
Physics Reports 810 (2019) 1–124

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

A high-bias, low-variance introduction toMachine Learning
for physicists
Pankaj Mehta a, Marin Bukov b,∗, Ching-Hao Wang a, Alexandre G.R. Day a,
Clint Richardson a, Charles K. Fisher c, David J. Schwab d

a Department of Physics, Boston University, Boston, MA 02215, USA
b Department of Physics, University of California, Berkeley, CA 94720, USA
c Unlearn.AI, San Francisco, CA 94108, USA
d Initiative for the Theoretical Sciences, The Graduate Center, City University of New York, 365 Fifth Ave., New York, NY 10016, USA

a r t i c l e i n f o

Article history:
Received 26 March 2018
Accepted 2 February 2019
Available online 14 March 2019
Editor: Massimo Vergassola

a b s t r a c t

Machine Learning (ML) is one of the most exciting and dynamic areas of modern research
and application. The purpose of this review is to provide an introduction to the core
concepts and tools of machine learning in a manner easily understood and intuitive
to physicists. The review begins by covering fundamental concepts in ML and modern
statistics such as the bias–variance tradeoff, overfitting, regularization, generalization,
and gradient descent before moving on to more advanced topics in both supervised
and unsupervised learning. Topics covered in the review include ensemble models,
deep learning and neural networks, clustering and data visualization, energy-based
models (including MaxEnt models and Restricted Boltzmann Machines), and variational
methods. Throughout, we emphasize the many natural connections between ML and
statistical physics. A notable aspect of the review is the use of Python Jupyter notebooks
to introduce modern ML/statistical packages to readers using physics-inspired datasets
(the Ising Model and Monte-Carlo simulations of supersymmetric decays of proton–
proton collisions). We conclude with an extended outlook discussing possible uses of
machine learning for furthering our understanding of the physical world as well as open
problems in ML where physicists may be able to contribute.
© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

Contents

1. Introduction... 4
1.1. What is Machine Learning?.. 4
1.2. Why study Machine Learning? .. 4
1.3. Scope and structure of the review .. 5

2. Why is Machine Learning difficult? ... 6
2.1. Setting up a problem in ML and data science ... 6
2.2. Polynomial regression ... 7

3. Basics of statistical learning theory ... 10
3.1. Three simple schematics that summarize the basic intuitions from Statistical Learning Theory 10
3.2. Bias–Variance Decomposition .. 12

4. Gradient descent and its generalizations .. 13

∗ Corresponding author.
E-mail addresses: pankajm@bu.edu (P. Mehta), mgbukov@berkeley.edu (M. Bukov).

https://doi.org/10.1016/j.physrep.2019.03.001
0370-1573/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1016/j.physrep.2019.03.001
http://www.elsevier.com/locate/physrep
http://www.elsevier.com/locate/physrep
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physrep.2019.03.001&domain=pdf
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
http://creativecommons.org/licenses/by/4.0/
mailto:pankajm@bu.edu
mailto:mgbukov@berkeley.edu
https://doi.org/10.1016/j.physrep.2019.03.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

4.1. Gradient descent and Newton’s method .. 14
4.2. Limitations of the simplest gradient descent algorithm... 16
4.3. Stochastic Gradient Descent (SGD) with mini-batches ... 17
4.4. Adding momentum.. 17
4.5. Methods that use the second moment of the gradient .. 18
4.6. Comparison of various methods .. 19
4.7. Gradient descent in practice: practical tips.. 20

5. Overview of Bayesian inference ... 20
5.1. Bayes rule ... 21
5.2. Bayesian Decisions... 21
5.3. Hyperparameters ... 21

6. Linear regression .. 22
6.1. Least-square regression... 22
6.2. Ridge-regression... 23
6.3. LASSO And sparse regression ... 24
6.4. Using linear regression to learn the ising hamiltonian .. 25
6.5. Convexity of regularizer.. 27
6.6. Bayesian formulation of linear regression .. 29
6.7. Recap and a general perspective on regularizers .. 30

7. Logistic regression .. 31
7.1. The cross-entropy as a cost function for logistic regression.. 31
7.2. Minimizing the cross entropy .. 33
7.3. Examples of binary classification... 33

7.3.1. Identifying the phases of the 2D Ising model .. 33
7.3.2. SUSY... 34

7.4. Softmax regression .. 35
7.5. An example of SoftMax classification: MNIST digit classification ... 37

8. Combining models.. 37
8.1. Revisiting the Bias–Variance Tradeoff for Ensembles ... 39

8.1.1. Bias–Variance Decomposition for Ensembles ... 39
8.1.2. Summarizing the theory and intuitions behind ensembles.. 41

8.2. Bagging.. 42
8.3. Boosting .. 44
8.4. Random forests .. 45
8.5. Gradient boosted trees and XGBoost .. 45
8.6. Applications to the Ising model and supersymmetry datasets .. 47

9. An introduction to feed-forward deep neural networks (DNNs) ... 49
9.1. Neural network basics... 50

9.1.1. The basic building block: neurons ... 50
9.1.2. Layering neurons to build deep networks: network architecture ... 51

9.2. Training deep networks .. 52
9.3. The backpropagation algorithm ... 53

9.3.1. Deriving and implementing the backpropagation equations.. 53
9.3.2. Computing gradients in deep networks: what can go wrong with backprop? ... 55

9.4. Regularizing neural networks and other practical considerations .. 56
9.4.1. Implicit regularization using SGD: initialization, hyper-parameter tuning, and Early Stopping...................... 56
9.4.2. Dropout ... 56
9.4.3. Batch Normalization .. 57

9.5. Deep neural networks in practice: examples... 58
9.5.1. Deep learning packages ... 58
9.5.2. Approaching the learning problem .. 58
9.5.3. SUSY dataset ... 59
9.5.4. Phases of the 2D Ising model ... 59

10. Convolutional Neural Networks (CNNS) .. 61
10.1. The structure of convolutional neural networks ... 61
10.2. Example: CNNs for the 2D Ising model .. 63
10.3. Pre-trained CNNs and transfer learning.. 64

11. High-level concepts in deep neural networks .. 64
11.1. Organizing deep learning workflows using the bias–variance tradeoff.. 65
11.2. Why neural networks are so successful: three high-level perspectives on neural networks.. 66

11.2.1. Neural networks as representation learning .. 66
11.2.2. Neural networks can exploit large amounts of data ... 66
11.2.3. Neural networks scale up well computationally.. 67

11.3. Limitations of supervised learning with deep networks .. 67
12. Dimensional reduction and data visualization ... 68

12.1. Some of the challenges of high-dimensional data .. 68

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 3

12.2. Principal component analysis (PCA) .. 69
12.3. Multidimensional scaling .. 71
12.4. t-SNE .. 71

13. Clustering .. 73
13.1. Practical clustering methods .. 75

13.1.1. K -Means .. 75
13.1.2. Hierarchical clustering: Agglomerative methods ... 76
13.1.3. Density-based (DB) clustering .. 77

13.2. Clustering and latent variables via the Gaussian mixture models ... 79
13.3. Clustering in high dimensions .. 81

14. Variational methods and mean-field theory (MFT).. 82
14.1. Variational mean-field theory for the Ising model.. 83
14.2. Expectation–Maximization (EM) .. 85

15. Energy based models: Maximum entropy (MaxEnt) principle, generative models, and Boltzmann learning............................ 87
15.1. An overview of energy-based generative models.. 88
15.2. Maximum entropy models: the simplest energy-based generative models .. 89

15.2.1. MaxEnt models in statistical mechanics ... 89
15.2.2. From statistical mechanics to machine learning.. 90
15.2.3. Generalized Ising models from MaxEnt .. 90

15.3. Cost functions for training energy-based models .. 91
15.3.1. Maximum likelihood .. 91
15.3.2. Regularization ... 92

15.4. Computing gradients .. 92
15.5. Summary of the training procedure.. 93

16. Deep generative models: Hidden variables and restricted Boltzmann machines (RBMs)... 94
16.1. Why hidden (latent) variables? ... 94
16.2. Restricted Boltzmann machines (RBMs) ... 95
16.3. Training RBMs .. 97

16.3.1. Gibbs sampling and contrastive divergence (CD) .. 97
16.3.2. Practical considerations ... 98

16.4. Deep Boltzmann machine... 99
16.5. Generative models in practice: examples... 100

16.5.1. MNIST .. 100
16.5.2. Example: 2D Ising model .. 100

16.6. Generative models in physics .. 101
17. Variational autoencoders (VAEs) and generative adversarial networks (GANs)... 102

17.1. The limitations of maximizing likelihood... 103
17.2. Generative models and adversarial learning ... 104
17.3. Variational Autoencoders (VAEs) ... 106

17.3.1. VAEs as variational models ... 106
17.3.2. Training via the reparametrization trick ... 107
17.3.3. Connection to the information bottleneck.. 109

17.4. VAE with Gaussian latent variables and Gaussian encoder.. 110
17.4.1. Implementing the Gaussian VAE.. 110
17.4.2. VAEs for the MNIST dataset .. 111
17.4.3. VAEs for the 2D Ising model .. 111

18. Outlook .. 112
18.1. Research at the intersection of physics and ML .. 114
18.2. Topics not covered in review... 114
18.3. Rebranding machine learning as ‘‘Artificial Intelligence’’ ... 115
18.4. Social implications of machine learning ... 116
Acknowledgments .. 116
Appendix. Overview of the datasets used in the review .. 116
A.1. Ising dataset ... 116
A.2. SUSY Dataset .. 116
A.3. MNIST Dataset.. 117
References ... 117

4 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

1. Introduction

Machine Learning (ML), data science, and statistics are fields that describe how to learn from, and make predictions
about, data. The availability of big datasets is a hallmark of modern science, including physics, where data analysis has
become an important component of diverse areas, such as experimental particle physics, observational astronomy and
cosmology, condensed matter physics, biophysics, and quantum computing. Moreover, ML and data science are playing
increasingly important roles in many aspects of modern technology, ranging from biotechnology to the engineering of self-
driving cars and smart devices. Therefore, having a thorough grasp of the concepts and tools used in ML is an important
skill that is increasingly relevant in the physical sciences.

The purpose of this review is to serve as an introduction to foundational and state-of-the-art techniques in ML and
data science for physicists. The review seeks to find a middle ground between a short overview and a full-length textbook.
While there exist many wonderful ML textbooks (Abu-Mostafa et al., 2012; Bishop, 2006; Friedman et al., 2001; Murphy,
2012), they are lengthy and use specialized language that is often unfamiliar to physicists. This review builds upon
the considerable knowledge most physicists already possess in statistical physics in order to introduce many of the
major ideas and techniques used in modern ML. We take a physics-inspired pedagogical approach, emphasizing simple
examples (e.g., regression and clustering), before delving into more advanced topics. The intention of this review and the
accompanying Jupyter notebooks (available at https://physics.bu.edu/~pankajm/MLnotebooks.html) is to give the reader
the requisite background knowledge to follow and apply these techniques to their own areas of interest.

While this review is written with a physics background in mind, we aim for it to be useful to anyone with some
background in statistical physics, and it is suitable for both graduate students and researchers as well as advanced
undergraduates. The review is based on an advanced topics graduate course taught at Boston University in Fall of 2016.
As such, it assumes a level of familiarity with several topics found in graduate physics curricula (partition functions,
statistical mechanics) and a fluency in mathematical techniques such as linear algebra, multi-variate calculus, variational
methods, probability theory, and Monte-Carlo methods. It also assumes a familiarity with basic computer programming
and algorithmic design.

1.1. What is Machine Learning?

Most physicists learn the basics of classical statistics early on in undergraduate laboratory courses. Classical statistics
is primarily concerned with how to use data to estimate the value of an unknown quantity. For instance, estimating the
speed of light using measurements obtained with an interferometer is one such example that relies heavily on techniques
from statistics.

Machine Learning is a subfield of artificial intelligence with the goal of developing algorithms capable of learning from
data automatically. In particular, an artificially intelligent agent needs to be able to recognize objects in its surroundings
and predict the behavior of its environment in order to make informed choices. Therefore, techniques in ML tend to be
more focused on prediction rather than estimation. For example, how do we use data from the interferometry experiment
to predict what interference pattern would be observed under a different experimental setup? In addition, methods
from ML tend to be applied to more complex high-dimensional problems than those typically encountered in a classical
statistics course.

Despite these differences, estimation and prediction problems can be cast into a common conceptual framework. In
both cases, we choose some observable quantity x of the system we are studying (e.g., an interference pattern) that is
related to some parameters θ (e.g., the speed of light) of a model p(x|θ) that describes the probability of observing x given
θ. Now, we perform an experiment to obtain a dataset X and use these data to fit the model. Typically, ‘‘fitting’’ the model
involves finding θ̂ that provides the best explanation for the data. In the case when ‘‘fitting’’ refers to the method of least
squares, the estimated parameters maximize the probability of observing the data (i.e., θ̂ = argmaxθ {p(X |θ)}). Estimation
problems are concerned with the accuracy of θ̂, whereas prediction problems are concerned with the ability of the model
to predict new observations (i.e., the accuracy of p(x|θ̂)). Although the goals of estimation and prediction are related, they
often lead to different approaches. As this review is aimed as an introduction to the concepts of ML, we will focus on
prediction problems and refer the reader to one of many excellent textbooks on classical statistics for more information
on estimation (Lehmann and Casella, 2006; Lehmann and Romano, 2006; Wasserman, 2013; Witte and Witte, 2013).

1.2. Why study Machine Learning?

The last three decades have seen an unprecedented increase in our ability to generate and analyze large datasets. This
‘‘big data’’ revolution has been spurred by an exponential increase in computing power and memory commonly known
as Moore’s law. Computations that were unthinkable a few decades ago can now be routinely performed on laptops.
Specialized computing machines (such as GPU-based machines) are continuing this trend towards cheap, large-scale
computation, suggesting that the ‘‘big data’’ revolution is here to stay.

This increase in our computational ability has been accompanied by new techniques for analyzing and learning from
large datasets. These techniques draw heavily from ideas in statistics, computational neuroscience, computer science,
and physics. Similar to physics, modern ML places a premium on empirical results and intuition over the more formal

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 5

treatments common in statistics, computer science, and mathematics. This is not to say that proofs are not important or
undesirable. Rather, many of the advances of the last two decades – especially in fields like deep learning – do not have
formal justifications (much like there still exists no mathematically well-defined concept of the Feynman path-integral in
d > 1).

Physicists are uniquely situated to benefit from and contribute to ML. Many of the core concepts and techniques used
in ML – such as Monte-Carlo methods, simulated annealing, variational methods – have their origins in physics. Moreover,
‘‘energy-based models’’ inspired by statistical physics are the backbone of many deep learning methods. For these reasons,
there is much in modern ML that will be familiar to physicists.

Physicists and astronomers have also been at the forefront of using ‘‘big data’’. For example, experiments such as CMS
and ATLAS at the LHC generate petabytes of data per year. In astronomy, projects such as the Sloan Digital Sky Survey
(SDSS) routinely analyze and release hundreds of terabytes of data measuring the properties of nearly a billion stars and
galaxies. Researchers in these fields are increasingly incorporating recent advances in ML and data science, and this trend
is likely to accelerate in the future.

Besides applications to physics, part of the goal of this review is to serve as an introductory resource for those looking
to transition to more industry-oriented projects. Physicists have already made many important contributions to modern
big data applications in an industrial setting (Metz, 2017). Data scientists and ML engineers in industry use concepts and
tools developed for ML to gain insight from large datasets. A familiarity with ML is a prerequisite for many of the most
exciting employment opportunities in the field, and we hope this review will serve as a useful introduction to ML for
physicists beyond an academic setting.

1.3. Scope and structure of the review

Any review on ML must simultaneously accomplish two related but distinct goals. First, it must convey the rich
theoretical foundations underlying modern ML. This task is made especially difficult because ML is very broad and
interdisciplinary, drawing on ideas and intuitions from many fields including statistics, computational neuroscience, and
physics. Unfortunately, this means making choices about what theoretical ideas to include in the review. This review
emphasizes connections with statistical physics, physics-inspired Bayesian inference, and computational neuroscience
models. Thus, certain ideas (e.g., gradient descent, expectation–maximization, variational methods, and deep learning and
neural networks) are covered extensively, while other important ideas are given less attention or even omitted entirely
(e.g., statistical learning, support vector machines, kernel methods, Gaussian processes). Second, any ML review must
give the reader the practical know-how to start using the tools and concepts of ML for practical problems. To accomplish
this, we have written a series of Jupyter notebooks to accompany this review. These python notebooks introduce the
nuts-and-bolts of how to use, code, and implement the methods introduced in the main text. Luckily, there are numerous
great ML software packages available in Python (scikit-learn, tensorflow, Pytorch, Keras) and we have made extensive
use of them. We have also made use of a new package, Paysage, for energy-based generative models which has been
co-developed by one of the authors (CKF) and maintained by Unlearn.AI (a company affiliated with two of the authors:
CKF and PM). The purpose of the notebooks is to both familiarize physicists with these resources and to serve as a starting
point for experimenting and playing with ideas.

ML can be divided into three broad categories: supervised learning, unsupervised learning, and reinforcement learning.
Supervised learning concerns learning from labeled data (for example, a collection of pictures labeled as containing a cat
or not containing a cat). Common supervised learning tasks include classification and regression. Unsupervised learning is
concerned with finding patterns and structure in unlabeled data. Examples of unsupervised learning include clustering,
dimensionality reduction, and generative modeling. Finally, in reinforcement learning an agent learns by interacting with
an environment and changing its behavior to maximize its reward. For example, a robot can be trained to navigate in
a complex environment by assigning a high reward to actions that help the robot reach a desired destination. We refer
the interested reader to the classic book by Sutton and Barto Reinforcement Learning: an Introduction (Sutton and Barto,
1998). While useful, the distinction between the three types of ML is sometimes fuzzy and fluid, and many applications
often combine them in novel and interesting ways. For example, the recent success of Google DeepMind in developing
ML algorithms that excel at tasks such as playing Go and video games employ deep reinforcement learning, combining
reinforcement learning with supervised learning methods based on deep neural networks.

Here, we limit our focus to supervised and unsupervised learning. The literature on reinforcement learning is extensive
and uses ideas and concepts that, to a large degree, are distinct from supervised and unsupervised learning tasks. For this
reason, to ensure cohesiveness and limit the length of this review, we have chosen not to discuss reinforcement learning.
However, this omission should not be mistaken for a value judgement on the utility of reinforcement learning for solving
physical problems. For example, some of the authors have used inspiration from reinforcement learning to tackle difficult
problems in quantum control (Bukov, 2018; Bukov et al., 2018).

In writing this review, we have tried to adopt a style that reflects what we consider to be the best of the physics
tradition. Physicists understand the importance of well-chosen examples for furthering our understanding. It is hard to
imagine a graduate course in statistical physics without the Ising model. Each new concept that is introduced in statistical
physics (mean-field theory, transfer matrix techniques, high- and low-temperature expansions, the renormalization group,
etc.) is applied to the Ising model. This allows for the progressive building of intuition and ultimately a coherent picture

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://unlearn.ai/

6 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

of statistical physics. We have tried to replicate this pedagogical approach in this review by focusing on a few well-chosen
techniques – linear and logistic regression in the case of supervised learning and clustering in the case of unsupervised
learning – to introduce the major theoretical concepts.

In this same spirit, we have chosen three interesting datasets with which to illustrate the various algorithms discussed
here. (i) The SUSY dataset consists of 5,000,000 Monte-Carlo samples of proton–proton collisions decaying to either
signal or background processes, which are both parametrized with 18 features. The signal process is the production
of electrically-charged supersymmetric particles, which decay to W bosons and an electrically-neutral supersymmetric
particle, invisible to the detector, while the background processes are various decays involving only Standard Model
particles (Baldi et al., 2014). (ii) The Ising dataset consists of 104 states of the 2D Ising model on a 40 × 40 square
lattice, obtained using Monte-Carlo (MC) sampling at a few fixed temperatures T . (iii) The MNIST dataset comprises
70,000 handwritten digits, each of which comes in a square image, divided into a 28 × 28 pixel grid. The first two
datasets were chosen to reflect the various sub-disciplines of physics (high-energy experiment, condensed matter) where
we foresee techniques from ML becoming an increasingly important tool for research. The MNIST dataset, on the other
hand, introduces the flavor of present-day ML problems. By re-analyzing the same datasets with multiple techniques,
we hope readers will be able to get a sense of the various, inevitable trade-offs involved in choosing how to analyze
data. Certain techniques work better when data is limited while others may be better suited to large datasets with many
features. A short description of these datasets are given in the Appendix.

This review draws generously on many wonderful textbooks on ML and we encourage the reader to consult them
for further information. They include Abu Mostafa’s masterful Learning from Data, which introduces the basic concepts
of statistical learning theory (Abu-Mostafa et al., 2012), the more advanced but equally good The Elements of Statistical
Learning by Hastie, Tibshirani, and Friedman (Friedman et al., 2001), Michael Nielsen’s indispensable Neural Networks and
Deep Learning which serves as a wonderful introduction to the neural networks and deep learning (Nielsen, 2015) and
David MacKay’s outstanding Information Theory, Inference, and Learning Algorithms which introduced Bayesian inference
and information theory to a whole generation of physicists (MacKay, 2003). More comprehensive (and much longer) books
on modern ML techniques include Christopher Bishop’s classic Pattern Recognition and Machine Learning (Bishop, 2006)
and the more recently published Machine Learning: A Probabilistic Perspective by Kevin Murphy (Murphy, 2012). Finally,
one of the great successes of modern ML is deep learning, and some of the pioneers of this field have written a textbook
for students and researchers entitled Deep Learning (Goodfellow et al., 2016). In addition to these textbooks, we have
consulted numerous research papers, reviews, and web resources. Whenever possible, we have tried to point the reader
to key papers and other references that we have found useful in preparing this review. However, we are neither capable
of nor have we made any effort to make a comprehensive review of the literature.

The review is organized as follows. We begin by introducing polynomial regression as a simple example that highlights
many of the core ideas of ML. The next few chapters introduce the language and major concepts needed to make
these ideas more precise including tools from statistical learning theory such as overfitting, the bias–variance tradeoff,
regularization, and the basics of Bayesian inference. The next chapter builds on these examples to discuss stochastic
gradient descent and its generalizations. We then apply these concepts to linear and logistic regression, followed by a
detour to discuss how we can combine multiple statistical techniques to improve supervised learning, introducing bagging,
boosting, random forests, and XG Boost. These ideas, though fairly technical, lie at the root of many of the advances in ML
over the last decade. The review continues with a thorough discussion of supervised deep learning and neural networks,
as well as convolutional nets. We then turn our focus to unsupervised learning. We start with data visualization and
dimensionality reduction before proceeding to a detailed treatment of clustering. Our discussion of clustering naturally
leads to an examination of variational methods and their close relationship with mean-field theory. The review continues
with a discussion of deep unsupervised learning, focusing on energy-based models, such as Restricted Boltzmann Machines
(RBMs) and Deep Boltzmann Machines (DBMs). Then we discuss two new and extremely popular modeling frameworks
for unsupervised learning, generative adversarial networks (GANs) and variational autoencoders (VAEs). We conclude the
review with an outlook and discussion of promising research directions at the intersection physics and ML.

2. Why is Machine Learning difficult?

2.1. Setting up a problem in ML and data science

Many problems in ML and data science starts with the same ingredients. The first ingredient is the dataset D = (X, y)
where X is a matrix of independent variables and y is a vector of dependent variables. The second is the model f (x; θ),
which is a function f : x→ y of the parameters θ. That is, f is a function used to predict an output from a vector of input
variables. The final ingredient is the cost function C(y, f (X; θ)) that allows us to judge how well the model performs on the
observations y. The model is fit by finding the value of θ that minimizes the cost function. For example, one commonly
used cost function is the squared error. Minimizing the squared error cost function is known as the method of least
squares, and is typically appropriate for experiments with Gaussian measurement errors.

ML researchers and data scientists follow a standard recipe to obtain models that are useful for prediction problems.
We will see why this is necessary in the following sections, but it is useful to present the recipe up front to provide
context. The first step in the analysis is to randomly divide the dataset D into two mutually exclusive groups Dtrain and

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 7

Dtest called the training and test sets. The fact that this must be the first step should be heavily emphasized — performing
some analysis (such as using the data to select important variables) before partitioning the data is a common pitfall that
can lead to incorrect conclusions. Typically, the majority of the data are partitioned into the training set (e.g., 90%) with
the remainder going into the test set. The model is fit by minimizing the cost function using only the data in the training
set θ̂ = argminθ

{
C(ytrain, f (X train; θ))

}
. Finally, the performance of the model is evaluated by computing the cost function

using the test set C(ytest, f (X test; θ̂)). The value of the cost function for the best fit model on the training set is called the
in-sample error Ein = C(ytrain, f (X train; θ)) and the value of the cost function on the test set is called the out-of-sample
error Eout = C(ytest, f (X test; θ)).

One of the most important observations we can make is that the out-of-sample error is almost always greater than the
in-sample error, i.e. Eout ≥ Ein. We explore this point further in Section 6 and its accompanying notebook. Splitting the
data into mutually exclusive training and test sets provides an unbiased estimate for the predictive performance of the
model — this is known as cross-validation in the ML and statistics literature. In many applications of classical statistics,
we start with a mathematical model that we assume to be true (e.g., we may assume that Hooke’s law is true if we are
observing a mass–spring system) and our goal is to estimate the value of some unknown model parameters (e.g., we
do not know the value of the spring stiffness). Problems in ML, by contrast, typically involve inference about complex
systems where we do not know the exact form of the mathematical model that describes the system. Therefore, it is not
uncommon for ML researchers to have multiple candidate models that need to be compared. This comparison is usually
done using Eout; the model that minimizes this out-of-sample error is chosen as the best model (i.e. model selection). Note
that once we select the best model on the basis of its performance on Eout, the real-world performance of the winning
model should be expected to be slightly worse because the test data was now used in the fitting procedure.

2.2. Polynomial regression

In the previous section, we mentioned that multiple candidate models are typically compared using the out-of-sample
error Eout. It may be at first surprising that the model that has the lowest out-of-sample error Eout usually does not have
the lowest in-sample error Ein. Therefore, if our goal is to obtain a model that is useful for prediction we may not want
to choose the model that provides the best explanation for the current observations. At first glance, the observation that
the model providing the best explanation for the current dataset probably will not provide the best explanation for future
datasets is very counter-intuitive.

Moreover, the discrepancy between Ein and Eout becomes more and more important, as the complexity of our data,
and the models we use to make predictions, grows. As the number of parameters in the model increases, we are forced
to work in high-dimensional spaces. The ‘‘curse of dimensionality’’ ensures that many phenomena that are absent or rare
in low-dimensional spaces become generic. For example, the nature of distance changes in high dimensions, as evidenced
in the derivation of the Maxwell distribution in statistical physics where the fact that all the volume of a d-dimensional
sphere of radius r is contained in a small spherical shell around r is exploited. Almost all critical points of a function
(i.e., the points where all derivatives vanish) are saddles rather than maxima or minima (an observation first made in
physics in the context of the p-spin spherical spin glass). For all these reasons, it turns out that for complicated models
studied in ML, predicting and fitting are very different things (Bickel et al., 2006).

To develop some intuition about why we need to pay close attention to out-of-sample performance, we will consider
a simple one-dimensional problem — polynomial regression. Our task is a simple one, fitting data with polynomials of
different order. We will explore how our ability to predict depends on the number of data points we have, the ‘‘noise’’ in
the data generation process, and our prior knowledge about the system. The goal is to build intuition about why prediction
is difficult in preparation for introducing general strategies that overcome these difficulties.

Before reading the rest of the section, we strongly encourage the reader to read Notebook 1 and complete the accompanying
exercises.

Consider a probabilistic process that assigns a label yi to an observation xi. The data are generated by drawing samples
from the equation

yi = f (xi)+ ηi, (1)

where f (xi) is some fixed (but possibly unknown) function, and ηi is a Gaussian, uncorrelated noise variable, such that

⟨ηi⟩ = 0,
⟨ηiηj⟩ = δijσ

2.

We will refer to the f (xi) as the function used to generate the data, and σ as the noise strength. The larger σ is the noisier
the data; σ = 0 corresponds to the noiseless case.

To make predictions, we will consider a family of functions fα(x; θα) that depend on some parameters θα . These
functions represent the model class that we are using to model the data and make predictions. Note that we choose
the model class without knowing the function f (x). The fα(x; θα) encode the features we choose to represent the data.
In the case of polynomial regression we will consider three different model classes: (i) all polynomials of order 1 which
we denote by f1(x; θ1), (ii) all polynomials up to order 3 which we denote by f3(x; θ3), and (iii) all polynomials of order

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

8 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 1. Fitting versus predicting for noiseless data. Ntrain = 10 points in the range x ∈ [0, 1] were generated from a linear model (top) or tenth-order
polynomial (bottom). This data was fit using three model classes: linear models (red), all polynomials of order 3 (yellow), all polynomials of order
10 (green) and used to make prediction on Ntest = 20 new data points with xtest ∈ [0, 1.2] (shown on right). Notice that in the absence of noise
(σ = 0), given enough data points that fitting and predicting are identical.

10, f10(x; θ10). Notice that these three model classes contain different number of parameters. Whereas f1(x; θ1) has only
two parameters (the coefficients of the zeroth and first order terms in the polynomial), f3(x; θ3) and f10(x; θ10) have four
and eleven parameters, respectively. This reflects the fact that these three models have different model complexities. If
we think of each term in the polynomial as a ‘‘feature’’ in our model, then increasing the order of the polynomial we fit
increases the number of features. Using a more complex model class may give us better predictive power, but only if we
have a large enough sample size to accurately learn the model parameters associated with these extra features from the
training dataset.

To learn the parameters θα , we will train our models on a training dataset and then test the effectiveness of the model
on a different dataset, the test dataset. Since we are interested only in gaining intuition, we will simply plot the fitted
polynomials and compare the predictions of our fits for the test data with the true values. As we will see below, the
models that give the best fit to existing data do not necessarily make the best predictions even for a simple task like
polynomial regression.

To illustrate these ideas, we encourage the reader to experiment with the accompanying notebook to generate data
using a linear function f (x) = 2x and a tenth order polynomial f (x) = 2x − 10x5 + 15x10 and ask how the size of
the training dataset Ntrain and the noise strength σ affect the ability to make predictions. Obviously, more data and less
noise leads to better predictions. To train the models (linear, third-order, tenth-order), we uniformly sampled the interval
x ∈ [0, 1] and constructed Ntrain training examples using (1). We then fit the models on these training samples using
standard least-squares regression. To visualize the performance of the three models, we plot the predictions using the
best fit parameters for a test set where x are drawn uniformly from the interval x ∈ [0, 1.2]. Notice that the test interval
is slightly larger than the training interval.

Fig. 1 shows the results of this procedure for the noiseless case, σ = 0. Even using a small training set with Ntrain = 10
examples, we find that the model class that generated the data also provides the best fit and the most accurate out-of-
sample predictions. That is, the linear model performs the best for data generated from a linear polynomial (the third and
tenth order polynomials perform similarly), and the tenth order model performs the best for data generated from a tenth
order polynomial. While this may be expected, the results are quite different for larger noise strengths.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 9

Fig. 2. Fitting versus predicting for noisy data. Ntrain = 100 noisy data points (σ = 1) in the range x ∈ [0, 1] were generated from a linear model
(top) or tenth-order polynomial (bottom). This data was fit using three model classes: linear models (red), all polynomials of order 3 (yellow), all
polynomials of order 10 (green) and used to make prediction on Ntest = 20 new data points with xtest ∈ [0, 1.2](shown on right). Notice that even
when the data was generated using a tenth order polynomial, the linear and third order polynomials give better out-of-sample predictions, especially
beyond the x range over which the model was trained.

Fig. 2 shows the results of the same procedure for noisy data, σ = 1, and a larger training set, Ntrain = 100. As in the
noiseless case, the tenth order model provides the best fit to the data (i.e., the lowest Ein). In contrast, the tenth order
model now makes the worst out-of-sample predictions (i.e., the highest Eout). Remarkably, this is true even if the data
were generated using a tenth order polynomial.

At small sample sizes, noise can create fluctuations in the data that look like genuine patterns. Simple models (like a
linear function) cannot represent complicated patterns in the data, so they are forced to ignore the fluctuations and to
focus on the larger trends. Complex models with many parameters, such as the tenth order polynomial in our example,
can capture both the global trends and noise-generated patterns at the same time. In this case, the model can be tricked
into thinking that the noise encodes real information. This problem is called ‘‘overfitting’’ and leads to a steep drop-off in
predictive performance.

We can guard against overfitting in two ways: we can use less expressive models with fewer parameters, or we can
collect more data so that the likelihood that the noise appears patterned decreases. Indeed, when we increase the size
of the training dataset by two orders of magnitude to Ntrain = 104 (see Fig. 3) the tenth order polynomial clearly gives
both the best fits and the most predictive power over the entire training range x ∈ [0, 1], and even slightly beyond to
approximately x ≈ 1.05. This is our first experience with what is known as the bias–variance tradeoff, c.f. Section 3.2.
When the amount of training data is limited as it is when Ntrain = 100, one can often get better predictive performance
by using a less expressive model (e.g., a lower order polynomial) rather than the more complex model (e.g., the tenth-
order polynomial). The simpler model has more ‘‘bias’’ but is less dependent on the particular realization of the training
dataset, i.e. less ‘‘variance’’. Finally we note that even with ten thousand data points, the model’s performance quickly
degrades beyond the original training data range. This demonstrates the difficulty of predicting beyond the training data
we mentioned earlier.

This simple example highlights why ML is so difficult and holds some universal lessons that we will encounter
repeatedly in this review:

10 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 3. Fitting versus predicting for noisy data. Ntrain = 104 noisy data points (σ = 1) in the range x ∈ [0, 1] were generated from a tenth-order
polynomial. This data was fit using three model classes: linear models (red), all polynomials of order 3 (yellow), all polynomials of order 10 (green)
and used to make prediction on Ntest = 100 new data points with xtest ∈ [0, 1.2](shown on right). The tenth order polynomial gives good predictions
but the model’s predictive power quickly degrades beyond the training data range.

• Fitting is not predicting. Fitting existing data well is fundamentally different from making predictions about new
data.
• Using a complex model can result in overfitting. Increasing a model’s complexity (i.e number of fitting parameters)

will usually yield better results on the training data. However when the training data size is small and the data are
noisy, this results in overfitting and can substantially degrade the predictive performance of the model.
• For complex datasets and small training sets, simple models can be better at prediction than complex models due

to the bias–variance tradeoff. It takes less data to train a simple model than a complex one. Therefore, even though
the correct model is guaranteed to have better predictive performance for an infinite amount of training data (less
bias), the training errors stemming from finite-size sampling (variance) can cause simpler models to outperform the
more complex model when sampling is limited.
• It is difficult to generalize beyond the situations encountered in the training dataset.

3. Basics of statistical learning theory

In this section, we briefly summarize and discuss the sense in which learning is possible, with a focus on supervised
learning. We begin with an unknown function y = f (x) and fix a hypothesis set H consisting of all functions we are willing
to consider, defined also on the domain of f . This set may be uncountably infinite (e.g. if there are real-valued parameters
to fit). The choice of which functions to include in H usually depends on our intuition about the problem of interest. The
function f (x) produces a set of pairs (xi, yi), i = 1 . . .N , which serve as the observable data. Our goal is to select a function
from the hypothesis set h ∈ H that approximates f (x) as best as possible, namely, we would like to find h ∈ H such that
h ≈ f in some strict mathematical sense which we specify below. If this is possible, we say that we learned f (x). But if the
function f (x) can, in principle, take any value on unobserved inputs, how is it possible to learn in any meaningful sense?

The answer is that learning is possible in the restricted sense that the fitted model will probably perform approximately
as well on new data as it did on the training data. Once an appropriate error function E is chosen for the problem
under consideration (e.g. sum of squared errors in linear regression), we can define two distinct performance measures
of interest. The in-sample error, Ein, and the out-of-sample or generalization error, Eout. Recall from Section 2 that both
metrics are required due to the distinction between fitting and predicting.

This raises a natural question: Can we say something general about the relationship between Ein and Eout? Surprisingly, the
answer is ‘Yes’. We can in fact say quite a bit. This is the domain of statistical learning theory, and we give a brief overview
of the main results in this section. Our goal is to briefly introduce some of the major ideas from statistical learning theory
because of the important role they have played in shaping how we think about machine learning. However, this is a
highly technical and theoretical field, so we will just skim over some introductory topics. A more thorough introduction
to statistical learning theory can be found in the introductory textbook by Abu Mostafa (Abu-Mostafa et al., 2012).

3.1. Three simple schematics that summarize the basic intuitions from Statistical Learning Theory

The basic intuitions of statistical learning can be summarized in three simple schematics. The first schematic, shown
in Fig. 4, shows the typical out-of-sample error, Eout, and in-sample error, Ein, as a function of the amount of training data.
In making this graph, we have assumed that the true data is drawn from a sufficiently complicated distribution, so that
we cannot exactly learn the function f (x). Hence, after a quick initial drop (not shown in figure), the in-sample error will
increase with the number of data points, because our models are not powerful enough to learn the true function we are

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 11

Fig. 4. Schematic of typical in-sample and out-of-sample error as a function of training set size. The typical in-sample or training error, Ein , out-
of-sample or generalization error, Eout , bias, variance, and difference of errors as a function of the number of training data points. The schematic
assumes that the number of data points is large (in particular, the schematic does not show the initial drop in Ein for small amounts of data), and
that our model cannot exactly fit the true function f (x).

seeking to approximate. In contrast, the out-of-sample error will decrease with the number of data points. As the number
of data points gets large, the sampling noise decreases and the training dataset becomes more representative of the true
distribution from which the data is drawn. For this reason, in the infinite data limit, the in-sample and out-of-sample
errors must approach the same value, which is called the ‘‘bias’’ of our model.

The bias represents the best our model could do if we had an infinite amount of training data to beat down sampling
noise. The bias is a property of the kind of functions, or model class, we are using to approximate f (x). In general, the
more complex the model class we use, the smaller the bias. However, we do not generally have an infinite amount of
data. For this reason, to get best predictive power it is better to minimize the out-of-sample error, Eout, rather than the
bias. As shown in Fig. 4, Eout can be naturally decomposed into a bias, which measures how well we can hypothetically
do in the infinite data limit, and a variance, which measures the typical errors introduced in training our model due to
sampling noise from having a finite training set.

The final quantity shown in Fig. 4 is the difference between the generalization and training error. It measures how
well our in-sample error reflects the out-of-sample error, and measures how much worse we would do on a new dataset
compared to our training data. For this reason, the difference between these errors is precisely the quantity that measures
the difference between fitting and predicting. Models with a large difference between the in-sample and out-of-sample
errors are said to ‘‘overfit’’ the data. One of the lessons of statistical learning theory is that it is not enough to simply
minimize the training error, because the out-of-sample error can still be large. As we will see in our discussion of
regression in Section 6, this insight naturally leads to the idea of ‘‘regularization’’.

The second schematic, shown in Fig. 5, shows the out-of-sample, or test, error Eout as a function of ‘‘model complexity’’.
Model complexity is a very subtle idea and defining it precisely is one of the great achievements of statistical learning
theory. In many cases, model complexity is related to the number of parameters we are using to approximate the true
function f (x).1 In the example of polynomial regression discussed above, higher-order polynomials are more complex
than the linear model. If we consider a training dataset of a fixed size, Eout will be a non-monotonic function of the model
complexity, and is generally minimized for models with intermediate complexity. The underlying reason for this is that,
even though using a more complicated model always reduces the bias, at some point the model becomes too complex
for the amount of training data and the generalization error becomes large due to high variance. Thus, to minimize Eout
and maximize our predictive power, it may be more suitable to use a more biased model with small variance than a
less-biased model with large variance. This important concept is commonly called the bias–variance tradeoff and gets at
the heart of why machine learning is difficult.

Another way to visualize the bias–variance tradeoff is shown in Fig. 6. In this figure, we imagine training a complex
model (shown in green) and a simpler model (shown in black) many times on different training sets of a fixed size N .
Due to the sampling noise from having finite size datasets, the learned models will differ for each choice of training sets.
In general, more complex models need a larger amount of training data. For this reason, the fluctuations in the learned
models (variance) will be much larger for the more complex model than the simpler model. However, if we consider

1 There are, of course, exceptions. One neat example in the context of one-dimensional regression in given in (Friedman et al., 2001), Figure 7.5.

12 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 5. Bias–Variance tradeoff and model complexity. This schematic shows the typical out-of-sample error Eout as function of the model complexity
for a training dataset of fixed size. Notice how the bias always decreases with model complexity, but the variance, i.e. fluctuation in performance due
to finite size sampling effects, increases with model complexity. Thus, optimal performance is achieved at intermediate levels of model complexity.

Fig. 6. Bias–Variance tradeoff. Another useful depiction of the bias–variance tradeoff is to think about how Eout varies as we consider different
training datasets of a fixed size. A more complex model (green) will exhibit larger fluctuations (variance) due to finite size sampling effects than
the simpler model (black). However, the average over all the trained models (bias) is closer to the true model for the more complex model.

the asymptotic performance as we increase the size of the training set (the bias), it is clear that the complex model
will eventually perform better than the simpler model. Thus, depending on the amount of training data, it may be more
favorable to use a less complex, high-bias model to make predictions.

3.2. Bias–Variance Decomposition

In this section, we dig further into the central principle that underlies much of machine learning: the bias–variance
tradeoff. We will discuss the bias–variance tradeoff in the context of continuous predictions such as regression. However,
many of the intuitions and ideas discussed here also carry over to classification tasks. Consider a dataset D = (X, y)
consisting of the N pairs of independent and dependent variables. Let us assume that the true data is generated from a
noisy model

y = f (x)+ ϵ (2)

where ϵ is normally distributed with mean zero and standard deviation σϵ .
Assume that we have a statistical procedure (e.g. least-squares regression) for forming a predictor f (x; θ̂) that gives

the prediction of our model for a new data point x. This estimator is chosen by minimizing a cost function which we take
to be the squared error

C(y, f (X; θ)) =
∑

i

(yi − f (xi; θ))2. (3)

Therefore, the estimates for the parameters,

θ̂D = argmin
θ

C(y, f (X; θ)). (4)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 13

are a function of the dataset, D. We would obtain a different error C(y j, f (X j; θ̂Dj)) for each dataset Dj = (y j,X j) in a
universe of possible datasets obtained by drawing N samples from the true data distribution. We denote an expectation
value over all of these datasets as ED .

We would also like to average over different instances of the ‘‘noise’’ ϵ and we denote the expectation value over the
noise by Eϵ . Thus, we can decompose the expected generalization error as

ED,ϵ[C(y, f (X; θ̂D))] = ED,ϵ

[∑
i

(yi − f (xi; θ̂D))2
]

= ED,ϵ

[∑
i

(yi − f (xi)+ f (xi)− f (xi; θ̂D))2
]

=

∑
i

Eϵ[(yi − f (xi))2] + ED,ϵ[(f (xi)− f (xi; θ̂D))2] + 2Eϵ[yi − f (xi)]ED[f (xi)− f (xi; θ̂D)]

=

∑
i

σ 2
ϵ + ED[(f (xi)− f (xi; θ̂D))2], (5)

where in the last line we used the fact that our noise has zero mean and variance σ 2
ϵ and the sum over i applies to all

terms. It is also helpful to further decompose the second term as follows:

ED[(f (xi)− f (xi; θ̂D))2] = ED[{f (xi)− ED[f (xi; θ̂D)] + ED[f (xi; θ̂D)] − f (xi; θ̂D)}2]
= ED[{f (xi)− ED[f (xi; θ̂D)]}2] + ED[{f (xi; θ̂D)− ED[f (xi; θ̂D)]}2]
+ 2ED[{f (xi)− ED[f (xi; θ̂D)]}{f (xi; θ̂D)− ED[f (xi; θ̂D)]}]

= (f (xi)− ED[f (xi; θ̂D)])2 + ED[{f (xi; θ̂D)− ED[f (xi; θ̂D)]}2]. (6)

The first term is called the bias

Bias2 =
∑

i

(f (xi)− ED[f (xi; θ̂D)])2 (7)

and measures the deviation of the expectation value of our estimator (i.e. the asymptotic value of our estimator in the
infinite data limit) from the true value. The second term is called the variance

Var =
∑

i

ED[(f (xi; θ̂D)− ED[f (xi; θ̂D)])2], (8)

and measures how much our estimator fluctuates due to finite-sample effects. Combining these expressions, we see that
the expected out-of-sample error, Eout := ED,ϵ[C(y, f (X; θ̂D))], can be decomposed as

Eout = Bias2 + Var + Noise, (9)

with Noise =
∑

i σ
2
ϵ .

The bias–variance tradeoff summarizes the fundamental tension in machine learning, particularly supervised learning,
between the complexity of a model and the amount of training data needed to train it. Since data is often limited, in
practice it is often useful to use a less-complex model with higher bias – a model whose asymptotic performance is worse
than another model – because it is easier to train and less sensitive to sampling noise arising from having a finite-sized
training dataset (smaller variance). This is the basic intuition behind the schematics in Figs. 4–6.

4. Gradient descent and its generalizations

Almost every problem in ML and data science starts with the same ingredients: a dataset X , a model g(θ), which is a
function of the parameters θ, and a cost function C(X, g(θ)) that allows us to judge how well the model g(θ) explains the
observations X . The model is fit by finding the values of θ that minimize the cost function.

In this section, we discuss one of the most powerful and widely used classes of methods for performing this
minimization — gradient descent and its generalizations. The basic idea behind these methods is straightforward:
iteratively adjust the parameters θ in the direction where the gradient of the cost function is large and negative. In this
way, the training procedure ensures the parameters flow towards a local minimum of the cost function. However, in
practice gradient descent is full of surprises and a series of ingenious tricks have been developed by the optimization and
machine learning communities to improve the performance of these algorithms.

The underlying reason why training a machine learning algorithm is difficult is that the cost functions we wish to
optimize are usually complicated, rugged, non-convex functions in a high-dimensional space with many local minima.
To make things even more difficult, we almost never have access to the true function we wish to minimize: instead, we
must estimate this function directly from data. In modern applications, both the size of the dataset and the number of

14 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 7. Gradient descent exhibits three qualitatively different regimes as a function of the learning rate. Result of gradient descent on surface
z = x2 + y2 − 1 for learning rate of η = 0.1, 0.5, 1.01. Notice that the trajectory converges to the global minima in multiple steps for small learning
rates (η = 0.1). Increasing the learning rate further (η = 0.5) causes the trajectory to oscillate around the global minima before converging. For
even larger learning rates (η = 1.01) the trajectory diverges from the minima. See corresponding notebook for details.

parameters we wish to fit is often enormous (millions of parameters and examples). The goal of this chapter is to explain
how gradient descent methods can be used to train machine learning algorithms even in these difficult settings.

This chapter seeks to both introduce commonly used methods and give intuition for why they work. We also include
some practical tips for improving the performance of stochastic gradient descent (Bottou, 2012; LeCun et al., 1998b). To
help the reader gain more intuition about gradient descent and its variants, we have developed a Jupyter notebook that
allows the reader to visualize how these algorithms perform on two dimensional surfaces. The reader is encouraged
to experiment with the accompanying notebook whenever a new method is introduced (especially to explore how
changing hyper-parameters can affect performance). The reader may also wish to consult useful reviews that cover these
topics (Ruder, 2016) and this blog http://ruder.io/optimizing-gradient-descent/.

4.1. Gradient descent and Newton’s method

We begin by introducing a simple first-order gradient descent method and comparing and contrasting it with another
algorithm, Newton’s method. Newton’s method is intimately related to many algorithms (conjugate gradient, quasi-
Newton methods) commonly used in physics for optimization problems. Denote the function we wish to minimize by
E(θ).

In the context of machine learning, E(θ) is just the cost function E(θ) = C(X, g(θ)). As we shall see for linear and logistic
regression in Sections 6, 7, this energy function can almost always be written as a sum over n data points,

E(θ) =
n∑

i=1

ei(xi, θ). (10)

For example, for linear regression ei is just the mean square-error for data point i; for logistic regression, it is the
cross-entropy. To make analogy with physical systems, we will often refer to this function as the ‘‘energy’’.

In the simplest gradient descent (GD) algorithm, we update the parameters as follows. Initialize the parameters to
some value θ0 and iteratively update the parameters according to the equation

vt = ηt∇θE(θt),
θt+1 = θt − vt (11)

where ∇θE(θ) is the gradient of E(θ) w.r.t. θ and we have introduced a learning rate, ηt , that controls how big a step we
should take in the direction of the gradient at time step t . It is clear that for sufficiently small choice of the learning rate ηt
this methods will converge to a local minimum (in all directions) of the cost function. However, choosing a small ηt comes
at a huge computational cost. The smaller ηt , the more steps we have to take to reach the local minimum. In contrast, if
ηt is too large, we can overshoot the minimum and the algorithm becomes unstable (it either oscillates or even moves
away from the minimum). This is shown in Fig. 7. In practice, one usually specifies a ‘‘schedule’’ that decreases ηt at long
times. Common schedules include power law and exponential decay in time.

To better understand this behavior and highlight some of the shortcomings of GD, it is useful to contrast GD with
Newton’s method which is the inspiration for many widely employed optimization methods. In Newton’s method, we
choose the step v for the parameters in such a way as to minimize a second-order Taylor expansion to the energy function

E(θ + v) ≈ E(θ)+∇θE(θ)v+
1
2
vTH(θ)v,

where H(θ) is the Hessian matrix of second derivatives. Differentiating this equation respect to v and noting that for the
optimal value vopt we expect ∇θE(θ + vopt) = 0, yields the following equation

0 = ∇θE(θ)+ H(θ)vopt. (12)

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
http://ruder.io/optimizing-gradient-descent/

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 15

Fig. 8. Effect of learning rate on convergence. For a one dimensional quadratic potential, one can show that there exists four different qualitative
behaviors for gradient descent (GD) as a function of the learning rate η depending on the relationship between η and ηopt = [∂

2
θ E(θ)]

−1 . (a) For
η < ηopt , GD converges to the minimum. (b) For η = ηopt , GD converges in a single step. (c) For ηopt < η < 2ηopt , GD oscillates around the minima
and eventually converges. (d) For η > 2ηopt , GD moves away from the minima.
Source: This figure is adapted from (LeCun et al., 1998b).

Rearranging this expression results in the desired update rules for Newton’s method

vt = H−1(θt)∇θE(θt) (13)
θt+1 = θt − vt . (14)

Since we have no guarantee that the Hessian is well conditioned, in almost all applications of Newton’s method, one
replaces the inverse of the Hessian H−1(θt) by some suitably regularized pseudo-inverse such as [H(θt)+ ϵI]−1 with ϵ a
small parameter (Battiti, 1992).

For the purposes of machine learning, Newton’s method is not practical for two interrelated reasons. First, calculating
a Hessian is an extremely expensive numerical computation. Second, even if we employ first-order approximation
methods to approximate the Hessian (commonly called quasi-Newton methods), we must store and invert a matrix
with n2 entries, where n is the number of parameters. For models with millions of parameters such as those commonly
employed in the neural network literature, this is close to impossible with present-day computational power. Despite
these practical shortcomings, Newton’s method gives many important intuitions about how to modify GD algorithms to
improve their performance. Notice that, unlike in GD where the learning rate is the same for all parameters, Newton’s
method automatically ‘‘adapts’’ the learning rate of different parameters depending on the Hessian matrix. Since the
Hessian encodes the curvature of the surface we are trying to find the minimum of – more specifically, the singular
values of the Hessian are inversely proportional to the squares of the local curvatures of the surface – Newton’s method
automatically adjusts the step size so that one takes larger steps in flat directions with small curvature and smaller steps
in steep directions with large curvature.

Our derivation of Newton’s method also allows us to develop intuition about the role of the learning rate in GD. Let
us first consider the special case of using GD to find the minimum of a quadratic energy function of a single parameter
θ (LeCun et al., 1998b). Given the current value of our parameter θ , we can ask what is the optimal choice of the learning
rate ηopt, where ηopt is defined as the value of η that allows us to reach the minimum of the quadratic energy function
in a single step (see Fig. 8). To find ηopt, we expand the energy function to second order around the current value

E(θ + v) = E(θc)+ ∂θE(θ)v +
1
2
∂2
θ E(θ)v

2. (15)

Differentiating with respect to v and setting θmin = θ − v yields

θmin = θ − [∂2
θ E(θ)]

−1∂θE(θ). (16)

Comparing with (11) gives,

ηopt = [∂
2
θ E(θ)]

−1. (17)

16 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

One can show that there are four qualitatively different regimes possible (see Fig. 8) (LeCun et al., 1998b). If η < ηopt,
then GD will take multiple small steps to reach the bottom of the potential. For η = ηopt, GD reaches the bottom of the
potential in a single step. If ηopt < η < 2ηopt, then the GD algorithm will oscillate across both sides of the potential before
eventually converging to the minimum. However, when η > 2ηopt, the algorithm actually diverges!

It is straightforward to generalize this to the multidimensional case. The natural multidimensional generalization of
the second derivative is the Hessian H(θ). We can always perform a singular value decomposition (i.e. a rotation by an
orthogonal matrix for quadratic minima where the Hessian is symmetric, see Section 6.2 for a brief introduction to SVD)
and consider the singular values {λ} of the Hessian. If we use a single learning rate for all parameters, in analogy with
(17), convergence requires that

η <
2

λmax
, (18)

where λmax is the largest singular value of the Hessian. If the minimum eigenvalue λmin differs significantly from the largest
value λmax, then convergence in the λmin-direction will be extremely slow! One can actually show that the convergence
time scales with the condition number κ = λmax/λmin (LeCun et al., 1998b).

4.2. Limitations of the simplest gradient descent algorithm

The last section hints at some of the major shortcomings of the simple GD algorithm described in (11). Before
proceeding, we briefly summarize these limitations and discuss general strategies for modifying GD to overcome these
deficiencies.

• GD finds local minima of the cost function. Since the GD algorithm is deterministic, if it converges, it will converge to
a local minimum of our energy function. Because in ML we are often dealing with extremely rugged landscapes with
many local minima, this can lead to poor performance. A similar problem is encountered in physics. To overcome this,
physicists often use methods like simulated annealing that introduce a fictitious ‘‘temperature’’ which is eventually
taken to zero. The ‘‘temperature’’ term introduces stochasticity in the form of thermal fluctuations that allow the
algorithm to thermally tunnel over energy barriers. This suggests that, in the context of ML, we should modify GD
to include stochasticity.
• Gradients are computationally expensive to calculate for large datasets. In many cases in statistics and ML, the energy

function is a sum of terms, with one term for each data point. For example, in linear regression, E ∝
∑n

i=1(yi−w
T
·xi)2;

for logistic regression, the square error is replaced by the cross entropy, see Sections 6, 7. Thus, to calculate the
gradient we have to sum over all n data points. Doing this at every GD step becomes extremely computationally
expensive. An ingenious solution to this, discussed below, is to calculate the gradients using small subsets of the
data called ‘‘mini batches’’. This has the added benefit of introducing stochasticity into our algorithm.
• GD is very sensitive to choices of the learning rates. As discussed above, GD is extremely sensitive to the choice of

learning rates. If the learning rate is very small, the training process takes an extremely long time. For larger learning
rates, GD can diverge and give poor results. Furthermore, depending on what the local landscape looks like, we have
to modify the learning rates to ensure convergence. Ideally, we would ‘‘adaptively’’ choose the learning rates to
match the landscape.
• GD treats all directions in parameter space uniformly. Another major drawback of GD is that unlike Newton’s method,

the learning rate for GD is the same in all directions in parameter space. For this reason, the maximum learning rate
is set by the behavior of the steepest direction and this can significantly slow down training. Ideally, we would like
to take large steps in flat directions and small steps in steep directions. Since we are exploring rugged landscapes
where curvatures change, this requires us to keep track of not only the gradient but second derivatives of the energy
function (note as discussed above, the ideal scenario would be to calculate the Hessian but this proves to be too
computationally expensive).
• GD is sensitive to initial conditions. One consequence of the local nature of GD is that initial conditions matter.

Depending on where one starts, one will end up at a different local minimum. Therefore, it is very important to
think about how one initializes the training process. This is true for GD as well as more complicated variants of GD
introduced below.
• GD can take exponential time to escape saddle points, even with random initialization. As we mentioned, GD is extremely

sensitive to the initial condition since it determines the particular local minimum GD would eventually reach.
However, even with a good initialization scheme, through randomness (to be introduced later), GD can still take
exponential time to escape saddle points, which are prevalent in high-dimensional spaces, even for non-pathological
objective functions (Du et al., 2017). Indeed, there are modified GD methods developed recently to accelerate the
escape. The details of these boosted method are beyond the scope of this review, and we refer avid readers to (Jin
et al., 2017) for details.

