0)πn(t). (2.14)

A convenient tool for solving many one-step master equations is the probability generating function, defined
as

F (z, t) =
∑
n

znπn(t). (2.15)

It is the same as the characteristic function with z = eik. Its derivatives generate moments, and we can
obtain the full distribution by either identifying coefficients in its power series or by an explicit inversion:

π(n, t) =
1

2πi

∮
dz z−n−1F (z, t), (2.16)

where the contour is the unit circle.
We can convert the master equation to an equation for the generating function F (z, t) by multiplying

both sides by zn and summing over n. For Equation 2.14 this gives

∂tF (z, t) = (αz − β)(z − 1)∂zF (z, t) + (z − 1)
(
u0 −

d0

z

)
F (z, t). (2.17)

We can solve this using the method of characteristics. Rewriting in the form

∂tF (z, t)− (αz − β)(z − 1)∂zF (z, t) = (z − 1)
(
u0 −

d0

z

)
F (z, t), (2.18)

we see that the Lagrange-Charpit equations are

dt = − dz

(αz − β)(z − 1)
=

dF

(z − 1)(u0 − d0/z)F
. (2.19)

The first can be integrated to give the constant C1,

C1 =
(
z − 1
αz − β

)
e(α−β)t, (2.20)

which must be constant along the characteristic curves. The second can also be integrated to give

F (z, t) = C2z
−d0/β(β − αz)d0/β−u0/α. (2.21)

The constant C2 can be an arbitrary function of the constant C1:

F (z, t) = z−d0/β(β − αz)d0/β−u0/α Ω
((

z − 1
αz − β

)
e(α−β)t

)
. (2.22)

We can determine this function by imposing initial conditions. Suppose that the initial state is n0. Then
the initial condition for the generating function is F (z, 0) = zn0 . This shows

Ω
(
z − 1
αz − β

)
= zn0+d0/β(β − αz)u0/α−d0/β . (2.23)

We can define a new variable ζ as
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ζ =
z − 1
αz − β , → z =

βζ − 1
αζ − 1

, (2.24)

and then write

Ω(ζ) =
(
βζ − 1
αζ − 1

)n0+d0/β ( α− β
αζ − 1

)u0/α−d0/β

. (2.25)

This yields the full solution for F (z, t):

F (z, t) = zn0(β − α)u0/α−d0/β×(
β

z
(1− e(α−β)t)− α+ βe(α−β)t

)n0+d0/β

(−αz(1− e(α−β)t) + β − αe(α−β)t)−u0/α−n0 . (2.26)

Now we can impose some more realistic conditions on this. In particular, we must ensure that the rates
are always nonnegative and the outward rates at any boundaries are zero. We can consider this in each of
the three state space classes:

• Class I: in this case dn = βn and un = α(N − n). The general solution here is

F (z, t) =
1

(α+ β)N
(β(1− e−(α+β)t) + z(α+ βe−(α+β)t))n0(αz(1− e−(α+β)t) + β + αe−(α+β)t)N−n0 .

(2.27)

• Class II: dn = βn and un = αn+ u0. The general solution in this case is

F (z, t) = (β − α)u0/α×(
β(1− e(α−β)t) + z(βe(α−β)t − α)

)n0

(αz(e(α−β)t − 1) + β − αe(α−β)t)−u0/α−n0 . (2.28)

• Class III: the rate coefficients must be constant (un = α, dn = β). This is just a random walk, which
will be solved in the examples.

These generating functions can be inverse transformed to obtain the probability distributions, although
in general they are complicated. In the next section we discuss a physical interpretation of the class I linear
rate models which allows a more transparent derivation of πn(t).

2.2.2 Collective Systems

As an aside and partial motivation to considering one-step processes with linear rates, let us consider the
following class of models. Suppose we have a single degree of freedom that evolves according to the master
equation

∂tπ1(m′, t) =
∑
m

〈m′|W1|m〉π1(m, t), (2.29)

where the subscript 1 indicates that these quantities are for this single DOF. Suppose we have a collection
of N such systems. The total probability distribution of this collection is given by the product of single
distributions: ∏

i

π1(mi, t). (2.30)
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But suppose we don’t care about the precise specification of the whole collection {m1, . . . ,mN}, but we only
care about the occupation numbers – that is, the number of these systems in the mth state: nm ∈ {0, . . . , N}.
Denote the set of occupation numbers by {n}, which contains as many occupation numbers as there are
states for the individual degrees of freedom (possibly infinite). We can obtain the master equation for these
occupation numbers as follows. For a sufficiently small time interval ∆t, the only possible change in the
occupation numbers is due to a single system moving from a state m to state m′. Thus the master equation
is

∂tP ({n}, t) =
∑
m,m′

〈m′|W1|m〉[(nm + 1)P ({. . . , nm + 1, nm′ − 1, . . .}, t)− nmP ({n}, t)]

=
∑
m,m′

〈m′|W1|m〉(am′a†m − 1)nmP ({n}, t).
(2.31)

The physics of the occupation number master equation is obviously the same as that of the individual
system master equations, so we can express the solution of the former in terms of the latter. Suppose that
all the systems begin in the same level m, so that the initial occupation numbers are nm = N , nm′ = 0 for
m′ 6= m. Then the occupation number solution should be

P ({n}, t) =
(

N

n1, n2, . . .

)∏
j

(〈j|etW1 |m〉)nj . (2.32)

As we would want to do in many cases, if the total number of systems N is distributed in some way (such
as in the grand canonical ensemble), we can sum over these expressions for N and eliminate the constraints
on the occupation numbers.

As an example, consider a collection of two-state systems, where each is “on” (1) or “off” (0). Their rate
matrix elements are

〈1|W1|0〉 = α, 〈0|W1|1〉 = β. (2.33)

There are only two occupation numbers, n0 and n1. The full master equation is

∂tP (n0, n1, t) = [〈0|W1|1〉(a0a
†
1 − 1)n1 + 〈1|W1|0〉(a1a

†
0 − 1)n0]P (n0, n1, t). (2.34)

However, since n0 = N − n1, we can rewrite this as (with n = n1 the number of on systems)

∂tP (n, t) = [α(a− 1)(N − n) + β(a†1 − 1)n]P (n, t). (2.35)

Thus we see how linear rates in a one-step process arise very naturally from considering the master equation
for the occupation number for a collection of noninteracting two-state systems. Nonlinear dependencies on
the state variable n in the rates are indicative of interactions, which obviously makes them more difficult to
solve.

We use this picture to solve the linear rates problem for a class I state space (rather than by the generating
function obtained in the previous section). The single DOF time-evolution operator is

etW1 =
1

α+ β

(
β + αe−(α+β)t β(1− e−(α+β)t)
α(1− e−(α+β)t) α+ βe−(α+β)t

)
=
(
p00 p01

p10 p11

)
. (2.36)

We see that the generating function of the previous section is just

F (z, t) = (p01 + zp11)n0(p00 + zp10)N−n0 . (2.37)

Assuming that we initially have n0 of the DOFs in the “on” state, the probability of having n “on” at time
t is
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πn(t) =
n0∑
i=0

N−n0∑
j=0

δi+j,n

[(
n0

i

)
pi11p

n0−i
01

] [(
N − n0

j

)
pj10p

N−n0−j
00

]
. (2.38)

Here we see that the index i refers to how many of the initially “on” states are “on” again at time t (meaning
n0 − i are now “off”) and j refers to how many of the initially “off” states are now “on” at time t (meaning
N − n0 − j are again “off”). This obviously is the same expression that would be obtained from expanding
F (z, t) in powers of z and picking out the nth coefficient.

The steady state of the single DOF time-evolution operator is

1
α+ β

(
β β
α α

)
. (2.39)

Defining γ = α/β,

π̃n =
1

(1 + γ)N

n0∑
i=0

N−n0∑
j=0

δi+j,n

(
n0

i

)(
N − n0

j

)
γi+j

=
γn

(1 + γ)N

n0∑
i=0

N−n0∑
j=0

δi+j,n

(
n0

i

)(
N − n0

j

)

=
1

(1 + γ)N

(
N

n

)
γn.

(2.40)

This agrees with Equation 2.11. Thus, in general class I linear rate models always have binomial steady-state
distributions.

2.3 Spectral Expansion

Spectral expansions of one-step processes are also possible, albeit sometimes technically difficult. The exis-
tence of time reversibility (with the constant current case exception) guarantees a spectrum of real, nonpos-
itive eigenvalues of W and a complete basis of eigenvectors, as shown earlier.

Cases where explicit spectral expansions are possible include random walks on finite and half-infinite
lattices, where the generating function method encounters difficulties due to the boundary conditions. First
we consider the half-infinite (class II) case – an asymmetric random walk with boundary at n = 0:

∂tπn(t) = απn−1(t) + βπn+1(t)− (α+ β)πn(t), (n ≥ 1)
∂tπ0(t) = βπ1(t)− απ0(t).