In the next few subsections, we will introduce variants of GD that address many of these shortcomings. These
generalized gradient descent methods form the backbone of much of modern deep learning and neural networks, see
Section 9. For this reason, the reader is encouraged to really experiment with different methods in landscapes of varying
complexity using the accompanying notebook.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 17

4.3. Stochastic Gradient Descent (SGD) with mini-batches

One of the most widely-applied variants of the gradient descent algorithm is stochastic gradient descent (SGD) (Bottou,
2012; Williams and Hinton, 1986). As the name suggests, unlike ordinary GD, the algorithm is stochastic. Stochasticity is
incorporated by approximating the gradient on a subset of the data called a minibatch.2 The size of the minibatches is
almost always much smaller than the total number of data points n, with typical minibatch sizes ranging from ten to a
few hundred data points. If there are n points in total, and the mini-batch size is M , there will be n/M minibatches. Let
us denote these minibatches by Bk where k = 1, . . . , n/M . Thus, in SGD, at each gradient descent step we approximate
the gradient using a single minibatch Bk,

∇θE(θ) =
n∑

i=1

∇θei(xi, θ) −→
∑
i∈Bk

∇θei(xi, θ). (19)

We then cycle over all k = 1, . . . , n/M minibatches one at a time, and use the mini-batch approximation to the gradient to
update the parameters θ at every step k. A full iteration over all n data points – in other words using all n/M minibatches
– is called an epoch. For notational convenience, we will denote the mini-batch approximation to the gradient by

∇θEMB(θ) =
∑
i∈Bk

∇θei(xi, θ). (20)

With this notation, we can rewrite the SGD algorithm as

vt = ηt∇θEMB(θ),
θt+1 = θt − vt . (21)

Thus, in SGD, we replace the actual gradient over the full data at each gradient descent step by an approximation to
the gradient computed using a minibatch. This has two important benefits. First, it introduces stochasticity and decreases
the chance that our fitting algorithm gets stuck in isolated local minima. Second, it significantly speeds up the calculation
as one does not have to use all n data points to approximate the gradient. Empirical and theoretical work suggests that
SGD has additional benefits. Chief among these is that introducing stochasticity is thought to act as a natural regularizer
that prevents overfitting in deep, isolated minima (Bishop, 1995b; Keskar et al., 2016).

4.4. Adding momentum

In practice, SGD is almost always used with a ‘‘momentum’’ or inertia term that serves as a memory of the direction
we are moving in parameter space. This is typically implemented as follows

vt = γ vt−1 + ηt∇θE(θt)
θt+1 = θt − vt , (22)

where we have introduced a momentum parameter γ , with 0 ≤ γ ≤ 1, and for brevity we dropped the explicit notation
to indicate the gradient is to be taken over a different mini-batch at each step. We call this algorithm gradient descent
with momentum (GDM). From these equations, it is clear that vt is a running average of recently encountered gradients
and (1 − γ)−1 sets the characteristic time scale for the memory used in the averaging procedure. Consistent with this,
when γ = 0, this just reduces down to ordinary SGD as described in Eq. (21). An equivalent way of writing the updates
is

∆θt+1 = γ∆θt − ηt∇θE(θt), (23)

where we have defined ∆θt = θt − θt−1. In what should be a familiar scenario to many physicists, momentum based
methods were first introduced in old, largely forgotten (until recently) Soviet papers (Nesterov, 1983; Polyak, 1964).

Before proceeding further, let us try to get more intuition from these equations. It is helpful to consider a simple
physical analogy with a particle of mass m moving in a viscous medium with viscous damping coefficient µ and potential
E(w) (Qian, 1999). If we denote the particle’s position by w, then its motion is described by

m
d2w
dt2
+ µ

dw
dt
= −∇wE(w). (24)

We can discretize this equation in the usual way to get

m
wt+∆t − 2wt +wt−∆t

(∆t)2
+ µ

wt+∆t −wt

∆t
= −∇wE(w). (25)

2 Traditionally, SGD was reserved for the case where you train on a single example — in other words minibatches of size 1. However, we will
use SGD to mean any approximation to the gradient on a subset of the data.

18 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Rearranging this equation, we can rewrite this as

∆wt+∆t = −
(∆t)2

m+ µ∆t
∇wE(w)+

m
m+ µ∆t

∆wt . (26)

Notice that this equation is identical to Eq. (23) if we identify the position of the particle, w, with the parameters θ. This
allows us to identify the momentum parameter and learning rate with the mass of the particle and the viscous damping
as:

γ =
m

m+ µ∆t
, η =

(∆t)2

m+ µ∆t
. (27)

Thus, as the name suggests, the momentum parameter is proportional to the mass of the particle and effectively provides
inertia. Furthermore, in the large viscosity/small learning rate limit, our memory time scales as (1− γ)−1 ≈ m/(µ∆t).

Why is momentum useful? SGD momentum helps the gradient descent algorithm gain speed in directions with
persistent but small gradients even in the presence of stochasticity, while suppressing oscillations in high-curvature
directions. This becomes especially important in situations where the landscape is shallow and flat in some directions
and narrow and steep in others. It has been argued that first-order methods (with appropriate initial conditions) can
perform comparable to more expensive second order methods, especially in the context of complex deep learning
models (Sutskever et al., 2013). Empirical studies suggest that the benefits of including momentum are especially
pronounced in complex models in the initial ‘‘transient phase’’ of training, rather than during a subsequent fine-tuning
of a coarse minimum. The reason for this is that, in this transient phase, correlations in the gradient persist across many
gradient descent steps, accentuating the role of inertia and memory.

These beneficial properties of momentum can sometimes become even more pronounced by using a slight modification
of the classical momentum algorithm called Nesterov Accelerated Gradient (NAG) (Nesterov, 1983; Sutskever et al., 2013).
In the NAG algorithm, rather than calculating the gradient at the current parameters, ∇θE(θt), one calculates the gradient
at the expected value of the parameters given our current momentum, ∇θE(θt + γ vt−1). This yields the NAG update rule

vt = γ vt−1 + ηt∇θE(θt + γ vt−1)
θt+1 = θt − vt . (28)

One of the major advantages of NAG is that it allows for the use of a larger learning rate than GDM for the same choice
of γ .

4.5. Methods that use the second moment of the gradient

In stochastic gradient descent, with and without momentum, we still have to specify a ‘‘schedule’’ for tuning the
learning rate ηt as a function of time. As discussed in the context of Newton’s method, this presents a number of
dilemmas. The learning rate is limited by the steepest direction which can change depending on the current position
in the landscape. To circumvent this problem, ideally our algorithm would keep track of curvature and take large steps in
shallow, flat directions and small steps in steep, narrow directions. Second-order methods accomplish this by calculating
or approximating the Hessian and normalizing the learning rate by the curvature. However, this is very computationally
expensive for models with extremely large number of parameters. Ideally, we would like to be able to adaptively change
the step size to match the landscape without paying the steep computational price of calculating or approximating
Hessians.

Recently, a number of methods have been introduced that accomplish this by tracking not only the gradient, but
also the second moment of the gradient. These methods include AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012),
RMSprop (Tieleman and Hinton, 2012), and ADAM (Kingma and Ba, 2014). Here, we discuss the last two as representatives
of this class of algorithms.

In RMSprop, in addition to keeping a running average of the first moment of the gradient, we also keep track of the
second moment denoted by st = E[g2

t]. The update rule for RMSprop is given by

gt = ∇θE(θ) (29)
st = βst−1 + (1− β)g2

t

θt+1 = θt − ηt
gt

√
st + ϵ

,

where β controls the averaging time of the second moment and is typically taken to be about β = 0.9, ηt is a learning
rate typically chosen to be 10−3, and ϵ ∼ 10−8 is a small regularization constant to prevent divergences. Multiplication
and division by vectors is understood as an element-wise operation. It is clear from this formula that the learning rate is
reduced in directions where the gradient is consistently large. This greatly speeds up the convergence by allowing us to
use a larger learning rate for flat directions.

A related algorithm is the ADAM optimizer. In ADAM, we keep a running average of both the first and second moment
of the gradient and use this information to adaptively change the learning rate for different parameters. In addition to

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 19

keeping a running average of the first and second moments of the gradient (i.e. mt = E[gt] and st = E[g2
t], respectively),

ADAM performs an additional bias correction to account for the fact that we are estimating the first two moments of the
gradient using a running average (denoted by the hats in the update rule below). The update rule for ADAM is given by
(where multiplication and division are once again understood to be element-wise operations)

gt = ∇θE(θ) (30)
mt = β1mt−1 + (1− β1)gt

st = β2st−1 + (1− β2)g2
t

m̂t =
mt

1− (β1)t

ŝt =
st

1− (β2)t

θt+1 = θt − ηt
m̂t√
ŝt + ϵ

, (31)

where β1 and β2 set the memory lifetime of the first and second moment and are typically taken to be 0.9 and 0.99
respectively, and (βj)t denotes βj to the power t . The parameters η and ϵ have the same role as in RMSprop.

Like in RMSprop, the effective step size of a parameter depends on the magnitude of its gradient squared. To understand
this better, let us rewrite this expression in terms of the variance σ2

t = ŝt − (m̂t)2. Consider a single parameter θt . The
update rule for this parameter is given by

∆θt+1 = −ηt
m̂t√

σ 2
t + m̂2

t + ϵ
. (32)

We now examine different limiting cases of this expression. Assume that our gradient estimates are consistent so that
the variance is small. In this case our update rule tends to ∆θt+1 → −ηt (here we have assumed that m̂t ≫ ϵ). This
is equivalent to cutting off large persistent gradients at 1 and limiting the maximum step size in steep directions. On
the other hand, imagine that the gradient is widely fluctuating between gradient descent steps. In this case σ 2

≫ m̂2
t

so that our update becomes ∆θt+1 → −ηtm̂t/σt . In other words, we adapt our learning rate so that it is proportional to
the signal-to-noise ratio (i.e. the mean in units of the standard deviation). From a physics standpoint, this is extremely
desirable: the standard deviation serves as a natural adaptive scale for deciding whether a gradient is large or small. Thus,
ADAM has the beneficial effects of (i) adapting our step size so that we cut off large gradient directions (and hence prevent
oscillations and divergences), and (ii) measuring gradients in terms of a natural length scale, the standard deviation σt .
The discussion above also explains empirical observations showing that the performance of both ADAM and RMSprop is
drastically reduced if the square root is omitted in the update rule. It is also worth noting that recent studies have shown
adaptive methods like RMSProp, ADAM, and AdaGrad to generalize worse than SGD in classification tasks, though they
achieve smaller training error. Such discussion is beyond the scope of this review so we refer readers to (Wilson et al.,
2017) for more details.

4.6. Comparison of various methods

To better understand these methods, it is helpful to visualize the performance of the five methods discussed above
— gradient descent (GD), gradient descent with momentum (GDM), NAG, ADAM, and RMSprop. To do so, we will use
Beale’s function:

f (x, y) = (1.5− x+ xy)2 (33)
+ (2.25− x+ xy2)2 + (2.625− x+ xy3)2.

This function has a global minimum at (x, y) = (3, 0.5) and an interesting structure that can be seen in Fig. 9. The figure
shows the results of using all five methods for Nsteps = 104 steps for three different initial conditions. In the figure, the
learning rate for GD, GDM, and NAG are set to η = 10−6 whereas RMSprop and ADAM have a learning rate of η = 10−3.
The learning rates for RMSprop and ADAM can be set significantly higher than the other methods due to their adaptive step
sizes. For this reason, ADAM and RMSprop tend to be much quicker at navigating the landscape than simple momentum
based methods (see Fig. 9). Notice that in some cases (e.g. initial condition of (−1, 4)), the trajectories do not find the
global minimum but instead follow the deep, narrow ravine that occurs along y = 1. This kind of landscape structure is
generic in high-dimensional spaces where saddle points proliferate. Once again, the adaptive step size and momentum
of ADAM and RMSprop allows these methods to traverse the landscape faster than the simpler first-order methods. The
reader is encouraged to consult the corresponding Jupyter notebook and experiment with changing initial conditions, the
cost function surface being minimized, and hyper-parameters to gain more intuition about all these methods.

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

20 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 9. Comparison of GD and its generalization for Beale’s function. Trajectories from gradient descent (GD; black line), gradient descent with
momentum (GDM; magenta line), NAG (cyan-dashed line), RMSprop (blue dash–dot line), and ADAM (red line) for Nsteps = 104 . The learning rate
for GD, GDM, NAG is η = 10−6 and η = 10−3 for ADAM and RMSprop. β = 0.9 for RMSprop, β1 = 0.9 and β2 = 0.99 for ADAM, and ϵ = 10−8 for
both methods. Please see corresponding notebook for details.

4.7. Gradient descent in practice: practical tips

We conclude this chapter by compiling some practical tips from experts for getting the best performance from gradient
descent based algorithms, especially in the context of deep neural networks discussed later in the review, see Sections 9
and 16.2. This section draws heavily on best practices laid out in (Bottou, 2012; LeCun et al., 1998b; Tieleman and Hinton,
2012).

• Randomize the data when making mini-batches. It is always important to randomly shuffle the data when forming
mini-batches. Otherwise, the gradient descent method can fit spurious correlations resulting from the order in which
data is presented.
• Transform your inputs. As we discussed above, learning becomes difficult when our landscape has a mixture of steep

and flat directions. One simple trick for minimizing these situations is to standardize the data by subtracting the
mean and normalizing the variance of input variables. Whenever possible, also decorrelate the inputs. To understand
why this is helpful, consider the case of linear regression. It is easy to show that for the squared error cost function,
the Hessian of the energy matrix is just the correlation matrix between the inputs. Thus, by standardizing the
inputs, we are ensuring that the landscape looks homogeneous in all directions in parameter space. Since most
deep networks can be viewed as linear transformations followed by a non-linearity at each layer, we expect this
intuition to hold beyond the linear case.
• Monitor the out-of-sample performance. Always monitor the performance of your model on a validation set (a small

portion of the training data that is held out of the training process to serve as a proxy for the test set — see Section 11
for more on validation sets). If the validation error starts increasing, then the model is beginning to overfit. Terminate
the learning process. This early stopping significantly improves performance in many settings.
• Adaptive optimization methods do not always have good generalization. As we mentioned, recent studies have shown

that adaptive methods such as ADAM, RMSprop, and AdaGrad tend to have poor generalization compared to SGD
or SGD with momentum, particularly in the high-dimensional limit (i.e. the number of parameters exceeds the
number of data points) (Wilson et al., 2017). Although it is not clear at this stage why sophisticated methods, such
as ADAM, RMSprop, and AdaGrad, perform so well in training deep neural networks such as generative adversarial
networks (GANs) (Goodfellow et al., 2014) [see Section 17], simpler procedures like properly-tuned plain SGD may
work equally well or better in some applications.

5. Overview of Bayesian inference

Statistical modeling usually revolves around estimation or prediction (Jaynes, 1996). Bayesian methods are based on
the fairly simple premise that probability can be used as a mathematical framework for describing uncertainty. This is
not that different in spirit from the main idea of statistical mechanics in physics, where we use probability to describe
the behavior of large systems where we cannot know the positions and momenta of all the particles even if the system
itself is fully deterministic (at least classically). In practice, Bayesian inference provides a set of principles and procedures
for learning from data and for describing uncertainty. In this section, we give a gentle introduction to Bayesian inference,
with special emphasis on its logic (i.e. Bayesian reasoning) and provide a connection to ML discussed in Sections 2 and 3.
For a technical account of Bayesian inference in general, we refer readers to (Barber, 2012; Gelman et al., 2014).

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 21

5.1. Bayes rule

To solve a problem using Bayesian methods, we have to specify two functions: the likelihood function p(X |θ), which
describes the probability of observing a dataset X for a given value of the unknown parameters θ, and the prior distribution
p(θ), which describes any knowledge we have about the parameters before we collect the data. Note that the likelihood
should be considered as a function of the parameters θ with the data X held fixed. The prior distribution and the likelihood
function are used to compute the posterior distribution p(θ|X) via Bayes’ rule:

p(θ|X) =
p(X |θ)p(θ)∫

dθ′ p(X |θ′)p(θ′)
. (34)

The posterior distribution describes our knowledge about the unknown parameter θ after observing the data X . In many
cases, it will not be possible to analytically compute the normalizing constant in the denominator of the posterior
distribution, i.e. p(X) =

∫
dθ p(X |θ)p(θ), and Markov Chain Monte Carlo (MCMC) methods are needed to draw random

samples from p(θ|X).
The likelihood function p(X |θ) is a common feature of both classical statistics and Bayesian inference, and is determined

by the model and the measurement noise. Many common statistical procedures such as least-square fitting can be cast as
Maximum Likelihood Estimation (MLE). In MLE, one chooses the parameters θ̂ that maximize the likelihood (or equivalently
the log-likelihood since log is a monotonic function) of the observed data:

θ̂ = argmax
θ

log p(X |θ). (35)

In other words, in MLE we choose the parameters that maximize the probability of seeing the observed data given our
generative model. MLE is an important concept in both frequentist and Bayesian statistics.

The prior distribution, by contrast, is uniquely Bayesian. There are two general classes of priors: if we do not have
any specialized knowledge about θ before we look at the data then we would like to select an uninformative prior that
reflects our ignorance, otherwise we should select an informative prior that accurately reflects the knowledge we have
about θ. This review will focus on informative priors that are commonly used for ML applications. However, there is a large
literature on uninformative priors, including reparametrization invariant priors, that would be of interest to physicists and
we refer the interested reader to (Berger and Bernardo, 1992; Gelman et al., 2014; Jaynes, 1996; Jeffreys, 1946; Mattingly
et al., 2018).

Using an informative prior tends to decrease the variance of the posterior distribution while, potentially, increasing
its bias. This is beneficial if the decrease in variance is larger than the increase in bias. In high-dimensional problems, it
is reasonable to assume that many of the parameters will not be strongly relevant. Therefore, many of the parameters of
the model will be zero or close to zero. We can express this belief using two commonly used priors: the Gaussian prior
p(θ|λ) =

∏
j

√
λ
2π e−λθ2j is used to express the assumption that many of the parameters will be small, and the Laplace prior

p(θ|λ) =
∏

j
λ
2 e
−λ|θj| is used to express the assumption that many of the parameters will be zero. We will come back to

this point later in Section 6.6.

5.2. Bayesian Decisions

The above section presents the tools for computing the posterior distribution p(θ|X), which uses probability as a
framework for expressing our knowledge about the parameters θ. In most cases, however, we need to summarize our
knowledge and pick a single ‘‘best’’ value for the parameters. In principle, the specific value of the parameters should
be chosen to maximize a utility function. In practice, however, we usually use one of two choices: the posterior mean
⟨θ⟩ =

∫
dθ θp(θ|X), or the posterior mode θ̂MAP = argmaxθ p(θ|X). Often, ⟨θ⟩ is called the Bayes estimate and θ̂MAP is

called the maximum-a-posteriori or MAP estimate. While the Bayes estimate minimizes the mean-squared error, the MAP
estimate is often used instead because it is easier to compute.

5.3. Hyperparameters

The Gaussian and Laplace prior distributions, used to express the assumption that many of the model parameters will
be small or zero, both have an extra parameter λ. This hyperparameter or nuisance variable has to be chosen somehow.
One standard Bayesian approach is to define another prior distribution for λ – usually using an uninformative prior – and
to average the posterior distribution over all choices of λ. This is called a hierarchical prior. Computing averages, however,
often requires long Markov Chain Monte Carlo simulations that are computationally intensive. Therefore, it is simpler if
we can find a good value of λ using an optimization procedure instead. We will discuss how this is done in practice when
discussing linear regression in Section 6.

22 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

6. Linear regression

In Section 2, we performed our first numerical ML experiments by fitting datasets generated by polynomials in the
presence of different levels of additive noise. We used the fitted parameters to make predictions on ‘unseen’ observations,
allowing us to gauge the performance of our model on new data. These experiments highlighted the fundamental tension
common to all ML models between how well we fit the training dataset and predictions on new data. The optimal choice
of predictor depended on, among many other things, the functions used to fit the data and the underlying noise level. In
Section 3, we formalized this by introducing the notion of model complexity and the bias–variance decomposition, and
discussed the statistical meaning of learning. In this section, we take a closer look at these ideas in the simple setting of
linear regression.

As in Section 2, fitting a given set of samples (yi, xi) means relating the independent variables xi to their responses
yi. For example, suppose we want to see how the voltage across two sides of a metal slab V changes in response to
the applied electric current I . Normally we would first make a bunch of measurements labeled by i and plot them on a
two-dimensional scatterplot, (Vi, Ii). The next step is to assume, either from an oracle or from theoretical reasoning, some
models that might explain the measurements and measuring their performance. Mathematically, this amounts to finding
some function f such that Vi = f (Ii;w), where w is some parameter (e.g. the electrical resistance R of the metal slab in
the case of Ohm’s law). We then try to minimize the errors made in explaining the given set of measurements based
on our model f by tuning the parameter w. To do so, we need to first define the error function (formally called the loss
function) that characterizes the deviation of our prediction from the actual response.

Before formulating the problem, let us set up the notation. Suppose we are given a dataset with n samples D =
{(yi, x(i))}ni=1, where x(i) is the ith observation vector while yi is its corresponding (scalar) response. We assume that
every sample has p features, namely, x(i) ∈ Rp. Let f be the true function/model that generated these samples via
yi = f (x(i);wtrue) + ϵi, where wtrue ∈ Rp is a parameter vector and ϵi is some i.i.d. white noise with zero mean and
finite variance. Conventionally, we cast all samples into an n×p matrix, X ∈ Rn×p, called the design matrix, with the rows
X i,: = x(i) ∈ Rp, i = 1, . . . , n being observations and the columns X :,j ∈ Rn, j = 1, . . . , p being measured features. Bear in
mind that this function f is never known to us explicitly, though in practice we usually presume its functional form. For
example, in linear regression, we assume yi = f (x(i);wtrue)+ ϵi = wT

truex(i) + ϵi for some unknown but fixed wtrue ∈ Rp.
We want to find a function g with parameters w fit to the data D that can best approximate f . When this is done,

meaning we have found a ŵ such that g(x; ŵ) yields our best estimate of f , we can use this g to make predictions about
the response y0 for a new data point x0, as we did in Section 2.

It will be helpful for our discussion of linear regression to define one last piece of notation. For any real number p ≥ 1,
we define the Lp norm of a vector x = (x1, . . . , xd) ∈ Rd to be

||x||p= (|x1|p + · · · + |xd|p)
1
p (36)

6.1. Least-square regression

Ordinary least squares linear regression (OLS) is defined as the minimization of the L2 norm of the difference between
the response yi and the predictor g(x(i);w) = wTx(i):

min
w∈Rp
||Xw− y||22= min

w∈Rp

n∑
i=1

(wTx(i) − yi)2. (37)

In other words, we are looking to find the w which minimizes the L2 error. Geometrically speaking, the predictor function
g(x(i);w) = wTx(i) defines a hyperplane in Rp. Minimizing the least squares error is therefore equivalent to minimizing the
sum of all projections (i.e. residuals) for all points x(i) to this hyperplane (see Fig. 10). Formally, we denote the solution
to this problem as ŵLS:

ŵLS = argmin
w∈Rp

||Xw− y||22, (38)

which, after straightforward differentiation, leads to

ŵLS = (XTX)−1XTy. (39)

Note that we have assumed that XTX is invertible, which is often the case when n≫ p. Formally speaking, if rank(X) = p,
namely, the predictors X :,1, . . . ,X :,p (i.e. columns of X) are linearly independent, then ŵLS is unique. In the case of
rank(X) < p, which happens when p > n, XTX is singular, implying there are infinitely many solutions to the least
squares problem, Eq. (38). In this case, one can easily show that if w0 is a solution, w0 + η is also a solution for any η
which satisfies Xη = 0 (i.e. η ∈ null(X)). Having determined the least squares solution, we can calculate ŷ, the best fit of
our data X , as ŷ = XŵLS = PXy, where PX = X(XTX)−1XT, c.f. Eq. (37). Geometrically, PX is the projection matrix which
acts on y and projects it onto the column space of X , which is spanned by the predictors X :,1, . . . ,X :,p (see Fig. 11). Notice
that we found the optimal solution ŵLS in one shot, without doing any sort of iterative optimization like that discussed
in Section 4.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 23

Fig. 10. Geometric interpretation of least squares regression. The regression function g defines a hyperplane in Rp (green solid line, here we have
p = 2) while the residual of data point x(i) (hollow circles) is its projection onto this hyperplane (bar-ended dashed line).

Fig. 11. The projection matrix PX projects the response vector y onto the column space spanned by the columns of X , span({X :,1, . . . ,X :,p}) (purple
area), thus forming a fitted vector ŷ. The residuals in Eq. (37) are illustrated by the red vector y − ŷ.

In Section 3 we explained that the difference between learning and fitting lies in the prediction on ‘‘unseen" data. It is
therefore necessary to examine the out-of-sample error. For a more refined argument on the role of out-of-sample errors
in linear regression, we encourage the reader to do the exercises in the corresponding Jupyter notebooks. The upshot is,
following our definition of Ēin and Ēout in Section 3, the average in-sample and out-of-sample error can be shown to be

Ēin = σ 2
(
1−

p
n

)
(40)

Ēout = σ 2
(
1+

p
n

)
, (41)

provided we obtain the least squares solution ŵLS from i.i.d. samples X and y generated through y = Xwtrue+ϵ.3 Therefore,
we can calculate the average generalization error explicitly:

|Ēin − Ēout| = 2σ 2 p
n
. (42)

This imparts an important message: if we have p≫ n (i.e. high-dimensional data), the generalization error is extremely
large, meaning the model is not learning. Even when we have p ≈ n, we might still not learn well due to the intrinsic
noise σ 2. One way to ameliorate this is, as we shall see in the following few sections, to use regularization. We will mainly
focus on two forms of regularization: the first one employs an L2 penalty and is called Ridge regression, while the second
uses an L1 penalty and is called LASSO.

6.2. Ridge-regression

In this section, we study the effect of adding to the least squares loss function a regularizer defined as the L2 norm
of the parameter vector we wish to optimize over. In other words, we want to solve the following penalized regression
problem called Ridge regression:

ŵRidge(λ) = argmin
w∈Rp

(
||Xw− y||22+λ||w||22

)
. (43)

This problem is equivalent to the following constrained optimization problem

ŵRidge(t) = argmin
w∈Rp: ||w||22≤t

||Xw− y||22. (44)

3 This requires that ϵ is a noise vector whose elements are i.i.d. of zero mean and variance σ 2 , and is independent of the samples X .

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

24 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

This means that for any t ≥ 0 and solution ŵRidge in Eq. (44), there exists a value λ ≥ 0 such that ŵRidge solves Eq. (43),
and vice versa.4 With this equivalence, it is obvious that by adding a regularization term λ||w||22, to our least squares loss
function, we are effectively constraining the magnitude of the parameter vector learned from the data.

To see this, let us solve Eq. (43) explicitly. Differentiating w.r.t. w, we obtain,

ŵRidge(λ) = (XTX + λIp×p)−1XTy. (45)

In fact, when X is orthogonal, one can simplify this expression further:

ŵRidge(λ) =
ŵLS

1+ λ
, for orthogonal X, (46)

where ŵLS is the least squares solution given by Eq. (39). This implies that the ridge estimate is merely the least squares
estimate scaled by a factor (1+ λ)−1.

Can we derive a similar relation between the fitted vector ŷ = XŵRidge and the prediction made by least squares linear
regression? To answer this, let us do a singular value decomposition (SVD) on X . Recall that the SVD of an n× p matrix
X has the form

X = UDV T, (47)

where U ∈ Rn×p and V ∈ Rp×p are orthogonal matrices such that the columns of U span the column space of X
while the columns of V span the row space of X . D ∈ Rp×p

=diag(d1, d2, . . . , dp) is a diagonal matrix with entries
d1 ≥ d2 ≥ · · · dp ≥ 0 called the singular values of X . Note that X is singular if there is at least one dj = 0. By writing X
in terms of its SVD, one can recast the Ridge estimator Eq. (45) as

ŵRidge = V (D2
+ λI)−1DU Ty, (48)

which implies that the Ridge predictor satisfies

ŷRidge = XŵRidge

= UD(D2
+ λI)−1DU Ty

=

p∑
j=1

U :,j
d2j

d2j + λ
U T
:jy (49)

≤ UU Ty (50)
= Xŷ ≡ ŷLS, (51)

where U :,j are the columns of U . Note that in the inequality step we assumed λ ≥ 0 and used SVD to simplify Eq. (39).
By comparing Eq. (49) with Eq. (51), it is clear that in order to compute the fitted vector ŷ, both Ridge and least squares
linear regression have to project y to the column space of X . The only difference is that Ridge regression further shrinks
each basis component j by a factor d2j /(d

2
j + λ). We encourage the reader to do the exercises in Notebook 3 to develop

further intuition about how Ridge regression works.

6.3. LASSO And sparse regression

In this section, we study the effects of adding an L1 regularization penalty, conventionally called LASSO, which stands
for ‘‘least absolute shrinkage and selection operator’’. Concretely, LASSO in the penalized form is defined by the following
regularized regression problem:

ŵLASSO(λ) = argmin
w∈Rp

||Xw− y||22+λ||w||1. (52)

As in Ridge regression, there is another formulation for LASSO based on constrained optimization, namely,

ŵLASSO(t) = argmin
w∈Rp: ||w||1≤t

||Xw− y||22. (53)

The equivalence interpretation is the same as in Ridge regression, namely, for any t ≥ 0 and solution ŵLASSO in Eq. (53),
there is a value λ ≥ 0 such that ŵLASSO solves Eq. (52), and vice versa. However, to get the analytic solution of LASSO, we
cannot simply take the gradient of Eq. (52) with respect to w, since the L1-regularizer is not everywhere differentiable, in
particular at any point where wj = 0 (see Fig. 13). Nonetheless, LASSO is a convex problem. Therefore, we can invoke the

4 Note that the equivalence between the penalized and the constrained (regularized) form of least square optimization does not always hold. It
holds for Ridge and LASSO (introduced later), but not for best subset selection which is defined by choosing a L0 norm: λ||w||0 . In this case, for
every λ > 0 and any ŵBS that solves the penalized form of best subset selection, there is a value t ≥ 0 such that ŵBS also solves that constrained
form of best subset selection, but the converse is not true.

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 25

Fig. 12. [Adapted from (Friedman et al., 2001)] Comparing LASSO and Ridge regression. The black 45 degree line is the unconstrained estimate for
reference. The estimators are shown by red dashed lines. For LASSO, this corresponds to the soft-thresholding function Eq. (54) while for Ridge
regression the solution is given by Eq. (46).

Fig. 13. [Adapted from (Friedman et al., 2001)] Illustration of LASSO (left) and Ridge regression (right). The blue concentric ovals are the contours
of the regression function while the red shaded regions represent the constraint functions: (left) |w1|+ |w2| ≤ t and (right) w2

1 +w2
2 ≤ t . Intuitively,

since the constraint function of LASSO has more protrusions, the ovals tend to intersect the constraint at the vertex, as shown on the left. Since the
vertices correspond to parameter vectors w with only one non-vanishing component, LASSO tends to give sparse solution.

so-called ‘‘subgradient optimality condition" (Boyd and Vandenberghe, 2004; Rockafellar, 2015) in optimization theory to
obtain the solution. To keep the notation simple, we only show the solution assuming X is orthogonal:

ŵLASSO
j (λ) = sign(ŵLS

j)(|ŵLS
j | − λ)+, for orthogonal X, (54)

where (x)+ denotes the positive part of x and ŵLS
j is the jth component of least squares solution. In Fig. 12, we compare

the Ridge solution Eq. (46) with LASSO solution Eq. (54). As we mentioned above, the Ridge solution is the least squares
solution scaled by a factor of (1+ λ). Here LASSO does something conventionally called ‘‘soft-thresholding" (see Fig. 12).
We encourage interested readers to work out the exercises in Notebook 3 to explore what this function does.

How different are the solutions found using LASSO and Ridge regression? In general, LASSO tends to give sparse
solutions, meaning many components of ŵLASSO are zero. An intuitive justification for this result is provided in Fig. 13.
In short, to solve a constrained optimization problem with a fixed regularization strength t ≥ 0, for example, Eq. (44)
and Eq. (53), one first carves out the ‘‘feasible region" specified by the regularizer in the {w1, . . . , wd} space. This means
that a solution ŵ0 is legitimate only if it falls in this region. Then one proceeds by plotting the contours of the least
squares regressors in an increasing manner until the contour touches the feasible region. The point where this occurs is
the solution to our optimization problem (see Fig. 13 for illustration). Loosely speaking, since the L1 regularizer of LASSO
has sharp protrusions (i.e. vertices) along the axes, and because the regressor contours are in the shape of ovals (it is
quadratic in w), their intersection tends to occur at the vertex of the feasibility region, implying the solution vector will
be sparse.

In Notebook 3, we analyze a Diabetes dataset using both LASSO and Ridge regression to predict the diabetes outcome
one year forward (Efron et al., 2004). In Figs. 14, 15, we show the performance of both methods and the solutions ŵLASSO(λ),
ŵRidge(λ) explicitly. More details of this dataset and our regression implementation can be found in Notebook 3.

6.4. Using linear regression to learn the ising hamiltonian

To gain deeper intuition about what kind of physics problems linear regression allows us to tackle, consider the
following problem of learning the Hamiltonian for the Ising model. Imagine you are given an ensemble of random spin
configurations, and assigned to each state its energy, generated from the 1D Ising model:

H = −J
L∑

j=1

SjSj+1 (55)

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

26 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 14. Performance of LASSO and ridge regression on the diabetes dataset measured by the R2 coefficient of determination. The best possible
performance is R2

= 1. See Notebook 3.

Fig. 15. Regularization parameter λ affects the weights (features) we learned in both Ridge regression (left) and LASSO regression (right) on the
Diabetes dataset. Curves with different colors correspond to different wi ’s (features). Notice LASSO, unlike Ridge, sets feature weights to zero leading
to sparsity. See Notebook 3.

where J is the nearest-neighbor spin interaction, and Sj ∈ {±1} is a spin variable. Let us assume the data was generated
with J = 1. You are handed the dataset D = ({Sj}Lj=1, Ej) without knowledge of what the numbers Ej mean, and the
configuration {Sj}Lj=1 can be interpreted in many ways: the outcome of coin tosses, black-and-white pixels of an image,
the binary representation of integers, etc. Your goal is to learn a model that predicts Ej from the spin configurations.

Without any prior knowledge about the origin of the dataset, physics intuition may suggest to look for a spin model
with pairwise interactions between every pair of variables. That is, we choose the following model class:

Hmodel[S i] = −
L∑

j=1

L∑
k=1

Jj,kS ijS
i
k, (56)

The goal is to determine the interaction matrix Jj,k by applying linear regression on the dataset D. This is a well-defined
problem, since the unknown Jj,k enters linearly into the definition of the Hamiltonian. To this end, we cast the above ansatz
into the more familiar linear-regression form:

Hmodel[S i] = Xi
· J. (57)

The vectors Xi represent all two-body interactions {S ijS
i
k}

L
j,k=1, and the index i runs over the samples in the dataset. To

make the analogy complete, we can also represent the dot product by a single index p = {j, k}, i.e. Xi
· J = X i

pJp. Note
that the regression model does not include the minus sign. In the following, we apply ordinary least squares, Ridge, and
LASSO regression to the problem, and compare their performance.

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 27

Fig. 16. Performance of OLS, Ridge and LASSO regression on the Ising model as measured by the R2 coefficient of determination. Optimal performance
is R2

= 1. See Notebook 4.

Fig. 16 shows the R2 of the three regression models.

R2
= 1−

∑n
i=1

⏐⏐⏐ytruei − ypredi

⏐⏐⏐2∑n
i=1

⏐⏐⏐ytruei −
1
n

∑n
i=1 y

pred
i

⏐⏐⏐2 . (58)

Let us make a few remarks: (i) the regularization parameter λ affects the Ridge and LASSO regressions at scales separated
by a few orders of magnitude. Notice that this is different for the data considered in the diabetes dataset, cf. Fig. 14.
Therefore, it is considered good practice to always check the performance for the given model and data as a function
of λ. (ii) While the OLS and Ridge regression test curves are monotonic, the LASSO test curve is not — suggesting an
optimal LASSO regularization parameter is λ ≈ 10−2. At this sweet spot, the Ising interaction weights J contains only
nearest-neighbor terms (as did the model the data was generated from).

Choosing whether to use Ridge or LASSO regression in this case turns out to be similar to fixing gauge degrees of
freedom. Recall that the uniform nearest-neighbor interactions strength Jj,k = J which we used to generate the data,
was set to unity, J = 1. Moreover, Jj,k was NOT defined to be symmetric (we only used the Jj,j+1 but never the Jj,j−1
elements). Fig. 17 shows the matrix representation of the learned weights Jj,k. Interestingly, OLS and Ridge regression
learn nearly symmetric weights J ≈ −0.5. This is not surprising, since it amounts to taking into account both the Jj,j+1
and the Jj,j−1 terms, and the weights are distributed symmetrically between them. LASSO, on the other hand, tends to break
this symmetry (see matrix elements plots for λ = 0.01).5 Thus, we see how different regularization schemes can lead to
learning equivalent models but in different ‘gauges’. Any information we have about the symmetry of the unknown model
that generated the data should be reflected in the definition of the model and the choice of regularization. In addition to
the diabetes dataset in Notebook 3, we encourage the reader to work out Notebook 4 in which linear regression is applied
to the one-dimensional Ising model.

6.5. Convexity of regularizer

In the previous section, we mentioned that the analytical solution of LASSO can be found by invoking its convexity.
In this section, we provide a gentle introduction to convexity theory and highlight a few properties which can help us
understand the differences between LASSO and Ridge regression. First, recall that a set C ⊆ Rn is called convex if for any
x, y ∈ C and t ∈ [0, 1],

tx+ (1− t)y ∈ C . (59)

In other words, every line segment joining x, y lies entirely in C . A function f : Rn
→ R is called convex if its domain,

dom(f), is a convex set, and for any x, y ∈dom(f) and t ∈ [0, 1] we have

f (tx+ (1− t)y) ≤ tf (x)+ (1− t)f (y), (60)

That is, the function lies on or below the line segment joining its evaluation at x and y. This function f is called strictly
convex if this inequality holds strictly for x ̸= y and t ∈ (0, 1). Now, it turns out that for convex functions, any local
minimizer is a global minimizer. Algorithmically, this means that in the optimization procedure, as long as we are ‘‘going
down the hill’’ and agree to stop when we reach a minimum, then we have hit the global minimum. In addition to this,

5 Look closer, and you will see that LASSO actually splits the weights rather equally for the periodic boundary condition element at the edges of
the anti-diagonal.

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

28 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 17. Learned interaction matrix Jij for the Ising model ansatz in Eq. (56) for ordinary least squares (OLS) regression (left), Ridge regression
(middle) and LASSO (right) at different regularization strengths λ. OLS is λ-independent but is shown for comparison throughout. See Notebook 4.

there is an abundance of rich theory regarding convex duality and optimality, which allow us to understand the solutions
even before solving the problem itself. We refer interested readers to (Boyd and Vandenberghe, 2004; Rockafellar, 2015).

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 29

Now let us examine the two regularizers we introduced earlier. A close inspection reveals that LASSO and Ridge
regressions are both convex problems but only Ridge regression is a strictly convex problem (assuming λ > 0). From
convexity theory, this means that we always have a unique solution for Ridge but not necessary for LASSO. In fact, it was
recently shown that under mild conditions, such as demanding general position for columns of X , the LASSO solution is
indeed unique (Tibshirani et al., 2013). Apart from this theoretical characterization, (Zou and Hastie, 2005) introduced
the notion of Elastic Net to retain the desirable properties of both LASSO and Ridge regression, which is now one of the
standard tools for regression analysis and machine learning. We refer to reader to explore this in Notebook 2.

6.6. Bayesian formulation of linear regression

In Section 5, we gave an overview of Bayesian inference and phrased it in the context of learning and uncertainty
quantification. In this section we formulate least squares regression from a Bayesian point of view. We shall see that
regularization in learning will emerge naturally as part of the Bayesian inference procedure.

From the setup of linear regression, the data D used to fit the regression model is generated through y = xTw + ϵ.
We often assume that ϵ is a Gaussian noise with mean zero and variance σ 2. To connect linear regression to the Bayesian
framework, we often write the model as

p(y|x, θ) = N (y|µ(x), σ 2(x)). (61)

In other words, our regression model is defined by a conditional probability that depends not only on data x but on some
model parameters θ. For example, if the mean is a linear function of x given by µ = xTw, and the variance is fixed
σ 2(x) = σ 2, then θ = (w, σ 2).

In statistics, many problems rely on estimation of some parameters of interest. For example, suppose we are given
the height data of 20 junior students from a regional high school, but what we are interested in is the average height
of all high school juniors in the whole county. It is conceivable that the data we are given are not representative of the
student population as a whole. It is therefore necessary to devise a systematic way to preform reliable estimation. Here
we present the maximum likelihood estimation (MLE), and show that MLE for θ is the one that minimizes the mean squared
error (MSE) used in OLS, see Section 6.1.

MLE is defined by maximizing the log-likelihood w.r.t. the parameters θ:

θ̂ ≡ argmax
θ

log p(D|θ). (62)

Using the assumption that samples are i.i.d., we can write the log-likelihood as

l(θ) ≡ log p(D|θ) =
n∑

i=1

log p(yi|x(i), θ). (63)

Note that the conditional dependence of the response variable yi on the independent variable x(i) in the likelihood function
is made explicit since in regression the observed value of data, yi, is predicted based on x(i) using a model that is assumed
to be a probability distribution that depends on unknown parameter θ. This distribution, when endowed with θ, can, as
we hope, potentially explain our prediction on yi. By definition, such distribution is the likelihood function we discussed
in Section 5. Note that this is consistent with the formal statistical treatment of regression where the goal is to estimate
the conditional expectation of the dependent variable given the value of the independent variable (sometimes called the
covariate) (Wasserman, 2013). We stress that this notation does not imply x(i) is unknown — it is still part of the observed
data!

Using Eq. (61), we get

l(θ) = −
1

2σ 2

n∑
i=1

(
yi − wTx(i)

)2
−

n
2
log
(
2πσ 2)

= −
1

2σ 2 ||Xw− y||22+ const. (64)

By comparing Eq. (38) and Eq. (64), it is clear that performing least squares is the same as maximizing the log-likelihood
of this model.

What about adding regularization? In Section 5, we introduced the maximum a posteriori probability (MAP) estimate.
Here we show that it actually corresponds to regularized linear regression, where the choice of prior determines the type
of regularization. Recall Bayes’ rule

p(θ|D) ∝ p(D|θ)p(θ). (65)

Now instead of maximizing the log-likelihood, l(θ) = log p(D|θ), let us maximize the log posterior, log p(θ|D). Invoking
Eq. (65), the MAP estimator becomes

θ̂MAP ≡ argmax
θ

log p(D|θ)+ log p(θ). (66)

30 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

In Section 5.3, we discussed that a common choice for the prior is a Gaussian distribution. Consider the Gaussian prior6
with zero mean and variance τ 2, namely, p(w) =

∏
j N (wj|0, τ 2). Then, we can recast the MAP estimator into

θ̂MAP ≡ argmax
θ

⎡⎣− 1
2σ 2

n∑
i=1

(yi − wTx(i))2 −
1

2τ 2

n∑
j=1

w2
j

⎤⎦
= argmax

θ

[
−

1
2σ 2 ||Xw− y||22−

1
2τ 2 ||w||

2
2

]
. (67)

Note that we dropped constant terms that do not depend on the maximization parameters θ. The equivalence between
MAP estimation with a Gaussian prior and Ridge regression is established by comparing Eq. (67) and Eq. (44) with
λ ≡ σ 2/τ 2. We relegate the analogous derivation for LASSO to an exercise in Notebook 3.

6.7. Recap and a general perspective on regularizers

In this section, we explored least squares linear regression with and without regularization. We motivated the need
for regularization due to poor generalization, in particular in the ‘‘high-dimensional limit" (p≫ n). Instead of showing the
average in-sample and out-of-sample errors for the regularized problem explicitly, we conducted numerical experiments
in Notebook 3 on the diabetes dataset and showed that regularization typically leads to better generalization. Due to the
equivalence between the constrained and penalized form of regularized regression (in LASSO and Ridge, but not generally
true in cases such as L0 penalization), we can regard the regularized regression problem as an un-regularized problem
but on a constrained set of parameters. Since the size of the allowed parameter space (e.g. w ∈ Rp when un-regularized
vs. w ∈ C ⊂ Rp when regularized) is roughly a proxy for model complexity, solving the regularized problem is in effect
solving the un-regularized problem with a smaller model complexity class. This implies that we are less likely to overfit.

We also showed the connection between using a regularization function and the use of priors in Bayesian inference.
This connection can be used to develop more intuition about why regularization implies we are less likely to overfit the
data: Let us say you are a young Physics student taking a laboratory class where the goal of the experiment is to measure
the behavior of several different pendula and use that to predict the formula (i.e. model) that determines the period of
oscillation. In your investigation you would probably record many things (hopefully including the length and mass!) in
an effort to give yourself the best possible chance of determining the unknown relationship, perhaps writing down the
temperature of the room, any air currents, if the table were vibrating, etc. What you have done is create a high-dimensional
dataset for yourself. However you actually possess an even higher-dimensional dataset than you probably would admit
to yourself. For example you are probably aware of the time of day, that it is a Wednesday, your friend Alice being in
attendance, your friend Bob being absent with a cold, the country in which you are doing the experiment, and the planet
you are on, but you almost assuredly have not written these down in your notebook. Why not? The reason is because you
entered the classroom with strongly held prior beliefs that none of those things affect the physics which takes place in
that room. Even of the things you did write down in an effort to be a careful scientist you probably hold some doubt as
to their importance to your result and what is serving you here is the intuition that probably only a few things matter in
the physics of pendula. Hence again you are approaching the experiment with prior beliefs about how many features you
will need to pay attention to in order to predict what will happen when you swing an unknown pendulum. This example
might seem a bit contrived, but the point is that we live in a high-dimensional world of information and while we have
good intuition about what to write down in our notebook for well-known problems, often in the field of ML we cannot
say with any confidence a priori what the small list of things to write down will be, but we can at least use regularization
to help us enforce that the list not be too long so that we do not end up predicting that the period of a pendulum depends
on Bob having a cold on Wednesdays.

Of course, in both LASSO and Ridge regression there is a parameter λ involved. In principle, this hyper-parameter
is usually predetermined, which means that it is not part of the regression process. As we saw in Fig. 15, our learning
performance and solution depends strongly on λ, thus it is vital to choose it properly. As we discussed in Section 5.3, one
approach is to assume an uninformative prior on the hyper-parameters, p(λ), and average the posterior over all choices of
λ following this distribution. However, this comes with a large computational cost. Therefore, it is simpler to choose the
regularization parameter through some optimization procedure.

We would like to emphasize that linear regression can be applied to model non-linear relationship between input and
response. This can be done by replacing the input x with some nonlinear function φ(x). Note that doing so preserves the
linearity as a function of the parameters w, since model is defined by the their inner product φT (x)w. This method is
known as basis function expansion (Bishop, 2006; Murphy, 2012).

Recent years have also seen a surge of interest in understanding generalized linear regression models from a
statistical physics perspective. Much of this research has focused on understanding high-dimensional linear regression

6 Indeed, a Gaussian prior is the conjugate prior that gives a Gaussian posterior. For a given likelihood, conjugacy guarantees the preservation of
prior distribution at the posterior level. For example, for a Gaussian (Geometric) likelihood with a Gaussian (Beta) prior, the posterior distribution
is still Gaussian (Beta) distribution.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 31

Fig. 18. Pictorial representation of four data categories labeled by the integers 0 through 3 (above), or by one-hot vectors with binary inputs (below).

and compressed sensing (Donoho, 2006) (see (Advani et al., 2013; Zdeborová and Krzakala, 2016) for accessible reviews
for physicists). On a technical level, this research imports and extends the machinery of spin glass physics (replica method,
cavity method, and message passing) to analyze high-dimensional linear models (Advani and Ganguli, 2016; Fisher and
Mehta, 2015a,b; Krzakala et al., 2014, 2012a,b; Ramezanali et al., 2015; Zdeborová and Krzakala, 2016). This is a rich
area of activity at the intersection of physics, computer science, information theory, and machine learning and interested
readers are encouraged to consult the literature for further information (see also (Mezard and Montanari, 2009)).

7. Logistic regression

So far we have focused on learning from datasets for which there is a ‘‘continuous’’ output. For example, in linear
regression we were concerned with learning the coefficients of a polynomial to predict the response of a continuous
variable yi on unseen data based on its independent variables xi. However, a wide variety of problems, such as
classification, are concerned with outcomes taking the form of discrete variables (i.e. categories). For example, we may
want to detect if there is a cat or a dog in an image. Or given a spin configuration of, say, the 2D Ising model, we
would like to identify its phase (e.g. ordered/disordered). In this section, we introduce logistic regression which deals
with binary, dichotomous outcomes (e.g. True or False, Success or Failure, etc.), see Fig. 19. We encourage the reader to
use the opportunity to build their intuition about the inner workings of logistic regression, as this will prove valuable
later on in the study of modern supervised Deep Learning models (see Section 9).

This section is structured as follows: first, we define logistic regression and derive its corresponding cost function (the
cross entropy) using a Bayesian approach, and discuss its minimization. Then, we generalize logistic regression to the case
of multiple categories which is called SoftMax regression. We demonstrate how to apply logistic regression using three
different problems: (i) classifying phases of the 2D Ising model, (ii) learning features in the SUSY dataset, and (iii) MNIST
handwritten digit classification.

Throughout this section, we consider the case where the dependent variables yi ∈ Z are discrete and only take values
from m = 0, . . . ,M − 1 (which enumerate the M classes), see Fig. 18. The goal is to predict the output classes from the
design matrix X ∈ Rn×p made of n samples, each of which bears p features. The primary goal is to identify the classes to
which new unseen samples belong.

Before delving into the details of logistic regression, it is helpful to consider a slightly simpler classifier: a linear
classifier that categorizes examples using a weighted linear-combination of the features and an additive offset:

si = xTi w+ b0 ≡ xTi w, (68)

where we use the short-hand notation xi = (1, xi) and w = (b0, w). This function takes values on the entire real axis. In
the case of logistic regression, however, the labels yi are discrete variables. One simple way to get a discrete output is
to have sign functions that map the output of a linear regressor to {0, 1}, σ (si) = sign(si) = 1 if si ≥ 0 and 0 otherwise.
Indeed, this is commonly known as the ‘‘perceptron’’ in the machine learning literature.

7.1. The cross-entropy as a cost function for logistic regression

The perceptron is an example of a ‘‘hard classification’’: each datapoint is assigned to a category (i.e. yi = 0 or yi = 1).
Even though the perceptron is an extremely simple model, it is favorable in many cases (e.g. when dealing with noisy
data) to have a ‘‘soft’’ classifier that outputs the probability of a given category. For example, given xi, the classifier returns
the probability of being in category m. One such function is the logistic (or sigmoid) function:

σ (s) =
1

1+ e−s
. (69)

Note that 1− σ (s) = σ (−s), which will be useful shortly. In many cases, it is favorable to work with a ‘‘soft’’ classifier.
Logistic regression is the canonical example of a soft classifier. In logistic regression, the probability that a data point

xi belongs to a category yi = {0, 1} is given by

P(yi = 1|xi, θ) =
1

1+ e−x
T
i θ

,

32 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 19. Classifying data in the simplest case of only two categories, labeled ‘‘noise’’ and ‘‘signal’’ (or ‘‘cats’’ and ‘‘dogs’’), is the subject of Logistic
Regression.

P(yi = 0|xi, θ) = 1− P(yi = 1|xi, θ), (70)

where θ = w are the weights we wish to learn from the data. To gain some intuition for these equations, consider a
collection of non-interacting two-state systems coupled to a thermal bath (e.g. a collection of atoms that can be in two
states). Furthermore, denote the state of system i by a binary variable: yi ∈ {0, 1}. From elementary statistical mechanics,
we know that if the two states have energies ϵ0 and ϵ1 the probability for finding the system in a state yi is:

P(yi = 1) =
e−βϵ0

e−βϵ0 + e−βϵ1
=

1
1+ e−β∆ϵ

,

P(yi = 1) = 1− P(yi = 0). (71)

Notice that in these expressions, as is often the case in physics, only energy differences are observable. If the difference
in energies between two states is given by ∆ϵ = xTi w, we recover the expressions for logistic regression. We shall use
this mapping between partition functions and classification to generalize the logistic regressor to SoftMax regression in
Section 7.4. Notice that in terms of the logistic function, we can write

P(yi = 1) = σ (xTi w) = 1− P(yi = 0). (72)

We now define the cost function for logistic regression using Maximum Likelihood Estimation (MLE). Recall, that in
MLE we choose parameters to maximize the probability of seeing the observed data. Consider a dataset D = {(yi, xi)}
with binary labels yi ∈ {0, 1} from which the data points are drawn independently. The likelihood of observing the data
under our model is just:

P(D|w) =
n∏

i=1

[
σ (xTi w)

]yi [1− σ (xTi w)
]1−yi (73)

from which we can readily compute the log-likelihood:

l(w) =
n∑

i=1

yi log σ (xTi w)+ (1− yi) log
[
1− σ (xTi w)

]
. (74)

The maximum likelihood estimator is defined as the set of parameters that maximize the log-likelihood:

ŵ = argmax
θ

n∑
i=1

yi log σ (xTi w)+ (1− yi) log
[
1− σ (xTi w)

]
. (75)

Since the cost (error) function is just the negative log-likelihood, for logistic regression we find

C(w) = −l(w) (76)

=

n∑
i=1

−yi log σ (xTi w)− (1− yi) log
[
1− σ (xTi w)

]
.

The right-hand side in Eq. (76) is known in statistics as the cross entropy.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 33

Fig. 20. Examples of typical states of the 2D Ising model for three different temperatures in the ordered phase (T/J = 0.75, left), the critical region
(T/J = 2.25, middle) and the disordered phase (T/J = 4.0, right). The linear system dimension is L = 40 sites.

Having specified the cost function for logistic regression, we note that, just as in linear regression, in practice we
usually supplement the cross-entropy with additional regularization terms, usually L1 and L2 regularization (see Section 6
for discussion of these regularizers).

7.2. Minimizing the cross entropy

The cross entropy is a convex function of the weights w and, therefore, any local minimizer is a global minimizer.
Minimizing this cost function leads to the following equation

0 = ∇C(w) =
n∑

i=1

[
σ (xTi w)− yi

]
xi, (77)

where we made use of the logistic function identity ∂zσ (s) = σ (s)[1 − σ (s)]. Eq. (77) defines a transcendental equation
for w, the solution of which, unlike linear regression, cannot be written in a closed form. For this reason, one must use
numerical methods such as those introduced in Section 4 to solve this optimization problem.

7.3. Examples of binary classification

Let us now show how to use logistic regression in practice. In this section, we showcase two pedagogical examples to
train a logistic regressor to classify binary data. Each example comes with a corresponding Jupyter notebook, see https:
//physics.bu.edu/~pankajm/MLnotebooks.html.

7.3.1. Identifying the phases of the 2D Ising model
The goal of this example is to show how one can employ logistic regression to classify the states of the 2D Ising model

according to their phase of matter.
The Hamiltonian for the classical Ising model is given by

H = −J
∑
⟨ij⟩

SiSj, Sj ∈ {±1}, (78)

where the lattice site indices i, j run over all nearest neighbors of a 2D square lattice, and J is an interaction energy
scale. We adopt periodic boundary conditions. Onsager proved that this model undergoes a phase transition in the
thermodynamic limit from an ordered ferromagnet with all spins aligned to a disordered phase at the critical temperature
Tc/J = 2/log(1+

√
2) ≈ 2.26. For any finite system size, this critical point is smeared out to a critical region around Tc .

An interesting question to ask is whether one can train a statistical classifier to distinguish between the two phases
of the Ising model. If successful, this can be used to locate the position of the critical point in more complicated models
where an exact analytical solution has so far remained elusive (Morningstar and Melko, 2017; Zhang et al., 2017a). In
other words, given an Ising state, we would like to classify whether it belongs to the ordered or the disordered phase,
without any additional information other than the spin configuration itself. This categorical machine learning problem is
well suited for logistic regression, and will thus consist of recognizing whether a given state is ordered by looking at its
bit configurations. Notice that, for the purposes of applying logistic regression, the 2D spin state of the Ising model will be
flattened out to a 1D array, so it will not be possible to learn information about the structure of the contiguous ordered
2D domains [see Fig. 20]. Such information can be incorporated using deep convolutional neural networks, see Section 9.

To this end, we consider the 2D Ising model on a 40× 40 square lattice, and use Monte-Carlo (MC) sampling to prepare
104 states at every fixed temperature T out of a pre-defined set. We furthermore assign a label to each state according
to its phase: 0 if the state is disordered, and 1 if it is ordered.

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

34 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 21. Accuracy as a function of the regularization parameter λ in classifying the phases of the 2D Ising model on the training (blue), test (red),
and critical (green) data. The solid and dashed lines compare the ‘liblinear’ and ‘SGD’ solvers, respectively.

It is well-known that near the critical temperature Tc , the ferromagnetic correlation length diverges, which leads
to, among other things, critical slowing down of the MC algorithm. Perhaps identifying the phases is also harder in
the critical region. With this in mind, consider the following three types of states: ordered (T/J < 2.0), near-critical
(2.0 ≤ T/J ≤ 2.5) and disordered (T/J > 2.5). We use both ordered and disordered states to train the logistic regressor
and, once the supervised training procedure is complete, we will evaluate the performance of our classification model on
unseen ordered, disordered, and near-critical states.