(2.41)

Let the spectrum of eigenvalues be −λ, where λ ≥ 0. Then the components of the eigenvectors for λ will
be denoted by ψ(λ)

n . Therefore these will satisfy

(α+ β − λ)ψ(λ)
n = αψ

(λ)
n−1 + βψ

(λ)
n+1

(α− λ)ψ(λ)
0 = βψ

(λ)
1 .

(2.42)

We take the standard ansatz ψ(λ)
n = znλ , where zλ must satisfy

α+ β − λ = βzλ +
α

zλ
, −→ zλ =

α+ β − λ±
√

(λ− α− β)2 − 4αβ
2β

. (2.43)
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Note that the product of the two solutions, zλ and z′λ, is α/β. The general solution for the eigenvectors is
then a linear combination of these solutions (ignoring the irrelevant overall normalization):

ψ(λ)
n = znλ + Cλz

′n
λ , (2.44)

where Cλ is constant in n. This is the form of ψ(λ)
n for n ≥ 1, and we can determine the value of Cλ by using

the equations for ψ(λ)
0 :

ψ
(λ)
0 =

β

α− λ (z + Cλz
′)

Cλ = −α− β − λ−
√

(λ− α− β)2 − 4αβ
α− β − λ+

√
(λ− α− β)2 − 4αβ

= −z
′ − 1
z − 1

.

(2.45)

Since we don’t want the eigenvectors to grow without bound for increasing n, we can let

z =
√
α

β
eiθ, z′ =

√
α

β
e−iθ, (π ≥ θ ≥ 0). (2.46)

where

θ = arctan

(√
4αβ − (λ− α− β)2

α+ β − λ

)
, λ = α+ β −

√
αβ cos θ, (2.47)

and 2
√
αβ + α + β > λ > 0. So in principle we now have the complete spectrum of eigenvalues and

eigenvectors (now parameterized by θ ∈ [0, π]):

ψ
(θ)
0 =

√
α/β√

α/β cos θ − 1
(eiθ + Cθe

−iθ)

ψ(θ)
n =

(
α

β

)n/2
(einθ + Cθe

−inθ), (n ≥ 1)

where Cθ = −
√
α/βe−iθ − 1√
α/βeiθ − 1

.

(2.48)

So the propagator is spectrally expanded as

〈m|etW|n〉 = (1− α/β)
(
β

α

)n ∫ π

0

dθ ψ(θ)
m ψ(θ)

n e−(α+β−
√
αβ cos θ)t. (2.49)

2.4 Examples

Here are several examples of one-step processes with both linear and nonlinear rates.

2.4.1 The Poisson Process

The Poisson process can be considered as a rather trivial example of a one-step process. In this case, the
stochastic process N(t) denotes the number of events that have occurred by time t, if the probability of an
event occurring in time ∆t is α∆t. Hence N(t) takes values 0, 1, 2, · · · (class II) and is nondecreasing. The
matrix elements are

〈n+ 1|W|n〉 = un = α, 〈n− 1|W|n〉 = dn = 0, (2.50)

which gives the master equation
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∂tπ(n, t) = α(π(n− 1, t)− π(n, t)). (2.51)

For the initial condition π(n, 0) = δn,0, it is simple to show that this equation is satisfied by the standard
Poisson distribution

π(n, t) =
(αt)n

n!
e−αt. (2.52)

In general, the propagator is

〈n′|etW|n〉 =
(αt)n

′−n

(n′ − n)!
e−αt (2.53)

for n′ ≥ n and zero otherwise. If α becomes time-dependent, then this generalizes to

π(n, t) =
1
n!

(∫ t

0

dτ α(τ)
)n

e−
R t
0 dτ α(τ). (2.54)

2.4.2 Symmetric and Asymmetric Random Walks

For the symmetric random walk on Z (class III), the rates are (ignoring an overall time scale):

〈n+ 1|W|n〉 = 〈n− 1|W|n〉 = 1. (2.55)

Without loss of generality, assume the initial condition is πn(0) = δn,0. The master equation is

∂tπn(t) = πn+1(t) + πn−1(t)− 2πn(t). (2.56)

We can solve this using the generating function. Transforming the master equation gives:

∂tF (z, t) = (z + z−1 − 2)F (z, t). (2.57)

This can be integrated to give the solution

F (z, t) = C(z)et(z+z
−1−2). (2.58)

The arbitrary function C(z) can be fixed by imposing the initial condition F (z, 0) = 1, which gives C(z) = 1.
Expanding in powers of z one can identify the probability distribution

πn(t) = e−2t
∑
`

t2`+n

(`+ n)!`!
= e−2tI|n|(2t). (2.59)

where the sum is over all ` such that ` ≥ 0 and `+ n ≥ 0, and In is the modified Bessel function.
We can obtain an asymptotic form of this in the limit of t→∞ and n→∞ with n2/t fixed. We explicitly

invert the generating function using Equation 2.16:

πn(t) =
1

2πi

∮
dz z−n−1et(z+z

−1−2) =
1

2π

∫ 2π

0

dθ e−inθe2t(cos θ−1). (2.60)

Now we invoke a saddle-point approximation valid in this limit to obtain

1
2π

∫ ∞
−∞

dθ e−inθ−tθ
2

=
1√
4πt

e−
n2
4t . (2.61)

This is of course the expected Gaussian distribution that will also arise from the Fokker-Planck approximation
later.

Now we consider the asymmetric random walk:
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∂tπn(t) = απn−1(t) + βπn+1(t)− (α+ β)πn(t). (2.62)

If we map

πn(t) = φn(t)
(
α

β

)n/2
e−(α+β−2

√
αβ)t, (2.63)

this gives a new master equation

∂tφn(t) =
√
αβφn+1(t) +

√
αβφn−1(t)− 2

√
αβφn(t), (2.64)

which is a symmetric random walk that we know how to solve. Therefore the solution is

πn(t) = e−(α+β)t

(
α

β

)n/2
I|n|(2

√
αβt). (2.65)

2.4.3 Quantum Harmonic Oscillator and Radiation Field

Consider radiation incident on a quantum harmonic oscillator. The oscillator has states n = 0, 1, 2, . . ., with
energies ~ω(n+ 1/2). The transition rates are

〈n+ 1|W|n〉 = un = α(n+ 1), 〈n− 1|W|n〉 = dn = βn, (2.66)

since the rates between n and n+ 1 are proportional to the matrix element of the dipole moment, which is
always proportional to n+ 1. The steady state is

π̃n =
(α/β)n

1− α/β , (2.67)

assuming α < β (otherwise there is no steady state). From statistical mechanics we know the equilibrium
distribution is

π̃n =
1
Z
e−n~ω/kT . (2.68)

Hence we have

e−~ω/kT =
α

β
. (2.69)

2.4.4 Noninteracting Gas

Suppose N total particles of a noninteracting gas occupy two volumes, V1 and V2, connected through a small
aperture. After the system equilibrates, what is the probability of there being n particles in V1? Clearly this
is (

N

n

)(
V1

V1 + V2

)n(
1− V1

V1 + V2

)N−n
=

1
(1 + γ)N

(
N

n

)
γn, (2.70)

where γ = V1/V2.
Now let us model it as a one-step stochastic process. Let N(t) be the number of particles in V1 at time t.

Then the rate at which particles are removed should be βN and the rate at which particles are added should
be α(N − N). Hence un = α(N − n) and dn = βn, and the master equation is

∂tπn(t) = β(n+ 1)πn+1(t) + α(N − (n− 1))πn−1(t)− (βn+ α(N − n))πn(t). (2.71)

The steady state distribution is therefore
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π̃n = π̃0

(
N

n

)(
α

β

)n
=

1
(1 + α/β)N

(
N

n

)(
α

β

)n
. (2.72)

Hence γ = α/β = V1/V2. As this is a class I linear process, the full solution to the master equation is given
by Equation 2.38.

This becomes the grand canonical ensemble in the limit that N,V2 → ∞ holding the bath density
ρ = N/V2 is fixed. Then the rates become un = ρV1 and dn = n. Hence the steady state distribution is

π̃n =
(ρV1)n

n!
e−ρV1 . (2.73)

The same model can be used to describe a large bath of molecules at density ρ that can bind to N sites,
such as transcription factor proteins and DNA binding sites in the cell nucleus. In this case n is the number
of occupied sites, and the rates are un = α(N − n) and dn = βn. The statistical steady state expression is
as before; the equilibrium distribution from statistical mechanics is:

π̃n =
1
Z

(
N

n

)
ζne(−nε+nµ)/kT , (2.74)

where ζ is the internal partition function of the molecule, ε is the energy difference between bound and
unbound states, and µ = kT log(ρλ3) is the chemical potential. Thus

α

β
= ζρλ3e−ε/kT . (2.75)