Here, we deploy the liblinear routine (the default for Scikit’s logistic regression) and stochastic gradient descent (SGD,
see Section 4 for details) to optimize the logistic regression cost function with L2 regularization. We define the accuracy
of the classifier as the percentage of correctly classified data points. Comparing the accuracy on the training and test
data, we can study the degree of overfitting. The first thing to notice in Fig. 21 is the small degree of overfitting, as
suggested by the training (blue) and test (red) accuracy curves being very close to each other. Interestingly, the liblinear
minimizer outperforms SGD on the training and test data, but not on the near-critical data for certain values of the
regularization strength λ. Moreover, similar to the linear regression examples, we find that there exists a sweet spot
for the SGD regularization strength λ that results in optimal performance of the logistic regressor, at about λ ∼ 10−1.
We might expect that the difficulty of the phase recognition problem depends on the temperature of the queried sample.
Looking at the states in the near-critical region, c.f. Fig. 20, it is no longer easy for a trained human eye to distinguish
between the ferromagnetic and the disordered phases close to Tc . Therefore, it is interesting to also compare the training
and test accuracies to the accuracy of the near-critical state predictions. (Recall that the model is not trained on near-
critical states.) Indeed, the liblinear accuracy is about 7% smaller for the critical states (green curves) compared to the test
data (red line).

Finally, it is important to note that all of Scikit’s logistic regression solvers have in-built regularizers. We did not
emphasize the role of the regularizers in this section, but they are crucial in order to prevent overfitting. We encourage
the interested reader to play with the different regularization types and numerical solvers in Notebook 6 and compare
model performances.

7.3.2. SUSY
In high energy physics experiments, such as the ATLAS and CMS detectors at the CERN LHC, one major hope is the

discovery of new particles. To accomplish this task, physicists attempt to sift through events and classify them as either
a signal of some new physical process or particle, or as a background event from already understood Standard Model
processes. Unfortunately, we do not know for sure what underlying physical process occurred (the only information we
have access to are the final state particles). However, we can attempt to define parts of phase space that will have a high
percentage of signal events. Typically this is done by using a series of simple requirements on the kinematic quantities of
the final state particles, for example having one or more leptons with large amounts of momentum that are transverse
to the beam line (pT). Instead, here we will use logistic regression in an attempt to find the relative probability that an
event is from a signal or a background event. Rather than using the kinematic quantities of final state particles directly,
we will use the output of our logistic regression to define a part of phase space that is enriched in signal events (see
Jupyter notebookNotebook 5).

The dataset we are using comes from the UC Irvine ML repository and has been produced using Monte Carlo simulations
to contain events with two leptons (electrons or muons) (Baldi et al., 2014). Each event has the value of 18 kinematic
variables (‘‘features’’). The first 8 features are direct measurements of final state particles, in this case the pT , pseudo-
rapidity η, and azimuthal angle φ of two leptons in the event and the amount of missing transverse momentum (MET)
together with its azimuthal angle. The last ten features are higher order functions of the first 8 features; these features
are derived by physicists to help discriminate between the two classes. These high-level features can be thought of as

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 35

Fig. 22. The probability of an event being a classified as a signal event for true signal events (left, blue) and background events (right, red).

the physicists’ attempt to use non-linear functions to classify signal and background events, having been developed with
formidable theoretical effort. Here, we will use only logistic regression to attempt to classify events as either signal (that
is, coming from a SUSY process) or background (events from some already observed Standard Model process). Later on
in the review, in Section 9, we shall revisit the same problem with the tools of Deep Learning.

As stated before, we never know the true underlying process, and hence the goal in these types of analyses is to
find regions enriched in signal events. If we find an excess of events above what is expected, we can have confidence
that they are coming from the type of signal we are searching for. Therefore, the two metrics of import are the
efficiency of signal selection, and the background rejection achieved (also called detection/rejection rates and similar
to recall/precision). Oftentimes, rather than thinking about just a single working point, performance is characterized by
Receiver Operator Characteristic curves (ROC curves). These ROC curves plot signal efficiency versus background rejection
at various thresholds of some discriminating variable. Here that variable will be the output signal probability of our logistic
regression. Fig. 22 shows examples of these outputs for true signal events (left) and background events (right) using L2
regularization with a regularization parameter of 10−5.

Notice that while the majority of signal events receive high probabilities of passing our discriminator and the majority
of background events receive low probabilities, some signal events look background-like, and some background events
look signal-like to our discriminator. This is further reason to characterize performance of our selection in terms of ROC
curves. Fig. 23 shows examples of these curves using L2 regularization for many different regularization parameters using
two different ML python packages, either TensorFlow (top) or Sci-Kit Learn (bottom), when using the full set of 18 input
variables. Notice there is minimal overfitting, in part because we trained on such a large dataset (4.5 million events). More
importantly, however, is the underlying data we are working with: each input variable is an important feature.

While Fig. 23 shows nice discrimination power between signal and background events, the adoption of ML techniques
adds complication to any analysis. Given that we have already come up with a set of discriminating variables, including
higher order ones derived from theories about SUSY particles, it is worth reflecting on whether there is utility to the
increased sophistication of ML. To show why we would want to use such a technique, recall that, even to the learning
algorithm, some signal events and background events look similar. We can illustrate this directly by looking at a plot
comparing the pT spectrum of the two highest pT leptons (often referred to as the leading and sub-leading leptons) for
both signal and background events. Fig. 24 shows these two distributions, and one can see that while some signal events
are easily distinguished, many live in the same part of phase space as the background. This effect can also be seen by
looking at Fig. 22 where you can see that some signal events look like background events and vice-versa.

One could then ask how much discrimination power is obtained by simply putting different requirements on the input
variables rather than using ML techniques. In order to compare this strategy (often referred to as cut-based in the field of
HEP) to our regression results, different ROC curves have been made for each of the following cases: logistic regression
with just the simple kinematic variables, logistic regression with the full set of variables, and simply putting a requirement
on the leading lepton pT . Fig. 25 shows that there is a clear performance benefit from using logistic regression. Note also
that in the cut-based approach we have only used one variable where we could have put requirements on all of them.
While putting more requirements would indeed increase background rejection, it would also decrease signal efficiency.
Hence, the cut-based approach will never yield as strong discrimination as the logistic regression we have performed.
One other interesting point about these results is that the higher-order variables noticeably help the ML techniques. In
later sections, we will return to this point to see if more sophisticated techniques can provide further improvement.

7.4. Softmax regression

So far we have focused only on binary classification, in which the labels are dichotomous variables. Here we generalize
logistic regression to multi-class classification. One approach is to treat the label as a vector y i ∈ ZM

2 , namely a binary

36 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 23. ROC curves for a variety of regularization parameters with L2 regularization using TensorFlow (top) or Sci-Kit Learn (bottom).

Fig. 24. Comparison of leading vs. sub-leading lepton pT for signal (blue) and background events (red). Recall that these variables have been scaled
to have a mean of one.

string of length M with only one component of yi being 1 and the rest zero. For example, y i = (1, 0, . . . , 0) means data
the sample xi belongs to class 1,7 cf. Fig. 18. Following the notation in Section 7.1, the probability of xi being in class m′

7 For an alternative mathematical description of the categories, which labels the classes by integers, see http://ufldl.stanford.edu/wiki/index.php/
Softmax_Regression.

http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression
http://ufldl.stanford.edu/wiki/index.php/Softmax_Regression

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 37

Fig. 25. A comparison of discrimination power from using logistic regression with only simple kinematic variables (green), logistic regression using
both simple and higher-order kinematic variables (purple), and a cut-based approach that varies the requirements on the leading lepton pT .

is given by

P(yim′ = 1|xi, {wk}
M−1
k=0) =

e−x
T
i wm′∑M−1

m=0 e−x
T
i wm

, (79)

where yim′ ≡ [y i]m′ refers to the m′-th component of vector y i. This is known as the SoftMax function. Therefore, the
likelihood of this M-class classifier is simply (cf. Section 7.1):

P(D|{wk}
M−1
k=0) =

n∏
i=1

M−1∏
m=0

[P(yim = 1|xi,wm)]yim

× [1− P(yim = 1|xi,wm)]1−yim (80)

from which we can define the cost function in a similar fashion:

C(w) = −
n∑

i=1

M−1∑
m=0

yim log P(yim = 1|xi,wm)

+ (1− yim) log (1− P(yim = 1|xi,wm)) . (81)

As expected, for M = 1, we recover the cross entropy for logistic regression, cf. Eq. (76).

7.5. An example of SoftMax classification: MNIST digit classification

A paradigmatic example of SoftMax regression is to classify handwritten digits from the MNIST dataset. Yann LeCun
and collaborators first collected and processed 70000 handwritten digits, each of which is laid out on a 28 × 28-pixel grid.
Every pixel assumes one of 256 grayscale values, interpolating between white and black. A representative input sample
is show in Fig. 26.

Since there are 10 categories for the digits 0 through 9, this corresponds to SoftMax regression with M = 10. We
encourage readers to experiment with Notebook 7 to explore SoftMax regression applied to MNIST. We include in Fig. 27
the learned weights wk, where k corresponds to class labels (i.e. digits). We shall come back to SoftMax regression in
Section 9.

8. Combining models

One of the most powerful and widely-applied ideas in modern machine learning is the use of ensemble methods that
combine predictions from multiple, often weak, statistical models to improve predictive performance (Dietterich et al.,
2000). Ensemble methods, such as random forests (Breiman, 2001; Geurts et al., 2006; Ho, 1998), and boosted gradient
trees, such as XGBoost (Chen and Guestrin, 2016; Friedman, 2001), undergird many of the winning entries in data science
competitions such as Kaggle, especially on structured datasets.8 Even in the context of neural networks, see Section 9 it

8 Neural networks generally perform better than ensemble methods on unstructured data, images, and audio.

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

38 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 26. An example of an input datapoint from the MNIST dataset. Each datapoint is a 28 × 28-pixel image of a handwritten digit, with its
corresponding label belonging to one of the 10 digits. Each pixel contains a grayscale value represented by an integer between 0 and 255.

Fig. 27. Visualization of the weights wj after training a SoftMax Regression model on the MNIST dataset (see Notebook 7). We emphasize that
SoftMax Regression does not have explicit 2D spatial knowledge; the model learns from data points flattened out in a one-dimensional array.

is common to combine predictions from multiple neural networks to increase performance on tough image classification
tasks (He et al., 2015; Ioffe and Szegedy, 2015).

In this section, we give an overview of ensemble methods and provide rules of thumb for when and why they work. On
one hand, the idea of training multiple models and then using a weighted sum of the predictions of the all these models
is very natural. After all, the idea of the ‘‘wisdom of the crowds’’ can be traced back, at least, to the writings of Aristotle in
Politics. On the other hand, one can also imagine that the ensemble predictions can be much worse than the predictions
from each of the individual models that constitute the ensemble, especially when pooling reinforces weak but correlated
deficiencies in each of the individual predictors. Thus, it is important to understand when we expect ensemble methods
to work.

In order to do this, we will revisit the bias–variance trade-off, discussed in Section 3, and generalize it to consider
an ensemble of classifiers. We will show that the key to determining when ensemble methods work is the degree of
correlation between the models in the ensemble (Louppe, 2014). Armed with this intuition, we will introduce some of
the most widely-used and powerful ensemble methods including bagging (Breiman, 1996), boosting (Freund and Schapire,
1995; Freund et al., 1999; Schapire and Freund, 2012), random forests (Breiman, 2001), and gradient boosted trees such
as XGBoost (Chen and Guestrin, 2016).

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 39

8.1. Revisiting the Bias–Variance Tradeoff for Ensembles

The bias–variance tradeoff summarizes the fundamental tension in machine learning between the complexity of a
model and the amount of training data needed to fit it (see Section 3). Since data is often limited, in practice it is
frequently useful to use a less complex model with higher bias – a model whose asymptotic performance is worse than
another model – because it is easier to train and less sensitive to sampling noise arising from having a finite-sized training
dataset (i.e. smaller variance). Here, we will revisit the bias–variance tradeoff in the context of ensembles, drawing upon
the beautiful discussion in Ref. (Louppe, 2014).

A key property that will emerge from this analysis is the correlation between models that constitute the ensemble.
The degree of correlation between models9 is important for two distinct reasons. First, holding the ensemble size fixed,
averaging the predictions of correlated models reduces the variance less than averaging uncorrelated models. Second, in
some cases, correlations between models within an ensemble can result in an increase in bias, offsetting any potential
reduction in variance gained from ensemble averaging. We will discuss this in the context of bagging below. One of the
most dramatic examples of increased bias from correlations is the catastrophic predictive failure of almost all derivative
models used by Wall Street during the 2008 financial crisis.

8.1.1. Bias–Variance Decomposition for Ensembles
We will discuss the bias–variance tradeoff in the context of continuous predictions such as regression. However,

many of the intuitions and ideas discussed here also carry over to classification tasks. Before discussing ensembles,
let us briefly review the bias–variance tradeoff in the context of a single model. Consider a dataset consisting of data
XL = {(yj, xj), j = 1 . . .N}. Let us assume that the true data is generated from a noisy model

y = f (x)+ ϵ, (82)

where ϵ is a normally distributed with mean zero and standard deviation σϵ .
Assume that we have a statistical procedure (e.g. least-squares regression) for forming a predictor ĝL(x) that gives the

prediction of our model for a new data point x given that we trained the model using a dataset L. This estimator is chosen
by minimizing a cost function which, for the sake of concreteness, we take to be the squared error

C(X, g(x)) =
∑

i

(yi − ĝL(xi))2. (83)

The dataset L is drawn from some underlying distribution that describes the data. If we imagine drawing many datasets
{Lj} of the same size as L from this distribution, we know that the corresponding estimators ĝLj (x) will differ from each
other due to stochastic effects arising from sampling noise. For this reason, we can view our estimator ĝL(x) as a random
variable and define an expectation value EL in the usual way. Note that the subscript denotes that the expectation is
taken over L. In practice, EL is computed by drawing infinitely many different datasets {Lj} of the same size, fitting the
corresponding estimator, and then averaging the results. We will also average over different instances of the ‘‘noise’’ ϵ.
The expectation value over the noise will be denoted by Eϵ .

As discussed in Section 3, we can decompose the expected generalization error as

EL,ϵ[C(X, g(x))] = Bias2 + Var + Noise. (84)

where the bias,

Bias2 =
∑

i

(f (xi)− EL[ĝL(xi)])2, (85)

measures the deviation of the expectation value of our estimator (i.e. the asymptotic value of our estimator in the limit
of infinite data) from the true value. The variance

Var =
∑

i

EL[(ĝL(xi)− EL[ĝL(xi)])2], (86)

measures how much our estimator fluctuates due to finite-sample effects. The noise term

Noise =
∑

i

σ 2
ϵi

(87)

is the part of the error due to intrinsic noise in the data generation process that no statistical estimator can overcome.
Let us now generalize this to ensembles of estimators. Given a dataset XL and hyper-parameters θ that parametrize

members of our ensemble, we will consider a procedure that deterministically generates a model ĝL(xi, θ) given XL and
θ . We assume that the θ includes some random parameters that introduce stochasticity into our ensemble (e.g. an initial

9 For example, the correlation coefficient between the predictions made by two randomized models based on the same training set but with
different random seeds, see Section 8.1.1 for precise definition.

40 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

condition for stochastic gradient descent or a random subset of features or data points used for training.) Concretely, with
a giving dataset L, one has a learning algorithm A that generates a model A(θ,L) based on a deterministic procedure
which introduced stochasticity through θ in its execution on dataset L. We will be concerned with the expected prediction
error of the aggregate ensemble predictor

ĝA
L(xi, {θ}) =

1
M

M∑
m=1

ĝL(xi, θm). (88)

For future reference, let us define the mean, variance, and covariance (i.e. the connected correlation function in the
language of physics), and the normalized correlation coefficient of a single randomized model ĝL(x, θm) as:

EL,θm [ĝL(x, θm)] = µL,θm (x)
EL,θm [ĝL(x, θm)

2
] − EL,θm [ĝL(x, θ)]

2
= σ 2

L,θm
(x)

EL,θm [ĝL(x, θm)ĝL(x, θm′)] − Eθ [ĝL(x, θm)]2 = CL,θm,θm′
(x)

ρ(x) =
CL,θm,θm′

(x)
σ 2
L,θ

. (89)

Note that the expectation EL,θm [·] is computed over the joint distribution of L and θm. Also, by definition, we assume
m ̸= m′ in CL,θm,θm′ .

We can now ask about the expected generalization (out-of-sample) error for the ensemble

EL,ϵ,θ

[
C(X, ĝA

L(x))
]
= EL,ϵ,θ

[∑
i

(yi − ĝA
L(xi, {θ}))

2

]
. (90)

As in the single estimator case, we decompose the error into a noise term, a bias-term, and a variance term. To see this,
note that

EL,ϵ,θ [C(X, ĝA
L(x))] = EL,ϵ,θ

[∑
i

(yi − f (xi)+ f (xi)− ĝA
L(xi, {θ}))

2

]
=

∑
i

EL,ϵ,θ [(yi − f (xi))2 + (f (xi)− ĝA
L(xi, {θ}))

2
+ 2(yi − f (xi))(f (xi)− ĝA

L(xi, {θ}))]

=

∑
i

σ 2
ϵi
+

∑
i

EL,θ [(f (xi)− ĝA
L(xi, {θ}))

2
], (91)

where in the last line we have used the fact that Eϵ[yi] = f (xi) to eliminate the last term. We can further decompose the
second term as

EL,θ [(f (xi)− ĝA
L(xi, {θ}))

2
] = EL,θ [(f (xi)− EL,θ [ĝA

L(xi, {θ})] + EL,θ [ĝA
L(xi, {θ})] − ĝA

L(xi, {θ}))
2
]

= EL,θ [(f (xi)− EL,θ [ĝA
L(xi, {θ})])

2
] + EL,θ [(EL,θ [ĝA

L(xi, {θ})] − ĝA
L(xi, {θ}))

2
]

+ 2EL,θ [(EL,θ [ĝA
L(xi, {θ})] − ĝA

L(xi, {θ}))(f (xi)− EL,θ [ĝA
L(xi, {θ})])]

= (f (xi)− EL,θ [ĝA
L(xi, {θ})])

2
+ EL,θ [(ĝA

L(xi, {θ})− EL,θ [ĝA
L(xi, {θ})])

2
]

≡ Bias2(xi)+ Var(xi), (92)

where we have defined the bias of an aggregate predictor as

Bias2(x) ≡ (f (x)− EL,θ [ĝA
L(x, {θ})])

2 (93)

and the variance as

Var(x) ≡ EL,θ [(ĝA
L(x, {θ})− EL,θ [ĝA

L(x, {θ})])
2
]. (94)

So far the calculation for ensembles is almost identical to that of a single estimator. However, since the aggregate
estimator is a sum of estimators, its variance implicitly depends on the correlations between the individual estimators in
the ensemble. Using the definition of the aggregate estimator Eq. (88) and the definitions in Eq. (89), we see that

Var(x) = EL,θ [(ĝA
L(x, {θ})− EL,θ [ĝA

L(x, {θ})])
2
]

=
1
M2

⎡⎣∑
m,m′

EL,θ [ĝL(x, θm)ĝL(x, θm′)] −M2
∑

i

[µL,θ (x)]2

⎤⎦
= ρ(x)σ 2

L,θ +
1− ρ(x)

M
σ 2
L,θ . (95)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 41

Fig. 28. Why combining models? On the left we show that by combining simple linear hypotheses (gray lines) one can achieve better and more
flexible classifications (dark line), which is in stark contrast to the case in which one only uses a single perceptron hypothesis as shown on the
right.

This last formula is the key to understanding the power of random ensembles. Notice that by using large ensembles
(M → ∞), we can significantly reduce the variance, and for completely random ensembles where the models are
uncorrelated (ρ(x) = 0), maximally suppresses the variance! Thus, using the aggregate predictor beats down fluctuations
due to finite-sample effects. The key, as the formula indicates, is to decorrelate the models as much as possible while
still using a very large ensemble. One can be worried that this comes at the expense of a very large bias. This turns out
not to be the case. When models in the ensemble are completely random, the bias of the aggregate predictor is just the
expected bias of a single model

Bias2(x) = (f (x)− EL,θ [ĝA
L(x, {θ})])

2

= (f (x)−
1
M

M∑
m=1

EL,θ [ĝL(x, θm)])2 (96)

= (f (x)− µL,θ)2. (97)

Thus, for a random ensemble one can always add more models without increasing the bias. This observation lies behind
the immense power of random forest methods discussed below. For other methods, such as bagging, we will see that the
bootstrapping procedure actually does increase the bias. But in many cases, this increase in bias is negligible compared
to the reduction in variance.

8.1.2. Summarizing the theory and intuitions behind ensembles
Before discussing specific methods, let us briefly summarize why ensembles have proven so successful in many ML

applications. Dietterich (Dietterich et al., 2000) identifies three distinct shortcomings that are fixed by ensemble methods:
statistical, computational, and representational. These are explained in the following discussion from Ref. (Louppe, 2014):

The first reason is statistical. When the learning set is too small, a learning algorithm can typically find several
models in the hypothesis space H that all give the same performance on the training data. Provided their predictions
are uncorrelated, averaging several models reduces the risk of choosing the wrong hypothesis. The second reason
is computational. Many learning algorithms rely on some greedy assumption or local search that may get stuck
in local optima. As such, an ensemble made of individual models built from many different starting points may
provide a better approximation of the true unknown function than any of the single models. Finally, the third
reason is representational. In most cases, for a learning set of finite size, the true function cannot be represented
by any of the candidate models in H. By combining several models in an ensemble, it may be possible to expand
the space of representable functions and to better model the true function.

The increase in representational power of ensembles can be simply visualized. For example, the classification task
shown in Fig. 28 reveals that it is more advantageous to combine a group of simple hypotheses (vertical or horizontal
lines) than to utilize a single arbitrary linear classifier. This of course comes with the price of introducing more parameters
to our learning procedure. But if the problem itself can never be learned through a simple hypothesis, then there is no
reason to avoid applying a more complex model. Since ensemble methods reduce the variance and are often easier to
train than a single complex model, they are a powerful way of increasing representational power (also called expressivity
in the ML literature).

Our analysis also gives several intuitions for how we should construct ensembles. First, we should try to randomize
ensemble construction as much as possible to reduce the correlations between predictors in the ensemble. This ensures
that our variance will be reduced while minimizing an increase in bias due to correlated errors. Second, the ensembles

42 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 29. Shown here is the procedure of empirical bootstrapping. The goal is to assess the accuracy of a statistical quantity of interest, which in
the main text is illustrated as the sample median M̂n(D). We start from a given dataset D and bootstrap B size n datasets D⋆(1), . . . ,D⋆(B) called
the bootstrap samples. Then we compute the statistical quantity of interest on these bootstrap samples to get the median M⋆(k)

n , for k = 1, . . . , B.
These are then used to evaluate the accuracy of M̂n(D) (see also box on Bootstrapping in main text). It can be shown that in the n→∞ limit the
distribution of M⋆(k)

n would be a Gaussian centered around M̂n(D) with variance σ 2 defined by Eq. (102) scales as 1/n.

will work best for procedures where the error of the predictor is dominated by the variance and not the bias. Thus, these
methods are especially well suited for unstable procedures whose results are sensitive to small changes in the training
dataset.

Finally, we note that although the discussion above was derived in the context of continuous predictors such as
regression, the basic intuition behind using ensembles applies equally well to classification tasks. Using an ensemble
allows one to reduce the variance by averaging the result of many independent classifiers. As with regression, this
procedure works best for unstable predictors for which errors are dominated by variance due to finite sampling rather
than bias.

8.2. Bagging

BAGGing, or Bootstrap AGGregation, first introduced by Leo Breiman, is one of the most widely employed and simplest
ensemble-inspired methods (Breiman, 1996). Imagine we have a very large dataset L that we could partition into M
smaller datasets which we label {L1, . . . ,LM}. If each partition is sufficiently large to learn a predictor, we can create an
ensemble aggregate predictor composed of predictors trained on each subset of the data. For continuous predictors like
regression, this is just the average of all the individual predictors:

ĝA
L(x) =

1
M

M∑
i=1

gLi (x). (98)

For classification tasks where each predictor predicts a class label j ∈ {1, . . . , J}, this is just a majority vote of all the
predictors,

ĝA
L(x) = argmax

j

M∑
i=1

I[gLi (x) = j], (99)

where I[gLi (x) = j] is an indicator function that is equal to one if gLi (x) = j and zero otherwise. From the theoretical
discussion above, we know that this can significantly reduce the variance without increasing the bias.

While simple and intuitive, this form of aggregation clearly works only when we have enough data in each partitioned
set Li. To see this, one can consider the extreme limit where Li contains exactly one point. In this case, the base
hypothesis gLi (x) (e.g. linear regressor) becomes extremely poor and the procedure above fails. One way to circumvent
this shortcoming is to resort to empirical bootstrapping, a resampling technique in statistics introduced by Efron (Efron,
1979) (see accompanying box and Fig. 29). The idea of empirical bootstrapping is to use sampling with replacement to
create new ‘‘bootstrapped’’ datasets {LBS1 , . . . , LBSM } from our original dataset L. These bootstrapped datasets share many

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 43

Fig. 30. Bagging applied to the perceptron learning algorithm (PLA). Training data size n = 500, number of bootstrap datasets B = 25, each contains
50 points. Colors correspond to different classes while the marker indicates how these points are labeled: cross for true label and circle for that
obtained by bagging. Each gray dashed line indicates the prediction made, based on every bootstrap set while the dark dashed black line is the
average of these.

points, but due to the sampling with replacement, are all somewhat different from each other. In the bagging procedure,
we create an aggregate estimator by replacing the M independent datasets by the M bootstrapped estimators:

ĝBS
L (x) =

1
M

M∑
i=1

gLBS
i
(x). (100)

and

ĝBS
L (x) = argmax

j

M∑
i=1

I[gLBS
i
(x) = j]. (101)

This bootstrapping procedure allows us to construct an approximate ensemble and thus reduce the variance. For unstable
predictors, this can significantly improve the predictive performance. The price we pay for using bootstrapped training
datasets, as opposed to really partitioning the dataset, is an increase in the bias of our bagged estimators. To see this, note
that as the number of datasets M goes to infinity, the expectation with respect to the bootstrapped samples converges
to the empirical distribution describing the training dataset pL(x) (e.g. a delta function at each datapoint in L) which in
general is different from the true generative distribution for the data p(x).

In Fig. 30 we demonstrate bagging with a perceptron (linear classifier) as the base classifier that constitutes the
elements of the ensemble. It is clear that, although each individual classifier in the ensemble performs poorly at
classification, bagging these estimators yields reasonably good predictive performance. This raises questions like why
bagging works and how many bootstrap samples are needed. As mentioned in the discussion above, bagging is effective on
‘‘unstable’’ learning algorithms where small changes in the training set result in large changes in predictions (Breiman,
1996). When the procedure is unstable, the prediction error is dominated by the variance and one can exploit the
aggregation component of bagging to reduce the prediction error. In contrast, for a stable procedure the accuracy is limited
by the bias introduced by using bootstrapped datasets. This means that there is an instability-to-stability transition point
beyond which bagging stops improving our prediction.

Brief Introduction to Bootstrapping
Suppose we are given a finite set of n data points D = {X1, . . . , Xn} as training samples and our job is to construct

measures of confidence for our sample estimates (e.g. the confidence interval or mean-squared error of sample median
estimator). To do so, one first samples n points with replacement from D to get a new set D⋆(1)

= {X⋆(1)
1 , . . . , X⋆(1)

n }, called
a bootstrap sample, which possibly contains repetitive elements. Then we repeat the same procedure to get in total B
such sets: D⋆(1), . . . ,D⋆(B). The next step is to use these B bootstrap sets to get the bootstrap estimate of the quantity of
interest. For example, let M⋆(k)

n = Median(D⋆(k)) be the sample median of bootstrap data D⋆(k). Then we can construct the

44 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

variance of the distribution of bootstrap medians as :

V̂arB(Mn) =
1

B− 1

B∑
k=1

(
M⋆(k)

n − M̄⋆
n

)2
, (102)

where

M̄⋆
n =

1
B

B∑
k=1

M⋆(k)
n (103)

is the mean of the median of all bootstrap samples. Specifically, Bickel and Freedman (Bickel and Freedman, 1981) and
Singh (Singh, 1981) showed that in the n→∞ limit, the distribution of the bootstrap estimate will be a Gaussian centered
around M̂n(D) = Median(X1, . . . , Xn) with standard deviation proportional to 1/

√
n. This means that the bootstrap

distribution M̂⋆
n − M̂n approximates fairly well the sampling distribution M̂n − M from which we obtain the training

data D. Note that M is the median based on which the true distribution D is generated. In other words, if we plot the
histogram of {M⋆(k)

n }
B
k=1, we will see that in the large n limit it can be well fitted by a Gaussian which sharp peaks at M̂n(D)

and vanishing variance whose definition is given by Eq. (102) (see Fig. 29).

8.3. Boosting

Another powerful and widely used ensemble method is Boosting. In bagging, the contribution of all predictors is
weighted equally in the bagged (aggregate) predictor. However, in principle, there are myriad ways to combine different
predictors. In some problems one might prefer to use an autocratic approach that emphasizes the best predictors, while
in others it might be better to opt for more ‘democratic’ ways as is done in bagging. In all cases, the idea is to build a
strong predictor by combining many weaker classifiers.

In boosting, an ensemble of weak classifiers {gk(x)} is combined into an aggregate, boosted classifier. However, unlike
bagging, each classifier is associated with a weight αk that indicates how much it contributes to the aggregate classifier

gA(x) =
M∑

K=1

αkgk(x), (104)

where
∑

k αk = 1. For the reasons outlined above, boosting, like all ensemble methods, works best when we combine
simple, high-variance classifiers into a more complex whole.

Here, we focus on ‘‘adaptive boosting’’ or AdaBoost, first proposed by Freund and Schapire in the mid 1990s (Freund
and Schapire, 1995; Freund et al., 1999; Schapire and Freund, 2012). The basic idea behind AdaBoost, is to form the
aggregate classifier in an iterative process. Importantly, at each iteration we reweight the error function to ‘‘highlight’’
data points where the aggregate classifier performs poorly (so that in the next round the procedure put more emphasis
on making those right.) In this way, we can successively ensure that our classifier has good performance over the whole
dataset.

We now discuss the AdaBoost procedure in greater detail. Suppose that we are given a dataset L = {(xi, yi), i =
1, . . . ,N} where xi ∈ X and yi ∈ Y = {+1,−1}. Our objective is to find an optimal hypothesis/classifier g : X → Y to
classify the data. Let H = {g : X → Y} be the family of classifiers available in our ensemble. In the AdaBoost setting,
we are concerned with the classifiers that perform somehow better than ‘‘tossing a fair coin’’. This means that for each
classifier, the family H can predict yi correctly at least half of the time.

We construct the boosted classifier as follows:

• Initialize wt=1(xn) = 1/N, n = 1, . . . ,N .
• For t = 1 · · · , T (desired termination step), do:

(1) Select a hypothesis gt ∈ H that minimizes the weighted error

ϵt =

N∑
i=1

wt (xi)1(gt (xi) ̸= yi) (105)

(2) Let αt =
1
2 ln 1−ϵt

ϵt
, update the weight for each data xn by

wt+1(xn)← wt (xn)
exp[−αtyngt (xn)]

Zt
,

where Zt =
∑N

n=1 wt (xn)e−αt yngt (xn) ensures all weights add up to unity.

• Output gA(x) = sign
(∑T

t=1 αtgt (x)
)

There are many theoretical and empirical studies on the performance of AdaBoost but they are beyond the scope of this
review. We refer interested readers to the extensive literature on boosting (Freund et al., 1999).

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 45

Fig. 31. Example of a decision tree. For an input observation x, its label y is predicted by traversing it from the root all the way down the leaves,
following branches it satisfies.

8.4. Random forests

We now briefly review one of the most widely used and versatile algorithms in data science and machine learning,
Random Forests (RF). Random Forests is an ensemble method widely deployed for complex classification tasks. A random
forest is composed of a family of (randomized) tree-based classifier decision trees (discussed below). Decision trees are
high-variance, weak classifiers that can be easily randomized, and as such, are ideally suited for ensemble-based methods.
Below, we give a brief high-level introduction to these ideas.

A decision tree uses a series of questions to hierarchically partition the data. Each branch of the decision tree consists
of a question that splits the data into smaller subsets (e.g. is some feature larger than a given number? See Fig. 31), with
the leaves (end points) of the tree corresponding to the ultimate partitions of the data. When using decision trees for
classification, the goal is to construct trees such that the partitions are informative about the class label (see Fig. 31).
It is clear that more complex decision trees lead to finer partitions that give improved performance on the training set.
However, this generally leads to over-fitting,10 limiting the out-of-sample performance. For this reason, in practice almost
all decision trees use some form of regularization (e.g. maximum depth for the tree) to control complexity and reduce
overfitting. Decision trees also have extremely high variance, and are often extremely sensitive to many details of the
training data. This is not surprising since decision trees are learned by partitioning the training data. Therefore, individual
decision trees are weak classifiers. However, these same properties make them ideal for incorporation in an ensemble
method.

In order to create an ensemble of decision trees, we must introduce a randomization procedure. As discussed above,
the power of ensembles to reduce variance only manifests when randomness reduces correlations between the classifiers
within the ensemble. Randomness is usually introduced into random forests in one of three distinct ways. The first is to use
bagging and simply ‘‘bag’’ the decision trees by training each decision tree on a different bootstrapped dataset (Breiman,
2001). Strictly speaking, this procedure does not constitute a random forest but rather a bagged decision tree. The second
procedure is to only use a different random subset of the features at each split in the tree. This ‘‘feature bagging’’ is
the distinguishing characteristic of random forests (Breiman, 2001; Ho, 1998). Using feature bagging reduces correlations
between decision trees that can arise when only a few features are strongly predictive of the class label. Finally, extremized
random forests (ERFs) combine ordinary and feature bagging with an extreme randomization procedure where splitting is
done randomly instead of using optimality criteria (see for details Refs. (Geurts et al., 2006; Louppe, 2014)). Even though
this reduces the predictive power of each individual decision tree, it still often improves the predictive power of the
ensemble because it dramatically reduces correlations between members and prevents overfitting.

Examples of the kind of decision surfaces found by decision trees, random forests, and Adaboost are shown in Fig. 32.
We invite the reader to check out the corresponding scikit-learn tutorial for more details of how these are implemented
in python (Pedregosa et al., 2011).

There are many different types of decision trees and training procedures. A full discussion of decision trees (and
random forests) lies beyond the scope of this review and we refer readers to the extensive literature on these topics (Lim
et al., 2000; Loh, 2011; Louppe, 2014). Recently, decision trees were applied in high-energy physics to study to learn
non-Higgsable gauge groups (Wang and Zhang, 2018).

8.5. Gradient boosted trees and XGBoost

Before we turn to applications of these techniques, we briefly discuss one final class of ensemble methods that has
become increasingly popular in the last few years: Gradient-Boosted Trees (Chen and Guestrin, 2016; Friedman, 2001).

10 One extreme limit is an n−node tree, with n being the number of data point in the dataset given.

http://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_iris.html

46 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 32. Classifying Iris dataset with aggregation models for scikit learn tutorial. This dataset seeks to classify iris flowers into three types (labeled
in red, blue, or yellow) based on a measurement of four features: septal length septal width, petal length, and petal width. To visualize the decision
surface, we trained classifiers using only two of the four potential features (e.g. septal length, septal width). Each row corresponds to a different
subset of two features and the columns to a Decision Tree with 10-fold CV (first column), Random Forest with 30 trees and 10-fold CV (second
column) and AdaBoost with 30 base hypotheses (third column). Decision surface learned is highlighted by color shades. See the corresponding
tutorial for more details (Pedregosa et al., 2011).

The basic idea of gradient-boosted trees is to use intuition from boosting and gradient descent (in particular Newton’s
method, see Section 4) to construct ensembles of decision trees. Like in boosting, the ensembles are created by iteratively
adding new decision trees to the ensemble. In gradient boosted trees, one critical component is the cost function that
measures the performance of our ensemble. At each step, we compute the gradient of the cost function with respect to
the predicted value of the ensemble and add trees that move us in the direction of the gradient. Of course, this requires a
clever way of mapping gradients to decision trees. We give a brief overview of how this is done within XGBoost (Extreme
Gradient Boosting), which has recently been applied, to classify and rank transcription factor binding in DNA sequences
(Li et al., 2018). Below, we follow closely the XGboost tutorial.

Our starting point is a clever parametrization of decision trees. Here, we use notation where the decision tree makes
continuous predictions (regression trees), though this can also easily be generalized to classification tasks. We parametrize
a decision tree j, denoted as gj(x), with T leaves by two quantities: a function q(x) that maps each data point to one of
the leaves of the tree, q : x ∈ Rd

→ {1, 2 . . . , T } and a weight vector w ∈ RT that assigns a predicted value to each leaf.
In other words, the jth decision tree’s prediction for the datapoint xi is simply: gj(xi) = wq(xi).

In addition to a parametrization of decision trees, we also have to specify a cost function which measures predictions.
The prediction of our ensemble for a datapoint (yi, xi) is given by

ŷi = gA(xi) =
M∑
j=1

gj(xi), gj ∈ F (106)

where gj(xi) is the prediction of the jth decision tree on datapoint xi, M is the number of members of the ensemble,
and F = {g(x) = wq(x)} is the space of trees. As discussed in the context of random trees above, without regularization,
decision trees tend to overfit the data by dividing it into smaller and smaller partitions. For this reason, our cost function
is generally composed of two terms, a term that measures the goodness of predictions on each datapoint, li(yi, ŷi), which
is assumed to be differentiable and convex, and for each tree in the ensemble, a regularization term Ω(gj) that does not
depend on the data:

C(X, gA) =
N∑
i=1

l(yi, ŷi)+
M∑
j=1

Ω(gj), (107)

where the index i runs over data points and the index j runs over decision trees in our ensemble. In XGBoost, the
regularization function is chosen to be

Ω(g) = γ T +
λ

2
||w||22, (108)

with γ and λ regularization parameters that must be chosen appropriately. Notice that this regularization penalizes both
large weights on the leaves (similar to L2-regularization) and having large partitions with many leaves.

http://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_iris.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html
https://xgboost.readthedocs.io/en/latest/model.html

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 47

As in boosting, we form the ensemble iteratively. For this reason, we define a family of predictors ŷ(t)i as

ŷ(t)i =

t∑
j=1

gj(xi) = ŷ(t−1)i + gt (xi). (109)

Note that by definition y(M)
i = gA(xi). The central idea is that for large t , each decision tree is a small perturbation to the

predictor (of order 1/T) and hence we can perform a Taylor expansion on our loss function to second order:

Ct =
N∑
i=1

l(yi, ŷ
(t−1)
i + gt (xi))+Ω(gt)

≈ Ct−1 +∆Ct , (110)

with

∆Ct = aigt (xi)+
1
2
bigt (xi)2 +Ω(gt), (111)

where

ai = ∂ŷ(t−1)i
l(yi, ŷ

(t−1)
i), (112)

bi = ∂2
ŷ(t−1)i

l(yi, ŷ
(t−1)
i). (113)

We then choose the tth decision tree gt to minimize ∆Ct . This is almost identical to how we derived the Newton method
update in the section on gradient descent, see Section 4.

We can actually derive an expression for the parameters of gt that minimize ∆Ct analytically. To simplify notation, it
is useful to define the set of points xi that get mapped to leaf j: Ij = {i : qt (xi) = j} and the functions Bj =

∑
i∈Ij

bi and
Aj =

∑
i∈Ij

ai. Notice that in terms of these quantities, we can write

∆Ct =
T∑

j=1

[Ajwj +
1
2
(Bj + λ)w2

j] + γ T , (114)

where we made the t-dependence of all parameters implicit. Note that λ comes from the regularization term, Ω(gt),
through Eq. (108). To find the optimal wj, just as in Newton’s method we take the gradient of the above expression with
respect to wj and set this equal to zero, to get

w
opt
j = −

Aj

Bj + λ
. (115)

Plugging this expression into ∆Ct gives

∆Copt
t = −

1
2

T∑
j=1

A2
j

Bj + λ
+ γ T . (116)

It is clear that ∆Copt
t measures the in-sample performance of gt and we should find the decision tree that minimizes this

value. In principle, one could enumerate all possible trees over the data and find the tree that minimizes ∆Copt
t . However,

in practice this is impossible. Instead, an approximate greedy algorithm is run that optimizes one level of the tree at a
time by trying to find optimal splits of the data. This leads to a tree that is a good local minimum of ∆Copt

t which is then
added to the ensemble. We emphasize that this is only a very high level sketch of how the algorithm works. In practice,
additional regularization such as shrinkage (Friedman, 2002) and feature subsampling (Breiman, 2001; Friedman et al.,
2003) is also used. In addition, there are many numerical and technical tricks used for the approximate algorithm and
how to find splits of the data that give good decision trees (Chen and Guestrin, 2016).

8.6. Applications to the Ising model and supersymmetry datasets

We now illustrate some of these ideas using two examples drawn from physics: (i) classifying the phases of the spin
configurations of the 2D-Ising model above and below the critical temperature using random forests and (ii) classifying
Monte-Carlo simulations of collision events in the SUSY dataset as supersymmetric or standard using an XGBoost
implementation of gradient-boosted trees. Both examples were analyzed in Section 7.3 using logistic regression. Here
we show that on the Ising dataset, the RFs perform significantly better than logistic regression models whereas gradient
boosted trees seem to yield an accuracy of about 80%, comparable to published results. The two accompanying Jupyter

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

48 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 33. Using Random Forests (RFs) to classify Ising Phases. (Top) Accuracy of RFs for classifying the phase of samples from the Ising mode for
the training set (blue), test set (red), and critical region (green) using coarse trees with a few leaves (triangles) and fine decision trees with many
leaves (filled circles). RFs were trained on samples from ordered and disordered phases but were not trained on samples from the critical region.
(Bottom) The time it takes to train RFs scales linearly with the number of estimators in the ensemble. For the upper panel, note that the train case
(blue) overlaps with the test case (red). Here ‘fine’ and ‘coarse’ refer to trees with 2 and 10,000 leaves, respectively. For implementation details, see
Jupyter notebooks 9.

notebooks discuss practical details of implementing these examples and the readers are encouraged to experiment with
the notebooks.

The Ising dataset used for classification by RFs here is identical to that used to study logistic regression in Section 7.3.
We assign a label to each state according to its phase: 0 if the state is disordered, and 1 if it is ordered. We divide the
dataset into three categories according to the temperature at which samples are drawn: ordered (T/J < 2.0), near-critical
(2.0 ≤ T/J ≤ 2.5) and disordered (T/J > 2.5) (see Fig. 20). We use the ordered and disordered states to train a random
forest and evaluate our learned model on a test set of unseen ordered and disordered states (test sets). We also ask how
well our RF can predict the phase of samples drawn in the critical region (i.e. predict whether the temperature of a critical
sample is above or below the critical temperature). Since our model is never trained on samples in the critical region,
prediction in this region is a test of the algorithm’s ability to generalize to new regions in phase space.

The results of fits using RFs to predict phases are shown in Fig. 33. We used two types of RF classifiers, one where the
ensemble consists of coarse decision trees with a few leaves and another with finer decision trees with many leaves (see
corresponding notebook). RFs have extremely high accuracy on the training and test sets (over 99%) for both coarse and
fine trees. However, notice that the RF consisting of coarse trees perform extremely poorly on samples from the critical
region whereas the RF with fine trees classifies critical samples with an accuracy of nearly 85%. Interestingly, and unlike
with logistic regression, this performance in the critical region requires almost no parameter tuning. This is because,
as discussed above, RFs are largely immune to overfitting problems even as the number of estimators in the ensemble
becomes large. Increasing the number of estimators in the ensemble does increase performance but at a large cost in
computational time (Fig. 33 bottom).

In the second application of ensemble methods to physics-related datasets, we used the XGBoost implementation of
gradient boosted trees to classify Monte-Carlo collisions from the SUSY dataset. With default parameters using a small
subset of the data (100,000 out of the full 5, 000, 000 samples), we were able to achieve a classification accuracy of about
79%, which could be improved to nearly 80% after some fine-tuning (see accompanying notebook). This is comparable to
published results (Baldi et al., 2014) and those obtained using logistic regression in earlier chapters. One nice feature of
ensemble methods such as XGBoost is that they automatically allow us to calculate feature scores (Fscores) that rank the
importance of various features for classification. The higher the Fscore, the more important the feature for classification.

https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/ML-Notebooks/HTML/NB_CVIII-randomforests_ising.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 49

Fig. 34. Feature Importance Scores in SUSY dataset from applying XGBoost to 100,000 samples. See Notebook 10 for more details.

Fig. 34 shows the feature scores from our XGBoost algorithm for the production of electrically-charged supersymmetric
particles (χ±) which decay to W bosons and an electrically neutral supersymmetric particle χ0, which is invisible to the
detector. The features are a mix of eight directly measurable quantities from the detector, as well as ten hand crafted
features chosen using physics knowledge. Consistent with the physics of these supersymmetric decays in the lepton
channel, we find that the most informative features for classification are the missing transverse energy along the vector
defined by the charged leptons (Axial MET) and the missing energy magnitude due to χ0.

9. An introduction to feed-forward deep neural networks (DNNs)

Over the last decade, neural networks have emerged as the one of most powerful and widely-used supervised learning
techniques. Deep Neural Networks (DNNs) have a long history (Bishop, 1995a; Schmidhuber, 2015), but re-emerged to
prominence after a rebranding as ‘‘Deep Learning’’ in the mid 2000s (Hinton et al., 2006; Hinton and Salakhutdinov, 2006).
DNNs truly caught the attention of the wider machine learning community and industry in 2012 when Alex Krizhevsky,
Ilya Sutskever, and Geoff Hinton used a GPU-based DNN model (AlexNet) to lower the error rate on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) by an incredible twelve percent from 28% to 16% (Krizhevsky et al., 2012).
Just three years later, a machine learning group from Microsoft achieved an error of 3.57% using an ultra-deep residual
neural network (ResNet) with 152 layers (He et al., 2016)! Since then, DNNs have become the workhorse technique for
many image and speech recognition based machine learning tasks. The large-scale industrial deployment of DNNs has
given rise to a number of high-level libraries and packages (Caffe, Keras, Pytorch, TensorFlow, etc.) that make it easy to
quickly code and deploy DNNs.

Conceptually, it is helpful to divide neural networks into four categories: (i) general purpose neural networks for
supervised learning, (ii) neural networks designed specifically for image processing, the most prominent example of this
class being Convolutional Neural Networks (CNNs), (iii) neural networks for sequential data such as Recurrent Neural
Networks (RNNs), and (iv) neural networks for unsupervised learning such as Deep Boltzmann Machines. Here, we
will limit our discussions to the first two categories (unsupervised learning is discussed later in the review). Though
increasingly important for many applications such as audio and speech recognition, for the sake of brevity, we omit a
discussion of sequential data and RNNs from this review. For an introduction to RNNs and LSTM networks see Chris
Olah’s blog, https://colah.github.io/posts/2015-08-Understanding-LSTMs/, and Chapter 13 of (Bishop, 2006) as well as the
introduction to RNNs in Chapter 10 of (Goodfellow et al., 2016) for sequential data.

Due to the number of recent books on deep learning (see for example Michael Nielsen’s introductory online
book (Nielsen, 2015) and the more advanced (Goodfellow et al., 2016)), the goal of this section is to give a high-level
introduction to the basic ideas behind DNNs, and provide some practical knowledge for coding simple neural nets for
supervised learning tasks (see the accompanying Notebooks). This section assumes the reader is familiar with the basic
concepts introduced in earlier sections on logistic and linear regression. Throughout, we strive to provide intuition behind
the inner workings of DNNs, as well as highlight limitations of present-day algorithms.

The influx of corporate and industrial interests has rapidly transformed the field in the last few years. This massive
influx of money and researchers has given rise to new dogmas and best practices that change rapidly. As with most
intellectual fields experiencing rapid expansion, many commonly accepted heuristics many turn out not to be as powerful
as thought (Wilson et al., 2017), and widely held beliefs not as universal as once imagined (Lee et al., 2017; Zhang et al.,
2016). This is especially true in modern neural networks where results are largely empirical and heuristic and lack the
firm footing of many earlier machine learning methods. For this reason, in this review we have chosen to emphasize tried

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://physics.bu.edu/~pankajm/MLnotebooks.html

50 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

and true fundamentals, while pointing out what, from our current vantage point, seem like promising new techniques. The
field is rapidly evolving and readers are urged to read papers and to implement these algorithms themselves in order to
gain a deep appreciation for the incredible power of modern neural networks, especially in the context of image, speech,
and natural language processing, as well as limitations of the current methods.

In physics, DNNs and CNNs have already found numerous applications. In statistical physics, they have been applied
to detect phase transitions in 2D Ising (Tanaka and Tomiya, 2017a) and Potts (Li et al., 2017) models, lattice gauge
theories (Wetzel and Scherzer, 2017), and different phases of polymers (Wei et al., 2017). It has also been shown that
deep neural networks can be used to learn free-energy landscapes (Sidky and Whitmer, 2017). At the same time, methods
from statistical physics have been applied to the field of deep learning to study the thermodynamic efficiency of learning
rules (Goldt and Seifert, 2017), to explore the hypothesis space that DNNs span, make analogies between training DNNs
and spin glasses (Baity-Jesi et al., 2018; Baldassi et al., 2017), and to characterize phase transitions with respect to network
topology in terms of errors (Li and Saad, 2017). In relativistic hydrodynamics, deep learning has been shown to capture
features of non-linear evolution and has the potential to accelerate numerical simulations (Huang et al., 2018), while in
mechanics CNNs have been used to predict eigenvalues of photonic crystals (Finol et al., 2018). Deep CNNs were employed
in lensing reconstruction of the cosmic microwave background (Caldeira et al., 2018). Recently, DNNs have been used to
improve the efficiency of Monte-Carlo algorithms (Shen et al., 2018).

Deep learning has also found interesting applications in quantum physics. Various quantum phase transitions (Arai
et al., 2017; Broecker et al., 2017; Iakovlev et al., 2018; Suchsland and Wessel, 2018; van Nieuwenburg et al., 2017b) can
be detected and studied using DNNs and CNNs, including the transverse-field Ising model (Ohtsuki and Ohtsuki, 2017),
topological phases (Yoshioka et al., 2017; Zhang et al., 2017a,b) and non-invasive topological quality control (Caio et al.,
2019). DNNs found applications even in non-equilibrium many-body localization (Schindler et al., 2017; van Nieuwenburg
et al., 2017a,b; Venderley et al., 2017), and the characterization of photoexcited quantum states (Shinjo et al., 2019).
Experimentally, DNNs were recently employed in cold atoms to identify critical points (Rem et al., 2018). Representing
quantum states as DNNs (Gao and Duan, 2017; Gao et al., 2017; Levine et al., 2017; Saito and Kato, 2017) and quantum
state tomography (Torlai et al., 2018) are among some of the impressive achievements to reveal the potential of deep
learning to facilitate the study of quantum systems. Machine learning techniques involving neural networks were also
used to study quantum and fault-tolerant error correction (Baireuther et al., 2017; Breuckmann and Ni, 2017; Chamberland
and Ronagh, 2018; Davaasuren et al., 2018; Krastanov and Jiang, 2017; Maskara et al., 2018), estimate rates of coherent
and incoherent quantum processes (Greplova et al., 2017), to obtain spectra of 1/f -noise in spin-qubit devices (Zhang and
Wang, 2018), and the recognition of state and charge configurations and auto-tuning in quantum dots (Kalantre et al.,
2017). In quantum information theory, it has been shown that one can perform gate decompositions with the help of
neural nets (Swaddle et al., 2017). In lattice quantum chromodynamics, DNNs have been used to learn action parameters
in regions of parameter space where principal component analysis fails (Shanahan et al., 2018). CNNs were applied to
data from a high-energy experiment to identify particle interactions in sampling calorimeters used commonly in neutrino
physics (Aurisano et al., 2016). Last but not least, DNNs also found place in the study of quantum control (Yang et al.,
2017), and in scattering theory to learn the s-wave scattering length (Wu et al., 2018) of potentials.

9.1. Neural network basics

Neural networks (also called neural nets) are neural-inspired nonlinear models for supervised learning. As we will see,
neural nets can be viewed as natural, more powerful extensions of supervised learning methods such as linear and logistic
regression and soft-max methods.

9.1.1. The basic building block: neurons
The basic unit of a neural net is a stylized ‘‘neuron’’ i that takes a vector of d input features x = (x1, x2, . . . , xd) and

produces a scalar output ai(x). A neural network consists of many such neurons stacked into layers, with the output of
one layer serving as the input for the next (see Fig. 35). The first layer in the neural net is called the input layer, the
middle layers are often called ‘‘hidden layers’’, and the final layer is called the output layer.

The exact function ai varies depending on the type of non-linearity used in the neural network. However, in essentially
all cases ai can be decomposed into a linear operation that weights the relative importance of the various inputs, and a
non-linear transformation σi(z) which is usually the same for all neurons. The linear transformation in almost all neural
networks takes the form of a dot product with a set of neuron-specific weights w(i)

= (w(i)
1 , w

(i)
2 , . . . , w

(i)
d) followed by

re-centering with a neuron-specific bias b(i):

z(i) = w(i)
· x+ b(i) = xT ·w(i), (117)

where x = (1, x) and w(i)
= (b(i), w(i)). In terms of z(i) and the non-linear function σi(z), we can write the full input–output

function as

ai(x) = σi(z(i)), (118)

see Fig. 35.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 51

Fig. 35. Basic architecture of neural networks. (A) The basic components of a neural network are stylized neurons consisting of a linear transformation
that weights the importance of various inputs, followed by a non-linear activation function. (b) Neurons are arranged into layers with the output
of one layer serving as the input to the next layer.

Fig. 36. Possible non-linear activation functions for neurons. In modern DNNs, it has become common to use non-linear functions that do not
saturate for large inputs (bottom row) rather than saturating functions (top row).

Historically in the neural network literature, common choices of nonlinearities included step-functions (perceptrons),
sigmoids (i.e. Fermi functions), and the hyperbolic tangent. More recently, it has become more common to use rectified
linear units (ReLUs), leaky rectified linear units (leaky ReLUs), and exponential linear units (ELUs) (see Fig. 36). Different
choices of non-linearities lead to different computational and training properties for neurons. The underlying reason for
this is that we train neural nets using gradient descent based methods, see Section 4, that require us to take derivatives
of the neural input–output function with respect to the weights w(i) and the bias b(i).

Notice that the derivatives of the aforementioned non-linearities σ (z) have very different properties. The derivative
of the perceptron is zero everywhere except where the input is zero. This discontinuous behavior makes it impossible to
train perceptrons using gradient descent. For this reason, until recently the most popular choice of non-linearity was the
tanh function or a sigmoid/Fermi function. However, this choice of non-linearity has a major drawback. When the input
weights become large, as they often do in training, the activation function saturates and the derivative of the output with
respect to the weights tends to zero since ∂σ/∂z → 0 for z ≫ 1. Such ‘‘vanishing gradients’’ are a feature of any saturating
activation function (top row of Fig. 36), making it harder to train deep networks. In contrast, for a non-saturating activation
function such as ReLUs or ELUs, the gradients stay finite even for large inputs.

9.1.2. Layering neurons to build deep networks: network architecture
The basic idea of all neural networks is to layer neurons in a hierarchical fashion, the general structure of which is

known as the network architecture (see Fig. 35). In the simplest feed-forward networks, each neuron in the input layer
of the neurons takes the inputs x and produces an output ai(x) that depends on its current weights, see Eq. (118). The

52 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

outputs of the input layer are then treated as the inputs to the next hidden layer. This is usually repeated several times
until one reaches the top or output layer. The output layer is almost always a simple classifier of the form discussed in
earlier sections: a logistic regression or soft-max function in the case of categorical data (i.e. discrete labels) or a linear
regression layer in the case of continuous outputs. Thus, the whole neural network can be thought of as a complicated
nonlinear transformation of the inputs x into an output ŷ that depends on the weights and biases of all the neurons in
the input, hidden, and output layers.

The use of hidden layers greatly expands the representational power of a neural net when compared with a simple
soft-max or linear regression network. Perhaps, the most formal expression of the increased representational power
of neural networks (also called the expressivity) is the universal approximation theorem which states that a neural
network with a single hidden layer can approximate any continuous, multi-input/multi-output function with arbitrary
accuracy. The reader is strongly urged to read the beautiful graphical proof of the theorem in Chapter 4 of Nielsen’s free
online book (Nielsen, 2015). The basic idea behind the proof is that hidden neurons allow neural networks to generate
step functions with arbitrary offsets and heights. These can then be added together to approximate arbitrary functions.
The proof also makes clear that the more complicated a function, the more hidden units (and free parameters) are
needed to approximate it. Hence, the applicability of the approximation theorem to practical situations should not be
overemphasized. In condensed matter physics, a good analogy are matrix product states, which can approximate any
quantum many-body state to an arbitrary accuracy, provided the bond dimension can be increased arbitrarily – a severe
requirement not met in any useful practical implementation of the theory.

Modern neural networks generally contain multiple hidden layers (hence the ‘‘deep’’ in deep learning). There are many
ideas of why such deep architectures are favorable for learning. Increasing the number of layers increases the number
of parameters and hence the representational power of neural networks. Indeed, recent numerical experiments suggests
that as long as the number of parameters is larger than the number of data points, certain classes of neural networks can
fit arbitrarily labeled random noise samples (Zhang et al., 2016). This suggests that large neural networks of the kind used
in practice can express highly complex functions. Adding hidden layers is also thought to allow neural nets to learn more
complex features from the data. Work on convolutional networks suggests that the first few layers of a neural network
learn simple, ‘‘low-level’’ features that are then combined into higher-level, more abstract features in the deeper layers.
Other works suggest that it is computationally and algorithmically easier to train deep networks rather than shallow,
wider nets, though this is still an area of major controversy and active research (Mhaskar et al., 2016).

Choosing the exact network architecture for a neural network remains an art that requires extensive numerical
experimentation and intuition, and is often times problem-specific. Both the number of hidden layers and the number
of neurons in each layer can affect the performance of a neural network. There seems to be no single recipe for the
right architecture for a neural net that works best. However, a general rule of thumb that seems to be emerging is that
the number of parameters in the neural net should be large enough to prevent under-fitting (see theoretical discussion
in (Advani and Saxe, 2017)).

Empirically, the best architecture for a problem depends on the task, the amount and type of data that is available, and
the computational resources at one’s disposal. Certain architectures are easier to train, while others might be better at
capturing complicated dependencies in the data and learning relevant input features. Finally, there have been numerous
works that move beyond the simple deep, feed-forward neural network architectures discussed here. For example, modern
neural networks for image segmentation often incorporate ‘‘skip connections’’ that skip layers of the neural network (He
et al., 2016). This allows information to directly propagate to a hidden or output layer, bypassing intermediate layers and
often improving performance.

9.2. Training deep networks

In the previous section, we introduced the basic architecture for neural networks. Here we discuss how to efficiently
train large neural networks. Luckily, the basic procedure for training neural nets is the same as we used for training
simpler supervised learning algorithms, such as logistic and linear regression: construct a cost/loss function and then use
gradient descent to minimize the cost function and find the optimal weights and biases. Neural networks differ from
these simpler supervised procedures in that generally they contain multiple hidden layers that make taking the gradient
computationally more difficult. We will return to this in Section 9.3 which discusses the ‘‘backpropagation’’ algorithm for
computing gradients.

Like all supervised learning procedures, the first thing one must do to train a neural network is to specify a loss
function. Given a data point (xi, yi), xi ∈ Rd+1, the neural network makes a prediction ŷi(w), where w are the parameters
of the neural network. Recall that in most cases, the top output layer of our neural net is either a continuous predictor
or a classifier that makes discrete (categorical) predictions. Depending on whether one wants to make continuous or
categorical predictions, one must utilize a different kind of loss function.

For continuous data, the loss functions that are commonly used to train neural networks are identical to those used
in linear regression, and include the mean squared error

E(w) =
1
n

n∑
i=1

(yi − ŷi(w))2, (119)

http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 53

where n is the number of data points, and the mean-absolute error (i.e. L1 norm)

E(w) =
1
n

∑
i

|yi − ŷi(w)|. (120)

The full cost function often includes additional terms that implement regularization (e.g. L1 or L2 regularizers), see
Section 6.

For categorical data, the most commonly used loss function is the cross-entropy (Eq. (76) and Eq. (81)), since the
output layer is often taken to be a logistic classifier for binary data with two types of labels, or a soft-max classifier if
there are more than two types of labels. The cross-entropy was already discussed extensively in earlier sections on logistic
regression and soft-max classifiers, see Section 7. Recall that for classification of binary data, the output of the top layer
of the neural network is the probability ŷi(w) = p(yi = 1|xi;w) that data point i is predicted to be in category 1. The
cross-entropy between the true labels yi ∈ {0, 1} and the predictions is given by

E(w) = −
n∑

i=1

yi log ŷi(w)+ (1− yi) log
[
1− ŷi(w)

]
.

More generally, for categorical data, y can take on M values so that y ∈ {0, 1, . . . ,M − 1}. For each datapoint i, define
a vector yim called a ‘one-hot’ vector, such that

yim =
{
1, if yi = m
0, otherwise.

(121)

We can also define the probability that the neural network assigns a datapoint to category m: ŷim(w) = p(yi = m|xi;w).
Then, the categorical cross-entropy is defined as

E(w) = −
n∑

i=1

M−1∑
m=0

yim log ŷim(w)

+ (1− yim) log
[
1− ŷim(w)

]
. (122)

As in linear and logistic regression, this loss function is often supplemented by additional terms that implement
regularization.

Having defined an architecture and a cost function, we must now train the model. Similar to other supervised
learning methods, we make use of gradient descent-based methods to optimize the cost function. Recall that the basic
idea of gradient descent is to update the parameters w to move in the direction of the gradient of the cost function
∇wE(w). In Section 4, we discussed numerous optimizers that implement variations of stochastic gradient descent (SGD,
Nesterov, RMSProp, Adam, etc.) Most modern neural network packages, such as Keras, allow the user to specify which of
these optimizers they would like to use in order to train the neural network. Depending on the architecture, data, and
computational resources, different optimizers may work better on the problem, though vanilla SGD is a good first choice.

Finally, we note that unlike in linear and logistic regression, calculating the gradients for a neural network requires a
specialized algorithm, called Backpropagation (often abbreviated backprop) which forms the heart of any neural network
training procedure. Backpropagation has been discovered multiple times independently but was popularized for modern
neural networks in 1985 (Rumelhart and Zipser, 1985). We will turn to the backpropagation algorithm in the next section.
Before reading it, the reader is strongly encouraged to play with Notebook 11 in order to gain some intuition about how
to build a DNN in practice using the high-level Keras Python package. Notebook 11 discusses a simple example where
we build a feed-forward deep neural network for classifying hand-written digits from the MNIST dataset. Figs. 37 and 38
show the accuracy and the loss as a function of the training episodes.

9.3. The backpropagation algorithm

In the last section, we saw how to deploy a high-level package, Keras, to design and train a simple neural network. This
training procedure requires us to be able to calculate the derivative of the cost function with respect to all the parameters
of the neural network (the weights and biases of all the neurons in the input, hidden, and visible layers). A brute force
calculation is out of the question since it requires us to calculate as many gradients as parameters at each step of the
gradient descent. The backpropagation algorithm (Rumelhart and Zipser, 1985) is a clever procedure that exploits the
layered structure of neural networks to more efficiently compute gradients (for a more detailed discussion with Python
code examples see Chapter 2 of (Nielsen, 2015)).

9.3.1. Deriving and implementing the backpropagation equations
At its core, backpropagation is simply the ordinary chain rule for partial differentiation, and can be summarized using

four equations. In order to see this, we must first establish some useful notation. We will assume that there are L layers
in our network with l = 1, . . . , L indexing the layer. Denote by wl

jk the weight for the connection from the kth neuron in

http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html

54 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 37. Model accuracy of a DNN to study the MNIST problem as a function of the training epochs (see Notebook 11). Besides the input and output
layers, the DNN has four layers of size (100,400,400,50) with different nonlinearities σ (z).

Fig. 38. Model loss of a DNN to study the MNIST problem as a function of the training epochs (see Notebook 11). Besides the input and output
layers, the DNN has four layers of size (100,400,400,50) with different nonlinearities σ (z).

layer l− 1 to the jth neuron in layer l. We denote the bias of this neuron by blj. By construction, in a feed-forward neural
network the activation alj of the jth neuron in the lth layer can be related to the activities of the neurons in the layer l−1
by the equation

alj = σ

(∑
k

wl
jka

l−1
k + blj

)
= σ (z lj), (123)

where we have defined the linear weighted sum

z lj =
∑
k

wl
jka

l−1
k + blj. (124)

By definition, the cost function E depends directly on the activities of the output layer aLj . It of course also indirectly
depends on all the activities of neurons in lower layers in the neural network through iteration of Eq. (123). Let us define
the error ∆L

j of the jth neuron in the Lth layer as the change in cost function with respect to the weighted input zLj

∆L
j =

∂E
∂zLj

. (125)

This definition is the first of the four backpropagation equations.

http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 55

We can analogously define the error of neuron j in layer l, ∆l
j, as the change in the cost function w.r.t. the weighted

input z lj :

∆l
j =

∂E
∂z lj
=

∂E
∂alj

σ ′(z lj), (I)

where σ ′(x) denotes the derivative of the non-linearity σ (·) with respect to its input evaluated at x. Notice that the error
function ∆l

j can also be interpreted as the partial derivative of the cost function with respect to the bias blj, since

∆l
j =

∂E
∂z lj
=

∂E
∂blj

∂blj
∂z lj
=

∂E
∂blj

, (II)

where in the last line we have used the fact that ∂blj/∂z
l
j = 1, cf. Eq. (124). This is the second of the four backpropagation

equations.
We now derive the final two backpropagation equations using the chain rule. Since the error depends on neurons in

layer l only through the activation of neurons in the subsequent layer l+ 1, we can use the chain rule to write

∆l
j =

∂E
∂z lj
=

∑
k

∂E
∂z l+1k

∂z l+1k

∂z lj

=

∑
k

∆l+1
k

∂z l+1k

∂z lj

=

(∑
k

∆l+1
k wl+1

kj

)
σ ′(z lj). (III)

This is the third backpropagation equation. The final equation can be derived by differentiating of the cost function with
respect to the weight wl

jk as

∂E
∂wl

jk
=

∂E
∂z lj

∂z lj
∂wl

jk
= ∆l

ja
l−1
k (IV)

Together, Eqs. (I), (II), (III), and (IV) define the four backpropagation equations relating the gradients of the activations
of various neurons alj, the weighted inputs z lj =

∑
k wl

jka
l−1
k + blj, and the errors ∆l

j. These equations can be combined into
a simple, computationally efficient algorithm to calculate the gradient with respect to all parameters (Nielsen, 2015).

The Backpropagation Algorithm

1. Activation at input layer: calculate the activations a1j of all the neurons in the input layer.
2. Feedforward: starting with the first layer, exploit the feed-forward architecture through Eq. (123) to compute z l

and al for each subsequent layer.
3. Error at top layer: calculate the error of the top layer using Eq. (I). This requires to know the expression for the

derivative of both the cost function E(w) = E(aL) and the activation function σ (z).
4. ‘‘Backpropagate’’ the error: use Eq. (III) to propagate the error backwards and calculate ∆l

j for all layers.
5. Calculate gradient: use Eqs. (II) and (IV) to calculate ∂E

∂blj
and ∂E

∂wl
jk
.

We can now see where the name backpropagation comes from. The algorithm consists of a forward pass from the
bottom layer to the top layer where one calculates the weighted inputs and activations of all the neurons. One then
backpropagates the error starting with the top layer down to the input layer and uses these errors to calculate the
desired gradients. This description makes clear the incredible utility and computational efficiency of the backpropagation
algorithm. We can calculate all the derivatives using a single ‘‘forward’’ and ‘‘backward’’ pass of the neural network. This
computational efficiency is crucial since we must calculate the gradient with respect to all parameters of the neural net at
each step of gradient descent. These basic ideas also underly almost all modern automatic differentiation packages such
as Autograd (Pytorch).

9.3.2. Computing gradients in deep networks: what can go wrong with backprop?
Armed with backpropagation and gradient descent, it seems like it should be straightforward to train any neural

network. However, until fairly recently it was widely believed that training deep networks was an extremely difficult task.
One reason for this was that even with backpropagation, gradient descent on large networks is extremely computationally
expensive. However, the great advances in computational hardware (and the widespread use of GPUs) has made this a
much less vexing problem than even a decade ago. It is hard to understate the impact these advances in computing have
had on the practical utility of neural networks.

56 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

On a more technical and mathematical note, another problem that occurs in deep networks, which transmit infor-
mation through many layers, is that gradients can vanish or explode. This is, appropriately, known as the problem of
vanishing or exploding gradients. This problem is especially pronounced in neural networks that try to capture long-range
dependencies, such as Recurrent Neural Networks for sequential data. We can illustrate this problem by considering a
simple network with one neuron in each layer. We further assume that all weights are equal, and denote them by w. The
behavior of the backpropagation equations for such a network can be inferred from repeatedly using Eq. (III):

∆1
j = ∆L

j

L−1∏
j=0

wσ ′(zj) = ∆L
j (w)L

L−1∏
j=0

σ ′(zj), (126)

where ∆L
j is the error in the Lth topmost layer, and (w)L is the weight to the power L. Let us now also assume that the

magnitude σ ′(zj) is fairly constant and we can approximate σ ′(zj) ≈ σ ′0. In this case, notice that for large L, the error
∆1

j has very different behavior depending on the value of wσ ′0. If wσ ′0 > 1, the errors and the gradient blow up. On the
other hand, if wσ ′0 < 1 the errors and gradients vanish. Only when the weights satisfy wσ ′0 ≈ 1 and the neurons are not
saturated will the gradient stay well behaved for deep networks.

This basic behavior holds true even in more complicated networks. Rather than considering a single weight, we can
ask about the eigenvalues (or singular values) of the weight matrices wl

jk. In order for the gradients to be finite for deep
networks, we need these eigenvalues to stay near unity even after many gradient descent steps. In modern feedforward
and ReLU neural networks, this is achieved by initializing the weights for the gradient descent in clever ways and using
non-linearities that do not saturate, such as ReLUs (recall that for saturating functions, σ ′ → 0, which will cause the
gradient to vanish). Proper initialization and regularization schemes such as gradient clipping (cutting-off gradients with
very large values), and batch normalization also help mitigate the vanishing and exploding gradient problem.

9.4. Regularizing neural networks and other practical considerations

DNNs, like all supervised learning algorithms, must navigate the bias–variance tradeoff. Regularization techniques play
an important role in ensuring that DNNs generalize well to new data. The last five years have seen a wealth of new
specialized regularization techniques for DNNs beyond the simple L1 and L2 penalties discussed in the context of linear and
logistic regression, see Sections 6 and 7. These new techniques include Dropout and Batch Normalization. In addition to
these specialized regularization techniques, large DNNs seem especially well-suited to implicit regularization that already
takes place in the Stochastic Gradient Descent (SGD) (Wilson et al., 2017), cf. Section 4. The implicit stochasticity and
local nature of SGD often prevent overfitting of spurious correlations in the training data, especially when combined with
techniques such as Early Stopping. In this section, we give a brief overview of these regularization techniques.

9.4.1. Implicit regularization using SGD: initialization, hyper-parameter tuning, and Early Stopping
The most commonly employed and effective optimizer for training neural networks is SGD (see Section 4 for other

alternatives). SGD acts as an implicit regularizer by introducing stochasticity (from the use of mini-batches) that prevents
overfitting. In order to achieve good performance, it is important that the weight initialization is chosen randomly, in
order to break any leftover symmetries. One common choice is drawing the weights from a Gaussian centered around
zero with some variance that scales inversely with number of inputs to the neuron (He et al., 2015; Sutskever et al., 2013).
Since SGD is a local procedure, as networks get deeper, choosing a good weight initialization becomes increasingly important
to ensure that the gradients are well behaved. Choosing an initialization with a variance that is too large or too small will
cause gradients to vanish and the network to train poorly — even a factor of 2 can make a huge difference in practice (He
et al., 2015). For this reason, it is important to experiment with different variances.

The second important thing is to appropriately choose the learning rate or step-size by searching over five logarithmic
grid points (Wilson et al., 2017). If the best performance occurs at the edge of the grid, repeat this procedure until the
optimal learning rate is in the middle of the grid parameters. Finally, it is common to center or whiten the input data
(just as we did for linear and logistic regression).

Another important form of regularization that is often employed in practice is Early Stopping. The idea of Early Stopping
is to divide the training data into two portions, the dataset we train on, and a smaller validation set that serves as a proxy
for out-of-sample performance on the test set. As we train the model, we plot both the training error and the validation
error. We expect the training error to continuously decrease during training. However, the validation error will eventually
increase due to overfitting. The basic idea of early stopping is to halt the training procedure when the validation error
starts to rise. This Early Stopping procedure ensures that we stop the training and avoid fitting sample specific features
in the data. Early Stopping is a widely used essential tool in the deep learning regularization toolbox.

9.4.2. Dropout
Another important regularization schemed that has been widely adopted in the neural networks literature is

Dropout (Srivastava et al., 2014). The basic idea of Dropout is to prevent overfitting by reducing spurious correlations
between neurons within the network by introducing a randomization procedure similar to that underlying ensemble
models such as Bagging. Recall that the basic idea behind ensemble methods is to train an ensemble of models that are

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 57

Fig. 39. Dropout. During the training procedure neurons are randomly ‘‘dropped out’’ of the neural network with some probability p giving rise
to a thinned network. This prevents overfitting by reducing correlations among neurons and reducing the variance in a method similar in spirit to
ensemble methods.

created using a randomization procedure to ensure that the members of the ensemble are uncorrelated, see Section 8.
This reduces the variance of statistical predictions without creating too much additional bias.

In the context of neural networks, it is extremely costly to train an ensemble of networks, both from the point of view of
the amount of data needed, as well as computational resources and parameter tuning required. Dropout circumnavigates
these problems by randomly dropping out neurons (along with their connections) from the neural network during each
step of the training (see Fig. 39). Typically, for each mini-batch in the gradient descent step, a neuron is dropped from the
neural network with a probability p. The gradient descent step is then performed only on the weights of the ‘‘thinned’’
network of individual predictors.

Since during training, on average weights are only present a fraction p of the time, predictions are made by reweighing
the weights by p: wtest = pwtrain. The learned weights can be viewed as some ‘‘average’’ weight over all possible thinned
neural network. This averaging of weights is similar in spirit to the Bagging procedure discussed in the context of ensemble
models, see Section 8.

9.4.3. Batch Normalization
Batch Normalization is a regularization scheme that has been quickly adopted by the neural network community since

its introduction in 2015 (Ioffe and Szegedy, 2015). The basic inspiration behind Batch Normalization is the long-known
observation that training in neural networks works best when the inputs are centered around zero with respect to the
bias. The reason for this is that it prevents neurons from saturating and gradients from vanishing in deep nets. In the
absence of such centering, changes in parameters in lower layers can give rise to saturation effects in higher layers, and
vanishing gradients. The idea of Batch Normalization is to introduce additional new ‘‘BatchNorm’’ layers that standardize
the inputs by the mean and variance of the mini-batch.

Consider a layer l with d neurons whose inputs are (z l1, . . . , z
l
d). We standardize each dimension so that

z lk −→ ẑ lk =
z lk − E[z lk]√

Var[z lk]
, (127)

where the mean and variance are taken over all samples in the mini-batch. One problem with this procedure is that it
may change the representational power of the neural network. For example, for tanh non-linearities, it may force the
network to live purely in the linear regime around z = 0. Since non-linearities are crucial to the representational power
of DNNs, this could dramatically alter the power of the DNN.

For this reason, one introduces two new parameters γ l
k and β l

k for each neuron that can additionally shift and scale
the normalized input

ẑ lk −→ ẑlk = γ l
k ẑ

l
k + β l

k. (128)

One can think of Eqs. (127) and (128) as adding new extra layers ẑlk in the deep net architecture. Hence, the new
parameters γ l

k and β l
k can be learned just like the weights and biases using backpropagation (since this is just an extra layer

for the chain rule). We initialize the neural network so that at the beginning of training the inputs are being standardized.
Backpropagation then adjusts γ and β during training.

In practice, Batch Normalization considerably improves the learning speed by preventing gradients from vanishing.
However, it also seems to serve as a powerful regularizer for reasons that are not fully understood. One plausible
explanation is that in batch normalization, the gradient for a sample depends not only on the sample itself but also on

58 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

all the properties of the mini-batch. Since a single sample can occur in different mini-batches, this introduces additional
randomness into the training procedure which seems to help regularize training.

9.5. Deep neural networks in practice: examples

Now that we have gained sufficient high-level background knowledge about deep neural nets, let us discuss how to
use them in practice.

9.5.1. Deep learning packages
In Notebook 11, we demonstrated that the numerical implementation of DNNs is greatly facilitated by open source

python packages, such as Keras, TensorFlow, Pytorch, and others. The complexity and learning curves for these packages
differ, depending on the user’s level of familiarity with Python. The reader should keep mind that there are DNN packages
written in other languages, such as Caffe which uses C++, but we do not discuss them in this review for brevity.

Keras is a high-level framework which does not require any knowledge about the inner workings of the underlying
deep learning algorithms. Coding DNNs in Keras is particularly simple, see Notebook 11, and allows one to quickly
grasp the big picture behind the theoretical concepts which we introduced above. However, for advanced applications,
which may require more direct control over the operations in between the layers, Keras’ high-level design may turn out
insufficient.

If one opens up the Keras black box, one will find that it wraps the functionality of another package — TensorFlow.11
Over the last years, TensorFlow, which is supported by Google, has been gaining popularity and has become the
preferred library for deep learning. It is frequently used in Kaggle competitions, university classes, and industry. In
TensorFlow one constructs data flow graphs, the nodes of which represent mathematical operations, while the edges
encode multidimensional tensors (data arrays). A deep neural net can then be thought of as a graph with a particular
architecture and connectivity. One needs to understand this concept well before one can truly unleash TensorFlow’s full
potential. The learning curve can sometimes be rather steep for TensorFlow beginners, and requires a certain degree of
perseverance and devoted time to internalize the underlying ideas.

There are, however, many other open source packages which allow for control over the inter- and intra-layer
operations, without the need to introduce computational graphs. Such an example is Pytorch, which offers libraries for
automatic differentiation of tensors at GPU speed. As we discussed above, manipulating neural nets boils down to fast
array multiplication and contraction operations and, therefore, the torch.nn library often does the job of providing
enough access and controllability to manipulate the linear algebra operations underlying deep neural nets.

For the benefit of the reader, we have prepared Jupyter notebooks for DNNs using all three packages for the deep
learning problems we discuss below. We invite the reader to carefully examine the differences in the code which should
help them decide on which package they prefer to use.

9.5.2. Approaching the learning problem
Let us now analyze a typical procedure for using neural networks to solve supervised learning problems. As can be

seen already from the code snippets in Notebook 11, constructing a deep neural network to solve ML problems is a
multiple-stage process. Generally, one can identify a set of key steps:

1. Collect and pre-process the data.
2. Define the model and its architecture.
3. Choose the cost function and the optimizer.
4. Train the model.
5. Evaluate and study the model performance on the test data.
6. Use the validation data to adjust the hyperparameters (and, if necessary, network architecture) to optimize

performance for the specific dataset.

At this point a few remarks are in order. While we treat Step 1 above as consisting mainly of loading and reshaping a
dataset prepared ahead of time, we emphasize that obtaining a sufficient amount of data is a typical challenge in many
applications. Oftentimes insufficient data serves as a major bottleneck on the ultimate performance of DNNs. In such cases
one can consider data augmentation, i.e. distorting data samples from the existing dataset in some way to enhance size
the dataset. Obviously, if one knows how to do this, one already has partial information about the important features in
the data.

One of the first questions we are typically faced with is how to determine the sizes of the training and test datasets.
The MNIST dataset, which has 10 classification categories, uses 80% of the available data for training and 20% for testing.
On the other hand, the ImageNet data which has 1000 categories is split 50% − 50%. As a rule of thumb, the more
classification categories there are in the task, the closer the sizes of the training and test datasets should be in order
to prevent overfitting. Once the size of the training set is fixed, it is common to reserve 20% of it for validation, which is
used to fine-tune the hyperparameters of the model.

11 While Keras can also be used with a Theano backend, we do not discuss this here since Theano support has been discontinued.

http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
https://keras.io/
https://www.tensorflow.org/
http://pytorch.org/
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://physics.bu.edu/~pankajm/MLnotebooks.html
http://www.image-net.org/

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 59

Also related to data preprocessing is the standardization of the dataset. It has been found empirically that if the original
values of the data differ by orders of magnitude, training can be slowed down or impeded. This can be traced back to the
vanishing and exploding gradient problem in backprop discussed in Section 9.3. To avoid such unwanted effects, one often
resorts to two tricks: (i) all data should be mean-centered, i.e. from every data point we subtract the mean of the entire
dataset, and (ii) rescale the data, for which there are two ways: if the data is approximately normally distributed, one
can rescale by the standard deviation. Otherwise, it is typically rescaled by the maximum absolute value so the rescaled
data lies within the interval [−1, 1]. Rescaling ensures that the weights of the DNN are of a similar order of magnitude
(notice the similarity of this idea to Batch Normalization, cf. Section 9.4.3).

The next issue is how to choose the right hyperparameters to start training the model. According to Bengio, the optimal
learning rate is often an order of magnitude lower than the smallest learning rate that blows up the loss (Bengio, 2012).
One should also keep in mind that, depending on how ambitious of a problem one is dealing with, training the model
can take a considerable amount of time. This can severely slow down any progress on improving the model in Step 6.
Therefore, it is usually a good idea to play with a small enough fraction of the training data to get a rough feeling about the
correct hyperparameter regimes, the usefulness of the DNN architecture, and to debug the code. The size of this small ‘play
set’ should be such that training on it can be done fast and in real time to allow to quickly adjust the hyperparameters.
A typical strategy of exploring the hyperparameter landscape is to use grid searches.

Whereas it is always possible to view Steps 1–5 as generic and independent of the particular problem we are trying to
solve, it is only when these steps are put together in Step 6 that the real benefit of deep learning is revealed, compared
to less sophisticated methods such as regression or bagging, see Section 6, 7 and 8. The optimal choice of network
architecture, cost function, and optimizer is determined by the properties of the training and test datasets, which are
usually revealed when we try to improve the model.

While there is no ‘‘one-size-fits-them-all’’ recipe to approach ML problems, we believe that the above list gives a good
overview and can be a useful guideline to the layman. Furthermore, as it becomes clear, this ‘recipe’ can be applied to
generic supervised learning tasks, not just DNNs. We refer the reader to Section 11 for more useful hints and tips on how
to use the validation data during the training process.

9.5.3. SUSY dataset
As a first example from physics, we discuss a DNN approach to the SUSY dataset already introduced in the context

of logistic regression in Section 7.3.2, and Bagging in Section 8.6. For a detailed description of the SUSY dataset and the
corresponding classification problem, we refer the reader to Section 7.3.2. There is an interest in using deep learning
methods to automate the discovery of collision features from data. Benchmark results using Bayesian Decision Trees from
a standard physics package, and five-layer neural networks using Dropout were presented in the original paper (Baldi
et al., 2014); they demonstrate the ability of deep learning to bypass the need of using hand-crafted high-level features.
Our goal here is to study systematically the accuracy of a DNN classifier as a function of the learning rate and the dataset
size.

Unlike the MNIST example where we used Keras, here we use the opportunity to introduce the Pytorch package, see
the corresponding notebook. We leave the discussion of the code-specific details for the accompanying notebook.

To classify the SUSY collision events, we construct a DNN with two dense hidden layers of 200 and 100 neurons,
respectively. We use ReLU activation between the input and the hidden layers, and a softmax output layer. We apply
dropout regularization on the weights of the DNN. Similar to MNIST, we use the cross-entropy as a cost function and
minimize it using SGD with batches of size 10% of the training data size. We train the DNN for 10 epochs.

Fig. 40 shows the accuracy of our DNN on the test data as a function of the learning rate and the size of the dataset.
It is considered good practice to start with a logarithmic scale to search through the hyperparameters, to get an overall
idea for the order of magnitude of the optimal values. In this example, the performance peaks at the largest size of the
dataset and a learning rate of 0.1, and is of the order of 80%. Since the optimal performance is obtained at the edge of the
grid, we encourage the reader to extend the grid size to beat our result. For comparison, in the original study (Baldi et al.,
2014), the authors achieved ≈89% by using the entire dataset with 5,000,000 points and a more sophisticated network
architecture, trained using GPUs.

9.5.4. Phases of the 2D Ising model
As a second example from physics, we discuss a DNN approach to the Ising dataset introduced in Section 7.3.1. We study

the problem of classifying the states of the 2D Ising model with a DNN (Tanaka and Tomiya, 2017a), focusing on the model
performance as a function of both the number of hidden neurons and the learning rate. The discussion is accompanied
by a notebook written in TensorFlow. As in the previous example, the interested reader can find the discussion of the
code-specific details in the notebook.

To classify whether a given spin configuration is in the ordered or disordered phase, we construct a minimalistic model
for a DNN with a single hidden layer containing a number of hidden neurons. The network architecture thus includes a
ReLU-activated input layer, the hidden layer, and the softmax output layer. We pick the categorical cross-entropy as a
cost function and minimize it using SGD with mini-batches of size 100. We train the DNN for 100 epochs.

Fig. 41 shows the outcome of a grid search over a log-spaced learning rate and the number of neurons in the hidden
layer. We see that about 10 neurons are enough at a learning rate of 0.1 to get to a very high accuracy on the test set.
However, if we aim at capturing the physics close to criticality, clearly more neurons are required to reliably learn the
more complex correlations in the Ising configurations.

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

60 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 40. Grid search results for the test set accuracy of the DNN for the SUSY problem as a function of the learning rate and the size of the dataset.
The data used includes all high- and low-level features.

Fig. 41. Grid search results for the test set accuracy (top) and the critical set accuracy (bottom) of the DNN for the Ising classification problem as
a function of the learning rate and the number of hidden neurons.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 61

Fig. 42. Architecture of a Convolutional Neural Network (CNN). The neurons in a CNN are arranged in three dimensions: height (H), width (W),
and depth (D). For the input layer, the depth corresponds to the number of channels (in this case 3 for RGB images). Neurons in the convolutional
layers calculate the convolution of the image with a local spatial filter (e.g. 3 × 3 pixel grid, times 3 channels for first layer) at a given location in
the spatial (W ,H)-plane. The depth D of the convolutional layer corresponds to the number of filters used in the convolutional layer. Neurons at
the same depth correspond to the same filter. Neurons in the convolutional layer mix inputs at different depths but preserve the spatial location.
Pooling layers perform a spatial coarse graining (pooling step) at each depth to give a smaller height and width while preserving the depth. The
convolutional and pooling layers are followed by a fully connected layer and classifier (not shown).

10. Convolutional Neural Networks (CNNS)

One of the core lessons of physics is that we should exploit symmetries and invariances when analyzing physical
systems. Properties such as locality and translational invariance are often built directly into the physical laws. Our
statistical physics models often directly incorporate everything we know about the physical system being analyzed. For
example, we know that in many cases it is sufficient to consider only local couplings in our Hamiltonians, or work
directly in momentum space if the system is translationally invariant. This basic idea, tailoring our analysis to exploit
additional structure, is a key feature of modern physical theories from general relativity, through gauge theories, to critical
phenomena.

Like physical systems, many datasets and supervised learning tasks also possess additional symmetries and structure.
For instance, consider a supervised learning task where we want to label images from some dataset as being pictures of
cats or not. Our statistical procedure must first learn features associated with cats. Because a cat is a physical object, we
know that these features are likely to be local (groups of neighboring pixels in the two-dimensional image corresponding
to whiskers, tails, eyes, etc.). We also know that the cat can be anywhere in the image. Thus, it does not really matter
where in the picture these features occur (though relative positions of features likely do matter). This is a manifestation of
translational invariance that is built into our supervised learning task. This example makes clear that, like many physical
systems, many ML tasks (especially in the context of computer vision and image processing) also possess additional
structure, such as locality and translation invariance.

The all-to-all coupled neural networks in the previous section fail to exploit this additional structure. For example,
consider the image of the digit ‘four’ from the MNIST dataset shown in Fig. 26. In the all-to-all coupled neural networks
used there, the 28× 28 image was considered a one-dimensional vector of size 282

= 796. This clearly throws away lots of
the spatial information contained in the image. Not surprisingly, the neural networks community realized these problems
and designed a class of neural network architectures, convolutional neural networks or CNNs, that take advantage of this
additional structure (locality and translational invariance) (LeCun et al., 1995). Furthermore, what is especially interesting
from a physics perspective is the recent finding that these CNN architectures are intimately related to models such as
tensor networks (Stoudenmire, 2018; Stoudenmire and Schwab, 2016) and, in particular, MERA-like architectures that
are commonly used in physical models for quantum condensed matter systems (Levine et al., 2017).

10.1. The structure of convolutional neural networks

A convolutional neural network is a translationally invariant neural network that respects locality of the input data.
CNNs are the backbone of many modern deep learning applications and here we just give a high-level overview of CNNs
that should allow the reader to delve directly into the specialized literature. The reader is also strongly encouraged to
consult the excellent, succinct notes for the Stanford CS231n Convolutional Neural Networks class developed by Andrej
Karpathy and Fei-Fei Li (https://cs231n.github.io/). We have drawn heavily on the pedagogical style of these notes in
crafting this section.

There are two kinds of basic layers that make up a CNN: a convolution layer that computes the convolution of the input
with a bank of filters (as a mathematical operation, see this practical guide to image kernels: http://setosa.io/ev/image-
kernels/), and pooling layers that coarse-grain the input while maintaining locality and spatial structure, see Fig. 42. For
two-dimensional data, a layer l is characterized by three numbers: height Hl, width Wl, and depth Dl.12 The height and

12 The depth Dl is often called ‘‘number of channels’’, to distinguish it from the depth of the neural network itself, i.e. the total number of layers
(which can be convolutional, pooling or fully-connected), cf. Fig. 42.

https://cs231n.github.io/
http://setosa.io/ev/image-kernels/
http://setosa.io/ev/image-kernels/
http://setosa.io/ev/image-kernels/

62 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 43. Two examples to illustrate a one-dimensional convolutional layer with ReLU nonlinearity. Convolutional layer for a spatial filter of size F
for a one-dimensional input of width W with stride S and padding P followed by a ReLU non-linearity.

width correspond to the sizes of the two-dimensional spatial (Wl,Hl)-plane (in neurons), and the depth Dl (marked by
the different colors in Fig. 42) – to the number of filters in that layer. All neurons corresponding to a particular filter have
the same parameters (i.e. shared weights and bias).

In general, we will be concerned with local spatial filters (often called a receptive field in analogy with neuroscience)
that take as inputs a small spatial patch of the previous layer at all depths. For instance, a square filter of size F is a
three-dimensional array of size F × F × Dl−1. The convolution consists of running this filter over all locations in the
spatial plane. To demonstrate how this works in practice, let us a consider the simple example consisting of a one-
dimensional input of depth 1, shown in Fig. 43. In this case, a filter of size F × 1 × 1 can be specified by a vector of
weights w of length F . The stride, S, encodes by how many neurons we translate the filter by when performing the
convolution. In addition, it is common to pad the input with P zeros (see Fig. 43). For an input of width W , the number
of neurons (outputs) in the layer is given by (W − F + 2P)/S + 1. We invite the reader to check out this visualization of
the convolution procedure, https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md, for a square input
of unit depth. After computing the filter, the output is passed through a non-linearity, a ReLU in Fig. 43. In practice, one
often inserts a BatchNorm layer before the non-linearity, cf. Section 9.4.3.

These convolutional layers are interspersed with pooling layers that coarse-grain spatial information by performing
a subsampling at each depth. One common pooling operation is the max pool. In a max pool, the spatial dimensions
are coarse-grained by replacing a small region (say 2 × 2 neurons) by a single neuron whose output is the maximum
value of the output in the region. In physics, this pooling step is very similar to the decimation step of RG (Iso et al., 2018;
Koch-Janusz and Ringel, 2017; Lin et al., 2017; Mehta and Schwab, 2014). This generally reduces the dimension of outputs.
For example, if the region we pool over is 2 × 2, then both the height and the width of the output layer will be halved.
Generally, pooling operations do not reduce the depth of the convolutional layers because pooling is performed separately
at each depth. A simple example of a max-pooling operation is shown in Fig. 44. There are some studies suggesting that
pooling might be unnecessary (Springenberg et al., 2014), but pooling layers remain a staple of most CNNs.

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 63

Fig. 44. Illustration of Max Pooling. Illustration of max-pooling over a 2 × 2 region. Notice that pooling is done at each depth (vertical axis)
separately. The number of outputs is halved along each dimension due to this coarse-graining.

In a CNN, the convolution and max-pool layers are generally followed by an all-to-all connected layer and a high-
level classifier such as a soft-max. This allows us to train CNNs as usual using the backprop algorithm, cf. Section 9.3.
From a backprop perspective, CNNs are almost identical to fully connected neural network architectures except with tied
parameters.

Apart from introducing additional structure, such as translational invariance and locality, this convolutional structure
also has important practical and computational benefits. All neurons at a given layer represent the same filter, and hence
can all be described by a single set of weights and biases. This reduces the number of free parameters by a factor of
H ×W at each layer. For example, for a layer with D = 102 and H = W = 102, this gives a reduction in parameters of
nearly 106! This allows for the training of much larger models than would otherwise be possible with fully connected
layers. We are familiar with similar phenomena in physics: e.g. in translationally invariant systems we can parametrize
all eigenmodes by specifying only their momentum (wave number) and functional form (sin, cos, etc.), while without
translation invariance much more information is required.

10.2. Example: CNNs for the 2D Ising model

The inclusion of spatial structure in CNNs is an important feature that can be exploited when designing neural networks
for studying physical systems. In the accompanying notebook, we used Pytorch to implement a simple CNN composed of
a single convolutional layer followed by a soft-max layer. Every input data point (i.e. Ising configuration) is shaped as a
two-dimensional array. We varied the output depth (i.e. the number of output channels) of the convolutional layer from
unity – a single set of weights and one bias – to an output depth of 50 distinct weights and biases. The CNN was then
trained using SGD for five epochs using a training set consisting of samples from far in the paramagnetic and ordered
phases. The results are shown in Fig. 45. The CNN achieved a 100% accuracy on the test set for all architectures, even for
a CNN with depth one. We also checked the performance of the CNN on samples drawn from the near-critical region for
temperatures T slightly above and below the critical temperature Tc . The CNN performed admirably even on these critical
samples with an accuracy of between 80% and 90%. As is the case with all ML and neural networks, the performance
on parts of the data that are missing from the training set is considerably worse than on test data that is similar to the
training data. This highlights the importance of properly constructing an accurate training dataset and the considerable
obstacles of generalizing to novel situations. We encourage the interested reader to explore the corresponding notebook
and design better CNN architectures with improved generalization performance on the near-critical set.

The reader may wish to check out the second part of the MNIST notebook for a discussion of CNNs applied to the digit
recognition using the high-level Keras package. Regarding the SUSY dataset, we stress that the absence of spatial locality
in the collision features renders applying CNNs to that problem inadequate.

https://physics.bu.edu/~pankajm/MLnotebooks.html

64 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 45. Single-layer convolutional network for classifying phases in the Ising mode. Accuracy on test set and critical samples for a convolutional
neural network with single layer of varying depth with filters of size 2, max-pool layer with receptive field of size 2, followed by soft-max classifier.
Notice that the test accuracy is 100% even for a CNN of depth one with a single set of weights. Accuracy on the near-critical dataset is significantly
below that for the test set.

10.3. Pre-trained CNNs and transfer learning

The immense success of CNNs for image recognition has resulted in the training of huge networks on enormous
datasets, often by large industrial research teams from Google, Microsoft, Amazon, etc. Many of these models are known
by name: AlexNet, GoogLeNet, ResNet, InceptionNet, VGGNet, etc. Most researchers and practitioners do not have the
resources, data, or time to train networks on this scale. Luckily, the trained models have been released and are now
available in standard packages such as the Torch Vision library in Pytorch or the Caffe framework. These models can be
used directly as a basis for fine-tuning in different supervised image recognition tasks through a process called transfer
learning.

The basic idea behind transfer learning is that the filters (receptive fields) learned by the convolution layers of these
networks should be informative for most image recognition based tasks, not just the ones they were originally trained for.
In other words, we expect that, since images reflect the natural world, the filters learned by these CNNs should transfer
over to new tasks with only slight modifications and fine-tuning. In practice, this turns out to be true for many tasks one
might be interested in.

There are three distinct ways one can take a pre-trained CNN and repurpose it for a new task. The following discussion
draws heavily on the notes from the course CS231n mentioned in the introduction to this section.

• Use CNN as fixed feature detector at top layer. If the new dataset we want to train on is small and similar to the
original dataset, we can simply use the CNN as a fixed feature detector and retrain our classifier. In other words, we
remove the classifier (soft-max) layer at the top of the CNN and replace it with a new classifier (linear support vector
machine (SVM) or soft-max) relevant to our supervised learning problem. In this procedure, the CNN serves as a fixed
map from images to relevant features (the outputs of the top fully-connected layer right before the original classifier).
This procedure prevents overfitting on small, similar datasets and is often a useful starting point for transfer learning.
• Use CNN as fixed feature detector at intermediate layer. If the dataset is small and quite different from the dataset

used to train the original image, the features at the top level might not be suitable for our dataset. In this case, one
may want to instead use features in the middle of the CNN to train our new classifier. These features are thought to
be less fine-tuned and more universal (e.g. edge detectors). This is motivated by the idea that CNNs learn increasingly
complex features the deeper one goes in the network (see discussion on representational learning in next section).
• Fine-tune the CNN. If the dataset is large, in addition to replacing and retraining the classifier in the top layer, we

can also fine-tune the weights of the original CNN using backpropagation. One may choose to freeze some of the
weights in the CNN during the procedure or retrain all of them simultaneously.

All these procedures can be carried out easily by using packages such as Caffe or the Torch Vision library in PyTorch.
PyTorch provides a nice python notebook that serves as tutorial on transfer learning. The reader is strongly urged to read
the Pytorch tutorials carefully if interested in this topic.

11. High-level concepts in deep neural networks

In the previous sections, we introduced deep neural networks and discussed how we can use these networks to perform
supervised learning. Here, we take a step back and discuss some high-level questions about the practice and performance
of neural networks. The first part of this section presents a deep learning workflow inspired by the bias–variance tradeoff.
This workflow is especially relevant to industrial applications where one is often trying to employ neural networks to solve

https://cs231n.github.io/
https://cs231n.github.io/
https://cs231n.github.io/
https://cs231n.github.io/
https://cs231n.github.io/
https://cs231n.github.io/
https://cs231n.github.io/
https://cs231n.github.io/
https://cs231n.github.io/
https://cs231n.github.io/
https://cs231n.github.io/
https://cs231n.github.io/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/
http://pytorch.org/tutorials/

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 65

Fig. 46. Organizing a workflow for Deep Learning. Schematic illustrating a deep learning workflow inspired by navigating the bias–variance tradeoff
(figure based on Andrew Ng’s talk at the 2016 Deep Learning School available at https://www.youtube.com/watch?v=F1ka6a13S9I.) In this diagram,
we have assumed that there in no mismatch between the distributions the training and test sets are drawn from.

a particular problem. In the second part of this section, we shift gears and ask the question, why have neural networks
been so successful? We provide three different high-level explanations that reflect current dogmas. Finally, we end the
section by discussing the limitations of supervised learning methods and current neural network architectures.

11.1. Organizing deep learning workflows using the bias–variance tradeoff

Imagine that you are given some data and asked to design a neural network for learning how to perform a supervised
learning task. What are the best practices for organizing a systematic workflow that allows us to efficiently do this? Here,
we present a simple deep learning workflow inspired by thinking about the bias–variance tradeoff (see Fig. 46). This
section draws heavily on Andrew Ng’s tutorial at the Deep Learning School (available online at https://www.youtube.
com/watch?v=F1ka6a13S9I) which readers are strongly encouraged to watch.

The first thing we would like to do is divide the data into three parts. A training set, a validation or dev (development)
set, and a test set. The test set is the data on which we want to make predictions. The dev set is a subset of the training
data we use to check how well we are doing out-of-sample, after training the model on the training dataset. We use the
validation error as a proxy for the test error in order to make tweaks to our model. It is crucial that we do not use any
of the test data to train the algorithm. This is a cardinal sin in ML. We thus suggest the following workflow:

Estimate optimal error rate (Bayes rate).—The first thing one should establish is the difficulty of the task and the best
performance one can expect to achieve. No algorithm can do better than the ‘‘signal’’ in the dataset. For example, it is
likely much easier to classify objects in high-resolution images than in very blurry, low-resolution images. Thus, one needs
to establish a proxy or baseline for the optimal performance that can be expected from any algorithm. In the context of
Bayesian statistics, this is often called the Bayes rate. Since we do not know this a priori, we must get an estimate of this.
For many tasks such as speech or object recognition, we can approximate this by the performance of humans on the task.
For a more specialized task, we would like to ask how well experts, trained at the task, perform. This expert performance
then serves as a proxy for our Bayes rate.

Minimize underfitting (bias) on training dataset.— After we have established the Bayes rate, we want to make sure
that we are using a sufficiently complex model to avoid underfitting on the training dataset. In practice, this means
comparing the training error rate to the Bayes rate. Since the training error does not care about generalization (variance),
our model should approach the Bayes rate on the training set. If it does not, the bias of the DNN model is too large and
one should try training the model longer and/or using a larger model. Finally, if none of these techniques work, it is likely
that the model architecture is not well suited to the dataset, and one should modify the neural architecture in some way
to better reflect the underlying structure of the data (symmetries, locality, etc.).

Make sure you are not overfitting.— Next, we run our algorithm on the validation or dev set. If the error is similar to
the training error rate and Bayes rate, we are done. If it is not, then we are overfitting the training data. Possible solutions
include, regularization and, importantly, collecting more data. Finally, if none of these work, one likely has to change the
DNN architecture.

If the validation and test sets are drawn from the same distributions, then good performance on the validation set
should lead to similarly good performance on the test set. (Of course performance will typically be slightly worse on the
test set because the hyperparameters were fit to the validation set.) However, sometimes the training data and test data

https://www.youtube.com/watch?v=F1ka6a13S9I
https://www.youtube.com/watch?v=F1ka6a13S9I
https://www.youtube.com/watch?v=F1ka6a13S9I
https://www.youtube.com/watch?v=F1ka6a13S9I

66 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

differ in subtle ways because, for example, they are collected using slightly different methods, or because it is cheaper to
collect data in one way versus another. In this case, there can be a mismatch between the training and test data. This can
lead to the neural network overfitting these small differences between the test and training sets, and a poor performance
on the test set despite having a good performance on the validation set. To rectify this, Andrew Ng suggests making two
validation or dev sets, one constructed from the training data and one constructed from the test data. The difference
between the performance of the algorithm on these two validation sets quantifies the train–test mismatch. This can serve
as another important diagnostic when using DNNs for supervised learning.

11.2. Why neural networks are so successful: three high-level perspectives on neural networks

Having discussed the basics of neural networks, we conclude by giving three complementary perspectives on the
success of DNNs and Deep Learning. This high-level discussion reflects various dogmas and intuitions about the success of
DNNs and is in no way definitive or conclusive. As the reader was already warned in the introduction to DNNs, the field
is rapidly expanding and many of these perspectives may turn out to be only partially true or even false. Nonetheless, we
include them here as a guidepost for readers.

11.2.1. Neural networks as representation learning
One important and powerful aspect of the deep learning paradigm is the ability to learn relevant features of the data

with relatively little domain knowledge, i.e. with minimal hand-crafting. Often, the power of deep learning stems from
its ability to act like a black box that can take in a large stream of data and find good features that capture properties
of the data we are interested in. This ability to learn good representations with very little hand-tuning is one of the
most attractive properties of DNNs. Many of the other supervised learning algorithms discussed here (regression-based
models, ensemble methods such as random forests or gradient-boosted trees) perform comparably or even better than
neural networks but when using hand-crafted features with small-to-intermediate sized datasets.

The hierarchical structure of deep learning models is thought to be crucial to their ability to represent complex,
abstract features. For example, consider the use of CNNs for image classification tasks. The analysis of CNNs suggests
that the lower-levels of the neural networks learn elementary features, such as edge detectors, which are then combined
into higher levels of the networks into more abstract, higher-level features (e.g. the famous example of a neuron that
‘‘learned to respond to cats’’) (Le, 2013). More recently, it has been shown that CNNs can be thought of as performing
tensor decompositions on the data similar to those commonly used in numerical methods in modern quantum condensed
matter (Cohen et al., 2016).

One of the interesting consequences of this line of thinking is the idea that one can train a CNN on one large dataset
and the features it learns should also be useful for other supervised tasks. This results in the ability to learn important
and salient features directly from the data and then transfer this knowledge to a new task. Indeed, this ability to learn
important, higher-level, coarse-grained features is reminiscent of ideas like the renormalization group (RG) in physics
where the RG flows separate out relevant and irrelevant directions, and certain unsupervised deep learning architectures
have a natural interpretation in terms of variational RG schemes (Mehta and Schwab, 2014).

11.2.2. Neural networks can exploit large amounts of data
With the advent of smartphones and the internet, there has been an explosion in the amount of data being generated.

This data-rich environment favors supervised learning methods that can fully exploit this rich data world. One important
reason for the success of DNNs is that they are able to exploit the additional signal in large datasets for difficult supervised
learning tasks. Fundamentally, modern DNNs are unique in that they contain millions of parameters, yet can still be trained
on existing hardwares. The complexity of DNNs (in terms of parameters) combined with their simple architecture (layer-
wise connections) hit a sweet spot between expressivity (ability to represent very complicated functions) and trainability
(ability to learn millions of parameters).

Indeed, the ability of large DNNs to exploit huge datasets is thought to differ from many other commonly employed
supervised learning methods such as Support Vector Machines (SVMs). Fig. 47 shows a schematic depicting the expected
performance of DNNs of different sizes with the number of data samples and compares them to supervised learning
algorithms such as SVMs or ensemble methods. When the amount of data is small, DNNs offer no substantial benefit over
these other methods and often perform worse. However, large DNNs seem to be able to exploit additional data in a way
other methods cannot. The fact that one does not have to hand engineer features makes the DNN even more well suited
for handling large datasets. Recent theoretical results suggest that as long as a DNN is large enough, it should generalize
well and not overfit (Advani and Saxe, 2017). In the data-rich world we live in (at least in the context of images, videos,
and natural language), this is a recipe for success. In other areas where data is more limited, deep learning architectures
have (at least so far) been less successful.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 67

Fig. 47. Large neural networks can exploit the vast amount of data now available. Schematic of how neural network performance depends on amount
of available data (figure based on Andrew Ng’s talk at the 2016 Deep Learning School available at https://www.youtube.com/watch?v=F1ka6a13S9I.).

11.2.3. Neural networks scale up well computationally
A final feature that is thought to underlie the success of modern neural networks is that they can harness the immense

increase in computational capability that has occurred over the last few decades. The architecture of neural networks
naturally lends itself to parallelization and the exploitation of fast but specialized processors such as graphical processing
units (GPUs). Google and NVIDIA set on a course to develop TPUs (tensor processing units) which will be specifically
designed for the mathematical operations underlying deep learning architectures. The layered architecture of neural
networks also makes it easy to use modern techniques such as automatic differentiation that make it easy to quickly
deploy them. Algorithms such as stochastic gradient descent and the use of mini-batches make it easy to parallelize code
and train much larger DNNs than was thought possible fifteen years ago. Furthermore, many of these computational
gains are quickly incorporated into modern packages with industrial resources. This makes it easy to perform numerical
experiments on large datasets, leading to further engineering gains.

11.3. Limitations of supervised learning with deep networks

Like all statistical methods, supervised learning using neural networks has important limitations. This is especially
important when one seeks to apply these methods, especially to physics problems. Like all tools, DNNs are not a universal
solution. Often, the same or better performance on a task can be achieved by using a few hand-engineered features (or
even a collection of random features). This is especially important for hard physics problems where data (or Monte-Carlo
samples) may be hard to come by.

Here we list some of the important limitations of supervised neural network based models.

• Need labeled data.—Like all supervised learning methods, DNNs for supervised learning require labeled data. Often,
labeled data is harder to acquire than unlabeled data (e.g. one must pay for human experts to label images).
• Supervised neural networks are extremely data intensive.—DNNs are data hungry. They perform best when data

is plentiful. This is doubly so for supervised methods where the data must also be labeled. The utility of DNNs is
extremely limited if data is hard to acquire or the datasets are small (hundreds to a few thousand samples). In this
case, the performance of other methods that utilize hand-engineered features can exceed that of DNNs.
• Homogeneous data.—Almost all DNNs deal with homogeneous data of one type. It is very hard to design architec-

tures that mix and match data types (i.e. some continuous variables, some discrete variables, some time series). In
applications beyond images, video, and language, this is often what is required. In contrast, ensemble models like
random forests or gradient-boosted trees have no difficulty handling mixed data types.
• Many physics problems are not about prediction.—In physics, we are often not interested in solving prediction

tasks such as classification. Instead, we want to learn something about the underlying distribution that generates
the data. In this case, it is often difficult to cast these ideas in a supervised learning setting. While the problems are
related, it is possible to make good predictions with a ‘‘wrong’’ model. The model might or might not be useful for
understanding the physics.

Some of these remarks are particular to DNNs, others are shared by all supervised learning methods. This motivates
the use of unsupervised methods which in part circumnavigate these problems.

https://www.youtube.com/watch?v=F1ka6a13S9I

68 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

12. Dimensional reduction and data visualization

Unsupervised learning is concerned with discovering structure in unlabeled data. In this section, we will begin our foray
into unsupervised learning by way of data visualization. Data visualization methods are important for modeling as they
can be used to identify correlated or redundant features along with irrelevant features (noise) from raw or processed data.
Conceivably, being able to identify and capture such characteristics in a dataset can help in designing better predictive
models. For data involving a relatively small number of features, studying pair-wise correlations (i.e. pairwise scatter plots
of all features) may suffice in performing a complete analysis. This rapidly becomes impractical for datasets involving a
large number of measured featured (such as images). Thus, in practice, we often have to perform dimensional reduction,
namely, project or embed the data onto a lower dimensional space, which we refer to as the latent space. As we will
discuss, part of the complication of dimensional reduction lies in the fact that low-dimensional representations of high-
dimensional data necessarily incurs information lost. Below, we introduce some common linear and nonlinear methods
for performing dimensional reduction with applications in data visualization of high-dimensional data.

12.1. Some of the challenges of high-dimensional data

Before we begin exploring some specific dimensional reduction techniques, it is useful to highlight some of the generic
difficulties encountered when dealing with high-dimensional data.

a. High-dimensional data lives near the edge of sample space. Geometry in high-dimensional space can be counterintuitive.
One example that is pertinent to machine learning is the following. Consider data distributed uniformly at random in a
D-dimensional hypercube C = [−e/2, e/2]D, where e is the edge length. Consider also a D-dimensional hypersphere S of
radius e/2 centered at the origin and contained within C. The probability that a data point x drawn uniformly at random
in C is contained within S is well approximated by the ratio of the volume of S to that of C : p(∥x∥2 < e/2) ∼ (1/2)D. Thus,
as the dimension of the feature space D increases, p goes to zero exponentially fast. In other words, most of the data will
concentrate outside the hypersphere, in the corners of the hypercube. In physics, this basic observation underlies many
properties of ideal gases such as the Maxwell distribution and the equipartition theorem (see Chapter 3 of (Sethna, 2006)
for instance).

b. Real-world data vs. uniform distribution. Fortunately, real-world data is not random or uniformly distributed! In fact, real
data usually lives in a much lower dimensional space than the original space in which the features are being measured.
This is sometimes referred to as the ‘‘blessing of non-uniformity’’ (in opposition to the curse of dimensionality). Data will
typically be locally smooth, meaning that a local variation of the data will not incur a change in the target variable (Bishop,
2006). This idea is central to statistical physics and field theories, where properties of systems with an astronomical
number of degrees of freedom can be well characterized by low-dimensional ‘‘order parameters’’ or effective degrees
of freedom. Another instantiation of this idea is manifest in the description of the bulk properties of a gas of weakly
interacting particles, which can be simply described by the thermodynamic variables (temperature, pressure, etc.) that
enter the equation of state rather than the enormous number of dynamical variables (i.e. position and momentum) of
each particle in the gas.

c. Intrinsic dimensionality and the crowding problem. A recurrent objective of dimensional reduction techniques is to
preserve the relative pairwise distances (or defined similarities) between data points from the original space to the latent
space. This is a natural requirement, since we would like for nearby data points (as measured in the original space) to
remain close-by after the corresponding mapping to the latent space.

Consider the example of the ‘‘Swiss roll’’ presented in Fig. 48a. There, the relevant structure of the data corresponds
to nearby points with similar colors and is encoded in the ‘‘unrolled’’ data in the latent space, see Fig. 48b. Clearly, in this
example a two-dimensional space is sufficient to capture almost the entirety of the information in the data. A concept
which stems from signal processing that is relevant to our current exposition is that of the intrinsic dimensionality
of the data. Qualitatively, it refers to the minimum number of dimensions required to capture the signal in the data.
In the case of the Swiss roll, it is 2 since the Swiss roll can effectively be parametrized using only two parameters,
i.e. X ∈ {(x1 sin(x1), x1 cos(x1), x2)}. The minimum number of parameters required for such a parametrization is the
intrinsic dimensionality of the data (Bennett, 1969). Attempting to represent data in a space of dimensionality lower
than its intrinsic dimensionality can lead to a ‘‘crowding’’ problem (Maaten and Hinton, 2008) (see schematic, Fig. 49). In
short, because we are attempting to satisfy too many constraints (e.g. preserve all relative distances of the original space),
this results in a trivial solution for the latent space where all mapped data points collapse to the center of the map.