2.4.5 The Moran Population Process

We now consider a few nonlinear rate processes. Suppose we have a population of fixed size N with two
types, 1 and 2. Let n denote the number of type 1 alleles. One model for the evolution of this population is
given by

〈n+ 1|W|n〉 =
1
τ

[
n

N

(
1− n

N

)
(1− uτ) +

(
1− n

N

)2

vτ

]
〈n− 1|W|n〉 =

1
τ

[
n

N

(
1− n

N

)
(1− vτ) +

( n
N

)2

uτ

]
,

(2.76)

where τ is a time scale such that Nτ is the average generation time, u is the mutation rate from type 1 to
type 2, and v is the reverse mutation rate. Since this is nonlinear, the solution to the master equation is
very complex, but we can compute the steady state. Using Equation 2.11,
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π̃(n) =
1
Z

〈n|W|n− 1〉〈n− 1|W|n− 2〉 · · · 〈1|W|0〉
〈n− 1|W|n〉〈n− 2|W|n− 1〉 · · · 〈0|W|1〉

=
1
Z

n−1∏
m=0

(m(N −m)(1− uτ) + (N −m)2vτ)

n∏
m=1

(m(N −m)(1− vτ) +m2uτ)

=
1
Z

(
N

n

) n−1∏
m=0

(m(1− uτ) + (N −m)vτ)

n∏
m=1

((N −m)(1− vτ) +muτ)

=
1
Z

(
N

n

) n−1∏
m=0

(Nvτ +m(1− uτ − vτ))

n∏
m=1

(N(1− vτ)−m(1− uτ − vτ))

=
1
Z

(
N

n

) n−1∏
m=0

(β +m)

n∏
m=1

(α+N −m)

,

(2.77)

where

α ≡ Nuτ

1− uτ − vτ , β ≡ Nvτ

1− uτ − vτ . (2.78)

We can now express this in terms of gamma functions:

π̃(n) =
1
Z

(
N

n

)
Γ(n+ β)Γ(N − n+ α)

Γ(β)Γ(N + α)
. (2.79)

Solving for the normalization Z gives

Z =
N∑
n=0

(
N

n

)
Γ(n+ β)Γ(N − n+ α)

Γ(β)Γ(N + α)
=

Γ(1−N − α)Γ(1− β − α)
Γ(1− α)Γ(1−N − α− β)

. (2.80)

Using a form of the Euler reflection identity (Γ(z)Γ(1− z) = Γ(1− z −N)Γ(z +N) for N ∈ Z),

π̃(n) =
Γ(1−N − α− β)

Γ(α)Γ(β)Γ(1− α− β)

(
N

n

)
Γ(n+ β)Γ(N − n+ α). (2.81)

2.4.6 Excited Electrons

Suppose we have n excited electrons (and n holes) in the valence and conduction bands. The valence band
can hold N electrons and the conduction band M . Let M ≥ N so that n = 0, 1, . . . , N . This number drops
by one when one of the n electrons meets one of the n holes, so that rate should be proportional to n2. The
number increases by one when one of the N − n valence electrons is excited into one of the M − n holes, so
that rate is proportional to (N − n)(M − n). Therefore the rates are

〈n+ 1|W|n〉 = un = α(N − n)(M − n), 〈n− 1|W|n〉 = dn = βn2. (2.82)

The steady state distribution is

π̃n =
1

2F1(−M,−N ; 1;α/β)

(
N

n

)(
M

n

)(
α

β

)n
, (2.83)

where 2F1 is the ordinary hypergeometric function. Note that this probably shouldn’t be taken too seriously
for n too close to N or M , when spatial effects will matter.
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2.4.7 Two-Molecule Chemical Reaction

The band electron model is similar to a chemical process in which two molecules, A and B, can meet to form
the molecule AB. Let NA and NB be the numbers of free A and B molecules, and they are sufficiently large
that spatial diffusion can be neglected. Let n be the number of AB molecules. Then the rates are

〈n+ 1|W|n〉 = un = α(NA − n)(NB − n), 〈n− 1|W|n〉 = dn = βn. (2.84)

Assuming that NB ≥ NA (so n = 0, 1, . . . , NA), the steady state distribution is

π̃n =
(−1)NB

U(−NB , 1 +NA −NB ,−β/α)

(
NA
n

)(
NB
n

)
n!
(
α

β

)n+NB

, (2.85)

where U is the confluent hypergeometric function. Note that this model likely breaks down for n too close
to NA and NB as in the previous example.
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