To alleviate this, one needs to weaken the constraints imposed on the visualization scheme. Powerful methods such as
t-distributed stochastic embedding (Maaten and Hinton, 2008) (in short, t-SNE, see Section 12.4) and uniform manifold
approximation and projection (UMAP) (McInnes et al., 2018) have been devised to circumvent this issue in various ways.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 69

Fig. 48. The ‘‘Swiss roll’’. Data distributed in a three-dimensional space (a) that can effectively be described on a two-dimensional surface (b). A
common goal of dimensional reduction techniques is to preserve ordination in the data: points that are close-by in the original space are also
near-by in the mapped (latent) space. This is true of the mapping (a) to (b) as can be seen by inspecting the color gradient.

Fig. 49. Illustration of the crowding problem. (Left) A two-dimensional dataset X consisting of 3 equidistant points. (Right) Mapping X to a
one-dimensional space while trying to preserve relative distances leads to a collapse of the mapped data points.

12.2. Principal component analysis (PCA)

A ubiquitous method for dimensional reduction, data visualization and analysis is Principal Component Analysis (PCA).
The goal of PCA is to perform an orthogonal transformation of the data in order to find high-variance directions. PCA is
inspired by the observation that in many cases, the relevant information in a signal is contained in the directions with
largest13 variance (see Fig. 50). Directions with small variance are ascribed to ‘‘noise’’ and can potentially be removed or
ignored.

Surprisingly, such PCA-based projections often capture a lot of the large scale structure of many datasets. For example,
Fig. 51 shows the projection of samples drawn from the 2D Ising model at various temperatures on the first two principal
components. Despite living in a 1600 dimensional space (the samples are 40 × 40 spin configurations), a single principal
component (i.e. a single direction in this 1600 dimensional space) can capture 50% of the variability contained in our
samples. In fact, one can verify that this direction weights all 1600 spins nearly equally and thus corresponds to the
magnetization order parameter. Thus, even without any prior physical knowledge, one can extract relevant order param-
eters using a simple PCA-based projection. Recently, a correspondence between PCA and Renormalization Group flows
across the phase transition in the 2D Ising model (Foreman et al., 2017) and in a more general setting (Bradde and Bialek,
2017) has been proposed. In statistical physics, PCA has also found application in detecting phase transitions (Wetzel,
2017), e.g. in the XY model on frustrated triangular and union jack lattices (Wang and Zhai, 2017). PCA was also used
to classify dislocation patterns in crystals (Papanikolaou et al., 2017; Wang and Zhai, 2018), and to find correlations in
the shear flow of athermal amorphous solids (Ruscher and Rottler, 2018). PCA is widely employed in biological physics
when working with high-dimensional data. Physics has also inspired PCA-based algorithms to infer relevant features in
unlabeled data (Bény, 2018). Concretely, consider N data points, {x1, . . . xN} that live in a p-dimensional feature space
Rp. Without loss of generality, we assume that the empirical mean x̄ = N−1

∑
i xi of these data points is zero.14 Denote

the N × p design matrix as X = [x1, x2, . . . ; xN]T whose rows are the data points and columns correspond to different
features. The p× p (symmetric) covariance matrix is therefore

Σ (X) =
1

N − 1
X TX . (129)

13 This assumes that the features are measured and compared using the same units.
14 We can always center around the mean: x̄.← xi − x̄

70 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 50. PCA seeks to find the set of orthogonal directions with largest variance. This can be seen as ‘‘fitting’’ an ellipse to the data with the major
axis corresponding to the first principal component (direction of largest variance). PCA assumes that directions with large variance correspond to
the true signal in the data while directions with low variance correspond to noise.

Fig. 51. (a) The first 2 principal components of the Ising dataset with temperature indicated by the coloring. PCA was performed on a joined dataset
of 1000 samples taken at each temperatures T = 0.25, 0.5, . . . , 4.0. Almost all the variance is explained in the first component which corresponds to
the magnetization order parameter (linear combination of the features with weights all roughly equal). The paramagnetic phase corresponds to the
middle cluster and the left and right clusters correspond to the symmetry-related ferromagnetic phases. (b) Log of the spectrum of the covariance
matrix versus rank ordering. Only one dimension has high-variance.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 71

Notice that the jth diagonal entry of Σ (X) corresponds to the variance of the jth feature and Σ (X)ij measures the
covariance (i.e. connected correlation in the language of physics) between feature i and feature j.

We are interested in finding a new basis for the data that emphasizes highly variable directions while reducing
redundancy between basis vectors. In particular, we will look for a linear transformation that reduces the covariance
between different features. To do so, we first perform singular value decomposition (SVD) on the design matrix X , namely,
X = USV T , where S is a diagonal matrix of singular value si, the orthogonal matrix U contains (as its columns) the left
singular vectors of X , and similarly V contains (as its columns) the right singular vectors of X . With this, one can rewrite
the covariance matrix as

Σ (X) =
1

N − 1
VSU TUSV T

= V
(

S2

N − 1

)
V T

≡ VΛV T . (130)

where Λ is a diagonal matrix with eigenvalues λi in the decreasing order along the diagonal (i.e. eigendecomposition). It
is clear that the right singular vectors of X (i.e. the columns of V) are principal directions of Σ (X), and the singular values
of X are related to the eigenvalues of the covariance matrix Σ (X) via λi = s2i /(N − 1). To reduce the dimensionality of
data from p to p̃ < p, we first construct the p× p̃ projection matrix Ṽ p′ by selecting the singular components with the p̃
largest singular values. The projection of the data from p to a p̃ dimensional space is simply Ỹ = XṼ p′ . The same idea is
central to matrix-product-state-like techniques used to compress the number of components in quantum wavefunctions
in studies of low-dimensional many-body lattice systems.

The singular vector with the largest singular value (i.e the largest variance) is referred to as the first principal
component; the singular vector with the second largest singular value as the second principal component, and so on.
An important quantity is the ratio λi/

∑p
i=1 λi which is referred as the percentage of the explained variance contained in

a principal component (see Fig. 51.b).
It is common in data visualization to present the data projected on the first few principal components. This is valid

as long as a large part of the variance is explained in those components. Low values of explained variance may imply
that the intrinsic dimensionality of the data is high or simply that it cannot be captured by a linear representation. For a
detailed introduction to PCA, see the tutorials by Shlens (Shlens, 2014) and Bishop (Bishop, 2006).

12.3. Multidimensional scaling

Multidimensional scaling (MDS) is a non-linear dimensional reduction technique which preserves the pairwise
distance or dissimilarity dij between data points (Cox and Cox, 2000). Moving forward, we use the term ‘‘distance’’
and ‘‘dissimilarity’’ interchangeably. There are two types of MDS: metric and non-metric. In metric MDS, the distance
is computed under a pre-defined metric and the latent coordinates Ỹ are obtained by minimizing the difference between
the distance measured in the original space (dij(X)) and that in the latent space (dij(Y)):

Ỹ = argmin
Y

∑
i<j

wij|dij(X)− dij(Y)|, (131)

where wij ≥ 0 are weight values. The weight matrix wij is a set of free parameters that specify the level of confidence
(or precision) in the value of dij(X). If Euclidean metric is used, MDS gives the same result as PCA and is usually referred
to as classical scaling (Torgerson, 1958). Thus MDS is often considered as a generalization of PCA. In non-metric MDS, dij
can be any distance matrix. The objective function is then to preserve the ordination in the data, i.e. if d12(X) < d13(X)
in the original space, then in the latent space we should have d12(Y) < d13(Y).

Both MDS and PCA can be implemented using standard Python packages such as Scikit. MDS algorithms typically have
a scaling of O(N3) where N corresponds to the number of data points, and are thus very limited in their application to
large datasets. However, sample-based methods have been introduce to reduce this scaling to O(N logN) (Yang et al.,
2006). In the case of PCA, a complete decomposition has a scaling of O(Np2 + p3), where p is the number of features.
Note that the first term Np2 is due to the computation of covariance matrix Eq. (129) while the second, p3, stems from
eigenvalue decomposition. Note that PCA can be improved to bear complexity O(Np2 + p) if only the first few principal
components are desired (using iterative approaches). PCA and MDS are often among the first data visualization techniques
one resorts to.

12.4. t-SNE

It is often desirable to preserve local structures in high-dimensional datasets. However, when dealing with datasets
having clusters delimitated by complicated surfaces or datasets with a large number of clusters, preserving local structures
becomes difficult using linear techniques such as PCA. Many non-linear techniques such as non-classical MDS (Cox and
Cox, 2000), self-organizing map (Kohonen, 1998), Isomap (Tenenbaum et al., 2000) and Locally Linear Embedding (Roweis

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html

72 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

and Saul, 2000) have been proposed and to address this class of problems. These techniques are generally good at
preserving local structures in the data but typically fail to capture structures at the larger scale such as the clusters in
which the data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insightful visualization for many benchmark high-dimensional datasets
(Maaten and Hinton, 2008). t-SNE is a non-parametric15 method that constructs non-linear embeddings. Each high-
dimensional training point is mapped to low-dimensional embedding coordinates, which are optimized in a way to
preserve the local structure in the data.

When used appropriately, t-SNE is a powerful technique for unraveling the hidden structure of high-dimensional
datasets while at the same time preserving locality. In physics, t-SNE has recently been used to reduce the dimensionality
and classify spin configurations, generated with the help of Monte Carlo simulations, for the Ising (Carrasquilla and Melko,
2017) and Fermi–Hubbard models at finite temperatures (Ch’ng et al., 2017). It was also applied to study clustering
transitions in glass-like problems in the context of quantum control (Day et al., 2019).

The idea of stochastic neighbor embedding is to associate a probability distribution to the neighborhood of each data
(note x ∈ Rp, p is the number of features):

pi|j =
exp(−||xi − xj||2/2σ 2

i)∑
k̸=i exp(−||xi − xk||2/2σ 2

i)
, (132)

where pi|j can be interpreted as the likelihood that xj is xi’s neighbor (thus we take pi|i = 0). σi are free bandwidth
parameters that are usually determined by fixing the local entropy H(pi) of each data point:

H(pi) ≡ −
∑

j

pj|i log2 pj|i. (133)

The local entropy is then set to equal a constant across all data points Σ = 2H(pi), where Σ is called the perplexity. The
perplexity constraint determines σi ∀ i and implies that points in regions of high-density will have smaller σi.

Using Gaussian likelihoods in pi|j implies that only points that are nearby xi contribute to its probability distribution.
While this ensures that the similarity for nearby points is well represented, this can be a problem for points that are far
away from xi (i.e. outliers): they have exponentially vanishing contributions to the distribution, which in turn means that
their embedding coordinates are ambiguous (Maaten and Hinton, 2008). One way around this is to define a symmetrized
distribution pij ≡ (pi|j + pj|i)/(2N). This guarantees that

∑
j pij > 1/(2N) for all data points xi, resulting in each data point

xi making a significant contribution to the cost function to be defined below.
t-SNE constructs a similar probability distribution qij in a low dimensional latent space (with coordinates Y = {yi}, yi ∈

Rp′ , where p′ < p is the dimension of the latent space):

qij =
(1+ ||yi − yj||2)−1∑
k̸=i(1+ ||yi − yk||2)−1

. (134)

The crucial point to note is that qij is chosen to be a long tail distribution. This preserves short distance information
(relative neighborhoods) while strongly repelling two points that are far apart in the original space (see Fig. 52). In order
to find the latent space coordinates yi, t-SNE minimizes the Kullback–Leibler divergence between qij and pij:

C(Y) = DKL(p ∥ q) ≡
∑
ij

pij log
(
pij
qij

)
. (135)

This minimization is done via gradient descent (see Section 4). We can gain further insights on what the embedding
cost-function C is capturing by computing the gradient of (135) with respect to yi explicitly:

∂yiC =
∑
j̸=i

4pijqijZi(yi − yj)−
∑
j̸=i

4q2ijZi(yi − yj),

= Fattractive,i − Frepulsive,i, (136)

where Zi = 1/(
∑

k̸=i(1+||yk−yi||2)−1). We have separated the gradient of point yi into an attractive Fattractive and repulsive
term Frepulsive. Notice that Fattractive,i induces a significant attractive force only between points that are nearby point i in
the original space since it involves the pij term. Finding the embedding coordinates yi is thus equivalent to finding the
equilibrium configuration of particles interacting through the forces in (136).

Below, we list some important properties that one should bear in mind when analyzing t-SNE plots.

• t-SNE can rotate data. The KL divergence is invariant under rotations in the latent space, since it only depends on the
distance between points. For this reason, t-SNE plots that are rotations of each other should be considered equivalent.

15 It does not explicitly parametrize feature extraction required to compute the embedding coordinates. Thus it cannot be applied to find the
coordinate of new data points.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 73

Fig. 52. Illustration of the t-SNE embedding. xi points correspond to the original high-dimensional points while the yi points are the corresponding
low-dimensional map points produced by t-SNE. Here we consider two points, x1 , x2 , that are respectively ‘‘close’’ and ‘‘far’’ from x0 . The high-
dimensional Gaussian (short-tail) distribution p(x) of x0 ’s neighbors is shown in blue. The low-dimensional Cauchy (fat-tail) distribution q(y) of x0 ’s
neighbors is shown in red. The map point yi , is obtained by minimizing the difference |q(y)− p(xi)| (similar to minimizing the KL divergence). We
see that point x1 is mapped to short distances |y1 − y0|. In contrast, far-away points such as x2 are mapped to relatively large distances |y2 − y0|.

• t-SNE results are stochastic. In applying gradient descent the solution will depend on the initial seed. Thus, the map
obtained may vary depending on the seed used and different t-SNE runs will give slightly different results.
• t-SNE generally preserves short distance information. As a rule of thumb, one should expect that nearby points on the

t-SNE map are also closeby in the original space, i.e. t-SNE tends to preserve ordination (but not actual distances).
For a pictorial explanation of this, we refer the reader to Fig. 52.
• Scales are deformed in t-SNE. Since a scale-free distribution is used in the latent space, one should not put too much

emphasis on the meaning of the size of any clusters observed in the latent space.
• t-SNE is computationally intensive. Finally, a direct implementation of t-SNE has an algorithmic complexity of O(N2)

which is only applicable to small to medium datasets. Improved scaling of the form O(N logN) can be achieved
at the cost of approximating Eq. (135) by using the Barnes–Hut method (Van Der Maaten, 2014) for N-body
simulations (Barnes and Hut, 1986). More recently extremely efficient t-SNE implementation making use of fast
Fourier transforms for kernel summations in (136) have been made available on https://github.com/KlugerLab/FIt-
SNE (Linderman et al., 2017).

As an illustration, in Fig. 53 we applied t-SNE to a Gaussian mixture model consisting of thirty Gaussians, whose means
are uniformly distributed in forty-dimensional space. We compared the results to a random two-dimensional projection
and PCA. It is clear that unlike more naïve dimensional reduction techniques, both PCA and t-SNE can identify the presence
of well-formed clusters. The t-SNE visualization cleanly separates all the clusters while certain clusters blend together in
the PCA plot. This is a direct consequence of the fact that t-SNE keeps nearby points close together while repelling points
that are far apart.

Fig. 54 shows t-SNE and PCA plots for the MNIST dataset of ten handwritten numerical digits (0–9). It is clear that the
non-linear nature of t-SNE makes it much better at capturing and visualizing the complicated correlations between digits,
compared to PCA.

13. Clustering

In this section, we continue our discussion of unsupervised learning methods. Unsupervised learning is concerned
with discovering structure in unlabeled data (for instance learning local structures for data visualization, see Section 12).
The lack of labels make unsupervised learning much more difficult and subtle than its supervised counterpart. What is
somewhat surprising is that even without labels it is still possible to uncover and exploit the hidden structure in the data.
Perhaps, the simplest example of unsupervised learning is clustering. The aim of clustering is to group unlabeled data into
clusters according to some similarity or distance measure. Informally, a cluster is thought of as a set of points sharing
some pattern or structure.

Clustering finds many applications throughout data mining (Larsen and Aone, 1999), data compression and signal
processing (Gersho and Gray, 2012; MacKay, 2003). Clustering can be used to identify coarse features or high level
structures in an unlabeled dataset. The technique also finds many applications in physical sciences, ranging from detecting
celestial emission sources in astronomical surveys (Sander et al., 1998) to inferring groups of genes and proteins with
similar functions in biology (Eisen et al., 1998), and building entanglement classifiers (Lu et al., 2017). Clustering is perhaps

https://github.com/KlugerLab/FIt-SNE
https://github.com/KlugerLab/FIt-SNE
https://github.com/KlugerLab/FIt-SNE

74 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 53. Different visualizations of a Gaussian mixture formed of K = 30 mixtures in a D = 40 dimensional space. The Gaussians have the same
covariance but have means drawn uniformly at random in the space [−10, 10]40 . (a) Plot of the first two coordinates. The labels of the different
Gaussian are indicated by the different colors. Note that in a realistic setting, label information is of course not available, thus making it very hard to
distinguish the different clusters. (b) Random projection of the data onto a 2 dimensional space. (c) Projection onto the first 2 principal components.
Only a small fraction of the variance is explained by those components (the ratio is indicated along the axis). (d) t-SNE embedding (perplexity =
60, # iteration = 1000) in a 2 dimensional latent space. t-SNE captures correctly the local structure of the data.

Fig. 54. Visualization of the MNIST handwritten digits training dataset (here N = 60 000). (a) First two principal components. (b) t-SNE applied
with a perplexity of 30, a Barnes–Hut angle of 0.5 and 1000 gradient descent iterations. In order to reduce the noise and speed-up computation, PCA
was first applied to the dataset to project it down to 40 dimensions. We used an open-source implementation to produce the results (Linderman
et al., 2017), see https://github.com/KlugerLab/FIt-SNE.

the simplest way to look for hidden structure in a dataset and for this reason, is among the most widely used and employed
data analysis and machine learning techniques.

The field of clustering is vast and there exists a flurry of clustering methods suited for different purposes. Some
common considerations one has to take into account when choosing a particular method is the distribution of the
clusters (overlapping/noisy clusters vs. well-separated clusters), the geometry of the data (flat vs. non-flat), the cluster
size distribution (multiple sizes vs. uniform sizes), the dimensionality of the data (low vs. high dimensional) and the
computational efficiency of the desired method (small vs. large dataset).

We begin Section 13.1 with a focus on popular practical clustering methods such as K -means clustering, hierarchical
clustering and density clustering. Our goal is to highlight the strength, weaknesses and differences between these
techniques, while laying out some of the theoretical framework required for clustering analysis. There exist many more

https://github.com/KlugerLab/FIt-SNE

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 75

Fig. 55. K -means with K = 3 applied to an artificial two-dimensional dataset. The cluster means at each iteration are indicated by cyan star markers.
t indicates the iteration number and C the value of the objective function. (a) The algorithm is initialized by randomly partitioning the space into 3
sectors to generate an initial assignment. (b)–(c) For well separated clusters, the algorithm converges rapidly to the true clusters. (d) The objective
function as a function of the iteration. C converges after t = 18 iterations for this choice of random seed (for center initialization).

clustering methods beyond those discussed in this section.16 The methods we discuss were chosen for their pedagogical
value and/or their applicability to problems in physics.

In Section 13.2 we discuss Gaussian mixture models and the formulation of clustering through latent variable models.
This section introduces many of the methods we will encounter when discussing other unsupervised learning methods
later in the review. Finally, in Section 13.3 we discuss the problem of clustering in high-dimensional data and possible
ways to tackle this difficult problem. The reader is also urged to experiment with various clustering methods using
Notebook 15.

13.1. Practical clustering methods

Throughout this section we focus on the Euclidean distance as a similarity measure. Other measures may be better
suited for specific problems. We refer the enthusiast reader to (Rokach and Maimon, 2005) for a more in-depth discussion
of the different possible similarity measures.

13.1.1. K-Means
We begin our discussion with K -means clustering since this method is simple to implement and understand, and

covers the core concepts of clustering. Consider a set of N unlabeled observations {xn}Nn=1 where xn ∈ Rp and where p is
the number of features. Also consider a set of K cluster centers called the cluster means:

{
µk
}K
k=1, with µk ∈ Rp, which

we will compute ‘‘empirically" in the clustering procedure. The cluster means can be thought of as the representatives
of each cluster, to which data points are assigned (see Fig. 55). K -means clustering can be formulated as follows: given a
fixed integer K , find the cluster means {µ} and the data point assignments in order to minimize the following objective
function:

C({x, µ}) =
K∑

k=1

N∑
n=1

rnk(xn − µk)
2, (137)

where rnk ∈ {0, 1} is a binary variable called the assignment. The assignment rnk is 1 if xn is assigned to cluster k and
0 otherwise. Notice that

∑
k rnk = 1 ∀ n and

∑
n rnk ≡ Nk, where Nk the number of points assigned to cluster k. The

minimization of this objective function can be understood as trying to find the best cluster means such that the variance

16 Our complementary Python notebook introduces some of these other methods.

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

76 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

within each cluster is minimized. In physical terms, C is equivalent to the sum of the moments of inertia of every cluster.
Indeed, as we will see below, the cluster means µk correspond to the centers of mass of their respective cluster.

K-Means algorithm. The K -means algorithm alternates between two steps:

1. Expectation: Given a set of assignments {rnk}, minimize C with respect to µk. Taking a simple derivative and setting
it to zero yields the following update rule:

µk =
1
Nk

∑
n

rnkxn. (138)

2. Maximization: Given a set of cluster means
{
µk
}
, find the assignments {rnk} which minimizes C. Clearly, this is

achieved by assigning each data point to their nearest cluster-mean:

rnk =
{
1 if k = argmink′ (xn − µk′)2

0 otherwise
(139)

K -means clustering consists in alternating between these two steps until some convergence criterion is met. Practically,
the algorithm should terminate when the change in the objective function from one iteration to another becomes smaller
than a pre-specified threshold. A simple example of K -means is presented in Fig. 55.

A nice property of the K -means algorithm is that it is guaranteed to converge. To see this, one can verify explicitly
(by taking second-order derivatives) that the expectation step always decreases C. This is also true for the assignment
step. Thus, since C is bounded from below, the two-step iteration of K -means always converges to a local minimum of
C. Since C is generally a non-convex function, in practice one usually needs to run the algorithm with different initial
random cluster center initializations and post-select the best local minimum. A simple implementation of K -means has
an average computational complexity which scales linearly in the size of the dataset (more specifically the complexity is
O(KN) per iteration) and is thus scalable to very large datasets.

As we will see in Section 13.2, K -means is a hard-assignment limit of the Gaussian mixture model where all cluster
variances are assumed to be the same. This highlights a common drawback of K -means: if the true clusters have very
different variances (spreads), K -means can lead to spurious results since the underlying assumption is that the latent
model has uniform variances.

13.1.2. Hierarchical clustering: Agglomerative methods
Agglomerative clustering is a bottom up approach that starts from small initial clusters which are then progressively

merged to form larger clusters. The merging process generates a hierarchy of clusters that can be visualized in the form of
a dendrogram (see Fig. 56). This hierarchy can be useful to analyze the relation between clusters and the subcomponents
of individual clusters. Agglomerative methods are usually specified by defining a distance measure between clusters.17 We
denote the distance between clusters X and Y by d(X, Y) ∈ R. Different choices of distance result in different clustering
algorithms. At each step, the two clusters that are the closest with respect to the distance measure are merged until a
single cluster is left.

Agglomerative clustering algorithm. Agglomerative clustering algorithms can thus be summarized as follows:

1. Initialize each point to its own cluster.
2. Given a set of K clusters X1, X2, . . . , XK , merge clusters until one cluster is left (K = 1):

(1) Find the closest pair of clusters (Xi, Xj): (i, j) = argmin(i′,j′) d(Xi′ , Xj′)
(2) Merge the pair. Update: K ← K − 1

Here we list a few of the most popular distances used in agglomerative methods, often called linkage methods in the
clustering literature.

1. Single-linkage: the distance between clusters i and j is defined as the minimum distance between two elements of
the different clusters

d(Xi, Xj) = min
xi∈Xi,xj∈Xj

||xi − xj||2. (140)

2. Complete linkage: the distance between clusters i and j is defined as the maximum distance between two elements
of the different clusters.

d(Xi, Xj) = max
xi∈Xi,xj∈Xj

||xi − xj||2 (141)

17 Note that this measure need not be a metric.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 77

Fig. 56. Hierarchical clustering example with single linkage. (a) The data points are successively grouped as denoted by the colored dotted lines.
(b) Dendrogram representation of the hierarchical decomposition. Each node of the tree represents a cluster. One has to specify a scale cut-off for
the distance measure d(X, Y) (corresponding to a horizontal cut in the dendrogram) in order to obtain a set of clusters.

3. Average linkage: average distance between points of different clusters

d(Xi, Xj) =
1

|Xi| · |Xj|

∑
xi∈Xi,xj∈Xj

||xi − xj||2 (142)

4. Ward’s linkage: This distance measure is analogous to the K -means method as it seeks to minimize the total inertia.
The distance measure is the ‘‘error squared’’ before and after merging which simplifies to:

d(Xi, Xj) =
|Xi||Xj|

|Xi ∪ Xj|
(µi − µj)

2, (143)

where µj is the center of cluster j.

A common drawback of hierarchical methods is that they do not scale well: at every step, a distance matrix
between all clusters must be updated/computed. Efficient implementations achieve a typical computational complexity
of O(N2) (Müllner, 2011), making the method suitable for small to medium-size datasets. A simple but major speed-up
for the method is to initialize the clusters with K -means using a large K (but still a small fraction of N) and then proceed
with hierarchical clustering. This has the advantage of preserving the large-scale structure of the hierarchy while making
use of the linear scaling of K -means. In this way, hierarchical clustering may be applied to very large datasets.

13.1.3. Density-based (DB) clustering
Density clustering makes the intuitive assumption that clusters are defined by regions of space with higher density

of data points. Data points that constitute noise or that are outliers are expected to form regions of low density. Density
clustering has the advantage of being able to consider clusters of multiple shapes and sizes while identifying outliers. The
method is also suitable for large-scale applications.

The core assumption of DB clustering is that a relative local density estimation of the data is possible. In other words,
it is possible to order points according to their densities. Density estimates are usually accurate for low-dimensional data
but become unreliable for high-dimensional data due to large sampling noise. Here, for brevity, we confine our discussion
to one of the most widely used density clustering algorithms, DBSCAN. We have also had great success with another

78 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 57. (a) Illustration of DBSCAN algorithm with minPts= 4. Two ε-neighborhoods are represented as dashed circles of radius ε. Red points are the
core points and blue points are density-reachable point that are not core points. Outliers are gray colored. (b) Application of DBSCAN (minPts=40)
to a noisy dataset with two non-convex clusters. Density profile is shown for clarity. Outliers are indicated by black crosses.

recently introduced variant of DB clustering (Rodriguez and Laio, 2014) that is similar in spirit which the reader is urged
to consult. One of the authors (A. D.) has also created a Python package, https://pypi.org/project/fdc/, which makes use
of accurate density estimates via kernel methods combined with agglomerative clustering to produce fast and accurate
density clustering (see also GitHub repository).

DBSCAN algorithm. Here we describe the most prominent DB clustering algorithm: DBSCAN, or density-based spatial
clustering of applications with noise (Ester et al., 1996). Consider once again a set of N data points X ≡ {xn}Nn=1.

We start by defining the ε-neighborhood of point xn as follows:

Nε(xn) = {x ∈ X |d(x, xn) < ε} . (144)

Nε(xn) are the data points that are at a distance smaller than ε from xn. As before, we consider d(·, ·) to be the Euclidean
metric (which yields spherical neighborhoods, see Fig. 57) but other metrics may be better suited depending on the specific
data. Nε(xn) can be seen as a crude estimate of local density. xn is considered to be a core-point if at least minPts are in
its ε-neighborhood. minPts is a free parameter of the algorithm that sets the scale of the size of the smallest cluster one
should expect. Finally, a point xi is said to be density-reachable if it is in the ε-neighborhood of a core-point. From these
definitions, the algorithm can be simply formulated (see also Fig. 57):

→ Until all points in X have been visited; do

− Pick a point xi that has not been visited
− Mark xi as a visited point
− If xi is a core point; then

· Find the set C of all points that are density reachable from xi.
· C now forms a cluster. Mark all points within that cluster as being visited.

https://pypi.org/project/fdc/
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering
https://github.com/alexandreday/fast_density_clustering

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 79

Fig. 58. (a) Application of Gaussian mixture modeling to the Ising dataset. The normalized histogram corresponds to the first principal component
distribution of the dataset (or equivalently the magnetization in this case). The 1D data is fitted with a K = 3-component Gaussian mixture. The
likehood of the fitted Gaussian mixture is represented in red and is obtained via the expectation–maximization algorithm (b) The Gaussian mixture
model can be used to compute posterior probability (responsibilities), i.e. the probability of being in one of the phases. Note that the point where
γ (1) = γ (2) = γ (3) can be interpreted as the critical point. Indeed the crossing occurs at T ≈ 2.26.

→ Return the cluster assignments C1, . . . , Ck, with k the number of clusters. Points that have not been assigned to a
cluster are considered noise or outliers.

Note that DBSCAN does not require the user to specify the number of clusters but only ε and minPts. While, it is common
to heuristically fix these parameters, methods such as cross-validation can be used for their determination. Finally, we
note that DBSCAN is very efficient since efficient implementations have a computational cost of O(N logN).

13.2. Clustering and latent variables via the Gaussian mixture models

In the previous section, we introduced several practical methods for clustering. In this section, we will approach
clustering from a more abstract vantage point, and in the process, introduce many of the core ideas underlying
unsupervised learning. A central concept in many unsupervised learning techniques is the idea of a latent or hidden
variable. Even though latent variables are not directly observable, they still influence the visible structure of the data.
For example, in the context of clustering we can think of the cluster identity of each datapoint (i.e. which cluster does a
datapoint belong to) as a latent variable. And even though we cannot see the cluster label explicitly, we know that points
in the same cluster tend to be closer together. The latent variables in our data (cluster identity) are a way of representing
and abstracting the correlations between datapoints.

In this language, we can think of clustering as an algorithm to learn the most probable value of a latent variable
(cluster identity) associated with each datapoint. Calculating this latent variable requires additional assumptions about the
structure of our dataset. Like all unsupervised learning algorithms, in clustering we must make an assumption about the

80 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

underlying probability distribution from which the data was generated. Our model for how the data is generated is called
the generative model. In clustering, we assume that data points are assigned a cluster, with each cluster characterized by
some cluster-specific probability distribution (e.g. a Gaussian with some mean and variance that characterizes the cluster).
We then specify a procedure for finding the value of the latent variable. This is often done by choosing the values of the
latent variable that minimize some cost function.

One common choice for a class of cost functions for many unsupervised learning problems is Maximum Likelihood
Estimation (MLE), see Sections 5 and 6. In MLE, we choose the values of the latent variables that maximize the likelihood
of the observed data under our generative model (i.e. maximize the probability of getting the observed dataset under our
generative model). Such MLE equations often give rise to the kind of Expectation–Maximization (EM) equations that we
first encountered in the last section in the context of K -means clustering.

Gaussian Mixtures models (GMM) are a generative model often used in the context of clustering. In GMM, points are
drawn from one of K Gaussians, each with its own mean µk and covariance matrix Σk,

N (x|µ,Σ) ∼ exp
[
−

1
2
(x− µ)Σ−1(x− µ)T

]
. (145)

Let us denote the probability that a point is drawn from mixture k by πk. Then, the probability of generating a point x in
a GMM is given by

p(x|{µk,Σ k, πk}) =
K∑

k=1

N (x|µk,Σ k)πk. (146)

Given a dataset X = {x1, . . . , xN}, we can write the likelihood of the dataset as

p(X |{µk,Σ k, πk}) =
N∏
i=1

p(xi|{µk,Σ k, πk}) (147)

For future reference, let us denote the set of parameters (of K Gaussians in the model) {µk,Σ k, πk} by θ.
To see how we can use GMM and MLE to perform clustering, we introduce discrete binary K -dimensional latent

variables z for each data point x whose kth component is 1 if point x was generated from the kth Gaussian and zero
otherwise (these are often called ‘‘one-hot variables’’). For instance if we were considering a Gaussian mixture with K = 3,
we would have three possible values for z ≡ (z1, z2, z3) : (1, 0, 0), (0, 1, 0) and (0, 0, 1). We cannot directly observe the
variable z . It is a latent variable that encodes the cluster identity of point x. Let us also denote all the N latent variables
corresponding to a dataset X by Z .

Viewing the GMM as a generative model, we can write the probability p(x|z) of observing a data point x given z as

p(x|z; {µk,Σ k}) =
K∏

k=1

N (x|µk, Σk)zk (148)

as well as the probability of observing a given value of latent variable

p(z|{πk}) =
K∏

k=1

π
zk
k . (149)

Using Bayes’ rule, we can write the joint probability of a clustering assignment z and a data point x given the GMM
parameters as

p(x, z; θ) = p(x|z; {µk,Σ k})p(z|{πk}). (150)

We can also use Bayes rule to rearrange this expression to give the conditional probability of the data point x being
in the kth cluster, γ (zk), given model parameters θ as

γ (zk) ≡ p(zk = 1|x; θ) =
πkN (x|µk, Σk)∑K
j=1 πjN (x|µj, Σj)

. (151)

The γ (zk) are often referred to as the ‘‘responsibility’’ that mixture k takes for explaining x. Just like in our discussion of
soft-max classifiers, this can be made into a ‘‘hard-assignment’’ by assigning each point to the cluster with the largest
probability: argmaxk γ (zk) over the responsibilities.

The complication is of course that we do not know the parameters θ of the underlying GMM but instead must also
learn them from the dataset X . As discussed above, ideally we could do this by choosing the parameters that maximize
the likelihood (or equivalently the log-likelihood) of the data

θ̂ = argmax
θ

log p(X |θ) (152)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 81

where θ = {µk,Σ k, πk}. Once we know the MLEs θ̂, we could use Eq. (151) to calculate the optimal hard cluster
assignment argmaxk γ̂ (zk) where γ̂ (zk) = p(zk = 1|x; θ̂).

In practice, due to the complexity of Eq. (147), it is almost impossible to find the global maximum of the likelihood
function. Instead, we must settle for a local maximum. One approach to finding a local maximum of the likelihood is to use
a method like stochastic gradient descent on the negative log-likelihood, cf. Section 4. Here, we introduce an alternative,
powerful approach for finding local minima in latent variable models using an iterative procedure called Expectation–
Maximization (EM). Given an initial guess for the parameters θ (0), the EM algorithm iteratively generates new estimates
for the parameters θ (1), θ (2), Importantly, the likelihood is guaranteed to be non-decreasing under these iterations and
hence EM converges to a local maximum of the likelihood (Neal and Hinton, 1998).

The central observation underlying EM is that it is often much easier to calculate the conditional likelihoods of the
latent variables p̃(t)(Z) = p(Z|X; θ (t)) given some choice of parameters, and the maximum of the expected log likelihood
given an assignment of the latent variables: θ (t+1)

= argmaxθ Ep(Z|X;θ (t))[log p(X, Z; θ)]. To get an intuition for this later
quantity notice that we can write

Ep̃(t) [log p(X, Z; θ)] =
N∑
i=1

K∑
k=1

γ
(t)
ik [logN (xi|µk,Σ k)+ logπk] , (153)

where we have used the shorthand γ
(t)
ik = p(zik|X; θ (t)) with zik the kth component of zi. Taking the derivative of this

equation with respect to µk, Σ k, and πk (subject to the constraint
∑

k πk = 1) and setting this to zero yields the intuitive
equations

µ
(t+1)
k =

∑N
i γ

(t)
ik xi∑

i γ
(t)
ik

Σ (t+1)
k =

∑N
i γ

(t)
ik (xi − µk)(xi − µk)T∑

i γ
(t)
ik

π
(t+1)
k =

1
N

∑
k

γ
(t)
ik (154)

These are just the usual estimates for the mean and variance, with each data point weighed according to our current best
guess for the probability that it belongs to cluster k. We can then use our new estimate θ (t+1) to calculate responsibility
γ

(t+1)
ik and repeat the process. This is essentially the K -Means algorithm discussed in the first section. Fig. 58 shows an

application of Gaussian mixture modelling to the Ising dataset.
This discussion of the Gaussian mixture model introduces several concepts that we will return to repeatedly in the

context of unsupervised learning. First, it is often useful to think of the visible correlations between features in the data
as resulting from hidden or latent variables. Second, we will often posit a generative model that encodes the structure
we think exists in the data and then find parameters that maximize the likelihood of the observed data. Third, often we
will not be able to directly estimate the MLE, and will have to instead look for a computationally efficient way to find a
local minimum of the likelihood.

13.3. Clustering in high dimensions

Clustering data in high-dimension can be very challenging. One major problem that is aggravated in high-dimensions
is the generic accumulation of noise due to random measurement error for each feature. This in turn leads to increased
errors for pairwise similarity and distance measures and thus tends to ‘‘blur’’ distances between data points (Domingos,
2012; Kriegel et al., 2009; Zimek et al., 2012). Many clustering algorithms rely on the explicit use of a similarity measure or
distance metrics that weigh all features equally. For this reason, one must be careful when using an off-the-shelf method
in high dimensions.

In order to perform clustering on high-dimensional data, it is often useful to denoise the data before proceeding with
using a standard clustering method such as K -means (Kriegel et al., 2009). Fig. 54 illustrates an application of denoising
to high-dimensional data. PCA (Section 12.2) was used to denoise the MNIST dataset by projecting the 784 original
dimensions onto the 40 dimensions with the largest principal components. The resulting features were then used to
construct a Euclidean distance matrix which was used by t-SNE to compute the two-dimensional embedding that is
presented. Using t-SNE directly on original data leads to a ‘‘blurring’’ of the clusters (the reader is encouraged to test this
themselves).

However, simple feature selection or feature denoising (using PCA for instance) can sometimes be insufficient for
learning clusters due to the presence of large variations in the signal and noise of the features that are relevant for
identifying the underlying clusters (Kriegel et al., 2009). Recent promising work suggests that one way to overcome these
limitations is to learn the latent space and the cluster labels at the same time (Xie et al., 2016).

82 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Finally we end the clustering section with a short discussion on clustering validation, which can be particularly difficult
for high-dimensional data. Often clustering validation, i.e. verifying whether the obtained labels are ‘‘valid’’ is done by
direct visual inspection. That is, the data is represented in a low-dimensional space and the cluster labels obtained are
visually inspected to make sure that different labels organize into distinct ‘‘blobs’’. For high-dimensional data, this is done
by performing dimensional reduction (Section 12). However, this can lead to the appearance of spurious clusters since
dimensional reduction inevitably loses information about the original data. Thus, these methods should be used with care
when trying to validate clusters [see (Wattenberg et al., 2016) for an interactive discussion on how t-SNE can sometime
be misleading and how to effectively use it].

A lot of work has been done to devise ways of validating clusters based on various metrics and measures (Kriegel et al.,
2009). Perhaps one of the most intuitive way of defining a good clustering is by measuring how well clusters generalize.
Clustering methods based on leveraging powerful classifiers to measure the generalization errors of the clusters have been
developed by some of the authors (Day and Mehta, 2018), see https://pypi.org/project/hal-x/. We believe this represents
an especially promising research direction in high-dimensional clustering. Finally, we emphasize that this discussion is
far from exhaustive and we refer the reader to (Rokach and Maimon, 2005), Chapter 15, for an in-depth survey of the
various validation techniques.

14. Variational methods and mean-field theory (MFT)

A common thread in many unsupervised learning tasks is accurately representing the underlying probability distribu-
tion from which a dataset is drawn. Unsupervised learning of high-dimensional, complex distributions presents a new set
of technical and computational challenges that are different from those we encountered in a supervised learning setting.
When dealing with complicated probability distributions, it is often much easier to learn the relative weights of different
states or data points (ratio of probabilities), than absolute probabilities. In physics, this is the familiar statement that the
weights of a Boltzmann distribution are much easier to calculate than the partition function. The relative probability of
two configurations, x1 and x2, are proportional to the difference between their Boltzmann weights

p(x1)
p(x2)

= e−β(E(x1)−E(x2)), (155)

where as is usual in statistical mechanics β is the inverse temperature and E(x; θ) is the energy of state x given some
parameters (couplings) θ . However, calculating the absolute weight of a configuration requires knowledge of the partition
function

Zp = Trxe−βE(x), (156)

(where the trace is taken over all possible configurations x) since

p(x) =
e−βE(x)

Zp
. (157)

In general, calculating the partition function Zp is analytically and computationally intractable.
For example, for the Ising model with N binary spins, the trace involves calculating a sum over 2N terms, which is

a difficult task for most energy functions. For this reason, physicists (and machine learning scientists) have developed
various numerical and computational methods for evaluating such partition functions. One approach is to use Monte-Carlo
based methods to draw samples from the underlying distribution (this can be done knowing only the relative probabilities)
and then use these samples to numerically estimate the partition function. This is the philosophy behind powerful
methods such as Markov Chain Monte Carlo (MCMC) (Andrieu et al., 2003) and annealed importance sampling (Neal and
Hinton, 1998) which are widely used in both the statistical physics and machine learning communities. An alternative
approach – which we focus on here – is to approximate the probability distribution p(x) and partition function using
a ‘‘variational distribution’’ q(x; θq) whose partition function we can calculate exactly. The variational parameters θq are
chosen to make the variational distribution as close to the true distribution as possible (how this is done is the focus of
much of this section).

One of the most-widely applied examples of a variational method in statistical physics is Mean-Field Theory (MFT).
MFT can be naturally understood as a procedure for approximating the true distribution of the system by a factorized
distribution. The deep connection between MFT and variational methods is discussed below. These variational MFT
methods have been extended to understand more complicated spin models (also called graphical models in the ML
literature) and form the basis of powerful set of techniques that go under the name of Belief Propagation and Survey
Propagation (MacKay, 2003; Wainwright et al., 2008; Yedidia et al., 2003).

Variational methods are also widely used in ML to approximate complex probabilistic models. For example, below
we show how the Expectation–Maximization (EM) procedure, which we discussed in the context of Gaussian Mixture
Models for clustering, is actually a general method that can be derived for any latent (hidden) variable model using a
variational procedure (Neal and Hinton, 1998). This section serves as an introduction to this powerful class of variational
techniques. For readers interested in an in-depth discussion on variational inference for probabilistic graphical models,
we recommend the great treatise written by Michael I. Jordan and others (Jordan et al., 1999), the more physics oriented
discussion in (Yedidia, 2001; Yedidia et al., 2003), as well as David MacKay’s outstanding book (MacKay, 2003).

https://pypi.org/project/hal-x/

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 83

14.1. Variational mean-field theory for the Ising model

Ising models are a major paradigm in statistical physics. Historically introduced to study magnetism, it was quickly
realized that their predictive power applies to a variety of interacting many-particle systems. Ising models are now
understood to serve as minimal models for complex phenomena such as certain classes of phase transitions. In the Ising
model, degrees of freedom called spins assume discrete, binary values, e.g. si = ±1. Each spin variable si lives on a
lattice (or, in general, a graph), the sites of which are labeled by i = 1, 2 . . . ,N . Despite the extreme simplicity relative
to real-world systems, Ising models exhibit a high level of intrinsic complexity, and the degrees of freedom can become
correlated in sophisticated ways. Often, spins interact spatially locally, and respond to externally applied magnetic fields.

A spin configuration s specifies the values si of the spins at every lattice site. We can assign an ‘‘energy’’ to every such
configuration

E(s, J) = −
1
2

∑
i,j

Jijsisj −
∑

i

hisi, (158)

where hi is a local magnetic field applied to the spin si, and Jij is the interaction strength between the spins si and sj. In
textbook examples, the coupling parameters J = (J, h) are typically uniform or, in studies of disordered systems, (Ji, hi)
are drawn from some probability distribution (i.e. quenched disorder).

The probability of finding the system in a given spin configuration at temperature β−1 is given by

p(s|β, J) =
1

Zp(J)
e−βE(s,J),

Zp(β, J) =
∑
{si=±1}

e−βE(s,J), (159)

with
∑
{si=±1}

denoting the sum over all possible configurations of the spin variables. We write Zp to emphasize that this
is the partition function corresponding to the probability distribution p(s|β, J), which will become important later. For a
fixed number of lattice sites N , there are 2N possible configurations, a number that grows exponentially with the system
size. Therefore, it is not in general feasible to evaluate the partition function Zp(β, J) in closed form. This represents a
major practical obstacle for extracting predictions from physical theories since the partition function is directly related
to the free-energy through the expression

βFp(J) = − log Zp(β, J) = β⟨E(s, J)⟩p − Hp, (160)

with

Hp = −
∑
{si=±1}

p(s|β, J) log p(s|β, J) (161)

the entropy of the probability distribution p(s|β, J).
Even though the true probability distribution p(s|β, J) may be a very complicated object, we can still make progress

by approximating p(s|β, J) by a variational distribution q(s, θ) which captures the essential features of interest, with θ
some parameters that define our variational ansatz. The name variational distribution comes from the fact that we are
going to vary the parameters θ to make q(s, θ) as close to p(s|β, J) as possible. The functional form of q(s, θ) is based
on an ‘‘educated guess’’, which oftentimes comes from our intuition about the problem. We can also define a variational
free-energy

βFq(θ, J) = β⟨E(s, J)⟩q − Hq, (162)

where ⟨E(s, J)⟩q is the expectation value of the energy E(s, J) with respect to the distribution q(s, θ), and Hq is the entropy
of q(s, θ).

Before proceeding further, it is helpful to introduce a new quantity: the Kullback–Leibler divergence (KL-divergence
or relative entropy) between two distributions p(x) and q(x). The KL-divergence measures the dissimilarity between the
two distributions and is given by

DKL(q||p) = Trxq(x) log
q(x)
p(x)

, (163)

which is the expectation w.r.t. q of the logarithmic difference between the two distributions p and q. The trace Trx denotes
a sum over all possible configurations x. Two important properties of the KL-divergence are (i) positivity: DKL(p||q) ≥ 0
with equality if and only if p = q (in the sense of probability distributions), and (ii) DKL(p||q) ̸= DKL(q||p), that is the
KL-divergence is not symmetric in its arguments.

Variational mean-field theory is a systematic way for constructing such an approximate distribution q(s, θ). The main
idea is to choose parameters that minimize the difference between the variational free-energy Fq(J , θ) and the true free-
energy Fp(J |β). We will show in Section 14.2 below that the difference between these two free-energies is actually the
KL-divergence:

Fq(J , θ) = Fp(J , β)+ DKL(q||p). (164)

84 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

This equality, when combined with the non-negativity of the KL-divergence has important consequences. First, it shows
that the variational free-energy is always larger than the true free-energy, Fq(J , θ) ≥ Fp(J), with equality if and only if
q = p (the latter inequality is found in many physics textbooks and is known as the Gibbs inequality). Second, finding
the best variational free-energy is equivalent to minimizing the KL divergence DKL(q||p).

Armed with these observations, let us now derive a MFT of the Ising model using variational methods. In the simplest
MFT of the Ising model, the variational distribution is chosen so that all spins are independent:

q(s, θ) =
1
Zq

exp

(∑
i

θisi

)
=

∏
i

eθisi

2 cosh θi
. (165)

In other words, we have chosen a distribution q which factorizes on every lattice site. An important property of this
functional form is that we can analytically find a closed-form expression for the variational partition function Zq. This
simplicity also comes at a cost: ignoring correlations between spins. These correlations become less and less important
in higher dimensions and the MFT ansatz becomes more accurate.

To evaluate the variational free-energy, we make use of Eq. (162). First, we need the entropy Hq of the distribution q.
Since q factorizes over the lattice sites, the entropy separates into a sum of one-body terms

Hq(θ) = −
∑
{si=±1}

q(s, θ) log q(s, θ)

= −

∑
i

qi log qi + (1− qi) log(1− qi), (166)

where qi = eθi
2 cosh θi

is the probability that spin si is in the +1 state. Next, we need to evaluate the average of the Ising
energy E(s, J) with respect to the variational distribution q. Although the energy contains bilinear terms, we can still
evaluate this average easily, because the spins are independent (uncorrelated) in the q distribution. The mean value of
spin si in the q distribution, also known as the on-site magnetization, is given by

mi = ⟨si⟩q =
∑
si=±1

si
eθisi

2 cosh θi
= tanh(θi). (167)

Since the spins are independent, we have

⟨E(s, J)⟩q = −
1
2

∑
i,j

Jijmimj −
∑

i

himi. (168)

The total variational free-energy is

βFq(J , θ) = β⟨E(s, J)⟩q − Hq,

and minimizing with respect to the variational parameters θ, we obtain

∂

∂θi
βFq(J , θ) = 2

dqi
dθi

⎛⎝−β

⎡⎣∑
j

Jijmj + hi

⎤⎦+ θi

⎞⎠ . (169)

Setting this equation to zero, we arrive at

θi = β
∑

j

Jijmj(θj)+ hi. (170)

For the special case of a uniform field hi = h and uniform nearest neighbor couplings Jij = J , by symmetry the variational
parameters for all the spins are identical, with θi = θ for all i. Then, the mean-field equations reduce to their familiar
textbook form (Sethna, 2006), m = tanh(θ) and θ = β(zJm(θ) + h), where z is the coordination number of the lattice
(i.e. the number of nearest neighbors).

Eqs. (167) and (170) form a closed system, known as the mean-field equations for the Ising model. To find a solution
to these equations, one method is to iterate through and update each θi, once at a time, in an asynchronous fashion.
Once can see the emerging relationship of this approach to solving the MFT equations to Expectation–Maximization (EM)
procedure first introduced in the context of the K -means algorithm in Section 13.1. To make this explicit, let us spell out
the iterative procedure to find the solutions to Eq. (170). We start by initializing our variational parameters to some θ(0)

and repeat the following two steps until convergence:

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 85

1. Expectation: Given a set of assignments at iteration t , θ(t), calculate the corresponding magnetizations m(t) using
Eq. (167)

2. Maximization: Given a set of magnetizations mt , find new assignments θ (t+1) which minimize the variational free
energy Fq. From, Eq. (170) this is just

θ
(t+1)
i = β

∑
j

Jijm
(t)
j + hi. (171)

From these equations, it is clear that we can think of the MFT of the Ising model as an EM-like procedure similar to the
one we used for K -means clustering and Gaussian Mixture Models in Section 13.

As is well known in statistical physics, even though MFT is not exact, it can often yield qualitatively and even
quantitatively precise predictions (especially in high dimensions). The discrepancy between the true physics and MFT
predictions stems from the fact that the variational distribution q we chose cannot capture correlations between the
spins. For instance, it predicts the wrong value for the critical temperature for the two-dimensional Ising model. It
even erroneously predicts the existence of a phase transition in one dimension at a non-zero temperature. We refer the
interested reader to standard textbooks on statistical physics for a detailed analysis of applicability of MFT to the Ising
model. However, we emphasize that the failure of any particular variational ansatz does not compromise the usefulness
of the approach. In some cases, one can consider changing the variational ansatz to improve the predictive properties of
the corresponding variational MFT (Yedidia, 2001; Yedidia et al., 2003). The take-home message is that variational MFT
is a powerful tool but one that must be applied and interpreted with care.

14.2. Expectation–Maximization (EM)

Ideas along the lines of variational MFT have been independently developed in statistics and imported into ma-
chine learning to perform maximum likelihood (ML) estimates. In this section, we explicitly derive the Expectation–
Maximization (EM) algorithm and demonstrate further its close relation to variational MFT (Neal and Hinton, 1998). We
will focus on latent variable models where some of the variables are hidden and cannot be directly observed. This often
makes maximum likelihood estimation difficult to implement. EM gets around this difficulty by using an iterative two-step
procedure, closely related to variational free-energy based approximation schemes in statistical physics.

To set the stage for the following discussion, let x be the set of visible variables we can directly observe and z be
the set of latent or hidden variables that we cannot directly observe. Denote the underlying probability distribution from
which x and z are drawn by p(z, x|θ), with θ representing all relevant parameters. Given a dataset x, we wish to find the
maximum likelihood estimate of the parameters θ that maximizes the probability of the observed data.

As in variational MFT, we view θ as variational parameters chosen to maximize the log-likelihood L(θ) = ⟨log p(x|θ)⟩Px ,
where the expectation is taken with respect to the marginal distributions of x. Algorithmically, this can be done by iterating
the variational parameters θ(t) in a series of steps (t = 1, 2, . . .) starting from some arbitrary initial value θ(0):

1. Expectation step (E step): Given the known values of observed variable x and the current estimate of parameter
θt−1, find the probability distribution of the latent variable z:

qt−1(z) = p(z|θ(t−1), x) (172)

2. Maximization step (M step): Re-estimate the parameter θ(t) to be those with maximum likelihood, assuming
qt−1(z) found in the previous step is the true distribution of hidden variable z:

θt = argmax
θ

⟨log p(z, x|θ)⟩qt−1 (173)

It was shown (Dempster et al., 1977) that each EM iteration increases the true log-likelihood L(θ), or at worst leaves it
unchanged. In most models, this iteration procedure converges to a local maximum of L(θ).

To see how EM is actually performed and related to variational MFT, we make use of KL-divergence between two
distributions introduced in the last section. Recall that our goal is to maximize the log-likelihood L(θ). With data z missing,
we surely cannot just maximize L(θ) directly since parameter θ might couple both z and x. EM circumvents this by
optimizing another objective function, Fq(θ), constructed based on estimates of the hidden variable distribution q(z|x).
Indeed, the function optimized is none other than the variational free energy we encountered in the previous section:

Fq(θ) := −⟨log p(z, x|θ)⟩q,Px − ⟨Hq⟩Px , (174)

where Hq is the Shannon entropy (defined in Eq. (161)) of q(z|x). One can define the true free-energy Fp(θ) as the negative
log-likelihood of the observed data:

−Fp(θ) = L(θ) = ⟨log p(x|θ)⟩Px . (175)

In the language of statistical physics, Fp(θ) is the true free-energy while Fq(θ) is the variational free-energy we would like
to minimize (see Table 1). Note that we have chosen to employ a physics sign convention here of defining the free-energy
as minus log of the partition function. In the ML literature, this minus sign is often omitted (Neal and Hinton, 1998) and

86 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Table 1
Analogy between quantities in statistical physics and variational EM.
Statistical physics Variational EM

Spins/d.o.f.: s Hidden/latent variables z
Couplings /quenched disorder: J Data observations: x
Boltzmann factor e−βE(s,J) Complete probability: p(x, z|θ)
Partition function: Z(J) Marginal likelihood p(x|θ)
Energy: βE(s, J) Negative log-complete data likelihood: − log p(x, z|θ,m)
Free energy: βFp(J |β) Negative log-marginal likelihood: − log p(x|m)
Variational distribution: q(s) Variational distribution: q(z|x)
Variational free-energy: Fq(J , θ) Variational free-energy: Fq(θ)

this can lead to some confusion. Our goal is to choose θ so that our variational free-energy Fq(θ) is as close to the true
free-energy Fp(θ) as possible. The difference between these free-energies can be written as

Fq(θ)− Fp(θ) = ⟨fq(x, θ)− fp(x, θ)⟩Px , (176)

where

fq(x, θ)− fp(x, θ)

= log p(x|θ)−
∑
z

q(z|x) log p(z, x|θ)

+

∑
z

q(z|x) log q(z|x)

=

∑
z

q(z|x) log p(x|θ)−
∑
z

q(z|x) log p(z, x|θ)

+

∑
z

q(z|x) log q(z|x)

=−

∑
z

q(z|x) log
p(z, x|θ)
p(x|θ)

+

∑
z

q(z|x) log p̃(z)

=

∑
z

q(z|x) log
q(z|x)

p(z|x, θ)

= DKL(q(z|x)||p(z|x, θ)) ≥ 0

where we have used Bayes’ theorem p(z|x, θ) = p(z, x|θ)/p(x|θ). Since the KL-divergence is always positive, this shows
that the variational free-energy Fq is always an upper bound of the true free-energy Fp. In physics, this result is known
as Gibbs’ inequality.

From Eq. (174) and the fact that the entropy term in Eq. (174) does not depend on θ, we can immediately see that
the maximization step (M-step) in Eq. (173) is equivalent to minimizing the variational free-energy Fq(θ). Surprisingly,
the expectation step (E-step) can also viewed as the optimization of this variational free-energy. Concretely, one can
show that the distribution of hidden variables z given the observed variable x and the current estimate of parameter θ,
Eq. (172), is the unique probability q(z) that minimizes Fq(θ) (now seen as a functional of q). This can be proved by taking
the functional derivative of Eq. (174), plus a Lagrange multiplier that encodes

∑
z q(z) = 1, with respect to q(z). Summing

things up, we can re-write EM in the following form (Neal and Hinton, 1998):

1. Expectation step: Construct the approximating probability distribution of unobserved z given the values of observed
variable x and parameter estimate θ(t−1):

qt−1(z) = argmin
q

Fq(θ(t−1)) (177)

2. Maximization step: Fix q, update the variational parameters:

θ(t)
= argmax

θ

−Fqt−1 (θ). (178)

To recapitulate, EM implements ML estimation even with missing or hidden variables through optimizing a lower
bound of the true log-likelihood. In statistical physics, this is reminiscent of optimizing a variational free-energy which is
a lower bound of true free-energy due to Gibbs inequality. In Fig. 59, we show pictorially how EM works. The E-step can
be seen as representing the unobserved variable z by a probability distribution q(z). This probability is used to construct
an alternative objective function −Fq(θ), which is then maximized with respect to θ in the M-step. By construction,
maximizing the negative variational free-energy is equivalent to doing ML estimation on the joint data (i.e. both observed

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 87

Fig. 59. Convergence of EM algorithm. Starting from θ(t) , E-step (blue) establishes −Fq(θ(t)) which is always a lower bound of −Fp := ⟨log p(x|θ)⟩Px
(green). M-step (red) is then applied to update the parameter, yielding θ(t+1) . The updated parameter θ(t+1) is then used to construct −Fq(θ(t+1)) in
the subsequent E-step. M-step is performed again to update the parameter, etc.

and unobserved). The name ‘‘M-step’’ is intuitive since the parameters θ are found by maximizing −Fq(θ). The name
‘‘E-step’’ comes from the fact that one usually does not need to construct the probability of missing data explicitly, but
rather need only compute the ‘‘expected" sufficient statistics over these data, cf. Fig. 59.

On the practical side, EM has been demonstrated to be extremely useful in parameter estimation, particularly in hidden
Markov models and Bayesian networks (see, for example, (Barber, 2012; Wainwright et al., 2008)). Some of the authors
have used EM in biophysics, to design algorithms which establish the equivalence of niche theory and the Minimum
Environmental Perturbation Principle (Marsland et al., 2019). One of the striking advantages of EM is that it is conceptually
simple and easy to implement (see Notebook 16). In many cases, implementation of EM is guaranteed to increase the
likelihood monotonically, which could be a perk during debugging. For readers interested in an overview on applications
of EM, we recommend (Do and Batzoglou, 2008).

Finally for advanced readers familiar with the physics of disordered systems, we note that it is possible to construct
a one-to-one dictionary between EM for latent variable models and the MFT of spin systems with quenched disorder.
In a disordered spin systems, the Ising couplings J are commonly taken to be quenched random variables drawn from
some underlying probability distribution. In the EM procedure, the quenched disorder is provided by the observed data
points x which are drawn from some underlying probability distribution that characterizes the data. The spins s are like
the hidden or latent variables z . Similar analogues can be found for all the variational MFT quantities (see Table 1). This
striking correspondence offers a glimpse into the deep connection between statistical mechanics and unsupervised latent
variable models – a connection that we will repeatedly exploit to gain more intuition for the energy-based unsupervised
models considered in the next few chapters.

15. Energy based models: Maximum entropy (MaxEnt) principle, generative models, and Boltzmann learning

Most of the models discussed in the previous sections (e.g. linear and logistic regression, ensemble models, and
supervised neural networks) are discriminative – they are designed to perceive differences between groups or categories
of data. For example, recognizing differences between images of cats and images of dogs allows a discriminative model to
label an image as ‘‘cat’’ or ‘‘dog’’. Discriminative models form the core techniques of most supervised learning methods.
However, discriminative methods have several limitations. First, like all supervised learning methods, they require labeled
data. Second, there are tasks that discriminative approaches simply cannot accomplish, such as drawing new examples
from an unknown probability distribution. A model that can learn to represent and sample from a probability distribution
is called generative. For example, a generative model for images would learn to draw new examples of cats and dogs given
a dataset of images of cats and dogs. Similarly, given samples generated from one phase of an Ising model we may want to
generate new samples from that phase. Such tasks are clearly beyond the scope of discriminative models like the ensemble
models and DNNs discussed so far in the review. Instead, we must turn to a new class of machine learning methods.

The goal of this section is to introduce the reader to energy-based generative models. As we will see, energy-based
models are closely related to the kinds of models commonly encountered in statistical physics. We will draw upon
many techniques that have their origin in statistical mechanics (e.g. Monte-Carlo methods). The section starts with a
brief overview of generative models, highlighting the similarities and differences with the supervised learning methods
encountered in earlier sections. Next, we introduce perhaps the simplest kind of generative models — Maximum Entropy
(MaxEnt) models. MaxEnt models have no latent (or hidden) variables, making them ideal for introducing the key concepts

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

88 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 60. Examples of handwritten digits (‘‘reconstructions’’) generated using various energy-based models using the powerful Paysage package for
unsupervised learning. Examples from top to bottom are: the original MNIST database, an RBM with Gaussian units which is equivalent to a Hopfield
Model, a Restricted Boltzmann Machine (RBM), a RBM with an L1 penalty for regularization, and a Deep Boltzmann Machine (DBM) with 3 layers.
All models have 200 hidden units. See Section 16 and corresponding notebook for details.

and tools that underlie energy-based generative models. We then present an extended discussion of how to train energy-
based models. Much of this discussion will also be applicable to more complicated energy-based models such as Restricted
Boltzmann Machines (RBMs) and the deep models discussed in the next section.

15.1. An overview of energy-based generative models

Generative models are a machine learning technique that allows to learn how to generate new examples similar
to those found in a training dataset. The core idea of most generative models is to learn a parametric model for the
probability distribution from which the data was drawn. Once we have learned a model, we can generate new examples
by sampling from the learned generative model (see Fig. 60). As in statistical physics, this sampling is often done using
Markov Chain Monte Carlo (MCMC) methods. A review of MCMC methods is beyond the scope of this discussion: for a
concise and beautiful introduction to MCMC-inspired methods that bridges both statistical physics and ML the reader is
encouraged to consult Chapters 29–32 of David MacKay’s book (MacKay, 2003) as well as the review by Michael I. Jordan
and collaborators (Andrieu et al., 2003).

The added complexity of learning models directly from samples introduces many of the same fundamental tensions
we encountered when discussing discriminative models. The ability to generate new examples requires models to be able
to ‘‘generalize’’ beyond the examples they have been trained on, that is to generate new samples that are not samples of
the training set. The models must be expressive enough to capture the complex correlations present in the underlying
data distribution, but the amount of data we have is finite which can give rise to overfitting.

In practice, most generative models that are used in machine learning are flexible enough that, with a sufficient number
of parameters, they can approximate any probability distribution. For this reason, there are three axes on which we can
differentiate classes of generative models:

• The first axis is how easy the model is to train — both in terms of computational time and the complexity of writing
code for the algorithm.
• The second axis is how well the model generalizes from the training set to the test set.
• The third axis is which characteristics of the data distribution the model is capable of and focuses on capturing.

All generative models must balance these competing requirements and generative models differ in the tradeoffs they
choose. Simpler models capture less structure about the underlying distributions but are often easier to train. More
complicated models can capture this structure but may overfit to the training data.

One of the fundamental reasons that energy-based models have been less widely-employed than their discriminative
counterparts is that the training procedure for these models differs significantly from those for supervised neural networks
models. Though both employ gradient-descent based procedures for minimizing a cost function (one common choice
for generative models is the negative log-likelihood function), energy-based models do not use backpropagation (see
Section 9.3) and automatic differentiation for computing gradients. Rather, one must turn to ideas inspired by MCMC
based methods in physics and statistics that sometimes go under the name ‘‘Boltzmann Learning’’ (discussed below). As
a result, training energy-based models requires additional tools that are not immediately available in packages such as
PyTorch and TensorFlow.

The open-source package – Paysage – that is built on top of PyTorch bridges this gap by providing the toolset for
training energy-based models (Paysage is maintained by Unlearn.AI – a company affiliated with two of the authors (CKF
and PM)). Paysage makes it easy to quickly code and deploy energy-based models such as Restricted Boltzmann Machines

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 89

(RBMs) and Stacked RBMs – a ‘‘deep’’ unsupervised model. The package includes unpublished training methods that
significantly improve the training performance, can be applied with various datatypes, and can be employed on GPUs.
We make use of this package extensively in the next two sections and the accompanying Python notebooks. For example,
Fig. 60 (and the accompanying Notebook 17) show how the Paysage package can be used to quickly code and train a
variety of energy-based models on the MNIST handwritten digit dataset.

Finally, we note that generative models at their most basic level are complex parametrizations of the probability
distribution the data is drawn from. For this reason, generative models can do much more than just generate new
examples. They can be used to perform a multitude of other tasks that require sampling from a complex probability
distribution including ‘‘de-noising’’, filling in missing data, and even discrimination (Hinton, 2012). The versatility of
generative models is one of the major appeals of these unsupervised learning methods.

15.2. Maximum entropy models: the simplest energy-based generative models

Maximum Entropy (MaxEnt) models are one of the simplest classes of energy-based generative models. MaxEnt models
have their origin in a series of beautiful papers by Jaynes that reformulated statistical mechanics in information theoretic
terms (Jaynes, 1957a,b). Recently, the flood of new, large scale datasets has resulted in a resurgence of interest in MaxEnt
models in many fields including physics (especially biological physics), computational neuroscience, and ecology (Elith
et al., 2011; Schneidman et al., 2006; Weigt et al., 2009). MaxEnt models are often presented as the class of generative
models that make the least assumptions about the underlying data. However, as we have tried to emphasize throughout
the review, all ML and statistical models require assumptions, and MaxEnt models are no different. Overlooking this can
sometimes lead to misleading conclusions, and it is important to be cognizant of these implicit assumptions (Aitchison
et al., 2016; Schwab et al., 2014).

15.2.1. MaxEnt models in statistical mechanics
MaxEnt models were introduced by E. T. Jaynes in a two-part paper in 1957 entitled ‘‘Information theory and statistical

mechanics’’ (Jaynes, 1957a,b). In these incredible papers, Jaynes showed that it was possible to re-derive the Boltzmann
distribution (and the idea of generalized ensembles) entirely from information theoretic arguments. Quoting from the
abstract, Jaynes considered ‘‘statistical mechanics as a form of statistical inference rather than as a physical theory’’
(portending the close connection between statistical physics and machine learning). Jaynes showed that the Boltzmann
distribution could be viewed as resulting from a statistical inference procedure for learning probability distributions
describing physical systems where one only has partial information about the system (usually the average energy).

The key quantity in MaxEnt models is the information theoretic, or Shannon, entropy, a concept introduced by Shannon
in his landmark treatise on information theory (Shannon, 1949). The Shannon entropy quantifies the statistical uncertainty
one has about the value of a random variable x drawn from a probability distribution p(x). The Shannon entropy of the
distribution is defined as

Sp = −Trxp(x) log p(x) (179)

where the trace is a sum/integral over all possible values a variable can take. Jaynes showed that the Boltzmann
distribution follows from the Principle of Maximum Entropy. A physical system should be described by the probability
distribution with the largest entropy subject to certain constraints (often provided by measuring the average value of
conserved, extensive quantities such as the energy, particle number, etc.) The principle uniquely specifies a procedure for
parametrizing the functional form of the probability distribution. Once we have specified and learned this form we can,
of course, generate new examples by sampling this distribution.

Let us illustrate how this works in more detail. Suppose that we have chosen a set of functions {fi(x)} whose average
value we want to fix to some observed values ⟨fi⟩obs. The Principle of Maximum Entropy states that we should choose the
distribution p(x) with the largest uncertainty (i.e. largest Shannon entropy Sp), subject to the constraints that the model
averages match the observed averages:

⟨fi⟩model =

∫
dxfi(x)p(x) = ⟨fi⟩obs. (180)

We can formulate the Principle of Maximum Entropy as an optimization problem using the method of Lagrange
multipliers by minimizing:

L[p] = −Sp +
∑

i

λi

(
⟨fi⟩obs −

∫
dxfi(x)p(x)

)
+ γ

(
1−

∫
dxp(x)

)
,

where the first set of constraints enforce the requirement for the averages and the last constraint enforces the normaliza-
tion that the trace over the probability distribution equals one. We can solve for p(x) by taking the functional derivative

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

90 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

and setting it to zero

0 =
δL
δp
= (log p(x)+ 1)−

∑
i

λifi(x)− γ .

The general form of the maximum entropy distribution is then given by

p(x) =
1
Z

e
∑

i λifi(x) (181)

where Z(λi) =
∫
dx e

∑
i λifi(x) is the partition function.

The maximum entropy distribution is clearly just the usual Boltzmann distribution with energy E(x) = −
∑

i λifi(x).
The values of the Lagrange multipliers are chosen to match the observed averages for the set of functions {fi(x)} whose
average value is being fixed:

⟨fi⟩model =

∫
dxp(x)fi(x) =

∂ log Z
∂λi

= ⟨fi⟩obs. (182)

In other words, the parameters of the distribution can be chosen such that

∂λi log Z = ⟨fi⟩data. (183)

To gain more intuition for the MaxEnt distribution, it is helpful to relate the Lagrange multipliers to the familiar
thermodynamic quantities we use to describe physical systems (Jaynes, 1957a). Our x denotes the microscopic state of
the system, i.e. the MaxEnt distribution is a probability distribution over microscopic states. However, in thermodynamics
we only have access to average quantities. If we know only the average energy ⟨E(x)⟩obs, the MaxEnt procedure tells us
to maximize the entropy subject to the average energy constraint. This yields

p(x) =
1
Z

e−βE(x), (184)

where we have identified the Lagrange multiplier conjugate to the energy λ1 = −β = 1/kBT with the (negative) inverse
temperature. Now, suppose we also constrain the particle number ⟨N(x)⟩obs. Then, an almost identical calculation yields
a MaxEnt distribution of the functional form

p(x) =
1
Z

e−β(E(x)−µN(x)), (185)

where we have rewritten our Lagrange multipliers in the familiar thermodynamic notation λ1 = −β and λ2 = µ/β .
Since this is just the Boltzmann distribution, we can also relate the partition function in our MaxEnt model to the
thermodynamic free-energy via F = −β−1 log Z . The choice of which quantities to constrain is equivalent to working
in different thermodynamic ensembles.

15.2.2. From statistical mechanics to machine learning
The MaxEnt idea also provides a general procedure for learning a generative model from data. The key difference

between MaxEnt models in (theoretical) physics and ML is that in ML we have no direct access to observed values ⟨fi⟩obs.
Instead, these averages must be directly estimated from data (samples). To denote this difference, we will call empirical
averages calculated from data as ⟨fi⟩data. We can think of MaxEnt as a statistical inference procedure simply by replacing
⟨fi⟩obs by ⟨fi⟩data above.

This subtle change has important implications for training MaxEnt models. First, since we do not know these averages
exactly, but must estimate them from the data, our training procedures must be careful not to overfit to the observations
(our samples might not be reflective of the true values of these statistics). Second, the averages of certain functions fi are
easier to estimate from limited data than others. This is often an important consideration when formulating which MaxEnt
model to fit to the data. Finally, we note that unlike in physics where conservation laws often suggest the functions fi
whose averages we hold fix, ML offers no comparable guide for how to choose the fi we care about. For these reasons,
choosing the {fi} is often far from straightforward. As a final point, we note that here we have presented a physics-based
perspective for justifying the MaxEnt procedure. We mention in passing that the MaxEnt in ML is also closely related to
ideas from Bayesian inference (Jaynes, 1968, 2003) and this latter point of view is more common in discussions of MaxEnt
in the statistics and ML literature.

15.2.3. Generalized Ising models from MaxEnt
The form of a MaxEnt model is completely specified once we choose the averages {fi} we wish to constrain. One

common choice often used in MaxEnt modeling is to constrain the first two moments of a distribution. When our random
variables x are continuous, the corresponding MaxEnt distribution is a multi-dimensional Gaussian. If the x are binary
(discrete), then the corresponding MaxEnt distribution is a generalized Ising (Potts) model with all-to-all couplings.

To see this, consider a random variable x with first and second moments ⟨xi⟩data and ⟨xixj⟩data, respectively. According
to the Principle of Maximum Entropy, we should choose to model this variable using a Boltzmann distribution with

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 91

constraints on the first and second moments. Let ai be the Lagrange multiplier associated with ⟨xi⟩data and Jij/2 be the
Lagrange multiplier associated with ⟨xixj⟩data. Using Eq. (182), it is easy to verify that the energy function

E(x) = −
∑

i

aixi −
1
2

∑
ij

Jijxixj (186)

satisfies the above constraints.
Partition functions for maximum entropy models are often intractable to compute. Therefore, it is helpful to consider

two special cases where x has different support (different kinds of data). First, consider the case that the random variables
x ∈ Rn are real numbers. In this case we can compute the partition function directly:

Z =
∫

dx ea
T x+ 1

2 x
T Jx
=

√
(2π)ndetJ−1e−

1
2 a

T J−1a. (187)

The resulting probability density function is,

p(x) = Z−1e−E(x)

=
1√

(2π)ndetJ−1
e

1
2 a

T J−1a+aT x+ 1
2 x

T Jx

=
1

√
(2π)ndetΣ

e−
1
2 (x−µ)TΣ−1(x−µ), (188)

where µ = −J−1a and Σ = −J−1. This, of course, is the normalized, multi-dimensional Gaussian distribution.
Second, consider the case that the random variable x is binary with xi ∈ {−1,+1}. The energy function takes the same

form as Eq. (186), but the partition function can no longer be computed in a closed form. This model is known as the
Ising model in the physics literature, and is often called a Markov Random Field in the machine learning literature. It
is well known to physicists that calculating the partition function for the Ising Model is intractable. For this reason, the
best we can do is estimate it using numerical techniques such MCMC methods or approximate methods like variational
MFT methods, see Section 14. Finally, we note that in ML it is common to use binary variables which take on values in
xi ∈ {0, 1} rather than {±1}. This can sometimes be a source of confusion when translating between ML and physics
literatures and can lead to confusion when using ML packages for physics problems.

15.3. Cost functions for training energy-based models

The MaxEnt procedure gives us a way of parametrizing an energy-based generative model. For any energy-based
generative model, the energy function E(x, {θi}) depends on some parameters θi – couplings in the language of statistical
physics – that must be inferred directly from the data. For example, for the MaxEnt models the {θi} are just the Lagrange
multipliers {λi} introduced in the last section. The goal of the training procedure is to use the available training data to
fit these parameters.

Like in many other ML techniques, we will fit these couplings by minimizing a cost function using stochastic gradient
descent (cf. Section 4). Such a procedure naturally separates into two parts: choosing an appropriate cost function, and
calculating the gradient of the cost function with respect to the model parameters. Formulating a cost function for
generative models is a little bit trickier than for supervised, discriminative models. The objective of discriminative models
is straightforward — predict the label from the features. However, what we mean by a ‘‘good’’ generative model is much
harder to define using a cost function. We would like the model to generate examples similar to those we find in the
training dataset. However, we would also like the model to be able to generalize — we do not want the model to reproduce
‘‘spurious details’’ that are particular to the training dataset. Unlike for discriminative models, there is no straightforward
idea like cross-validation on the data labels that neatly addresses this issue. For this reason, formulating cost functions
for generative models is subtle and represents an important and interesting open area of research.

Calculating the gradients of energy-based models also turns out to be different than for discriminative models,
such as deep neural networks. Rather than relying on automatic differentiation techniques and backpropagation (see
Section 9.3), calculating the gradient requires drawing on intuitions from MCMC-based methods. Below, we provide an
in-depth discussion of Boltzmann learning for energy-based generative models, focusing on MaxEnt models. We put the
emphasis on training procedures that generalize to more complicated generative models with latent variables such as
RBMs discussed in the next section. Therefore, we largely ignore the incredibly rich physics-based literature on fitting
Ising-like MaxEnt models (see the recent reviews (Baldassi et al., 2018; Nguyen et al., 2017) and references therein).

15.3.1. Maximum likelihood
By far the most common approach used for training a generative model is to maximize the log-likelihood of the

training dataset. Recall, that the log-likelihood characterizes the log-probability of generating the observed data using
our generative model. By choosing the negative log-likelihood as the cost function, the learning procedure tries to find
parameters that maximize the probability of the data. This cost function is intuitive and has been the work-horse of most

92 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

generative modeling. However, we note that the Maximum Likelihood estimation (MLE) procedure has some important
limitations that we will return to in Section 17.

In what follows, we employ a general notation that is applicable to all energy-based models, not just the MaxEnt
models introduced above. The reason for this is that much of this discussion does not rely on the specific form of the
energy function but only on the fact that our generative model takes a Boltzmann form. We denote the generative model
by the probability distribution pθ (x) and its corresponding partition function by log Z({θi}). In MLE, the parameters of the
model are fit by maximizing the log-likelihood:

L({θi}) = ⟨log (pθ (x))⟩data
= −⟨E(x; {θi})⟩data − log Z({θi}), (189)

where we have set β = 1. In writing this expression we made use of two facts: (i) our generative distribution is of the
Boltzmann form, and (ii) the partition function does not depend on the data:

⟨log Z({θi})⟩data = log Z({θi}). (190)

15.3.2. Regularization
Just as for discriminative models like linear and logistic regression, it is common to supplement the log-likelihood with

additional regularization terms (see Sections 6 and 7). Instead of minimizing the negative log-likelihood, one minimizes
a cost function of the form

−L({θi})+ Ereg({θi}), (191)

where Ereg({θi}) is an additional regularization term that prevents overfitting. From a Bayesian perspective, this new term
can be viewed as encoding a (negative) log-prior on model parameters and performing a maximum-a-posteriori (MAP)
estimate instead of a MLE (see corresponding discussion in Section 6).

As we saw by studying linear regression, different forms of regularization give rise to different kinds of properties. A
common choice for the regularization function are the sums of the L1 or L2 norms of the parameters

Ereg({θi}) = Λ
∑

i

|θi|
α, α = 1, 2 (192)

with Λ controlling the regularization strength. For Λ = 0, there is no regularization and we are simply performing MLE. In
contrast, a choice of large Λ will force many parameters to be close to or exactly zero. Just as in regression, an L1 penalty
enforces sparsity, with many of the θi set to zero, and L2 regularization shrinks the size of the parameters towards zero.

One challenge of generative models is that it is often difficult to choose the regularization strength Λ. Recall that, for
linear and logistic regression, Λ is chosen to maximize the out-of-sample performance on a validation dataset (i.e. cross-
validation). However, for generative models our data are usually unlabeled. Therefore, choosing a regularization strength
is more subtle and there exists no universal procedure for choosing Λ. One common strategy is to divide the data into
a training set and a validation set and monitor a summary statistic such as the log-likelihood, energy distance (Székely,
2003), or variational free-energy of the generative model on the training and validation sets (the variational free-energy
was discussed extensively in Section 14) (Hinton, 2012). If the gap between the training and validation datasets starts
growing, one is probably overfitting the model even if the log-likelihood of the training dataset is still increasing. This
also gives a procedure for ‘‘early stopping’’ – a regularization procedure we introduced in the context of discriminative
models. In practice, when using such regularizers it is important to try many different values of Λ and then try to use a
proxy statistic for overfitting to evaluate the optimal choice of Λ.

15.4. Computing gradients

We still need to specify a procedure for minimizing the cost function. One powerful and common choice that is widely
employed when training energy-based models is stochastic gradient descent (SGD) (see Section 4). Performing MLE using
SGD requires calculating the gradient of the log-likelihood Eq. (189) with respect to the parameters θi. To simplify notation
and gain intuition, it is helpful to define ‘‘operators’’ Oi(x), conjugate to the parameters θi

Oi(x) =
∂E(x; θi)

∂θi
. (193)

Since the partition function is just the cumulant generating function for the Boltzmann distribution, we know that the
usual statistical mechanics relationships between expectation values and derivatives of the log-partition function hold:

⟨Oi(x)⟩model = Trxpθ (x)Oi(x) = −
∂ log Z({θi})

∂θi
. (194)

In terms of the operators {Oi(x)}, the gradient of Eq. (189) takes the form (Ackley et al., 1987)

−
∂L({θi})

∂θi
=

⟨∂E(x; θi)
∂θi

⟩
data
+

∂ log Z({θi})
∂θi

= ⟨Oi(x)⟩data − ⟨Oi(x)⟩model. (195)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 93

These equations have a simple and beautiful interpretation. The gradient of the log-likelihood with respect to a model
parameter is a difference of moments — one calculated directly from the data and one calculated from our model using
the current model parameters. The data-dependent term is known as the positive phase of the gradient and the model-
dependent term is known as the negative phase of the gradient. This derivation also gives an intuitive explanation for
likelihood-based training procedures. The gradient acts on the model to lower the energy of configurations that are near
observed data points while raising the energy of configurations that are far from observed data points. Finally, we note that
all information about the data only enters the training procedure through the expectations ⟨Oi(x)⟩data and our generative
model is blind to information beyond what is contained in these expectations.

To use SGD, we must still calculate the expectation values that appear in Eq. (195). The positive phase of the gradient
– the expectation values with respect to the data – can be easily calculated using samples from the training dataset.
However, the negative phase – the expectation values with respect to the model – is generally much more difficult to
compute. We will see that in almost all cases, we will have to resort to either numerical or approximate methods. The
fundamental reason for this is that it is impossible to calculate the partition function exactly for most interesting models
in both physics and ML.

There are exceptional cases in which we can calculate expectation values analytically. When this happens, the
generative model is said to have a Tractable Likelihood. One example of a generative model with a Tractable Likelihood
is the Gaussian MaxEnt model for real valued data discussed in Eq. (188). The parameters/Lagrange multipliers for this
model are the local fields a and the pairwise coupling matrix J . In this case, the usual manipulations involving Gaussian
integrals allow us to exactly find the parameters µ = −J−1a and Σ = −J−1, yielding the familiar expressions µ = ⟨x⟩data
and Σ = ⟨(x − ⟨x⟩data)(x − ⟨x⟩data)T ⟩data. These are the standard estimates for the sample mean and covariance matrix.
Converting back to the Lagrange multipliers yields

J = −⟨(x− ⟨x⟩data)(x− ⟨x⟩data)T ⟩−1data. (196)

Returning to the generic case where most energy-based models have intractable likelihoods, we must estimate
expectation values numerically. One way to do this is draw samples Smodel = {x′i} from the model pθ (x) and evaluate
arbitrary expectation values using these samples:

⟨f (x)⟩model =

∫
dxpθ (x)f (x) ≈

∑
x′i∈Smodel

f (x′i). (197)

The samples from the model x′i ∈ Smodel are often referred to as fantasy particles in the ML literature and can be generated
using simple MCMC algorithms such as Metropolis–Hasting which are covered in most modern statistical physics classes.
However, if the reader is unfamiliar with MCMC methods or wants a quick refresher, we recommend the concise and
beautiful discussion of MCMC methods from both the physics and ML point-of-view in Chapters 29–32 of David MacKay’s
masterful book (MacKay, 2003).

Finally, we note that once we have the fantasy particles from the model, we can also easily calculate the gradient of
any expectation value ⟨f (x)⟩model using what is commonly called the ‘‘log-derivative trick’’ in ML (Fu, 2006; Kleijnen and
Rubinstein, 1996):

∂

∂θi
⟨f (x)⟩model =

∫
dx

∂pθ (x)
∂θi

f (x)

=

⟨∂ log pθ (x)
∂θi

f (x)
⟩
model

= ⟨Oi(x)f (x)⟩model

≈

∑
x′j∈Smodel

Oi(xj)f (x′j). (198)

This expression allows us to take gradients of more complex cost functions beyond the MLE procedure discussed here.

15.5. Summary of the training procedure

We now summarize the discussion above and present a general procedure for training an energy based model using
SGD on the cost function (see Section 4). Our goal is to fit the parameters of a model pλ({θi}) = Z−1e−E(x,{θi}). Training the
model involves the following steps:

1. Read a minibatch of data, {x}.
2. Generate fantasy particles {x′} ∼ pλ using an MCMC algorithm (e.g., Metropolis–Hastings).
3. Compute the gradient of log-likelihood using these samples and Eq. (195), where the averages are taken over the

minibatch of data and the fantasy particles from the model, respectively.
4. Use the gradient as input to one of the gradient based optimizers discussed in section Section 4.

94 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

In practice, it is helpful to supplement this basic procedure with some tricks that help training. As with discriminative
neural networks, it is important to initialize the parameters properly and print summary statistics during the training
procedure on the training and validation sets to prevent overfitting. These and many other ‘‘cheap tricks’’ have been
nicely summarized in a short note from the Hinton group (Hinton, 2012).

A major computational and practical limitation of these methods is that it is often hard to draw samples from
generative models. MCMC methods often have long mixing-times (the time one has to run the Markov chain to get
uncorrelated samples) and this can result in biased sampling. Luckily, we often do not need to know the gradients exactly
for training ML models (recall that noisy gradient estimates often help the convergence of gradient descent algorithms),
and we can significantly reduce the computational expense by running MCMC for a reasonable time window. We will
exploit this observation extensively in the next section when we discuss how to train more complex energy-based models
with hidden variables.

16. Deep generative models: Hidden variables and restricted Boltzmann machines (RBMs)

The last section introduced many of the core ideas behind energy-based generative models. Here, we extend this
discussion to energy-based models that include latent or hidden variables.

Including latent variables in generative models greatly enhances their expressive power – allowing the model to
represent sophisticated correlations between visible features without sacrificing trainability. By having multiple layers
of latent variables, we can even construct powerful deep generative models that possess many of the same desirable
properties as deep, discriminative neural networks.

We begin with a discussion that tries to provide a simple intuition for why latent variables are such a powerful tool for
generative models. Next, we introduce a powerful class of latent variable models called Restricted Boltzmann Machines
(RBMs) and discuss techniques for training these models. After that, we introduce Deep Boltzmann Machines (DBMs),
which have multiple layers of latent variables. We then introduce the new Paysage package for training energy-based
models and demonstrate how to use it on the MNIST dataset and samples from the Ising model. We conclude by discussing
recent physics literature related to energy-based generative models.

16.1. Why hidden (latent) variables?

Latent or hidden variables are a powerful yet elegant way to encode sophisticated correlations between observable
features. The underlying reason for this is that marginalizing over a subset of variables – ‘‘integrating out’’ degrees
of freedom in the language of physics – induces complex interactions between the remaining variables. The idea that
integrating out variables can lead to complex correlations is a familiar component of many physical theories. For
example, when considering free electrons living on a lattice, integrating out phonons gives rise to higher-order electron–
electron interactions (e.g. superconducting or magnetic correlations). More generally, in the Wilsonian renormalization
group paradigm, all effective field theories can be thought of as arising from integrating out high-energy degrees of
freedom (Wilson and Kogut, 1974).

Generative models with latent variables run this logic in reverse — encode complex interactions between visible
variables by introducing additional, hidden variables that interact with visible degrees of freedom in a simple manner,
yet still reproduce the complex correlations between visible degrees in the data once marginalized over (integrated out).
This allows us to encode complex higher-order interactions between the visible variables using simpler interactions at
the cost of introducing new latent variables/degrees of freedom. This trick is also widely exploited in physics (e.g. in the
Hubbard–Stratonovich transformation (Hubbard, 1959; Stratonovich, 1957) or the introduction of ghost fields in gauge
theory (Faddeev and Popov, 1967)).

To make these ideas more concrete, let us revisit the pairwise Ising model introduced in the discussion of MaxEnt
models, see Eq. (186). The model is described by a Boltzmann distribution with energy

E(v) = −
∑

i

aivi −
1
2

∑
ij

viJijvj, (199)

where Jij is a symmetric coupling matrix that encodes the pairwise constraints and ai enforce the single-variable constraint.
Our goal is to replace the complicated interactions between the visible variables vi encoded by Jij, by interactions with

a new set of latent variables hµ. In order to do this, it is helpful to rewrite the coupling matrix in a slightly different form.
Using SVD, we can always express the coupling matrix in the form Jij =

∑N
µ=1 WiµWjµ, where {Wiµ}i are appropriately

normalized singular vectors. In terms of Wiµ, the energy takes the form

EHop(v) = −
∑

i

aivi −
1
2

∑
ijµ

viWiµWjµvj. (200)

We note that in the special case when both vi ∈ {−1,+1} and Wiµ ∈ {−1,+1} are binary variables, a model with
this form of the energy function is known as the Hopfield model (Amit et al., 1985; Hopfield, 1982). The Hopfield model
has played an extremely important role in statistical physics, computational neuroscience, and machine learning, and a

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 95

full discussion of its properties is well beyond the scope of this review [see (Amit, 1992) for a beautiful discussion that
combines all these perspectives]. Therefore, here we refer to all energy functions of the form Eq. (200) as (generalized)
Hopfield models, even for the case when the Wiµ are continuous variables.

We now ‘‘decouple’’ the visible variables vi by introducing a set of normally, distributed continuous latent variables hµ

(in condensed matter language we perform a Hubbard–Stratonovich transformation). Using the usual identity for Gaussian
integrals, we can rewrite the Boltzmann distribution for the generalized Hopfield model as

p(v) =
e
∑

i aivi+
1
2
∑

ijµ viWiµWjµvj

Z

=
e
∑

i aivi
∏

µ

∫
dhµe−

1
2
∑

µ h2µ−
∑

i viWiµhµ

Z

=

∫
dh e−E(v,h)

Z
(201)

where E(v,h) is a joint energy functional of both the latent and visible variables of the form

E(v,h) = −
∑

i

aivi +
1
2

∑
µ

h2
µ −

∑
iµ

viWiµhµ. (202)

We can also use the energy function E(v,h) to define a new energy-based model p(v,h) on both the latent and visible
variables

p(v,h) =
e−E(v,h)

Z ′
. (203)

Marginalizing over latent variables of course gives us back the generalized Hopfield model (Barra et al., 2012)

p(v) =
∫

dhp(v,h) =
e−EHop(v)

Z
. (204)

Notice that E(v,h) contains no direct interactions between visible degrees of freedom (or between hidden degree of
freedom). Instead, the complex correlations between the vi are encoded in the interaction between the visible vi and latent
variables hµ. It turns out that the model presented here is a special case of a more general class of powerful energy-based
models called Restricted Boltzmann Machines (RBMs).

16.2. Restricted Boltzmann machines (RBMs)

A Restricted Boltzmann Machine (RBM) is an energy-based model with both visible and hidden units where the visible
and hidden units interact with each other but do not interact among themselves. The energy function of an RBM takes
the general functional form

E(v,h) = −
∑

i

ai(vi)−
∑

µ

bµ(hµ)−
∑
iµ

Wiµvihµ, (205)

where ai(·) and bµ(·) are functions that we are free to choose. The most common choice is:

ai(vi) =

{
aivi, if vi ∈ {0, 1} is binary
v2i
2σ2

i
, if vi ∈ R is continuous,

and

bµ(hµ) =

{
bµhµ, if hµ ∈ {0, 1} is binary
h2µ
2σ2

µ
, if hµ ∈ R is continuous.

For this choice of ai(·) and bµ(·), layers consisting of discrete binary units are often called Bernoulli layers, and layers
consisting of continuous variables are often called Gaussian layers. The basic bipartite structure of an RBM – i.e., a visible
and hidden layer that interact with each other but not among themselves – is often depicted using a graph of the form
shown in Fig. 61.

An RBM can have different properties depending on whether the hidden and visible layers are taken to be Bernoulli
or Gaussian. The most common choice is to have both the visible and hidden units be Bernoulli. This is what is typically
meant by an RBM. However, other combinations are also possible and used in the ML literature. When all the units are
continuous, the RBM reduces to a multi-dimensional Gaussian with a very particular correlation structure. When the
hidden units are continuous and the visible units are discrete, the RBM is equivalent to a generalized Hopfield model
(see discussion above). When the visible units are continuous and the hidden units are discrete, the RBM is often called a

96 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 61. A Restricted Boltzmann Machine (RBM) consists of visible units vi and hidden units hµ that interact with each other through interactions
of the form Wiµvihµ . Importantly, there are no interactions between visible units themselves or hidden units themselves.

Gaussian Bernoulli Restricted Boltzmann Machine (Dahl et al., 2010; Hinton and Salakhutdinov, 2006). It is even possible
to perform multi-modal learning with a mixture of continuous and discrete variables. For all these architectures, the
important point is that all interactions occur only between the visible and hidden units and there are no interactions
between units within the hidden or visible layers, see Fig. 61. This is analogous to Quantum Electrodynamics, where a
free fermion and a free photon interact with one another but not among themselves.

Specifying a generative model with this bipartite interaction structure has two major advantages: (i) it enables
capturing both pairwise and higher-order correlations between the visible units and (ii) it makes it easier to sample from
the model using an MCMC method known as block Gibbs sampling, which in turn makes the model easier to train.

Before discussing training, it is worth better understanding the kind of correlations that can be captured using an RBM.
To do so, we can marginalize over the hidden units and ask about the resulting distribution over just the visible units

p(v) =
∫

dhp(v,h) =
∫

dh
e−E(v,h)

Z
(206)

where the integral should be replaced by a trace in all expressions for discrete units.
We can also define a marginal energy using the expression

p(v) =
e−E(v)

Z
. (207)

Combining these equations,

E(v) = − log
∫

dhe−E(v,h)

= −

∑
i

ai(vi)−
∑

µ

log
∫

dhµebµ(hµ)+
∑

i viWiµhµ

To understand what correlations are captured by p(v) it is helpful to introduce the distribution

qµ(hµ) =
ebµ(hµ)

Z
(208)

of hidden units hµ, ignoring the interactions between v and h, and the cumulant generating function

Kµ(t) = log
∫

dhµqµ(hµ)ethµ =

∑
n

κ (n)
µ

tn

n!
. (209)

Kµ(t) is defined such that the nth cumulant is κ (n)
µ = ∂n

t Kµ|t=0.
The cumulant generating function appears in the marginal free-energy of the visible units, which can be rewritten (up

to a constant term) as:

E(v) = −
∑

i

ai(vi)−
∑

µ

Kµ

(∑
i

Wiµvi

)

= −

∑
i

ai(vi)−
∑

µ

∑
n

κ (n)
µ

(
∑

i Wiµvi)n

n!

= −

∑
i

ai(vi)−
∑

i

(∑
µ

κ (1)
µ Wiµ

)
vi

−
1
2

∑
ij

(∑
µ

κ (2)
µ WiµWjµ

)
vivj + · · · (210)

We see that the marginal energy includes all orders of interactions between the visible units, with the nth order cumulants
of qµ(hµ) weighting the nth order interactions between the visible units. In the case of the Hopfield model we discussed

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 97

previously, qµ(hµ) is a standard Gaussian distribution where the mean is κ (1)
µ = 0, the variance is κ (2)

µ = 1, and all
higher-order cumulants are zero. Plugging these cumulants into Eq. (210) recovers Eq. (202).

These calculations make clear the underlying reason for the incredible representational power of RBMs with a Bernoulli
hidden layer. Each hidden unit can encode interactions of arbitrarily high order. By combining many different hidden units,
we can encode very complex interactions at all orders. Moreover, we can learn which order of correlations/interactions
are important directly from the data instead of having to specify them ahead of time as we did in the MaxEnt models.
This highlights the power of generative models with even the simplest interactions between visible and latent variables
to encode, learn, and represent complex correlations present in the data.

16.3. Training RBMs

RBMs are a special class of energy-based generative models, which can be trained using the Maximum Likelihood
Estimation (MLE) procedure described in detail in Section 15. To briefly recap, first, we must choose a cost function — for
MLE this is just the negative log-likelihood with or without an additional regularization term to prevent overfitting. We
then minimize this cost function using one of the Stochastic Gradient Descent (SGD) methods described in Section 4.

The gradient itself can be calculated using Eq. (195). For example, for the Bernoulli–Bernoulli RBM in Eq. (205) we have
∂L({Wiµ, ai, bµ})

∂Wiµ
= ⟨vihµ⟩data − ⟨vihµ⟩model

∂L({Wiµ, ai, bµ})
∂ai

= ⟨vi⟩data − ⟨vi⟩model

∂L({Wiµ, ai, bµ})
∂bµ

= ⟨hµ⟩data − ⟨hµ⟩model, (211)

where the positive expectation with respect to the data is understood to mean sampling from the model while clamping
the visible units to their observed values in the data. As before, calculating the negative phase of the gradient (i.e. the
expectation value with respect to the model) requires that we draw samples from the model. Luckily, the bipartite form
of the interactions in RBMs were specifically chosen with this in mind.

16.3.1. Gibbs sampling and contrastive divergence (CD)
The bipartite interaction structure of an RBM makes it possible to calculate expectation values using a Markov Chain

Monte Carlo (MCMC) method known as Gibbs sampling. The key reason for this is that since there are no interactions of
visible units with themselves or hidden units with themselves, the visible and hidden units of an RBM are conditionally
independent:

p(v|h) =
∏
i

p(vi|h)

p(h|v) =
∏
µ

p(hµ|v), (212)

with

p(vi = 1|h) = σ (ai +
∑

µ

Wiµhµ) (213)

p(hµ = 1|v) = σ (bµ +

∑
i

Wiµvi)

and where σ (z) = 1/(1+ e−z) is the sigmoid function.
Using these expressions it is easy to compute expectation values with respect to the data. The input to gradient

descent is a minibatch of observed data. For each sample in the minibatch, we simply clamp the visible units to the
observed values and apply Eq. (213) using the probability for the hidden variables. We then average over all samples in
the minibatch to calculate expectation values with respect to the data. To calculate expectation values with respect to the
model, we use (block) Gibbs sampling. The idea behind (block) Gibbs sampling is to iteratively sample from the conditional
distributions ht+1 ∼ p(h|vt) and vt+1 ∼ p(v|ht+1) (see Fig. 62, top). Since the units are conditionally independent, each
step of this iteration can be performed by simply drawing random numbers. The samples are guaranteed to converge to
the equilibrium distribution of the model in the limit that t →∞. At the end of the Gibbs sampling procedure, one ends
up with a minibatch of samples (fantasy particles).

One drawback of Gibbs sampling is that it may take many back and forth iterations to draw an independent sample.
For this reason, the Hinton group introduced an approximate Gibbs sampling technique called Contrastive Divergence
(CD) (Hinton, 2002; Hinton et al., 2006). In CD-n, we just perform n iterations of (block) Gibbs sampling, with n often
taken to be as small as 1 (see Fig. 62)! The price for this truncation is, of course, that we are not drawing samples from
the true model distribution. But for our purpose – using the expectations to estimate the gradient for SGD – CD-n has

98 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 62. (Top) To draw fantasy particles (samples from the model) we can perform alternating (block) Gibbs sampling between the visible and
hidden layers starting with a sample from the data using the marginal distributions p(h|v) and p(v|h). The ‘‘time’’ t corresponds to the time in the
Markov chain for the Monte Carlo and measures the number of passes between the visible and hidden states. (Middle) In Contrastive Divergence
(CD), we approximately sample the model by terminating the Gibbs sampling after n steps (CD-n) starting from the data. (C) In Persistent Contrastive
Divergence (PCD), instead of restarting the Gibbs sampler from the data, we initialize the sampler with the fantasy particles calculated from the
model at the last SGD step.

proven to work reasonably well. As long as the approximate gradients are reasonably correlated with the true gradient,
SGD will move in a reasonable direction. CD-n of course does come at a price. Truncating the Gibbs sampler prevents
sampling far away from the starting point, which for CD-n are the data points in the minibatch. Therefore, our generative
model will be much more accurate around regions of feature space close to our training data. Thus, as is often the case
in ML, CD-n sacrifices the ability to generalize to some extent in order to make the model easier to train.

Some of these undesirable features can be tempered by using a slightly different variant of CD called Persistent
Contrastive Divergence (PCD) (Tieleman and Hinton, 2009). In PCD, rather than restarting the Gibbs sampler from the
data at each gradient descent step, we start the Gibbs sampling at the fantasy particles in the last gradient descent step
(see Fig. 62). Since parameters change slowly compared to the Gibbs sampling, samples that are high probability at one
step of the SGD are also likely to be high probability at the next step. This ensures that PCD does not introduce large errors
in the estimation of the gradients. The advantage of using fantasy particles to initialize the Gibbs sampler is to allow PCD
to explore parts of the feature space that are much further from the training dataset than one could reach with ordinary
CD.

We note that, in applications using RBMs as a variational ansatz for quantum states, Gibbs sampling is not necessarily
the best option for training, and in practice parallel tempering or other Metropolis schemes can outperform Gibbs
sampling. In fact, Gibbs sampling is not even feasible with complex-valued weights required for quantum wavefunctions,
whereas Metropolis schemes might be feasible (Carleo, 2018).

16.3.2. Practical considerations
The previous section gave an overview of how to train RBMs. However, there are many ‘‘tricks of the trade’’ that are

missing from this discussion. Luckily, a succinct summary of these has been compiled by Geoff Hinton and published as
a note that readers interested in training RBMs are urged to consult (Hinton, 2012).

For completeness, we briefly list some of the important points here:

• Initialization.—The model must be initialized. Hinton suggests taking the weights Wiµ from a Gaussian with mean
zero and standard deviation σ = 0.01 (Hinton, 2012). An alternative initialization scheme proposed by Glorot and
Bengio instead chooses the standard deviation to scale with the size of the layers: σ = 2/

√
Nv + Nh where Nv and

Nh are number of visible and hidden units respectively (Glorot and Bengio, 2010). The bias of the hidden units is
initialized to zero while the bias of the visible units is typically taken to be inversely proportional to the mean
activation, ai = ⟨vi⟩

−1
data.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 99

Fig. 63. Deep Boltzmann Machine contains multiple hidden layers. To train deep networks, first we perform layerwise training where each two
layers are treated as a RBM. This can be followed by fine-tuning using gradient descent and persistent contrastive divergence (PCD).

• Regularization.—One can of course use an L1 or L2 penalty, typically only on the weight parameters, not the biases.
Alternatively, Dropout has been shown to decrease overfitting when training with CD and PCD, which results in
more interpretable learned features.
• Learning Rates.—Typically, it is helpful to reduce the learning rate in later stages of training.
• Updates for CD and PCD.—There are several computational tricks one can use for speeding up the alternating updates

in CD and PCD, see Section 3 in (Hinton, 2012).

16.4. Deep Boltzmann machine

In this section, we introduce Deep Boltzmann Machines (DBMs). Unlike RBMs, DBMs possess multiple hidden layers
and were the first models rebranded as ‘‘deep learning’’ (Hinton et al., 2006; Hinton and Salakhutdinov, 2006).18 Many
of the advantages that are thought to stem from having deep layers were already discussed in Section 11 in the context
of discriminative DNNs. Here, we revisit many of the same themes with emphasis on energy-based models.

An RBM is composed of two layers of neurons that are connected via an undirected graph, see Fig. 61. As a result, it
is possible to perform sampling v ∼ p(v|h) and inference h ∼ p(h|v) with the same model. As with the Hopfield model,
we can view each of the hidden units as representative of a pattern, or feature, that could be present in the data.19 The
inference step involves assigning a probability to each of these features that expresses the degree to which each feature is
present in a given data sample. In an RBM, hidden units do not influence each other during the inference step, i.e. hidden
units are conditionally independent given the visible units. There are a number of reasons why this is unsatisfactory. One
reason is the desire for sparse distributed representations, where each observed visible vector will strongly activate a
few (i.e. more than one but only a very small fraction) of the hidden units. In the brain, this is thought to be achieved
by inhibitory lateral connections between neurons. However, adding lateral intra-layer connections between the hidden
units makes the distribution difficult to sample from, so we need to come up with another way of creating connections
between the hidden units.

With the Hopfield model, we saw that pairwise linear connections between neurons can be mediated through another
layer. Therefore, a simple way to allow for effective connections between the hidden units is to add another layer of hidden
units. Rather than just having two layers, one visible and one hidden, we can add additional layers of latent variables to
account for the correlations between hidden units. Ideally, as one adds more and more layers, one might hope that the
correlations between hidden variables become smaller and smaller deeper into the network. This basic logic is reminiscent
of renormalization procedures that seek to decorrelate layers at each step (Li and Wang, 2018; Mehta and Schwab, 2014;
Vidal, 2007). The price of adding additional layers is that the models become harder to train.

Training DBMs is more subtle than RBMs due to the difficulty of propagating information from visible to hidden units.
However, Hinton and collaborators realized that some of these problems could be alleviated via a layerwise procedure.
Rather than attempting to the train the whole DBM at once, we can think of the DBM as a stack of RBMs (see Fig. 63). One
first trains the bottom two layers of the DBM — treating it as if it is a stand-alone RBM. Once this bottom RBM is trained,
we can generate ‘‘samples’’ from the hidden layer and use these samples as an input to the next RBM (consisting of the
first and second hidden layer — purple hexagons and green squares in Fig. 63). This procedure can then be repeated to
pretrain all layers of the DBM.

This pretraining initializes the weights so that SGD can be used effectively when the network is trained in a supervised
fashion. In particular, the pretraining helps the gradients to stay well behaved rather than vanish or blow up – a problem

18 Technically, these were Deep Belief Networks where only the top layer was undirected
19 In general, one should instead think of activity patterns of hidden units representing features in the data.

100 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 64. Fantasy particles (samples) generated using the indicated model trained on the MNIST dataset. Samples were generated by running
(alternating) layerwise Gibbs sampling for 100 steps. This allows the final sample to be very far away from the starting point in our feature
space. Notice that the generated samples look much less like hand-written reconstructions than in Fig. 60 which uses a single max-probability
iteration of the Gibbs sampler, indicating that training is much less effective when exploring regions of probability space faraway from the training
data. In Section 17, we will argue that this is likely a generic feature of Likelihood-based training.

that we discussed extensively in the earlier sections on DNNs. It is worth noting that once pretrained, we can use the
usual Boltzmann learning rules in Eq. (195) to fine-tune the weights and improve the performance of the DBM (Hinton
et al., 2006; Hinton and Salakhutdinov, 2006). As we demonstrate in the next section, the Paysage package presented here
can be used to both construct and train DBMs using such a pretraining procedure.

16.5. Generative models in practice: examples

16.5.1. MNIST
First, we apply the open source package Paysage (French for landscape) for training unsupervised energy-based models

on the MNIST dataset.
In Notebook 17, we explicitly demonstrate how to build and train four different kinds of models: (i) a ‘‘Hopfield’’ type

RBM with Gaussian hidden units and Bernoulli (binary) visible units, (ii) a conventional RBM where both the visible and
hidden units are Bernoulli, (iii) a conventional RBM with an additional L1-penalty that enforces sparsity, and (iv) a Deep
Boltzmann Machine (DBM) with three Bernoulli layers with L1 penalty each. We refer the reader to the Notebook for the
details of the code. In the following, we show and briefly discuss the results.

After training the model, we compute reconstructions and fantasy particles from the validation dataset. Recall that a
reconstruction v′ of a given data point x is computed in two steps: (i) we fix the visible layer v = x to be the data, and use
MCMC sampling to find the state of the hidden layer h which maximizes the probability distribution p(h|v). (ii) fixing the
same obtained state h, we find the reconstruction v′ of the original data point which maximizes the probability p(v′|h).
In the case of a DBM, the forward pass continues until we reach the last of the hidden layers, and the backward pass goes
in reverse. Fig. 60 shows the result.

We also used MCMC to draw samples from the learned probability distributions, the so-called fantasy particles. To this
end, we did layer-wise Gibbs sampling for a total of a fixed number of equilibration steps. The result is shown in Fig. 64.

Finally, one can use generative models to reduce the noise in images (de-noising). We randomly flipped a fraction of
the black&white bits in the validation data, and use the models defined above to reconstruct (de-noise) the digit images.
Fig. 65 shows the result.

The full Paysage code used to generate Figs. 60, 64 and 65 is available in Notebook 17. The package was developed
by one of the authors (CKF) along with his colleagues at Unlearn.AI and makes it easy to build, train, and deploy
energy-based generative models with different architectures. Paysage’s documentation is available on GitHub under
https://github.com/drckf/paysage/tree/master/docs.

16.5.2. Example: 2D Ising model
We can also analyze the 2D Ising dataset. In previous sections, we used our knowledge of the critical point at

Tc/J ≈ 2.26 (see Onsager’s solution) to label the spin configurations and study the problem of classifying the states
according to their phase of matter. However, in more complicated models, where the precise position of Tc is not known,
one cannot label the states with such an accuracy, if at all.

As we explained, generative models can be used to learn a variational approximation for the probability distribution
that generated the data points. By using only the 2D spin configurations, we now attempt to train a Bernoulli RBM, the
fantasy particles of which are thermal Ising configurations. Unlike in previous studies of the Ising dataset, here we perform
the analysis at a fixed temperature T . We can then apply our model at three different values T = 1.75, 2.25, 2.75 in the
ordered, near-critical and disordered regions, respectively.

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://github.com/drckf/paysage/tree/master/docs

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 101

Fig. 65. Images from MNIST were randomly corrupted by adding noise. These noisy images were used as inputs to the visible layer of the generative
model. The denoised images are obtained by a single ‘‘deterministic’’ (max probability) iteration v→ h→ v′ .

Fig. 66. MC samples, their reconstructions and fantasy particles generated by a Deep Boltzmann Machine in the ordered phase of the 2D Ising
dataset at T/J = 1.75. We used two hidden layers of 1000 and 100 layers, respectively.

We define a Deep Boltzmann machine with two hidden layers of Nhidden and Nhidden/10 units, respectively, and apply
L1 regularization to all weights. As in the MNIST problem above, we use layer-wise pre-training, and deploy Persistent
Contrastive Divergence to train the DBM using ADAM.

One of the lessons from this problem is that this task is computationally intensive, see Notebook 17. The training time
on present-day laptops easily exceeds that of previous studies from this review. Thus, we encourage the interested reader
to try GPU-based training and study the resulting speed-up.

Figs. 66–68 show the results of the numerical experiment at T/J = 1.75, 2.25, 2.75 respectively, for a DBM with
Nhidden = 800. Looking at the reconstructions and the fantasy particles, we see that our DBM works well in the disordered
and critical regions. However, the chosen layer architecture is not optimal for T = 1.75 in the ordered phase, presumably
due to effects related to symmetry breaking.

16.6. Generative models in physics

Generative models have been studied and used extensively in the context of physics. For instance, in Biophysics,
dynamic Boltzmann distributions have been used as effective models in chemical kinetics (Ernst et al., 2018). In Statistical
Physics, they were used to identify criticality in the Ising model (Morningstar and Melko, 2017). In parallel, tools from
Statistical Physics have been applied to analyze the learning ability of RBMs (Decelle et al., 2018; Huang, 2017b),
characterizing the sparsity of the weights, the effective temperature, the nonlinearities in the activation functions of
hidden units, and the adaptation of fields maintaining the activity in the visible layer (Tubiana and Monasson, 2017). Spin
glass theory motivated a deterministic framework for the training, evaluation, and use of RBMs (Tramel et al., 2017); it was
demonstrated that the training process in RBMs itself exhibits phase transitions (Barra et al., 2016, 2017); learning in RBMs
was studied in the context of equilibrium (Cossu et al., 2018; Funai and Giataganas, 2018) and nonequilibrium (Salazar,
2017) thermodynamics, and spectral dynamics (Decelle et al., 2017); mean-field theory found application in analyzing

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

102 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 67. MC samples, their reconstructions and fantasy particles generated by a Deep Boltzmann Machine in the critical regime of the 2D Ising
dataset at T/J = 2.25. We used two hidden layers of 1000 and 100 layers, respectively.

Fig. 68. MC samples, their reconstructions and fantasy particles generated by a Deep Boltzmann Machine in the disordered phase of the 2D Ising
dataset at T/J = 2.75. We used two hidden layers of 1000 and 100 layers, respectively.

DBMs (Huang, 2017a). Another interesting direction of research is the use of generative models to improve Monte
Carlo algorithms (Cristoforetti et al., 2017; Nagai et al., 2017; Tanaka and Tomiya, 2017b; Wang, 2017). Ideas from
quantum mechanics have been put forward to introduce improved speed-up in certain parts of the learning algorithms
for Helmholtz machines (Benedetti et al., 2016, 2017).

At the same time, generative models have applications in the study of quantum systems too. Most notably, RBM-
inspired variational ansatzes were used to learn both complex-valued wavefunctions and the real-valued probability
distribution associated with the absolute square of a quantum state (Carleo et al., 2018; Carleo and Troyer, 2017; Freitas
et al., 2018; Nomura et al., 2017; Torlai et al., 2018) and, in this context, RBMs are sometimes called Born machines (Cheng
et al., 2017), including quantum state tomography (Carrasquilla et al., 2018; Torlai et al., 2018; Torlai and Melko, 2017).
Further applications include the detection of order in low-energy product states (Rao et al., 2017), and learning Einstein–
Podolsky–Rosen correlations on an RBM (Weinstein, 2017). Inspired by the success of tensor networks in physics, the
latter have been used as a basis for both generative and discriminative learning (Huggins et al., 2019): RBMs (Chen et al.,
2018) were used to extract the spatial geometry from entanglement (You et al., 2017), and generative models based on
matrix product states have been developed (Han et al., 2017). Last but not least, Quantum entanglement was studied
using RBM-encoded states (Deng et al., 2017) and tensor product based generative models have been used to understand
MNIST and other ML datasets (Stoudenmire and Schwab, 2016).

17. Variational autoencoders (VAEs) and generative adversarial networks (GANs)

In the previous two sections, we considered energy-based generative models. Here, we extend our discussion to two
new generative model frameworks that have gained wide appeal in the last few years: generative adversarial networks
(GANs) (Goodfellow, 2016; Goodfellow et al., 2014; Radford et al., 2015) and variational autoencoders (VAEs) (Kingma
and Welling, 2013). Unlike energy-based models, both these generative modeling frameworks are based on differentiable
neural networks and consequently can be trained using backpropagation-based methods. VAEs, in particular, can be easily
implemented and trained using high-level packages such as Keras making them an easy-to-deploy generative framework.
These models also differ from the energy-based models in that they do not directly seek to maximize likelihood. GANs, for

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 103

example, employ a novel cost function based on adversarial learning (a concept we motivate and explain below). Finally
we note that VAEs and GANs are already starting to make their way into physics (Heimel et al., 2018; Liu et al., 2017;
Rocchetto et al., 2018; Wetzel, 2017) and astronomy (Ravanbakhsh et al., 2017), and methods from physics may prove
useful for furthering our understanding of these methods (Alemi and Abbara, 2017). More generally, GANs have found
important applications in many artistic and image manipulation tasks (see references in (Goodfellow, 2016)).

The section is organized as follows. We start by motivating adversarial learning by discussing the limitations of
maximum likelihood based approaches. We then give a high-level introduction to the main idea behind generative
adversarial networks and discuss how they overcome some of these limitations, simultaneously highlighting both the
power of GANs and some of the difficulties. We then show how VAEs integrate the variational methods introduced
in Section 14 with deep, differentiable neural networks to build more powerful generative models that move beyond
the Expectation–Maximization (EM). We then briefly discuss VAEs from an information theoretic perspective, before
discussing practical tips for implementing and training VAEs. We conclude by using VAEs on examples using the Ising
and MNIST datasets (see also Notebooks 19 and 20).

17.1. The limitations of maximizing likelihood

The Kullback–Leibler (KL)-divergence plays a central role in many generative models. Developing an intuition about
KL-divergences is one of the keys to understanding why adversarial learning has proved to be such a powerful method
for generative modeling. Here, we revisit the KL-divergence with an eye towards understanding GANs and motivate
adversarial learning. The KL-divergence measures the similarity between two probability distributions p(x) and q(x).
Strictly speaking, the KL divergence is not a metric because it is not symmetric and does not satisfy the triangle inequality.

Given two distributions, there are two distinct KL-divergences we can construct:

DKL(p||q) =
∫

dxp(x) log
p(x)
q(x)

(214)

DKL(q ∥ p) =
∫

dxq(x) log
q(x)
p(x)

. (215)

A related quantity called the Jensen–Shannon divergence,

DJS(p, q) =
1
2

[
DKL

(
p
p+ q

2

)
+ DKL

(
q
p+ q

2

)]
does satisfy all of the properties of a squared metric (i.e., the square root of the Jensen–Shannon divergence is a metric).
An important property of the KL-divergence that we will make use of repeatedly is its positivity: DKL(p ∥ q) ≥ 0 with
equality if and only if p(x) = q(x) almost everywhere.

In generative models in ML, the two distributions we are usually concerned with are the model distribution pθ (x)
and the data distribution pdata(x). We of course would like these models to be as similar as possible. However, as we
discuss below, there are many subtleties about how we measure similarities that can have large consequences for the
behavior of training procedures. Maximizing the log-likelihood of the data under the model is the same as minimizing
the KL divergence between the data distribution and the model distribution DKL(pdata||pθ). To see this, we can rewrite the
KL divergence as:

DKL(pdata||pθ) =
∫

dxpdata(x) log pdata(x)

−

∫
dxpdata(x) log pθ (x)

= −S[pdata] − ⟨log pθ (x)⟩data (216)

Rearranging this equation, we have

⟨log pθ (v)⟩data = −S[pdata] − DKL(pdata||pθ) (217)

The equivalence follows from the positivity of KL-divergence and the fact that the entropy of the data distribution is
constant. In contrast, the original formulation of GANs minimizes an upper bound on the Jensen–Shannon divergence
between the model distribution pθ (x) and the data distribution pdata(x) (Goodfellow et al., 2014).

This difference in objectives underlies the difference in behavior between GANs and likelihood based generative
models. To see this, we can compare the behavior of the two KL-divergences DKL(pdata||pθ) and DKL(pθ ||pdata). As is evident
from Figs. 69 and 70, though both of these KL-divergences measure similarities between the two distributions, they are
sensitive to very different things. DKL(pθ ||pdata) is insensitive to setting pθ ≈ 0 even when pdata ̸= 0 whereas DKL(pdata||pθ)
punishes this harshly. In contrast, DKL(pdata||pθ) is insensitive to placing weight in the model distribution in regions where
pdata ≈ 0 whereas DKL(pθ ||pdata) punishes this harshly. In other words, DKL(pdata||pθ) prefers models that have a high
probability in regions with lots of training data points whereas DKL(pθ ||pdata) punishes models for putting high probability
where there is no data.

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

104 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 69. KL-divergences between the data distribution pdata and the model pθ . Data is drawn from a bimodal Gaussian distribution with unit variances
peaked at ±∆ with ∆ = 2.0 and the model pθ (x) is a Gaussian with mean zero and same variance as pθ (x). (Top) pdata and pθ for ∆ = 2. (Bottom)
DKL(pdata||pθ) (Data-Model) and DKL(pθ ||pdata) (Model-Data) as a function of ∆. Notice that DKL(pdata||pθ) is insensitive to placing weight in the model
distribution in regions where pdata ≈ 0 whereas DKL(pθ ||pdata) punishes this harshly.

In the context of the above discussion, this suggests that the way likelihood-based methods are most likely to fail,
is by improperly ‘‘filling in’’ any low-probability density regions between peaks in the data distribution. In contrast, at
least in principle, the Jensen–Shannon distribution which underlies GANs is sensitive both to placing weight where there
is data since it has information about DKL(pdata||pθ) and to not placing weight where no data has been observed (i.e. in
low-probability density regions) since it has information about DKL(pθ ||pdata).

In practice, DKL(pdata||pθ) can be calculated easily directly from the data using sampling. On the other hand, DKL(pθ ||pdata)
is impossible to compute since we do not know pdata(x). In particular, this integral cannot be calculated using sampling
since we cannot evaluate pdata(x) at the locations of the fantasy particles. The idea of adversarial learning is to
circumnavigate this difficulty by using an adversarial learning procedure. Recall, that DKL(pθ ||pdata) is large when the
model artificially over-weighs low-density regions near real peaks (see Fig. 69). Adversarial learning accomplishes this
same task by teaching a discriminator network to distinguish between real data points and samples generated from the
model. By punishing the model for generating points that can be easily discriminated from the data, adversarial learning
decreases the weight of regions in the model space that are far away from data points — regions that inevitably arise
when maximizing likelihood. This core intuition implicitly underlies many adversarial training algorithms (though it has
been recently suggested that this may not be the entire story (Goodfellow, 2016)).

17.2. Generative models and adversarial learning

Here, we give a brief high-level overview of the basic idea behind GANs. The mathematics and theory of GANs draws
deeply from concepts in Game Theory such as Nash Equilibrium that are foreign to most physicists. For this reason, a
comprehensive discussion of GANs is beyond the scope of the review. Readers interested in learning more are directed to
the comprehensive tutorial by Goodfellow (Goodfellow, 2016). GANs are also notorious for being hard to train. For this
reason, readers wishing to play with GANs should also consider the very nice practical discussion entitled ‘‘How to train
a GAN’’ (affectionately labeled ‘‘ganhacks’’) available at https://github.com/soumith/ganhacks.

The central idea of GANs is to construct two differentiable neural networks (see Fig. 71). The first neural network,
usually a (de)convolutional network based on the DCGAN architecture (Radford et al., 2015), approximates a generator
function G(z; θG) that takes as input a z sampled from some prior on the latent space, and outputs a x from the model.
The second network approximates a discriminator function D(x; θD) that is designed to distinguish between x from the
data and samples generated by the model: x = G(z; θG). The scalar D(x) represents the probability that x came from the

https://github.com/soumith/ganhacks

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 105

Fig. 70. KL-divergences between the data distribution pdata and the model pθ . Data is drawn from a Gaussian mixture of the form pdata =
0.25N (−∆) + 0.25 ∗N (∆) + 0.5N (0) where N (a) is a normal distribution with unit variance centered at x = a. pθ (x) is a Gaussian with σ 2

= 2.
(Top) pdata and pθ for ∆ = 5. (Middle) pdata and pθ for ∆ = 1. (Bottom) DKL(pdata||pθ) [Data-Model] and DKL(pθ ||pdata) [Model-Data] as a function of
∆. Notice that DKL(pθ ||pdata) is insensitive to placing weight in the model distribution in regions where pθ ≈ 0 whereas DKL(pdata||pθ) punishes this
harshly.

data rather than the model pθG . We train D to distinguish actual data points from synthetic examples and the generative
network to fool the discriminative network.

To define the cost function for training, it is useful to define the functional

V (D,G) = Ex∼pdata (logD(x))
+ Ez∼pprior (log [1− D(G(z))]) . (218)

In the version of GANs most amenable to theoretical analysis – though not the version usually implemented in practice –
we take the cost function for the discriminator and generators to be C(G)

= −C(D)
=

1
2V (D,G). This choice of cost functions

corresponds to what is called a zero-sum game. Since the discriminator is maximized, we can write a cost function for
the generator as

C(G) = max
D

V (G,D). (219)

106 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 71. A GAN consists of two differentiable functions (usually represented as deep neural networks): a generator function G(z; θG) that takes as
an input a z sampled from some prior on the latent space and outputs a point x. The generator function (neural network) has parameters θG . The
discriminator function D(x; θD) discriminates between x from the data and samples from the model: x = G(z; θG). The two networks are trained by
‘‘playing a game’’ where the discriminator is trained to distinguish between synthetic and real examples while the generator is trained to try to fool
the discriminator. Importantly, the cost function for the discriminator depends on the generator parameters and vice versa.

It turns out that this cost function is related to the Jensen–Shannon Divergence in a simple manner (Goodfellow, 2016;
Goodfellow et al., 2014):

C(G) = − log 4+ 2DJS(pdata, pθG). (220)

This brings us back full circle to the discussion in the last section on KL-divergences.

17.3. Variational Autoencoders (VAEs)

We now turn our attention to another class of powerful latent-variable, generative models called Variational Autoen-
coders (VAEs). VAEs exploit the variational/mean-field theory ideas presented in Section 14 to build complex generative
models using deep neural networks (DNNs). The central idea behind VAEs is to represent the map from latent variables
to observable variables using a DNN. The use of latent variables is a common theme in many of the generative models we
have encountered in unsupervised learning tasks from Gaussian Mixture Models (see Section 13) to Restricted Boltzmann
Machines. However, in VAEs this mapping, p(x|z, θ) is much less restrictive and much more complicated since it takes
the form of a DNN. This added complexity means we cannot use techniques such as Expectation–Maximization to train
the model and instead must rely of methods based on backpropagation.

17.3.1. VAEs as variational models
We start by discussing VAEs from a variational perspective. We will make extensive use of the concepts introduced

in Section 14 and the reader is strongly-encouraged to refresh their memory of this section before proceeding. A VAE
is a latent-variable model pθ (x, z) with a latent variables z and observed variables x. The latent variables are drawn
from some pre-specified prior distribution p(z). In practice, p(z) is almost always taken to be a multivariate Gaussian.
The conditional distribution pθ (x|z) maps points in the latent space to new examples (see Fig. 72). This is often called a
‘‘stochastic decoder’’ and defines the generative model for the data. The reverse mapping that gives the posterior over the
latent variables pθ (z|x) is often called the ‘‘stochastic encoder’’.

A central challenge in latent variable modeling is to infer the posterior distribution of the latent variables given a
sample from the data. This can in principle be done via Bayes’ rule: pθ (z|x) = p(z)pθ (x|z)

pθ (x)
. For some models, we can calculate

this analytically. In this case, we can use techniques like Expectation–Maximization (EM) (see Section 14). However, in
general this is intractable since the denominator requires computing a sum over all configurations of the latent variables,
pθ (x) =

∫
pθ (x, z)dz =

∫
pθ (x|z)p(z)dz (i.e. a partition function in the language of physics), which is often intractable for

large models. In VAEs, where the pθ (x|z) is modeled using a DNN, this is impossible.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 107

Fig. 72. VAEs learn a joint distribution pθ (x, z) between latent variables z with prior distribution p(z) and data x. The conditional distribution pθ (x|z)
can be thought of as a stochastic ‘‘decoder’’ that maps latent variables to new examples. The stochastic ‘‘encoder’’ qφ (z|x) approximates the true but
intractable pθ (z|x) — much like mean-field theories in statistical physics approximate true distributions with analytically tractable approximations.
Figure based on Kingma’s Ph.D. dissertation Chapter 2. (Kingma et al., 2017).

A first attempt to address the issue of computing p(x) could be through importance sampling (Neal, 2001). That is, we
choose a proposal distribution q(z|x) which is easy to sample from, and rewrite the sum as an expectation with respect
to this distribution:

pθ (x) =
∫

pθ (x|z)
p(z)

qφ(z|x)
qφ(z|x)dz. (221)

Thus, by sampling from qφ(z|x) we can get a Monte Carlo estimate of p(x). However, this requires generating samples and
thus our estimates will be noisy. If our proposal distribution is poor, the variance in the estimate can be very high.

An alternative approach that avoids these sampling issues is to use the variational approach discussed in Section 14.
We know from Eq. (162) that we can write the log-likelihood as

log p(x) = DKL(qφ(z|x)||pθ (z|x, θ))− Fqφ
(x), (222)

where the variational free energy is defined as

−Fqφ
(x) ≡ Eqφ (z|x)[log pθ (x|z)] − DKL(qφ(z|x)|p(z)). (223)

In writing this term, we have used Bayes rule and Eq. (174). Since the KL-divergence is strictly positive, the (negative)
variational free energy is a lower-bound on the log-likelihood. For this reason, in the VAE literature, it is often called the
Evidence Lower BOund or ELBO.

Eq. (223) has a beautiful interpretation. The first term in this equation can be viewed as a ‘‘reconstruction error’’, where
we start with data x, encode it into the latent representation using our approximate posterior qφ(z|x), and then evaluate
the log probability of the original data given the inferred latents. For binary variables, this is just the cross-entropy which
we first encountered when studying logistic regression, cf. Section 7. The second term acts as a regularizer and encourages
the posterior distributions to be close to p(z). By maximizing the ELBO, we minimize the KL-divergence between the
approximate and true posterior. By choosing a tractable qφ(z|x), we make this feasible (see Fig. 72).

17.3.2. Training via the reparametrization trick
VAEs train models by minimizing the variational free energy (maximizing the ELBO). Training a VAE is somewhat

complicated because we must simultaneously learn two sets of parameters: the parameters θ that define our generative
model pθ (x, z) as well as the variational parameters φ in qφ(z|x). The basic approach will be the same as for all DNN
models: we will use gradient descent with the variational free energy as the objective (cost) function. For a dataset L, we
can write our cost function as

Cθ,φ(L) =
∑
x∈L

−Fqφ
(x). (224)

108 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 73. Schematic explaining the computational flow of VAEs. Figure based on Kingma’s Ph.D. dissertation Chapter 2. (Kingma et al., 2017).

Taking the gradient with respect to θ is easy since only the first term in Eq. (223) depends on θ ,

Cθ,φ(x) = Eqφ (z|x)[∇θ log pθ (x, z)]

∼ ∇θ log pθ (x, z) (225)

where in the second line we have replaced the expectation value with a single Monte-Carlo sample z drawn from qφ(z|x)
(see Fig. 73). When pθ (x|z) is approximated by a neural network, this can be calculated using backpropagation with the
reconstruction error as the objective function.

On the other hand, calculating the gradient with respect to the parameters φ is more complicated since φ also appears
in the expectation value Eqφ (z|x). Ideally, we would like to also use backpropagation to calculate this as well. It turns out
that this can be done by a simple change of variables that often goes under the name the ‘‘reparametrization trick’’ (Kingma
and Welling, 2013; Rezende et al., 2014). The basic idea is to change variables so that φ no longer appears in the
distribution we are taking an expectation value with respect to. To do this, we express the random variable z ∼ qφ(z|x)
as some differentiable and invertible transformation of another random variable ϵ:

z = g(ϵ, φ, x), (226)

where the distribution of ϵ is independent of x and φ. Then, we can replace expectation values over qφ(z|x) by expectation
values over pϵ

Eqφ (z|x)[f (z)] = Epϵ [f (z)]. (227)

Evaluating the derivative then becomes quite straight forward since

∇φEqφ (z|x)[f (z)] ∼ Epϵ [∇φ f (z)]. (228)

Of course, when we do this we still need to be able to calculate the Jacobian of this change of variables

dφ(x, φ) = Det
⏐⏐⏐⏐∂z∂ϵ

⏐⏐⏐⏐ (229)

since

log qφ(z|x) = log p(ϵ)− log dφ(x, φ). (230)

Since we can calculate gradients, we can now use backpropagation on the full the ELBO objective function (we return to
this below when we discuss concrete architectures and implementations of VAE).

One of the problems that commonly occurs when training VAEs by performing a stochastic optimization of the ELBO
(variational free energy) is that it often gets stuck in undesirable local minima, especially at the beginning of the training
procedure (Bowman et al., 2015; Kingma et al., 2017; Sønderby et al., 2016). The underlying reason for this is that the
ELBO objective function can be improved in two qualitatively different ways corresponding to each of the two terms
in Eq. (223): by minimizing the reconstruction error or by making the posterior distribution qφ(z|x) to be close to p(z)
(Of course, the goal is to do both!). For complex datasets, at the beginning of training when the reconstruction error is
extremely poor, the model often quickly learns to make q(z|x) ≈ p(z) and gets stuck in this local minimum. For this
reason, in practice it is found that it makes sense to modify the ELBO objective to use an optimization schedule of the
form

Eqφ (z|x)[log pθ (x, z)] − βDKL(qφ(z|x)|p(z)) (231)

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 109

where β is slowly annealed from 0 to 1 (Bowman et al., 2015; Sønderby et al., 2016). An alternative regularization is the
‘‘method of free bits’’: modifying the objective function of ELBO to ensure that on average qφ(z|x) has at least λ natural
units of information about p(z) (see Kingma Ph.D thesis (Kingma et al., 2017) for details) .

These observations hints at the more general connection between VAEs and information theory that we turn to in the
next section.

17.3.3. Connection to the information bottleneck
There is a fundamental connection between the variational autoencoder objective and the information bottleneck (IB)

for lossy compression (Tishby et al., 2000). The information bottleneck imagines we have input data x that is correlated
with another variable of interest, y, and we are given access to the joint distribution, p(x, y). Our task is to take x as input
and compress it in such a way as to retain as much information as possible about the relevance variable, y. To do this,
Tishby et al. propose to maximize the objective function

LIB = I(y; z)− βI(x; z) (232)

over a stochastic encoding distribution q(z|x), where z is our compression of the input, and β is a tradeoff parameter that
sets the relative preference of compression and accuracy, and I(y; z) is the mutual information between y and z. Note that
we choose a slightly different but equivalent form of the objective relative to Tishby et al.. This objective is only known to
have a closed-form solution when x and y are jointly Gaussian (Chechik et al., 2005). Otherwise, the optimization can be
performed through a Blahut–Arimoto type iterative update scheme (Arimoto, 1972; Blahut, 1972). However, this is only
guaranteed to converge to a local optimum. A significant difficulty in implementing IB is that it requires knowledge of
the joint distribution p(x, y) and that we must be able to compute the mutual information, a notoriously difficult quantity
to estimate from samples. Hence, IB has in recent years been utilized less than it might otherwise.

To address these problems, variational approximations to the IB objective function have been developed (Alemi et al.,
2016; Chalk et al., 2016). These approximations, when applied to a particular choice of p(x, y) give the same objective as
the variational autoencoder. Here we follow the exposition from Alemi et al. (Alemi et al., 2016). To see this, consider a
dataset of N points, xi. We set x = i and y = xi in the IB objective, similar to (Slonim et al., 2005; Strouse and Schwab,
2017). We choose p(i) = 1/N and p(x|i) = δ(x−xi). That is, we would like to find a compression of the data that preserves
information about data point location while reducing information about data point identity.

Imagine that we are unable to directly work with the decoder p(x|z). The first approximation replaces the exact decoder
inside the logarithm with an approximation, q(x|z). Due to the positivity of KL-divergence, namely,

DKL(p(x|z)||q(x|z)) ≥ 0

⇒

∫
dx p(x|z) log p(x|z) ≥

∫
dx p(x|z) log q(x|z), (233)

we have

I(x; z) =
∫

dxdz p(x)p(z|x) log
(
p(x|z)
p(x)

)
≥

∫
dxdz p(x)p(z|x) log q(x|z)+ Hp(x)

≥

∫
dxdz p(x)p(z|x) log q(x|z), (234)

where Hp(x) ≥ 0 is the Shannon entropy of x. This quantity can be estimated from data samples (i, xi) after drawing from
p(z|i) = p(z|xi). Similarly, we can replace the prior distribution of the encoding, p(z) =

∫
dx p(x)q(z|x) which is typically

intractable, with a tractable q(z) to get

I(i; z) ≤
1
N

∑
i

∫
dz p(z|xi) log

p(z|xi)
q(z)

(235)

Putting these two bounds Eqs. (234) and (235) together and note that x = i and y = xi, we get an upper bound for the IB
objective that takes the same form as the VAE objective Eq. (231) we saw earlier:

LIB = I(x; z)− βI(y; z)

≤

∫
dx p(x)Ep(z|x)[log q(x|z)] (236)

− β
1
N

∑
i

DKL(p(z|xi)|q(z)). (237)

Note that in Eq. (236) we have a conditional distribution of x given z but not their joint distribution inside the expectation,
which was the case in Eq. (231). This is due to that we dropped the entropy term pertaining to x, which is irrelevant in the
optimization procedure. In fact, this objective has been explored and is called a β-VAE (Higgins et al., 2016). It is interesting
to note that in the case of IB, the variational approximations are with respect to the decoder and prior, whereas in the
VAE, the variational approximations are with respect to the encoder.

110 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 74. Computational graph for a VAE with Gaussian hidden units (i.e. p(z) are standard normal variables N (0, 1) and Gaussian variational encoder
whose posterior takes the form qφ (z|x) = N (µ(x), σ2(x)).

17.4. VAE with Gaussian latent variables and Gaussian encoder

Our discussion of VAEs thus far has been quite abstract. In this section, we discuss one of the most widely employed
VAE architectures: a VAE with factorized Gaussian posteriors, qφ(z|x) = N (z, µ(x), diag(σ2(x))) and standard normal latent
variables p(z) = N (0, I). The training and implementation simplifies greatly here because we can analytically workout
the term DKL(qφ(z|x)|p(z)).

17.4.1. Implementing the Gaussian VAE
We now show how we can combine analytic expressions for the KL-divergence with backpropagation to efficiently

implement a Gaussian VAE. We start by first deriving analytic expressions for DKL(qφ(z|x)|p(z)) in terms of the means
µ(x) and variances σ2(x). This is just a simple exercise in Gaussian integrals. For notational convenience, we drop the
x-dependence of the means µ(x), variances σ2(x), and qφ(x). A straight-forward calculation gives∫

dzqφ(z) log p(z) =
∫

N (z, µ(x), diag(σ2(x))) logN (0, I)

= −
J
2
log 2π −

1
2

J∑
j=1

(µ2
j + log σ 2

j), (238)

where J is the dimension of the latent space. An almost identical calculation yields∫
dzqφ(z) log qφ(z) = −

J
2
log 2π −

1
2

J∑
j=1

(1+ σ 2
j). (239)

Combining these equations gives

−DKL(qφ(z|x)|p(z)) =
1
2

J∑
j=1

(
1+ log σ 2

j (x)− µ2
j (x)− σ 2

j (x)
)
. (240)

This analytic expression allows us to implement the Gaussian VAE in a straight forward way using neural networks. The
computational graph for this implementation is shown in Fig. 74. Notice that since the parameters are all compositions
of differentiable functions, we can use standard backpropagation algorithms to train VAEs.

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 111

Fig. 75. Embedding of MNIST dataset into a two-dimensional latent space using a VAE with two latent dimensions (see Notebook 19 and main text
for details.) Data points are colored by their identity [0-9].

17.4.2. VAEs for the MNIST dataset
In Notebook 19, we have implemented a VAE using Keras and trained it using the MNIST dataset. The basic architecture

is the one describe above. All figures were generated with a VAE that has a latent space of dimension 2. The architecture
of both the encoder and decoder is a Multi-layer Perceptron (MLPs) – neural networks with a single hidden layer. For this
example, we take the dimension of the hidden layer for both neural networks to be 256. We trained the VAE using the
RMS-prop optimizer for 50 epochs.

We can visualize the embedding in the latent space by plotting z of the test set and coloring the points by digit
identity [0-9] (see Fig. 75). Notice that in general, digits that are similar end up being closer to each other in the latent
space. However, this is not always the case (see bright green points for example). This is a general feature of these
low-dimensional embeddings and we saw a similar phenomenon when we examined t-SNE in Section 12.

The real advantage that VAEs offer over embeddings such as t-SNE is that they are generative models. Given a set of
examples, we can generate new examples – or fantasy particles as they are commonly called in ML – by sampling the
latent space z and then using the decoder to map these latent variables to new examples. The results of this procedure
are shown in Fig. 76. In the top figure, we sample the latent space uniformly in a 5 × 5 grid. Notice that this results in
extremely similar examples through much of the latent space. The underlying reason for this is that uniform sampling
does not respect the underlying Gaussian structure of the latent space z. In the bottom figure, we perform a uniform
sampling on the probability p(z) and mapped this back to the latent space using the inverse Cumulative Distribution
Function (CDF) of the Gaussian. We see that the diversity of the generated examples is much higher for this sampling
procedure.

This example is indicative of a more general problem: once we have learned a generative model how should we
sample latent spaces (White, 2016). This is especially important in high-dimensional spaces where direct visualization
is not possible. Often certain directions in the latent space can have different meanings. A particularly striking visual
illustration is the ‘‘smile vector’’ that interpolates between smiling and frowning faces (White, 2016).

17.4.3. VAEs for the 2D Ising model
In Notebook 20, we used an almost identical architecture (though coded in a slightly different way) to train a VAE

on the Ising dataset discussed through out the review. The only differences between the two VAEs are that the visible
layer of the Ising VAE now has 1600 units (our samples are 40 × 40 instead of the 28 × 28 MNIST images) and we have
changed the standard deviation of the Gaussian of the latent variables p(z) from σ = 1 to σ = 0.2.

We once again visualize the embedding learned by the VAE by plotting z and coloring the points by the temperature
at which the sample was drawn (see Fig. 77 top). Notice that the latent space has learned a lot of the physics of the Ising
model. For example, the first VAE dimension is just the magnetization (Fig. 77 bottom). This is not surprising since we
saw in Section 12 that the first principal component of a PCA also corresponded to the magnetization.

We now ask how well the VAE can generate new examples (see Fig. 78). We see that the examples look quite different
from real Ising configurations — they lack the large scale patchiness seen in the critical region. They mostly turn out to
be unstructured speckles that reflect only the average probability that a pixel is on in a region. This is not surprising since
our VAE has no spatial structure, has only two latent dimensions, and the cost function does not know about ‘‘correlations
between spins’’ : there is very little information about correlations in the binary cross-entropy which we use to measure
reconstruction errors. The reader is encouraged to play with the corresponding notebook and generate examples as we
change the latent dimension and/or choose modified architectures such as decoders based on CNNs instead of MLPs.

This example also shows how much easier it is to discriminate between labeled data than it is to learn how to generate
new examples from an unlabeled dataset. This is true in all spheres of machine learning. This is also one of the reasons
that generative models are one of the cutting edge areas of modern Machine Learning research and there are likely to be
a barrage of new techniques for generative modeling in the next few years.

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

112 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Fig. 76. (Top) Fantasy particle generated by uniform sampling of the latent space z. (Bottom) Fantasy particles generated by uniform sampling of
probability p(z) mapped to latent space using the inverse Cumulative Distribution Function (CDF) of the Gaussian.

18. Outlook

In this review, we have attempted to give the reader the intellectual and practical tools to engage with Machine
Learning (ML), data science, and parts of modern statistics. We have tried to emphasize that ML differs from ordinary
statistics in that the goal is to predict rather than to fit. For this reason, all the techniques discussed here have to navigate
important tensions that lie at the heart of ML. The most prominent instantiation of these inherent tradeoffs is the bias–
variance tradeoff, which is perhaps the only universal principle in ML. Identifying how these tradeoffs manifest in a
particular algorithm is the key to constructing and training powerful ML methods.

The immense progress in computing power and the corresponding availability of large datasets ensure that ML will
be an important part of the physics toolkit. In the future, we expect ML to be a core competency of physicists much like
linear algebra, group theory, and differential equations. We hope that this review will play some small part towards this
aspirational goal.

We wrote this review to provide a relatively concise introduction to ML using ideas and language familiar to physicists
(though the review ended up being almost twice the planned length). In writing the review, we have tried to accomplish

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 113

Fig. 77. (Top) Embedding of the Ising dataset into a two-dimensional latent space using a VAE with two latent dimensions (see Notebook 20 and
main text for details.) Data points are colored by the temperature each sample was drawn at. (Bottom) Correlation between the latent dimensions
and the magnetization for each sample. Notice that the first principle component corresponds to the magnetization.

Fig. 78. Fantasy particles for the Ising model generated by uniform sampling of probability p(z) mapped to latent space using the inverse Cumulative
Distribution Function (CDF) of the Gaussian.

two somewhat disparate tasks. First, we have tried to highlight more abstract and theoretical considerations to show
the unity of ML and statistical learning. Many ML techniques can be understood by starting with some key concepts

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

114 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

from statistical learning (MLE, bias–variance tradeoff, regularization) and combining them with core concepts familiar
from statistical physics (Monte-Carlo, gradient descent, variational methods and MFT). Despite the high-level similarities
between all the methods presented here, the way that these concepts manifest in any given technique is often quite clever
and understanding these ‘‘hacks’’ is the key to understanding why some ML techniques turn out to be so powerful and
others not so much. ML, in this sense, is as much an art as a science. Second, we have tried to give the reader the practical
know-how to start using the tools and concepts from ML for immediately solving problems. We believe the accompanying
python notebooks and the emphasis on coding in python have accomplished this task.

18.1. Research at the intersection of physics and ML

We hope the review catalyzes more research at the intersection of physics and machine learning. Here we briefly
highlight a few promising research directions. We note that this list is far from comprehensive.

• Applying ML to solve physics problems. One theme that has reoccurred through out the review is that ML is most
effective in settings with well defined objectives and lots of data. For this reason, we expect ML to become a core
competency of data rich fields such as high-energy experiments and astronomy. However, ML may also prove to
be useful for helping further our physical understanding through data-driven approach to other branches of physics
that may not be immediately obvious, such as quantum physics (Dunjko and Briegel, 2017). For example, recent
works have used ideas from ML to investigate disparate topics such as non-local correlations (Canabarro et al.,
2018), disordered materials and glasses (Schoenholz, 2017), electronic structure calculations (Grisafi et al., 2017)
and numerical analysis of ferromagnetic resonances in thin films (Tomczak and Puszkarski, 2018), designing and
analyzing quantum materials by integrating ML with existing techniques such as Dynamical Mean Field Theory
(DMFT) (Arsenault et al., 2014), in the study of inflation (Rudelius, 2018), and even for experimental learning of
quantum states by using ML to aid in quantum tomography (Rocchetto et al., 2017). For a comprehensive review of
ML methods in seismology, see (Kong et al., 2018).
• Machine Learning on quantum computers. Another interesting area of research that is likely to grow is asking if

and how quantum computers can help improve state-of-the art ML algorithms (Arunachalam and de Wolf, 2017;
Benedetti et al., 2016, 2017; Bromley and Rebentrost, 2018; Ciliberto et al., 2017; Daskin, 2018; Innocenti et al., 2018;
Mitarai et al., 2018; Perdomo-Ortiz et al., 2017; Rebentrost et al., 2017; Schuld et al., 2017; Schuld and Killoran, 2018;
Schuld et al., 2015). Concrete examples that seek to extend some of the basic ideas and methods we introduced in
this review to the quantum computing realm include: algorithms for quantum-assisted gradient descent (Kerenidis
and Prakash, 2017; Rebentrost et al., 2016), classification (Schuld and Petruccione, 2017), and Ridge regression (Yu
et al., 2017). Interest in this field will undoubtedly grow once reliable quantum computers become available (see
also this recent review (Dunjko and Briegel, 2017)).
• Monte-Carlo Methods. An interesting area that has seen a renewed interest with Bayesian modeling is the

development of new Monte-Carlo methods for sampling complex probability distributions. Some of the workhorses
of modern Machine Learning – Annealed Importance Sampling (AIS) (Neal, 2001) and Hamiltonian or Hybrid Monte-
Carlo (HMC) (Neal et al., 2011) – are intimately related to physics. As pointed out by Radford Neal, AIS is just the
Jarzynski inequality (Jarzynski, 1997) as a Monte-Carlo method and HMC was developed by physicists and exploits
Hamiltonian dynamics to improve proposal distributions.
• Statistical physics style theory of Deep Learning. Many techniques in ML have origins in statistical physics. Yet, a

physics-style theory of Deep Learning remains elusive. A key question is to ask when and why these models manage
to generalize well. Physicists are only beginning to ask these questions (Advani and Saxe, 2017; Mehta and Schwab,
2014; Saxe et al., 2013; Shwartz-Ziv and Tishby, 2017). But right now, it is fair to say that the insights remain
scattered and a cohesive theoretical understanding is lacking.
• Biological physics and ML. Biological physics is generating ever more datasets in fields ranging from neuroscience

to evolution and immunology. It is likely that ML will be an important part of the biophysics toolkit in the future.
Many of the authors of this review were inspired to engage with ML for this reason.
• Using ideas from physics to develop new ML algorithms. Many of the core ideas of ML from Monte-Carlo

techniques to variational methods have their origin in physics. There has been a tremendous amount of recent
work developing tools to understand physical systems that may be of potential use to ML. For example, in
quantum condensed matter techniques such as DMRG, MERA, etc. have enriched both our practical and conceptual
understandings (Stoudenmire and White, 2012; Vidal, 2007; White, 1992). It will be interesting to figure how and
if these numerical methods can be translated from a physics to a ML setting. There are tantalizing hints that this is
likely to be a fruitful direction (Han et al., 2017; Stoudenmire, 2018; Stoudenmire and Schwab, 2016).

18.2. Topics not covered in review

Despite the considerable length of the review, we have had to make many omissions for the sake of brevity. It is our
hope and belief that after reading this review the reader will have the conceptual and practical knowledge to quickly
learn about these other topics. Among the most prominent topics missing from this review are:

https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html
https://physics.bu.edu/~pankajm/MLnotebooks.html

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 115

• Temporal/Sequential Data. We have not covered techniques for dealing with temporal or sequential data. Here, too
there are many connections with statistical physics. A powerful class of models for sequential data called Hidden
Markov Models (Rabiner, 1989) that utilize dynamical programming techniques have natural statistical physics
interpretations in terms of transfer matrices (see (Mehta et al., 2011) for explicit example of this). Recently, Recurrent
Neural Networks (RNNs) have become an important and powerful tool for dealing with sequence data (Goodfellow
et al., 2016). RNNs generalize many of the ideas discussed in the DNN section to deal with temporal data.
• Reinforcement Learning. Many of the most exciting developments in the last five years have come from combining

ideas from reinforcement learning with deep neural networks (Mnih et al., 2015; Sutton and Barto, 1998). RL traces
its origins to behaviorist psychology, when it was conceived as a way to explain and study reward-based decision
making. RL was put on solid mathematical grounds in the 50’s by Richard Bellman and collaborators, and has by
now become an inseparable part of robotics and artificial intelligence. RL is a field of Machine Learning, in which
an agent learns how to master performing a specific task through an interaction with its environment. Depending
on the reward it receives, the agent chooses to take an action affecting the environment, which in turn determines
the value of the next received reward, and so on. The long-term goal of the agent is to maximize the cumulative
expected return, thus improving its performance in the longer run. Shadowed by more traditional optimal control
algorithms, Reinforcement Learning has only recently taken off in physics (Albarran-Arriagada et al., 2018; August
and Hernández-Lobato, 2018; Bukov, 2018; Bukov et al., 2018; Cárdenas-López et al., 2017; Chen et al., 2014; Chen
and Xue, 2019; Dunjko et al., 2017; Fösel et al., 2018; Lamata, 2017; Melnikov et al., 2017; Neukart et al., 2017;
Niu et al., 2018; Ramezanpour, 2017; Reddy et al., 2016b; Sriarunothai et al., 2017; Sweke et al., 2018; Zhang et al.,
2018). Of particular interest are biophysics inspired works that seek to use RL to understand navigation and sensing
in turbulent environments (Colabrese et al., 2017; Masson et al., 2009; Reddy et al., 2016a; Vergassola et al., 2007).
• Support Vector Machines (SVMs) and Kernel Methods. SVMs and kernel methods are a powerful set of techniques

that work well when the amount of training data is limited (Burges, 1998). The mathematics and theory of SVM are
very different from statistical physics and for this reason we chose not to include them here. However, SVMs and
kernel methods have played an extremely important role in ML and are worth understanding.

18.3. Rebranding machine learning as ‘‘Artificial Intelligence’’

The immense scientific progress in ML has also been accompanied by a massive public relations effort centered around
Silicon Valley. Starting with the success of ImageNet (the most prominent early use of GPUs for training large models)
and the widespread adoption of Deep Learning based techniques by the Silicon Valley companies, there has been a
deliberate move to rebrand modern ML as ‘‘artificial intelligence’’ or AI (see graphs in (Katz, 2017)). Recently, computer
scientist Michael I. Jordan (who is famously known for his formalization of variational inference, Bayesian network, and
expectation–maximization algorithm in machine learning research) cautioned that ‘‘This confluence of ideas and technology
trends has been rebranded as ‘‘AI’’ over the past few years. This rebranding is worthy of some scrutiny’’(Jordan, 2018).

AI, by design, is an ambiguous term that mixes aspirations with reality. It also conflates the statistical ideas that
form the basis of modern ML with the more commonplace notions about what humans and behavioral scientists mean
by intelligence (see (Lake et al., 2017) for an enlightening and important modern discussion of this distinction from a
quantitative cognitive science point of view as well as (Dreyfus, 1965) for a surprisingly relevant philosophy-based critique
from 1965).

Almost all the techniques discussed here rely on optimizing a pre-specified objective function on a given dataset. Yet,
we know that for large, complex models changing the data distribution or the goal can lead to an immediate degradation
of performance. Deep networks have poor generalizations to even a slightly different context (the infamous Validation-
Test set mismatch). This inability to abstract and generalize is a common criticism lobbied against branding modern ML
techniques as AI (Lake et al., 2017). For all these reasons, we have chosen to use the term Machine Learning rather than
artificial intelligence through out the review.

This is far from the first time we have seen the use of the term artificial intelligence and the grandiose promises that
it implies. In fact, the early 1950’s and 1960’s as well as the early 1980’s saw similar AI bubbles (see this interesting
summary by Luke Muehlhauser for Open Philanthropy (Muehlhauser, 2016)). These AI bubbles have been followed by
what have been dubbed ‘‘AI Winters’’ (McDermott et al., 1985).

The ‘‘Singularity’’ may not be coming but the advances in computing and the availability of large datasets likely ensure
that the kind of statistical learning frameworks discussed are here to stay. Rather than a general artificial intelligence,
the kind of techniques presented here seem to be best suited for three important tasks: (a) automating prediction from
lots of labeled examples in a narrowly-defined setting (b) learning how to parametrize and capture the correlations of
complex probability distributions, and (c) finding policies for tasks with well-defined goals and clear rules. We hope that
this review has given the reader enough conceptual tools to start forming their own opinions about reality and hype
when it comes to modern ML research. As Michael I. Joran puts it, ‘‘...if the acronym ‘‘AI’’ continues to be used as placeholder
nomenclature going forward, let’s be aware of the very real limitations of this placeholder. Let’s broaden our scope, tone down
the hype and recognize the serious challenges ahead"(Jordan, 2018).

116 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

18.4. Social implications of machine learning

The last decade has also seen a systematic increase in the use and deployment of Machine Learning techniques into
new areas of life and society. Some of the readers of this review may currently be (or eventually be) employed in industrial
settings that seek to harness ML for practical purposes. However, caution is in order when applying ML. Without foresight
and accountability, the scale and scope of modern ML algorithms can lead to large scale unaccountable and undemocratic
outcomes that can reinforce or even worsen existing inequality and inequities. Mathematician and data scientist turned
social commentator Cathy O’Neil has dubbed the indiscriminate use of these Big Data techniques ‘‘Weapons of Math
Destruction’’ (O’Neil, 2017).

When ML is used in a social context, abstract statistical relationships have real social consequences. False positives can
mean the difference between life and death (for example in the context of ‘‘signature drone strikes’’) (Mehta, 2015). ML
algorithms, like all techniques, have important limitations and should be employed with great caution. It is our hope that
ML practitioners keep this in mind when working in social settings.

All algorithms involve inherent tradeoffs in fairness, a point formalized by computer scientist Jon Kleinberg and
collaborators in a very interesting recent paper (Kleinberg et al., 2016). It is far from clear how to make algorithms fair for
all people involved. This is even more true with methods like Deep Learning that are hard to interpret. All ML algorithms
have implicit assumptions and choices reflected in the datasets we use to the kind of functions we choose to optimize. It
is important to remember that there is no ‘‘ view from nowhere’’ (Adam, 2006; Katz, 2017) – all ML algorithms reflect a
point of view and a set of assumptions about the world we live in. For this reason, we hope that ML practitioners and data
scientists will take the time to consider the social consequences of their actions. For example, developing a Hippocratic
Oath for data scientists is now being considered (Simonite, 2018). Doing no harm seems like a good start for making sure
that we harness ML for the benefit of all members of society.

Acknowledgments

PM and DJS would like to thank Anirvan Sengupta, Justin Kinney, and Ilya Nemenman for useful conversations during
the ACP working group. The authors are also grateful to all readers who provided valuable feedback on this manuscript
while it was under peer review. We encourage readers to help keep the Notebooks which accompany the review up-
to-date, by contributing to them on Github at https://github.com/drckf/mlreview_notebooks. PM, CHW, and AD were
supported by Simon’s Foundation in the form of a Simons Investigator in the MMLS and NIH MIRA program grant:
1R35GM119461. MB acknowledges support from the Emergent Phenomena in Quantum Systems initiative of the Gordon
and Betty Moore Foundation, the ERC synergy grant UQUAM, and the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Quantum Algorithm Teams Program. DJS was supported as a Simons Investigator
in the MMLS and by NIH K25 grant GM098875-02. PM and DJS would like to thank the NSF Grant: PHYD1066293
for supporting the Aspen Center for Physics (ACP) for facilitating discussions leading to this work. This research was
supported in part by the National Science Foundation under Grant No. NSF PHY-1748958. The authors are pleased to
acknowledge that the computational work reported on in this paper was performed on the Shared Computing Cluster
which is administered by Boston University’s Research Computing Services.

Appendix. Overview of the datasets used in the review

A.1. Ising dataset

The Ising dataset we use throughout the review was generated using the standard Metropolis algorithm to generate a
Markov Chain. The full dataset consist of 16 × 10000 samples of 40 × 40 spin configurations (i.e. the design matrix has
160000 samples and 1600 features) drawn at temperatures 0.25, 0.5, . . . , 4.0. The samples are drawn for the Boltzmann
distribution of the two-dimensional ferromagnetic Ising model on a 40 × 40 square lattice with periodic boundary
conditions.

A.2. SUSY Dataset

The SUSY dataset was generated by Baldi et al. (Baldi et al., 2014) to explore the efficacy of using Deep Learning for
classifying collision events. The dataset is downloadable from the UCI Machine Learning Repository, a wonderful resource
for interesting datasets. Here we quote directly from the paper:

The data has been produced using Monte Carlo simulations and contains events with two leptons (electrons or
muons). In high energy physics experiments, such as the ATLAS and CMS detectors at the CERN LHC, one major hope
is the discovery of new particles. To accomplish this task, physicists attempt to sift through data events and classify
them as either a signal of some new physics process or particle, or instead a background event from understood
Standard Model processes. Unfortunately we will never know for sure what underlying physical process happened

https://github.com/drckf/mlreview_notebooks
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://www.bu.edu/tech/support/research/
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 117

(the only information to which we have access are the final state particles). However, we can attempt to define parts
of phase space that will have a high percentage of signal events. Typically this is done by using a series of simple
requirements on the kinematic quantities of the final state particles, for example having one or more leptons with
large amounts of momentum that is transverse to the beam line (pT). Here instead we will use logistic regression in
order to attempt to find out the relative probability that an event is from a signal or a background event and rather
than using the kinematic quantities of final state particles directly we will use the output of our logistic regression
to define a part of phase space that is enriched in signal events. The dataset we are using has the value of 18
kinematic variables (‘‘features’’) of the event. The first 8 features are direct measurements of final state particles,
in this case the pT , pseudo-rapidity, and azimuthal angle of two leptons in the event and the amount of missing
transverse momentum (MET) together with its azimuthal angle. The last ten features are functions of the first 8
features; these are high-level features derived by physicists to help discriminate between the two classes. You can
think of them as physicists attempt to use non-linear functions to classify signal and background events and they
have been developed with a lot of deep thinking on the part of physicist. There is however, an interest in using deep
learning methods to obviate the need for physicists to manually develop such features. Benchmark results using
Bayesian Decision Trees from a standard physics package and 5-layer neural networks and the dropout algorithm
are presented in the original paper to compare the ability of deep-learning to bypass the need of using such high
level features. We will also explore this topic in later notebooks. The dataset consists of 5 million events, the first
4,500,000 of which we will use for training the model and the last 500,000 examples will be used as a test set.

A.3. MNIST Dataset

The MNIST dataset is one of the simplest and most widely used Machine Learning Datasets. The MNIST dataset consists
of hand-written images of numerical characters 0− 9 and consists of a training set of 60,000 examples, and a test set of
10,000 examples (LeCun et al., 1998a). Information about the MNIST database and its historical importance can be found
at Yann Lecun’s wedsite: http://yann.lecun.com/exdb/mnist/. A brief description from the website:

The original black and white (bilevel) images from NIST were size normalized to fit in a 20 × 20 pixel box while
preserving their aspect ratio. The resulting images contain gray levels as a result of the anti-aliasing technique used
by the normalization algorithm. the images were centered in a 28 × 28 image by computing the center of mass of
the pixels, and translating the image so as to position this point at the center of the 28 × 28 field.

The MNIST is often included by default in many modern ML packages.

References

Abu-Mostafa, Yaser S., Magdon-Ismail, Malik, Lin, Hsuan-Tien, 2012. Learning from Data, vol. 4. AMLBook New York, NY, USA.
Ackley, David H., Hinton, Geoffrey E., Sejnowski, Terrence J., 1987. A learning algorithm for Boltzmann machines. In: Readings in Computer Vision.

Elsevier, pp. 522–533.
Adam, Alison, 2006. Artificial Knowing: Gender and the Thinking Machine. Routledge.
Advani, Madhu, Ganguli, Surya, 2016. Statistical mechanics of optimal convex inference in high dimensions. Phys. Rev. X 6 (3), 031034.
Advani, Madhu, Lahiri, Subhaneil, Ganguli, Surya, 2013. Statistical mechanics of complex neural systems and high dimensional data. J. Stat. Mech.

Theory Exp. 2013 (03), P03014.
Advani, Madhu S., Saxe, Andrew M., 2017. High-dimensional dynamics of generalization error in neural networks. ArXiv preprint arXiv:1710.03667.
Aitchison, Laurence, Corradi, Nicola, Latham, Peter E., 2016. Zipfs law arises naturally when there are underlying, unobserved variables. PLoS Comput.

Biol. 12 (12), e1005110.
Albarran-Arriagada, F., Retamal, J.C., Solano, E., Lamata, L., 2018. Measurement-based adaptation protocol with quantum reinforcement learning.

arXiv:1803.05340.
Alemi, Alireza, Abbara, Alia, 2017. Exponential Capacity in an autoencoder neural network with a hidden layer. ArXiv preprint arXiv:1705.07441.
Alemi, Alexander A., Fischer, Ian, Dillon, Joshua V., Murphy, Kevin, 2016. Deep variational information bottleneck. ArXiv preprint arXiv:1612.00410.
Amit, Daniel J., 1992. Modeling Brain Function: The World of Attractor Neural Networks. Cambridge University Press.
Amit, Daniel J., Gutfreund, Hanoch, Sompolinsky, Haim, 1985. Spin-glass models of neural networks. Phys. Rev. A 32 (2), 1007.
Andrieu, Christophe, De Freitas, Nando, Doucet, Arnaud, Jordan, Michael I., 2003. An introduction to MCMC for machine learning. Mach. Learn. 50

(1–2), 5–43.
Arai, Shunta, Ohzeki, Masayuki, Tanaka, Kazuyuki, 2017. Deep neural network detects quantum phase transition. ArXiv preprint arXiv:1712.00371.
Arimoto, Suguru, 1972. An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Trans. Inform. Theory 18 (1), 14–20.
Arsenault, Louis-François, Lopez-Bezanilla, Alejandro, von Lilienfeld, O. Anatole, Millis, Andrew J., 2014. Machine learning for many-body physics: the

case of the Anderson impurity model. Phys. Rev. B 90 (15), 155136.
Arunachalam, Srinivasan, de Wolf, Ronald, 2017. A survey of quantum learning theory. ArXiv preprint arXiv:1701.06806.
August, Moritz, Hernández-Lobato, José Miguel, 2018. Taking gradients through experiments: LSTMs and memory proximal policy optimization for

black-box quantum control. arXiv:1802.04063.
Aurisano, A., Radovic, A., Rocco, D., Himmel, A., Messier, M.D., Niner, E., Pawloski, G., Psihas, F., Sousa, A., Vahle, P., 2016. A convolutional neural

network neutrino event classifier. J. Instrum. 11 (09), P09001.
Baireuther, P., O’Brien, T.E., Tarasinski, B., Beenakker, C.W.J., 2017. Machine-learning-assisted correction of correlated qubit errors in a topological

code. ArXiv preprint arXiv:1705.07855.
Baity-Jesi, M., Sagun, L., Geiger, M., Spigler, S., Arous, G. Ben, Cammarota, C., LeCun, Y., Wyart, M., Biroli, G., 2018. Comparing dynamics: Deep neural

networks versus glassy systems. arXiv:1803.06969.
Baldassi, Carlo, Gerace, Federica, Kappen, Hilbert J., Lucibello, Carlo, Saglietti, Luca, Tartaglione, Enzo, Zecchina, Riccardo, 2017. On the role of synaptic

stochasticity in training low-precision neural networks. ArXiv preprint arXiv:1710.09825.

http://yann.lecun.com/exdb/mnist/
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb1
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb2
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb2
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb2
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb3
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb4
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb5
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb5
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb5
http://arxiv.org/abs/1710.03667
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb7
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb7
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb7
https://arxiv.org/abs/1803.05340
https://arxiv.org/abs/1705.07441
http://arxiv.org/abs/1612.00410
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb11
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb12
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb13
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb13
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb13
https://arxiv.org/abs/1712.00371
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb15
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb16
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb16
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb16
https://arxiv.org/abs/1701.06806
http://arxiv.org/abs/arXiv:1802.04063
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb19
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb19
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb19
https://arxiv.org/abs/1705.07855
https://arxiv.org/abs/1803.06969
https://arxiv.org/abs/1710.09825

118 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Baldassi, Carlo, Gerace, Federica, Saglietti, Luca, Zecchina, Riccardo, 2018. From inverse problems to learning: a statistical mechanics approach. J.
Phys.: Conf. Ser. 955, 012001.

Baldi, Pierre, Sadowski, Peter, Whiteson, Daniel, 2014. Searching for exotic particles in high-energy physics with deep learning. Nature Commun. 5,
4308.

Barber, David, 2012. Bayesian Reasoning and Machine Learning. Cambridge University Press.
Barnes, Josh, Hut, Piet, 1986. A hierarchical O (N log N) force-calculation algorithm. Nature 324 (6096), 446.
Barra, Adriano, Bernacchia, Alberto, Santucci, Enrica, Contucci, Pierluigi, 2012. On the equivalence of hopfield networks and boltzmann machines.

Neural Netw. 34, 1–9.
Barra, Adriano, Genovese, Giuseppe, Sollich, Peter, Tantari, Daniele, 2016. Phase transitions in restricted Boltzmann machines with generic priors.

ArXiv preprint arXiv:1612.03132.
Barra, Adriano, Genovese, Giuseppe, Tantari, Daniele, Sollich, Peter, 2017. Phase diagram of restricted Boltzmann machines and generalised hopfield

networks with arbitrary priors. ArXiv preprint arXiv:1702.05882.
Battiti, Roberto, 1992. First-and second-order methods for learning: between steepest descent and Newton’s method. Neural Comput. 4 (2), 141–166.
Benedetti, Marcello, Realpe-Gómez, John, Biswas, Rupak, Perdomo-Ortiz, Alejandro, 2016. Quantum-assisted learning of graphical models with arbitrary

pairwise connectivity. ArXiv preprint arXiv:1609.02542.
Benedetti, Marcello, Realpe-Gómez, John, Perdomo-Ortiz, Alejandro, 2017. Quantum-assisted helmholtz machines: A quantum-classical deep learning

framework for industrial datasets in near-term devices. ArXiv preprint arXiv:1708.09784.
Bengio, Yoshua, 2012. Practical recommendations for gradient-based training of deep architectures. In: Neural Networks: Tricks of the Trade. Springer,

pp. 437–478.
Bennett, Robert, 1969. The intrinsic dimensionality of signal collections. IEEE Trans. Inform. Theory 15 (5), 517–525.
Bény, Cédric, 2018. Inferring relevant features: from QFT to PCA. ArXiv preprint arXiv:1802.05756.
Berger, James O., Bernardo, José M., 1992. On the development of the reference prior method. Bayesian Stat. 4, 35–60.
Bickel, Peter J., Freedman, David A., 1981. Some asymptotic theory for the bootstrap. Ann. Statist. 1196–1217.
Bickel, Peter J., Li, Bo, Tsybakov, Alexandre B., van de Geer, Sara A., Yu, Bin, Valdés, Teófilo, Rivero, Carlos, Fan, Jianqing, van der Vaart, Aad, 2006.

Regularization in statistics. Test 15 (2), 271–344.
Bishop, Christopher M., 1995a. Neural Networks for Pattern Recognition. Oxford university press.
Bishop, Chris M., 1995b. Training with noise is equivalent to Tikhonov regularization. Neural Comput. 7 (1), 108–116.
Bishop, C.M., 2006. Pattern Recognition and Machine Learning. springer.
Blahut, Richard, 1972. Computation of channel capacity and rate-distortion functions. IEEE Trans. Inf. Theory 18 (4), 460–473.
Bottou, Léon, 2012. Stochastic gradient descent tricks. In: Neural Networks: Tricks of the Trade. Springer, pp. 421–436.
Bowman, Samuel R., Vilnis, Luke, Vinyals, Oriol, Dai, Andrew M., Jozefowicz, Rafal, Bengio, Samy, 2015. Generating sentences from a continuous

space. ArXiv preprint arXiv:1511.06349.
Boyd, Stephen, Vandenberghe, Lieven, 2004. Convex Optimization. Cambridge university press.
Bradde, Serena, Bialek, William, 2017. PCA Meets RG. J. Stat. Phys. 167 (3–4), 462–475.
Breiman, Leo, 1996. Bagging predictors. Mach. Learn. 24 (2), 123–140.
Breiman, Leo, 2001. Random forests. Mach. Learn. 45 (1), 5–32.
Breuckmann, Nikolas P., Ni, Xiaotong, 2017. Scalable neural network decoders for higher dimensional quantum codes. ArXiv preprint arXiv:1710.09489.
Broecker, Peter, Assaad, Fakher F., Trebst, Simon, 2017. Quantum phase recognition via unsupervised machine learning. ArXiv preprint arXiv:

1707.00663.
Bromley, Thomas R., Rebentrost, Patrick, 2018. Batched quantum state exponentiation and quantum Hebbian learning. arXiv:1803.07039.
Bukov, Marin, 2018. Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum kapitza oscillator. Phys.

Rev. B 98, 224305.
Bukov, Marin, Day, Alexandre G.R., Sels, Dries, Weinberg, Phillip, Polkovnikov, Anatoli, Mehta, Pankaj, 2018. Reinforcement learning in different phases

of quantum control. Phys. Rev. X 8, 031086.
Burges, Christopher J.C., 1998. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2 (2), 121–167.
Caio, Marcello D., Caccin, Marco, Baireuther, Paul, Hyart, Timo, Fruchart, Michel, 2019. Machine learning assisted measurement of local topological

invariants. ArXiv preprint arXiv:1901.03346.
Caldeira, J., Wu, W.L.K., Nord, B., Avestruz, C., Trivedi, S., Story, K.T., 2018. DeepCMB: Lensing reconstruction of the cosmic microwave background

with deep neural networks. ArXiv preprint arXiv:1810.01483.
Canabarro, Askery, Brito, Samuraí, Chaves, Rafael, 2018. Machine learning non-local correlations. ArXiv preprint arXiv:1808.07069.
Cárdenas-López, F.A., Lamata, L., Retamal, J.C., Solano, E., 2017. Generalized quantum reinforcement learning with quantum technologies. ArXiv

preprint arXiv:1709.07848.
Carleo, Giuseppe, 2018. Private Communication.
Carleo, Giuseppe, Nomura, Yusuke, Imada, Masatoshi, 2018. Constructing exact representations of quantum many-body systems with deep neural

networks. ArXiv preprint arXiv:1802.09558.
Carleo, Giuseppe, Troyer, Matthias, 2017. Solving the quantum many-body problem with artificial neural networks. Science 355 (6325), 602–606.
Carrasquilla, Juan, Melko, Roger G., 2017. Machine learning phases of matter. Nat. Phys. 13 (5), 431.
Carrasquilla, Juan, Torlai, Giacomo, Melko, Roger G., Aolita, Leandro, 2018. Reconstructing quantum states with generative models. ArXiv preprint

arXiv:1810.10584.
Chalk, Matthew, Marre, Olivier, Tkacik, Gasper, 2016. Relevant sparse codes with variational information bottleneck. In: Advances in Neural Information

Processing Systems. pp. 1957–1965.
Chamberland, Christopher, Ronagh, Pooya, 2018. Deep neural decoders for near term fault-tolerant experiments. ArXiv preprint arXiv:1802.06441.
Chechik, Gal, Globerson, Amir, Tishby, Naftali, Weiss, Yair, 2005. Information bottleneck for Gaussian variables. J. Mach. Learn. Res. 6 (Jan), 165–188.
Chen, Jing, Cheng, Song, Xie, Haidong, Wang, Lei, Xiang, Tao, 2018. Equivalence of restricted Boltzmann machines and tensor network states. Phys.

Rev. B 97, 085104. http://dx.doi.org/10.1103/PhysRevB.97.085104.
Chen, Chunlin, Dong, Daoyi, Li, Han-Xiong, Chu, Jian, Tarn, Tzyh-Jong, 2014. Fidelity-based probabilistic Q-learning for control of quantum systems.

IEEE Trans. Neural Netw. Learn. Syst. 25 (5), 920–933.
Chen, Tianqi, Guestrin, Carlos, 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on

Knowledge Discovery and Data Mining. ACM, pp. 785–794.
Chen, Jun-Jie, Xue, Ming, 2019. Manipulation of spin dynamics by deep reinforcement learning agent. ArXiv preprint arXiv:1901.08748.
Cheng, Song, Chen, Jing, Wang, Lei, 2017. Information perspective to probabilistic modeling: Boltzmann machines versus Born machines. ArXiv

preprint arXiv:1712.04144.
Ch’ng, Kelvin, Vazquez, Nick, Khatami, Ehsan, 2017. Unsupervised machine learning account of magnetic transitions in the hubbard model. ArXiv

preprint arXiv:1708.03350.

http://refhub.elsevier.com/S0370-1573(19)30076-6/sb23
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb23
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb23
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb24
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb24
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb24
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb25
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb26
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb27
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb27
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb27
https://arxiv.org/abs/1612.03132
https://arxiv.org/abs/1702.05882
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb30
https://arxiv.org/abs/1609.02542
https://arxiv.org/abs/1708.09784
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb33
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb33
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb33
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb34
https://arxiv.org/abs/1802.05756
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb36
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb37
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb38
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb38
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb38
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb39
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb40
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb41
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb42
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb43
http://arxiv.org/abs/1511.06349
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb45
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb46
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb47
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb48
https://arxiv.org/abs/1710.09489
https://arxiv.org/abs/1707.00663
https://arxiv.org/abs/1707.00663
https://arxiv.org/abs/1707.00663
https://arxiv.org/abs/1803.07039
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb52
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb52
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb52
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb53
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb53
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb53
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb54
https://arxiv.org/abs/1901.03346
https://arxiv.org/abs/1810.01483
https://arxiv.org/abs/1808.07069
https://arxiv.org/abs/1709.07848
https://arxiv.org/abs/1802.09558
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb61
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb62
https://arxiv.org/abs/1810.10584
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb64
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb64
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb64
https://arxiv.org/abs/1801.06441
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb66
http://dx.doi.org/10.1103/PhysRevB.97.085104
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb68
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb68
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb68
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb69
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb69
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb69
https://arxiv.org/abs/1901.08748
https://arxiv.org/abs/1712.04144
https://arxiv.org/abs/1708.03350

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 119

Ciliberto, Carlo, Herbster, Mark, Ialongo, Alessandro Davide, Pontil, Massimiliano, Rocchetto, Andrea, Severini, Simone, Wossnig, Leonard, 2017.
Quantum machine learning: a classical perspective. ArXiv preprint arXiv:1707.08561.

Cohen, Nadav, Sharir, Or, Shashua, Amnon, 2016. On the expressive power of deep learning: A tensor analysis. In: Conference on Learning Theory,
pp. 698–728.

Colabrese, Simona, Gustavsson, Kristian, Celani, Antonio, Biferale, Luca, 2017. Flow navigation by smart microswimmers via reinforcement learning.
Phys. Rev. Lett. 118 (15), 158004.

Cossu, Guido, Del Debbio, Luigi, Giani, Tommaso, Khamseh, Ava, Wilson, Michael, 2018. Machine learning determination of dynamical parameters:
The ising model case. ArXiv preprint arXiv:1810.11503.

Cox, Trevor F., Cox, Michael A.A., 2000. Multidimensional Scaling. CRC press.
Cristoforetti, Marco, Jurman, Giuseppe, Nardelli, Andrea I., Furlanello, Cesare, 2017. Towards meaningful physics from generative models. ArXiv

preprint arXiv:1705.09524.
Dahl, George, Mohamed, Abdel-rahman, Hinton, Geoffrey E., et al., 2010. Phone recognition with the mean-covariance restricted Boltzmann machine.

In: Advances in Neural Information Processing Systems. pp. 469–477.
Daskin, Ammar, 2018. A quantum implementation model for artificial neural networks. Quanta 7–18.
Davaasuren, Amarsanaa, Suzuki, Yasunari, Fujii, Keisuke, Koashi, Masato, 2018. General framework for constructing fast and near-optimal

machine-learning-based decoder of the topological stabilizer codes. ArXiv preprint arXiv:1801.04377.
Day, Alexandre G.R., Bukov, Marin, Weinberg, Phillip, Mehta, Pankaj, Sels, Dries, 2019. Glassy phase of optimal quantum control. Phys. Rev. Lett. 122

(2), 020601.
Day, Alexandre G.R., Mehta, Pankaj, 2018. Validated agglomerative clustering. in preparation.
Decelle, Aurélien, Fissore, Giancarlo, Furtlehner, Cyril, 2017. Spectral learning of restricted Boltzmann machines. ArXiv preprint arXiv:1708.02917.
Decelle, Aurélien, Fissore, Giancarlo, Furtlehner, Cyril, 2018. Thermodynamics of restricted Boltzmann machines and related learning dynamics. ArXiv

preprint arXiv:1803.01960.
Dempster, Arthur P., Laird, Nan M., Rubin, Donald B., 1977. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B

Stat. Methodol. 1–38.
Deng, Dong-Ling, Li, Xiaopeng, Sarma, S. Das, 2017. Quantum entanglement in neural network states. Phys. Rev. X 7 (2), 021021.
Dietterich, Thomas G., et al., 2000. Ensemble methods in machine learning. Multiple Classif. Syst. 1857, 1–15.
Do, Chuong B., Batzoglou, Serafim, 2008. What is the expectation maximization algorithm?. Nature Biotechnol. 26 (8), 897–899.
Domingos, Pedro, 2012. A few useful things to know about machine learning. Commun. ACM 55 (10), 78–87.
Donoho, David L., 2006. Compressed sensing. IEEE Trans. Inf. Theory 52 (4), 1289–1306.
Dreyfus, Hubert L., 1965. Alchemy and Artificial Intelligence. Rand Corporation Santa Monica, CA.
Du, Simon S., Jin, Chi, Lee, Jason D., Jordan, Michael I., Singh, Aarti, Poczos, Barnabas, 2017. Gradient descent can take exponential time to escape

saddle points. In: Advances in Neural Information Processing Systems. pp. 1067–1077.
Duchi, John, Hazan, Elad, Singer, Yoram, 2011. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12

(Jul), 2121–2159.
Dunjko, Vedran, Briegel, Hans J., 2017. Machine learning and artificial intelligence in the quantum domain. ArXiv preprint arXiv:1709.02779.
Dunjko, Vedran, Liu, Yi-Kai, Wu, Xingyao, Taylor, Jacob M., 2017. Super-polynomial and exponential improvements for quantum-enhanced

reinforcement learning. ArXiv preprint arXiv:1710.11160.
Efron, B., 1979. Bootstrap methods: another look at the jackknife annals of statistics 7: 1–26. View Article PubMed/NCBI Google Scholar.
Efron, Bradley, Hastie, Trevor, Johnstone, Iain, Tibshirani, Robert, et al., 2004. Least angle regression. Ann. Statist. 32 (2), 407–499.
Eisen, Michael B., Spellman, Paul T., Brown, Patrick O., Botstein, David, 1998. Cluster analysis and display of genome-wide expression patterns. Proc.

Natl. Acad. Sci. 95 (25), 14863–14868.
Elith, Jane, Phillips, Steven J., Hastie, Trevor, Dudík, Miroslav, Chee, Yung En, Yates, Colin J., 2011. A statistical explanation of MaxEnt for ecologists.

Divers. Distrib. 17 (1), 43–57.
Ernst, Oliver K., Bartol, Thomas, Sejnowski, Terrence, Mjolsness, Eric, 2018. Learning dynamic Boltzmann distributions as reduced models of spatial

chemical kinetics. ArXiv preprint arXiv:1803.01063.
Ester, Martin, Kriegel, Hans-Peter, Sander, Jörg, Xu, Xiaowei, et al., 1996. A density-based algorithm for discovering clusters in large spatial databases

with noise. In: Kdd, vol. 96. pp. 226–231.
Faddeev, Ludvig D., Popov, Victor N., 1967. Feynman diagrams for the Yang-Mills field. Phys. Lett. B 25 (1), 29–30.
Finol, David, Lu, Yan, Mahadevan, Vijay, Srivastava, Ankit, 2018. Deep convolutional neural networks for eigenvalue problems in mechanics. ArXiv

preprint arXiv:1801.05733.
Fisher, Charles K., Mehta, Pankaj, 2015a. Bayesian Feature selection for high-dimensional linear regression via the Ising approximation with

applications to genomics. Bioinformatics 31 (11), 1754–1761.
Fisher, Charles K., Mehta, Pankaj, 2015b. Bayesian Feature selection with strongly regularizing priors maps to the ising model. Neural Comput. 27

(11), 2411–2422.
Foreman, Sam, Giedt, Joel, Meurice, Yannick, Unmuth-Yockey, Judah, 2017. RG Inspired machine learning for lattice field theory. ArXiv preprint

arXiv:1710.02079.
Fösel, Thomas, Tighineanu, Petru, Weiss, Talitha, Marquardt, Florian, 2018. Reinforcement learning with neural networks for quantum feedback.

arXiv:1802.05267.
Freitas, Nahuel, Morigi, Giovanna, Dunjko, Vedran, 2018. Neural network operations and susuki-trotter evolution of neural network states. ArXiv

preprint arXiv:1803.02118.
Freund, Yoav, Schapire, Robert E., 1995. A desicion-theoretic generalization of on-line learning and an application to boosting. In: European Conference

on Computational Learning Theory. Springer, pp. 23–37.
Freund, Yoav, Schapire, Robert, Abe, Naoki, 1999. A short introduction to boosting. J. Japan Soc. Artif. Intell. 14 (771–780), 1612.
Friedman, Jerome H., 2001. Greedy function approximation: a gradient boosting machine. Ann. Statist. 1189–1232.
Friedman, Jerome H., 2002. Stochastic gradient boosting. Comput. Statist. Data Anal. 38 (4), 367–378.
Friedman, Jerome, Hastie, Trevor, Tibshirani, Robert, 2001. The Elements of Statistical Learning, vol. 1. Springer series in statistics New York.
Friedman, Jerome H., Popescu, Bogdan E., et al., 2003. Importance sampled learning ensembles. J. Mach. Learn. Res. 94305.
Fu, Michael C., 2006. Gradient estimation. Handbooks Oper. Res. Management Sci. 13, 575–616.
Funai, Shotaro Shiba, Giataganas, Dimitrios, 2018. Thermodynamics and feature extraction by machine learning. ArXiv preprint arXiv:1810.08179.
Gao, Xun, Duan, Lu-Ming, 2017. Efficient representation of quantum many-body states with deep neural networks. ArXiv preprint arXiv:1701.05039.
Gao, Jun, Qiao, Lu-Feng, Jiao, Zhi-Qiang, Ma, Yue-Chi, Hu, Cheng-Qiu, Ren, Ruo-Jing, Yang, Ai-Lin, Tang, Hao, Yung, Man-Hong, Jin, Xian-Min, 2017.

Experimental machine learning of quantum states with partial information. ArXiv preprint arXiv:1712.00456.
Gelman, Andrew, Carlin, John B., Stern, Hal S., Dunson, David B., Vehtari, Aki, Rubin, Donald B., 2014. Bayesian Data Analysis, vol. 2. CRC Press, Boca

Raton, FL.
Gersho, Allen, Gray, Robert M., 2012. Vector Quantization and Signal Compression, vol. 159. Springer Science & Business Media.

https://arxiv.org/abs/1707.08561
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb75
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb75
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb75
https://arxiv.org/abs/1810.11503
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb77
https://arxiv.org/abs/1705.09524
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb79
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb79
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb79
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb80
https://arxiv.org/abs/1801.04377
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb82
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb82
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb82
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb83
https://arxiv.org/abs/1708.02917
https://arxiv.org/abs/1803.01960
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb86
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb86
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb86
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb87
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb88
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb89
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb90
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb91
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb92
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb93
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb93
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb93
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb94
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb94
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb94
https://arxiv.org/abs/1709.02779
https://arxiv.org/abs/1710.11160
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb97
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb98
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb99
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb99
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb99
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb100
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb100
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb100
https://arxiv.org/abs/1803.01063
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb102
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb102
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb102
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb103
https://arxiv.org/abs/1801.05733
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb105
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb105
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb105
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb106
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb106
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb106
https://arxiv.org/abs/1710.02079
https://arxiv.org/abs/1802.05267
https://arxiv.org/abs/1803.02118
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb110
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb110
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb110
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb111
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb112
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb113
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb114
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb115
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb116
https://arxiv.org/abs/1810.08179
https://arxiv.org/abs/1701.05039
https://arxiv.org/abs/1712.00456
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb120
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb120
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb120
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb121

120 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Geurts, Pierre, Ernst, Damien, Wehenkel, Louis, 2006. Extremely randomized trees. Mach. Learn. 63 (1), 3–42.
Glorot, Xavier, Bengio, Yoshua, 2010. Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, pp. 249–256.
Goldt, Sebastian, Seifert, Udo, 2017. Thermodynamic efficiency of learning a rule in neural networks. ArXiv preprint arXiv:1706.09713.
Goodfellow, Ian, 2016. NIPS 2016 tutorial: Generative adversarial networks. ArXiv preprint arXiv:1701.00160.
Goodfellow, Ian, Bengio, Yoshua, Courville, Aaron, 2016. Deep Learning. MIT Press.
Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David, Ozair, Sherjil, Courville, Aaron, Bengio, Yoshua, 2014. Generative

adversarial nets. In: Advances in Neural Information Processing Systems. pp. 2672–2680.
Greplova, Eliska, Andersen, Christian Kraglund, Mølmer, Klaus, 2017. Quantum parameter estimation with a neural network. ArXiv preprint

arXiv:1711.05238.
Grisafi, Andrea, Wilkins, David M, Csányi, Gábor, Ceriotti, Michele, 2017. Symmetry-adapted machine-learning for tensorial properties of atomistic

systems. ArXiv preprint arXiv:1709.06757.
Han, Zhao-Yu, Wang, Jun, Fan, Heng, Wang, Lei, Zhang, Pan, 2017. Unsupervised generative modeling using matrix product states. ArXiv preprint

arXiv:1709.01662.
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, Sun, Jian, 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet

classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034.
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, Sun, Jian, 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 770–778.
Heimel, Theo, Kasieczka, Gregor, Plehn, Tilman, Thompson, Jennifer M, 2018. QCD Or what?. ArXiv preprint arXiv:1808.08979.
Higgins, Irina, Matthey, Loic, Pal, Arka, Burgess, Christopher, Glorot, Xavier, Botvinick, Matthew, Mohamed, Shakir, Lerchner, Alexander, 2016. Beta-vae:

Learning basic visual concepts with a constrained variational framework.
Hinton, Geoffrey E., 2002. Training products of experts by minimizing contrastive divergence. Neural Comput. 14 (8), 1771–1800.
Hinton, Geoffrey E., 2012. A practical guide to training restricted Boltzmann machines. In: Neural Networks: Tricks of the Trade. Springer, pp. 599–619.
Hinton, Geoffrey E., Osindero, Simon, Teh, Yee-Whye, 2006. A fast learning algorithm for deep belief nets. Neural Comput. 18 (7), 1527–1554.
Hinton, Geoffrey E., Salakhutdinov, Ruslan R., 2006. Reducing the dimensionality of data with neural networks. science 313 (5786), 504–507.
Ho, Tin Kam, 1998. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 (8), 832–844.
Hopfield, John J., 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79 (8),

2554–2558.
Huang, Haiping, 2017a. Mean-field theory of input dimensionality reduction in unsupervised deep neural networks. ArXiv preprint arXiv:1710.01467.
Huang, Haiping, 2017b. Statistical mechanics of unsupervised feature learning in a restricted Boltzmann machine with binary synapses. J. Stat. Mech.

Theory Exp. 2017 (5), 053302.
Huang, Hengfeng, Xiao, Bowen, Xiong, Huixin, Wu, Zeming, Mu, Yadong, Song, Huichao, 2018. Applications of deep learning to relativistic

hydrodynamics. ArXiv preprint arXiv:1801.03334.
Hubbard, J., 1959. CaLculation of partition functions. Phys. Rev. Lett. 3 (2), 77.
Huggins, William, Patil, Piyush, Mitchell, Bradley, Whaley, K. Birgitta, Stoudenmire, E. Miles, 2019. Towards quantum machine learning with tensor

networks. Quant. Sci. Technol. 4 (2), 024001.
Iakovlev, I.A., Sotnikov, O.M., Mazurenko, V.V., 2018. Supervised learning magnetic skyrmion phases. arXiv:1803.06682.
Innocenti, Luca, Banchi, Leonardo, Ferraro, Alessandro, Bose, Sougato, Paternostro, Mauro, 2018. Supervised learning of time-independent hamiltonians

for gate design. arXiv:1803.07119.
Ioffe, Sergey, Szegedy, Christian, 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International

Conference on Machine Learning, pp. 448–456.
Iso, Satoshi, Shiba, Shotaro, Yokoo, Sumito, 2018. Scale-invariant feature extraction of neural network and renormalization group flow. ArXiv preprint

arXiv:1801.07172.
Jarzynski, Christopher, 1997. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78 (14), 2690.
Jaynes, Edwin T., 1957a. Information theory and statistical mechanics. Phys. Rev. 106 (4), 620.
Jaynes, Edwin T., 1957b. Information theory and statistical mechanics. II. Phys. Rev. 108 (2), 171.
Jaynes, Edwin T., 1968. Prior probabilities. IEEE Trans. Syst. Sci. Cybern. 4 (3), 227–241.
Jaynes, Edwin T., 1996. Probability Theory: The Logic of Science. Washington University St. Louis, MO.
Jaynes, Edwin T., 2003. Probability Theory: The Logic of Science. Cambridge university press.
Jeffreys, Harold, 1946. An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453–461.
Jin, Chi, Netrapalli, Praneeth, Jordan, Michael I., 2017. Accelerated gradient descent escapes saddle points faster than gradient descent. ArXiv preprint

arXiv:1711.10456.
Jordan, Michael, 2018. Artificial intelligence: The revolution hasn’t happened yet. medium.
Jordan, Michael I., Ghahramani, Zoubin, Jaakkola, Tommi S., Saul, Lawrence K., 1999. An introduction to variational methods for graphical models.

Mach. Learn. 37 (2), 183–233.
Kalantre, Sandesh S., Zwolak, Justyna P., Ragole, Stephen, Wu, Xingyao, Zimmerman, Neil M., Stewart, M.D., Taylor, Jacob M., 2017. Machine learning

techniques for state recognition and auto-tuning in quantum dots. ArXiv preprint arXiv:1712.04914.
Katz, Yarden, 2017. Manufacturing an artificial intelligence revolution. SSRN Preprint.
Kerenidis, Iordanis, Prakash, Anupam, 2017. Quantum gradient descent for linear systems and least squares. ArXiv preprint arXiv:1704.04992.
Keskar, Nitish Shirish, Mudigere, Dheevatsa, Nocedal, Jorge, Smelyanskiy, Mikhail, Tang, Ping Tak Peter, 2016. On large-batch training for deep

learning: Generalization gap and sharp minima. ArXiv preprint arXiv:1609.04836.
Kingma, Diederik P., Ba, Jimmy, 2014. Adam: A method for stochastic optimization. ArXiv preprint arXiv:1412.6980.
Kingma, Diederik P., Welling, Max, 2013. Auto-encoding variational bayes. ArXiv preprint arXiv:1312.6114.
Kingma, D.P., et al., 2017. Variational Inference & Deep Learning (Ph.D. thesis). http://dx.doi.org/978-94-6299-745-5.
Kleijnen, Jack P.C., Rubinstein, Reuven Y., 1996. Optimization and sensitivity analysis of computer simulation models by the score function method.

European J. Oper. Res. 88 (3), 413–427.
Kleinberg, Jon, Mullainathan, Sendhil, Raghavan, Manish, 2016. Inherent trade-offs in the fair determination of risk scores. ArXiv preprint arXiv:

1609.05807.
Koch-Janusz, Maciej, Ringel, Zohar, 2017. Mutual information, neural networks and the renormalization group. ArXiv preprint arXiv:1704.06279.
Kohonen, Teuvo, 1998. The self-organizing map. Neurocomputing 21 (1–3), 1–6.
Kong, Qingkai, Trugman, Daniel T., Ross, Zachary E., Bianco, Michael J., Meade, Brendan J., Gerstoft, Peter, 2018. Machine learning in seismology:

Turning data into insights. Seismol. Res. Lett. http://dx.doi.org/10.1785/0220180259.
Krastanov, Stefan, Jiang, Liang, 2017. Deep neural network probabilistic decoder for stabilizer codes. ArXiv preprint arXiv:1705.09334.
Kriegel, Hans-Peter, Kröger, Peer, Zimek, Arthur, 2009. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering,

and correlation clustering. ACM Trans. Knowl. Discov. Data (TKDD) 3 (1), 1.

http://refhub.elsevier.com/S0370-1573(19)30076-6/sb122
https://arxiv.org/abs/1706.09713
http://arxiv.org/abs/1701.00160
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb126
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb127
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb127
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb127
https://arxiv.org/abs/1711.05238
https://arxiv.org/abs/1709.06757
https://arxiv.org/abs/1709.01662
https://arxiv.org/abs/1808.08979
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb134
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb134
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb134
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb135
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb136
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb137
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb138
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb139
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb140
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb140
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb140
https://arxiv.org/abs/1710.01467
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb142
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb142
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb142
https://arxiv.org/abs/1801.03334
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb144
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb145
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb145
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb145
https://arxiv.org/abs/1803.06682
https://arxiv.org/abs/1803.07119
https://arxiv.org/abs/1801.07172
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb150
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb151
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb152
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb153
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb154
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb155
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb156
http://arxiv.org/abs/1711.10456
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb158
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb159
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb159
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb159
https://arxiv.org/abs/1712.04914
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb161
https://arxiv.org/abs/1704.04992
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://dx.doi.org/978-94-6299-745-5
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb167
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb167
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb167
http://arxiv.org/abs/1609.05807
http://arxiv.org/abs/1609.05807
http://arxiv.org/abs/1609.05807
https://arxiv.org/abs/1704.06279
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb170
http://dx.doi.org/10.1785/0220180259
https://arxiv.org/abs/1705.09334
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb173
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb173
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb173

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 121

Krizhevsky, Alex, Sutskever, Ilya, Hinton, Geoffrey E., 2012. Imagenet classification with deep convolutional neural networks. In: Advances in Neural
Information Processing Systems. pp. 1097–1105.

Krzakala, Florent, Manoel, Andre, Tramel, Eric W., Zdeborová, Lenka, 2014. Variational free energies for compressed sensing. In: Information Theory
(ISIT), 2014 IEEE International Symposium on. IEEE, pp. 1499–1503.

Krzakala, Florent, Mézard, Marc, Sausset, Francois, Sun, Yifan, Zdeborová, Lenka, 2012a. Probabilistic reconstruction in compressed sensing: algorithms,
phase diagrams, and threshold achieving matrices. J. Stat. Mech. Theory Exp. 2012 (08), P08009.

Krzakala, Florent, Mézard, Marc, Sausset, François, Sun, Y.F., Zdeborová, Lenka, 2012b. Statistical-physics-based reconstruction in compressed sensing.
Phys. Rev. X 2 (2), 021005.

Lake, Brenden M., Ullman, Tomer D., Tenenbaum, Joshua B., Gershman, Samuel J., 2017. Building machines that learn and think like people. Behav.
Brain Sci. 40.

Lamata, Lucas, 2017. Basic protocols in quantum reinforcement learning with superconducting circuits. Sci. Rep. 7.
Larsen, Bjornar, Aone, Chinatsu, 1999. Fast and effective text mining using linear-time document clustering. In: Proceedings of the Fifth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM, pp. 16–22.
Le, Quoc V., 2013. Building high-level features using large scale unsupervised learning. In: Acoustics, Speech and Signal Processing (ICASSP), 2013

IEEE International Conference on. IEEE, pp. 8595–8598.
LeCun, Yann, Bengio, Yoshua, et al., 1995. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361 (10),

1995.
LeCun, Yann, Bottou, Léon, Bengio, Yoshua, Haffner, Patrick, 1998a. Gradient-based learning applied to document recognition. Proc. IEEE 86 (11),

2278–2324.
LeCun, Yann, Bottou, Léon, Orr, Genevieve B, Müller, Klaus-Robert, 1998b. Efficient backprop. In: Neural Networks: Tricks of the Trade. Springer,

pp. 9–50.
Lee, Jason D., Panageas, Ioannis, Piliouras, Georgios, Simchowitz, Max, Jordan, Michael I., Recht, Benjamin, 2017. First-order methods almost always

avoid saddle points. ArXiv preprint arXiv:1710.07406.
Lehmann, Erich L., Casella, George, 2006. Theory of Point Estimation. Springer Science & Business Media.
Lehmann, Erich L., Romano, Joseph P., 2006. Testing Statistical Hypotheses. Springer Science & Business Media.
Levine, Yoav, Yakira, David, Cohen, Nadav, Shashua, Amnon, 2017. Deep learning and quantum entanglement: Fundamental connections with

implications to network design.. ArXiv preprint arXiv:1704.01552.
Li, Richard Y., Di Felice, Rosa, Rohs, Remo, Lidar, Daniel A., 2018. Quantum annealing versus classical machine learning applied to a simplified

computational biology problem. NPJ Quant. Inf. 4 (1), 14.
Li, Bo, Saad, David, 2017. Exploring the function space of deep-learning machines. ArXiv preprint arXiv:1708.01422.
Li, Chian-De, Tan, Deng-Ruei, Jiang, Fu-Jiun, 2017. Applications of neural networks to the studies of phase transitions of two-dimensional potts

models. ArXiv preprint arXiv:1703.02369.
Li, Shuo-Hui, Wang, Lei, 2018. Neural network renormalization group. ArXiv preprint arXiv:1802.02840.
Lim, Tjen-Sien, Loh, Wei-Yin, Shih, Yu-Shan, 2000. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new

classification algorithms. Mach. Learn. 40 (3), 203–228.
Lin, Henry W., Tegmark, Max, Rolnick, David, 2017. Why does deep and cheap learning work so well?. J. Stat. Phys. 168 (6), 1223–1247.
Linderman, G.C., Rachh, M., Hoskins, J.G., Steinerberger, S., Kluger, Y., 2017. Efficient algorithms for t-distributed stochastic neighborhood embedding.

ArXiv e-prints arXiv:1712.09005.
Liu, Zhaocheng, Rodrigues, Sean P., Cai, Wenshan, 2017. Simulating the ising model with a deep convolutional generative adversarial network. ArXiv

preprint arXiv:1710.04987.
Loh, Wei-Yin, 2011. Classification and regression trees. Wiley Interdiscipl. Rev.: Data Min. Knowl. Discov. 1 (1), 14–23.
Louppe, Gilles, 2014. Understanding random forests: From theory to practice. ArXiv preprint arXiv:1407.7502.
Lu, Sirui, Huang, Shilin, Li, Keren, Li, Jun, Chen, Jianxin, Lu, Dawei, Ji, Zhengfeng, Shen, Yi, Zhou, Duanlu, Zeng, Bei, 2017. A separability-entanglement

classifier via machine learning. ArXiv preprint arXiv:1705.01523.
Maaten, Laurens van der, Hinton, Geoffrey, 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9 (Nov), 2579–2605.
MacKay, David J.C., 2003. Information Theory, Inference and Learning Algorithms. Cambridge University Press.
Marsland, III, Robert, Cui, Wenping, Mehta, Pankaj, 2019. The minimum environmental perturbation principle: A new perspective on niche theory.

ArXiv preprint arXiv:1901.09673.
Maskara, Nishad, Kubica, Aleksander, Jochym-O’Connor, Tomas, 2018. Advantages of versatile neural-network decoding for topological codes. ArXiv

preprint arXiv:1802.08680.
Masson, J.B., Bechet, M. Bailly, Vergassola, Massimo, 2009. Chasing information to search in random environments. J. Phys. A 42 (43), 434009.
Mattingly, Henry H., Transtrum, Mark K., Abbott, Michael C., Machta, Benjamin B., 2018. Maximizing the information learned from finite data selects

a simple model. Proc. Natl. Acad. Sci. 115 (8), 1760–1765.
McDermott, Drew, Waldrop, M. Mitchell, Chandrasekaran, B, McDermott, John, Schank, Roger, 1985. The dark ages of AI: a panel discussion at

AAAI-84. AI Mag. 6 (3), 122.
McInnes, Leland, Healy, John, Melville, James, 2018. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv e-prints

arXiv:1802.03426.
Mehta, Pankaj, 2015. Big data’s radical potential. Jacobin https://www.jacobinmag.com/2015/03/big-data-drones-privacy-workers.
Mehta, Pankaj, Schwab, David J., 2014. An exact mapping between the variational renormalization group and deep learning. ArXiv preprint

arXiv:1410.3831.
Mehta, Pankaj, Schwab, David J., Sengupta, Anirvan M., 2011. Statistical mechanics of transcription-factor binding site discovery using hidden Markov

models. J. Stat. Phys. 142 (6), 1187–1205.
Melnikov, Alexey A., Nautrup, Hendrik Poulsen, Krenn, Mario, Dunjko, Vedran, Tiersch, Markus, Zeilinger, Anton, Briegel, Hans J., 2017. Active learning

machine learns to create new quantum experiments. ArXiv preprint arXiv:1706.00868.
Metz, Cade, 2017. Move over, coders-physicists will soon rule silicon valley. https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-

cooling-bill-40/.
Mezard, Marc, Montanari, Andrea, 2009. Information, Physics, and Computation. Oxford University Press.
Mhaskar, Hrushikesh, Liao, Qianli, Poggio, Tomaso, 2016. Learning functions: when is deep better than shallow. ArXiv preprint arXiv:1603.00988.
Mitarai, Kosuke, Negoro, Makoto, Kitagawa, Masahiro, Fujii, Keisuke, 2018. Quantum circuit learning. ArXiv preprint arXiv:1803.00745.
Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A., Veness, Joel, Bellemare, Marc G., Graves, Alex, Riedmiller, Martin,

Fidjeland, Andreas K., Ostrovski, Georg, et al., 2015. Human-level control through deep reinforcement learning. Nature 518 (7540), 529.
Morningstar, Alan, Melko, Roger G., 2017. Deep learning the ising model near criticality. ArXiv preprint arXiv:1708.04622.
Muehlhauser, Luke, 2016. What should we learn from past AI forecasts? Open Philanthropy Website.
Müllner, Daniel, 2011. Modern hierarchical, agglomerative clustering algorithms. ArXiv preprint arXiv:1109.2378.
Murphy, Kevin, 2012. Machine Learning: A Probabilistic Perspective. MIT Press.

http://refhub.elsevier.com/S0370-1573(19)30076-6/sb174
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb174
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb174
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb175
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb175
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb175
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb176
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb176
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb176
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb177
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb177
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb177
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb178
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb178
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb178
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb179
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb180
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb180
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb180
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb181
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb181
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb181
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb182
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb182
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb182
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb183
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb183
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb183
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb184
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb184
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb184
http://arxiv.org/abs/1710.07406
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb186
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb187
https://arxiv.org/abs/1704.01552
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb189
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb189
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb189
https://arxiv.org/abs/1708.01422
https://arxiv.org/abs/1703.02369
https://arxiv.org/abs/1802.02840
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb193
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb193
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb193
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb194
http://arxiv.org/abs/1712.09005
https://arxiv.org/abs/1710.04987
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb197
http://arxiv.org/abs/1407.7502
https://arxiv.org/abs/1705.01523
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb200
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb201
https://arxiv.org/abs/1901.09673
https://arxiv.org/abs/1801.08680
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb204
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb205
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb205
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb205
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb206
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb206
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb206
http://arxiv.org/abs/1802.03426
https://www.jacobinmag.com/2015/03/big-data-drones-privacy-workers
http://arxiv.org/abs/1410.3831
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb210
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb210
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb210
https://arxiv.org/abs/1706.00868
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb213
http://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1803.00745
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb216
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb216
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb216
https://arxiv.org/abs/1708.04622
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb218
https://arxiv.org/abs/1109.2378
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb220

122 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Nagai, Yuki, Shen, Huitao, Qi, Yang, Liu, Junwei, Fu, Liang, 2017. Self-learning Monte Carlo method: Continuous-time algorithm. ArXiv preprint
arXiv:1705.06724.

Neal, Radford M., 2001. Annealed importance sampling. Stat. Comput. 11 (2), 125–139.
Neal, Radford M., Hinton, Geoffrey E., 1998. A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Learning in Graphical

Models. Springer, pp. 355–368.
Neal, Radford M., et al., 2011. MCMC Using hamiltonian dynamics. In: Handbook of Markov Chain Monte Carlo, vol. 2, no. 11. CRC Press New York,

NY.
Nesterov, Yurii, 1983. A method of solving a convex programming problem with convergence rate O (1/k2). In: Soviet Mathematics Doklady, vol. 27,

no. 2. pp. 372–376.
Neukart, Florian, Von Dollen, David, Seidel, Christian, Compostella, Gabriele, 2017. Quantum-enhanced reinforcement learning for finite-episode games

with discrete state spaces. ArXiv preprint arXiv:1708.09354.
Nguyen, H. Chau, Zecchina, Riccardo, Berg, Johannes, 2017. Inverse statistical problems: from the inverse ising problem to data science. Adv. Phys.

66 (3), 197–261.
Nielsen, Michael A., 2015. Neural Networks and Deep Learning. Determination Press.
Niu, Murphy Yuezhen, Boixo, Sergio, Smelyanskiy, Vadim, Neven, Hartmut, 2018. Universal quantum control through deep reinforcement learning.

ArXiv preprint arXiv:1803.01857.
Nomura, Yusuke, Darmawan, Andrew, Yamaji, Youhei, Imada, Masatoshi, 2017. Restricted-Boltzmann-machine learning for solving strongly correlated

quantum systems. ArXiv preprint arXiv:1709.06475.
Ohtsuki, Tomi, Ohtsuki, Tomoki, 2017. Deep learning the quantum phase transitions in random electron systems: Applications to three dimensions.

J. Phys. Soc. Japan 86 (4), 044708.
O’Neil, Cathy, 2017. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Broadway Books.
Papanikolaou, Stefanos, Tzimas, Michail, Song, Hengxu, Reid, Andrew C.E., Langer, Stephen A., 2017. Learning crystal plasticity using digital image

correlation: Examples from discrete dislocation dynamics. ArXiv preprint arXiv:1709.08225.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,

Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.
Perdomo-Ortiz, Alejandro, Benedetti, Marcello, Realpe-Gómez, John, Biswas, Rupak, 2017. Opportunities and challenges for quantum-assisted machine

learning in near-term quantum computers. ArXiv preprint arXiv:1708.09757.
Polyak, Boris T., 1964. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4 (5), 1–17.
Qian, Ning, 1999. On the momentum term in gradient descent learning algorithms. Neural Netw. 12 (1), 145–151.
Rabiner, Lawrence R., 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77 (2), 257–286.
Radford, Alec, Metz, Luke, Chintala, Soumith, 2015. Unsupervised representation learning with deep convolutional generative adversarial networks.

ArXiv preprint arXiv:1511.06434.
Ramezanali, Mohammad, Mitra, Partha P., Sengupta, Anirvan M., 2015. Critical behavior and universality classes for an algorithmic phase transition

in sparse reconstruction. ArXiv preprint arXiv:1509.08995.
Ramezanpour, A., 2017. Optimization by a quantum reinforcement algorithm. Phys. Rev. A 96, 052307.
Rao, Wen-Jia, Li, Zhenyu, Zhu, Qiong, Luo, Mingxing, Wan, Xin, 2017. Identifying product order with restricted Boltzmann machines. ArXiv preprint

arXiv:1709.02597.
Ravanbakhsh, Siamak, Lanusse, Francois, Mandelbaum, Rachel, Schneider, Jeff G., Poczos, Barnabas, 2017. Enabling dark energy science with deep

generative models of galaxy images. In: AAAI, pp. 1488–1494.
Rebentrost, Patrick, Bromley, Thomas R., Weedbrook, Christian, Lloyd, Seth, 2017. A quantum hopfield neural network. arXiv:1710.03599.
Rebentrost, Patrick, Schuld, Maria, Petruccione, Francesco, Lloyd, Seth, 2016. Quantum gradient descent and Newton’s method for constrained

polynomial optimization. ArXiv preprint arXiv:1612.01789.
Reddy, Gautam, Celani, Antonio, Sejnowski, Terrence J., Vergassola, Massimo, 2016a. Learning to soar in turbulent environments. Proc. Natl. Acad.

Sci. 113 (33), E4877–E4884.
Reddy, Gautam, Celani, Antonio, Vergassola, Massimo, 2016b. Infomax strategies for an optimal balance between exploration and exploitation. J. Stat.

Phys. 163 (6), 1454–1476.
Rem, Benno S., Käming, Niklas, Tarnowski, Matthias, Asteria, Luca, Fläschner, Nick, Becker, Christoph, Sengstock, Klaus, Weitenberg, Christof, 2018.

Identifying quantum phase transitions using artificial neural networks on experimental data. ArXiv preprint arXiv:1809.05519.
Rezende, Danilo Jimenez, Mohamed, Shakir, Wierstra, Daan, 2014. Stochastic backpropagation and approximate inference in deep generative models.

ArXiv preprint arXiv:1401.4082.
Rocchetto, Andrea, Aaronson, Scott, Severini, Simone, Carvacho, Gonzalo, Poderini, Davide, Agresti, Iris, Bentivegna, Marco, Sciarrino, Fabio, 2017.

Experimental learning of quantum states. ArXiv preprint arXiv:1712.00127.
Rocchetto, Andrea, Grant, Edward, Strelchuk, Sergii, Carleo, Giuseppe, Severini, Simone, 2018. Learning hard quantum distributions with variational

autoencoders. NPJ Quant. Inf. 4 (1), 28.
Rockafellar, Ralph Tyrell, 2015. Convex Analysis. Princeton University Press.
Rodriguez, Alex, Laio, Alessandro, 2014. Clustering by fast search and find of density peaks. Science 344 (6191), 1492–1496.
Rokach, Lior, Maimon, Oded, 2005. Clustering methods. In: Data Mining and Knowledge Discovery Handbook. Springer, pp. 321–352.
Roweis, Sam T., Saul, Lawrence K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (5500), 2323–2326.
Rudelius, Tom, 2018. Learning to inflate. ArXiv preprint arXiv:1810.05159.
Ruder, Sebastian, 2016. An overview of gradient descent optimization algorithms. ArXiv preprint arXiv:1609.04747.
Rumelhart, David E., Zipser, David, 1985. Feature discovery by competitive learning. Cogn. Sci. 9 (1), 75–112.
Ruscher, Céline, Rottler, Jörg, 2018. Correlations in the shear flow of athermal amorphous solids: A principal component analysis. ArXiv preprint

arXiv:1809.06487.
Saito, Hiroki, Kato, Masaya, 2017. Machine learning technique to find quantum many-body ground states of bosons on a lattice. ArXiv preprint

arXiv:1709.05468.
Salazar, Domingos S.P., 2017. Nonequilibrium thermodynamics of restricted Boltzmann machines. ArXiv preprint arXiv:1704.08724.
Sander, Jörg, Ester, Martin, Kriegel, Hans-Peter, Xu, Xiaowei, 1998. Density-based clustering in spatial databases: The algorithm gdbscan and its

applications. Data Min. Knowl. Discov. 2 (2), 169–194.
Saxe, Andrew M., McClelland, James L., Ganguli, Surya, 2013. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks.

ArXiv preprint arXiv:1312.6120.
Schapire, Robert E., Freund, Yoav, 2012. Boosting: Foundations and Algorithms. MIT Press.
Schindler, Frank, Regnault, Nicolas, Neupert, Titus, 2017. Probing many-body localization with neural networks. Phys. Rev. B 95, 245134.
Schmidhuber, Jürgen, 2015. Deep learning in neural networks: An overview. Neural Netw. 61, 85–117.
Schneidman, Elad, Berry, II, Michael J, Segev, Ronen, Bialek, William, 2006. Weak pairwise correlations imply strongly correlated network states in

a neural population. Nature 440 (7087), 1007.

https://arxiv.org/abs/1705.06724
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb222
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb223
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb223
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb223
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb224
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb224
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb224
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb225
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb225
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb225
https://arxiv.org/abs/1708.09354
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb227
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb227
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb227
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb228
https://arxiv.org/abs/1803.01857
https://arxiv.org/abs/1709.06475
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb231
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb231
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb231
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb232
https://arxiv.org/abs/1709.08225
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb234
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb234
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb234
https://arxiv.org/abs/1708.09757
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb236
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb237
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb238
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1509.08995
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb241
https://arxiv.org/abs/1709.02597
https://arxiv.org/abs/1710.03599
https://arxiv.org/abs/arXiv:1612.01789
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb246
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb246
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb246
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb247
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb247
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb247
https://arxiv.org/abs/1809.05519
http://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1712.00127
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb251
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb251
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb251
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb252
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb253
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb254
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb255
https://arxiv.org/abs/1810.05159
https://arxiv.org/abs/1609.04747
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb258
https://arxiv.org/abs/1809.06487
https://arxiv.org/abs/1709.05468
https://arxiv.org/abs/1704.08724
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb262
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb262
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb262
http://arxiv.org/abs/1312.6120
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb264
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb265
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb266
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb267
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb267
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb267

P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124 123

Schoenholz, Samuel S., 2017. Combining machine learning and physics to understand glassy systems. ArXiv preprint arXiv:1709.08015.
Schuld, Maria, Fingerhuth, Mark, Petruccione, Francesco, 2017. Implementing a distance-based classifier with a quantum interference circuit. ArXiv

preprint arXiv:1703.10793.
Schuld, Maria, Killoran, Nathan, 2018. Quantum machine learning in feature Hilbert spaces. arXiv:1803.07128.
Schuld, Maria, Petruccione, Francesco, 2017. Quantum ensembles of quantum classifiers. ArXiv preprint arXiv:1704.02146.
Schuld, Maria, Sinayskiy, Ilya, Petruccione, Francesco, 2015. An introduction to quantum machine learning. Contemp. Phys. 56 (2), 172–185.
Schwab, David J., Nemenman, Ilya, Mehta, Pankaj, 2014. Phys. Rev. Lett. 113 (6), 068102.
Sethna, James, 2006. Statistical Mechanics: Entropy, Order Parameters, and Complexity, vol. 14. Oxford University Press.
Shanahan, Phiala E., Trewartha, Daniel, Detmold, William, 2018. Machine learning action parameters in lattice quantum chromodynamics. ArXiv

preprint arXiv:1801.05784.
Shannon, Claude E., 1949. Communication theory of secrecy systems. Bell Labs Techn. J. 28 (4), 656–715.
Shen, Huitao, Liu, Junwei, Fu, Liang, 2018. Self-learning Monte Carlo with deep neural networks. ArXiv preprint arXiv:1801.01127.
Shinjo, Kazuya, Sota, Shigetoshi, Yunoki, Seiji, Tohyama, Takami, 2019. Characterization of photoexcited states in the half-filled one-dimensional

extended hubbard model assisted by machine learning. ArXiv preprint arXiv:1901.07900.
Shlens, Jonathon, 2014. A tutorial on principal component analysis. ArXiv preprint arXiv:1404.1100.
Shwartz-Ziv, Ravid, Tishby, Naftali, 2017. Opening the black box of deep neural networks via information. ArXiv preprint arXiv:1703.00810.
Sidky, Hythem, Whitmer, Jonathan K., 2017. Learning free energy landscapes using artificial neural networks. ArXiv preprint arXiv:1712.02840.
Simonite, Tom, 2018. Should data scientist adhere to a hippocratic oath? Wired.
Singh, Kesar, 1981. On the asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 1187–1195.
Slonim, Noam, Atwal, Gurinder S., Tkacik, Gasper, Bialek, William, 2005. Estimating mutual information and multi–information in large networks.

ArXiv preprint arXiv:cs/0502017.
Sønderby, Casper Kaae, Raiko, Tapani, Maaløe, Lars, Sønderby, Søren Kaae, Winther, Ole, 2016. Ladder variational autoencoders. In: Advances in

Neural Information Processing Systems. pp. 3738–3746.
Springenberg, Jost Tobias, Dosovitskiy, Alexey, Brox, Thomas, Riedmiller, Martin, 2014. Striving for simplicity: The all convolutional net. ArXiv preprint

arXiv:1412.6806.
Sriarunothai, Theeraphot, Wölk, Sabine, Giri, Gouri Shankar, Fries, Nicolai, Dunjko, Vedran, Briegel, Hans J., Wunderlich, Christof, 2017. Speeding-up

the decision making of a learning agent using an ion trap quantum processor. ArXiv preprint arXiv:1709.01366.
Srivastava, Nitish, Hinton, Geoffrey E., Krizhevsky, Alex, Sutskever, Ilya, Salakhutdinov, Ruslan, 2014. Dropout: a simple way to prevent neural

networks from overfitting. J. Mach. Learn. Res. 15 (1), 1929–1958.
Stoudenmire, E. Miles, 2018. Learning relevant features of data with multi-scale tensor networks. ArXiv preprint arXiv:1801.00315.
Stoudenmire, E. Miles, Schwab, David J., 2016. Supervised learning with tensor networks. In: Advances in Neural Information Processing Systems.

pp. 4799–4807.
Stoudenmire, E.M., White, Steven R., 2012. Studying two-dimensional systems with the density matrix renormalization group. Annu. Rev. Condens.

Matter Phys. 3 (1), 111–128.
Stratonovich, R.L., 1957. On a method of calculating quantum distribution functions. In: Soviet Physics Doklady, vol. 2. p. 416.
Strouse, D.J., Schwab, David J., 2017. The deterministic information bottleneck. Neural Comput. 29 (6), 1611–1630.
Suchsland, Philippe, Wessel, Stefan, 2018. Parameter diagnostics of phases and phase transition learning by neural networks. ArXiv preprint

arXiv:1802.09876.
Sutskever, Ilya, Martens, James, Dahl, George, Hinton, Geoffrey, 2013. On the importance of initialization and momentum in deep learning, in:

International Conference on Machine Learning, pp. 1139–1147.
Sutton, Richard S., Barto, Andrew G., 1998. Reinforcement Learning: An Introduction, vol. 1, no. 1. MIT Press, Cambridge.
Swaddle, Michael, Noakes, Lyle, Salter, Liam, Smallbone, Harry, Wang, Jingbo, 2017. Generating 3 qubit quantum circuits with neural networks. ArXiv

preprint arXiv:1703.10743.
Sweke, Ryan, Kesselring, Markus S., van Nieuwenburg, Evert P.L., Eisert, Jens, 2018. Reinforcement learning decoders for fault-tolerant quantum

computation. ArXiv preprint arXiv:1810.07207.
Székely, G.J., 2003. E-Statistics: The Energy of Statistical Samples. Technical Report, 3 (05), Bowling Green State University, Department of Mathematics

and Statistics, pp. 1–18.
Tanaka, Akinori, Tomiya, Akio, 2017a. Detection of phase transition via convolutional neural networks. J. Phys. Soc. Japan 86 (6), 063001.
Tanaka, Akinori, Tomiya, Akio, 2017b. Towards reduction of autocorrelation in HMC by machine learning. ArXiv preprint arXiv:1712.03893.
Tenenbaum, Joshua B., De Silva, Vin, Langford, John C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290

(5500), 2319–2323.
Tibshirani, Ryan J., et al., 2013. The lasso problem and uniqueness. Electron. J. Stat. 7, 1456–1490.
Tieleman, Tijmen, Hinton, Geoffrey, 2009. Using fast weights to improve persistent contrastive divergence. In: Proceedings of the 26th Annual

International Conference on Machine Learning. ACM, pp. 1033–1040.
Tieleman, Tijmen, Hinton, Geoffrey, 2012. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural

Netw. Mach. Learn. 4 (2), 26–31.
Tishby, Naftali, Pereira, Fernando C., Bialek, William, 2000. The information bottleneck method. ArXiv preprint arXiv:physics/0004057.
Tomczak, P., Puszkarski, H., 2018. Ferromagnetic resonance in thin films studied via cross-validation of numerical solutions of the Smit-Beljers

equation: Application to (Ga,Mn)As. Phys. Rev. B 98, 144415.
Torgerson, Warren S., 1958. Theory and methods of scaling. Wiley, Oxford, England.
Torlai, Giacomo, Mazzola, Guglielmo, Carrasquilla, Juan, Troyer, Matthias, Melko, Roger, Carleo, Giuseppe, 2018. Neural-network quantum state

tomography. Nat. Phys. 14 (5), 447.
Torlai, Giacomo, Melko, Roger G., 2017. Neural decoder for topological codes. Phys. Rev. Lett. 119, 030501.
Tramel, Eric W., Gabrié, Marylou, Manoel, Andre, Caltagirone, Francesco, Krzakala, Florent, 2017. A deterministic and generalized framework for

unsupervised learning with restricted Boltzmann machines. ArXiv preprint arXiv:1702.03260.
Tubiana, Jérôme, Monasson, Rémi, 2017. Emergence of compositional representations in restricted Boltzmann machines. Phys. Rev. Lett. 118 (13),

138301.
Van Der Maaten, Laurens, 2014. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15 (1), 3221–3245.
van Nieuwenburg, Evert, Bairey, Eyal, Refael, Gil, 2017a. Learning phase transitions from dynamics. ArXiv preprint arXiv:1712.00450.
van Nieuwenburg, Evert P.L., Liu, Ye-Hua, Huber, Sebastian D., 2017b. Learning phase transitions by confusion. Nat. Phys. 13 (5), 435.
Venderley, Jordan, Khemani, Vedika, Kim, Eun-Ah, 2017. Machine learning out-of-equilibrium phases of matter. ArXiv preprint arXiv:1711.00020.
Vergassola, Massimo, Villermaux, Emmanuel, Shraiman, Boris I., 2007. Nature 445 (7126), 406.
Vidal, Guifre, 2007. Entanglement renormalization. Phys. Rev. Lett. 99 (22), 220405.
Wainwright, Martin J., Jordan, Michael I., et al., 2008. Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn.

1 (1–2), 1–305.

https://arxiv.org/abs/1709.08015
https://arxiv.org/abs/1703.10793
https://arxiv.org/abs/1803.07128
https://arxiv.org/abs/1704.02146
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb272
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb273
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb274
https://arxiv.org/abs/1801.05784
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb276
https://arxiv.org/abs/1801.01127
https://arxiv.org/abs/1901.07900
http://arxiv.org/abs/1404.1100
http://arxiv.org/abs/1703.00810
https://arxiv.org/abs/1712.02840
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb282
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb283
http://arxiv.org/abs/cs/0502017
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb285
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb285
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb285
http://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1709.01366
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb288
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb288
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb288
https://arxiv.org/abs/1801.00315
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb290
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb290
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb290
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb291
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb291
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb291
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb292
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb293
https://arxiv.org/abs/1802.09876
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb296
https://arxiv.org/abs/1703.10743
https://arxiv.org/abs/1810.07207
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb299
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb299
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb299
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb300
https://arxiv.org/abs/1712.03893
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb302
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb302
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb302
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb303
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb304
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb304
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb304
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb305
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb305
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb305
http://arxiv.org/abs/physics/0004057
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb307
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb307
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb307
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb308
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb309
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb309
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb309
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb310
https://arxiv.org/abs/1702.03260
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb312
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb312
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb312
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb313
https://arxiv.org/abs/1712.00450
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb315
https://arxiv.org/abs/1711.00020
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb317
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb318
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb319
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb319
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb319

124 P. Mehta, M. Bukov, C.-H. Wang et al. / Physics Reports 810 (2019) 1–124

Wang, Lei, 2017. CaN Boltzmann machines discover cluster updates? ArXiv preprint arXiv:1702.08586.
Wang, Ce, Zhai, Hui, 2017. Unsupervised learning studies of frustrated classical spin models I: principle component analysis. ArXiv preprint

arXiv:1706.07977.
Wang, Ce, Zhai, Hui, 2018. Machine learning of frustrated classical spin models. II. Kernel principal component analysis. ArXiv preprint arXiv:

1803.01205.
Wang, Yi-Nan, Zhang, Zhibai, 2018. Learning non-higgsable gauge groups in 4d F-theory. ArXiv preprint arXiv:1804.07296.
Wasserman, Larry, 2013. All of Statistics: a Concise Course in Statistical Inference. Springer Science & Business Media.
Wattenberg, Martin, Viégas, Fernanda, Johnson, Ian, 2016. How to use t-sne effectively. Distill 1 (10), e2.
Wei, Qianshi, Melko, Roger G., Chen, Jeff Z.Y., 2017. Identifying polymer states by machine learning. Phys. Rev. E 95 (3), 032504.
Weigt, Martin, White, Robert A, Szurmant, Hendrik, Hoch, James A, Hwa, Terence, 2009. Identification of direct residue contacts in protein–protein

interaction by message passing. Proc. Natl. Acad. Sci. 106 (1), 67–72.
Weinstein, Steven, 2017. Learning the Einstein-Podolsky-Rosen correlations on a restricted Boltzmann machine. ArXiv preprint arXiv:1707.03114.
Wetzel, Sebastian Johann, 2017. Unsupervised learning of phase transitions: from principle component analysis to variational autoencoders. ArXiv

preprint arXiv:1703.02435.
Wetzel, Sebastian Johann, Scherzer, Manuel, 2017. Machine learning of explicit order parameters: From the ising model to SU(2) lattice gauge theory.

ArXiv preprint arXiv:1705.05582.
White, Steven R., 1992. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69 (19), 2863.
White, Tom, 2016. Sampling generative networks: Notes on a few effective techniques. ArXiv preprint arXiv:1609.04468.
Williams, D.R.G.H.R., Hinton, Geoffrey, 1986. Learning representations by back-propagating errors. Nature 323 (6088), 533–538.
Wilson, Kenneth G., Kogut, John, 1974. The renormalization group and the epsilon expansion. Phys. Rep. 12 (2), 75–199.
Wilson, Ashia C., Roelofs, Rebecca, Stern, Mitchell, Srebro, Nathan, Recht, Benjamin, 2017. The marginal value of adaptive gradient methods in machine

learning. ArXiv preprint arXiv:1705.08292.
Witte, R.S., Witte, J.S., 2013. Statistics. Wiley.
Wu, Yadong, Zhang, Pengfei, Shen, Huitao, Zhai, Hui, 2018. Visualizing neural network developing perturbation theory. ArXiv preprint arXiv:

1802.03930.
Xie, Junyuan, Girshick, Ross, Farhadi, Ali, 2016. Unsupervised deep embedding for clustering analysis, in: International Conference on Machine

Learning, pp. 478–487.
Yang, Tynia, Liu, Jinze, McMillan, Leonard, Wang, Wei, 2006. A fast approximation to multidimensional scaling, in: IEEE Workshop on Computation

Intensive Methods for Computer Vision.
Yang, Xu-Chen, Yung, Man-Hong, Wang, Xin, 2017. Neural network designed pulse sequences for robust control of single-triplet qubits. ArXiv preprint

arXiv:1708.00238.
Yedidia, Jonathan, 2001. An idiosyncratic journey beyond mean field theory. In: Advanced Mean Field Methods: Theory and Practice. MIT Press,

Cambridge MA, pp. 21–36.
Yedidia, Jonathan S., Freeman, William T., Weiss, Yair, 2003. Understanding Belief Propagation and Its Generalizations. Morgan Kaufmann Publishers

Inc. San Francisco, CA, USA.
Yoshioka, Nobuyuki, Akagi, Yutaka, Katsura, Hosho, 2017. Learning disordered topological phases by statistical recovery of symmetry. ArXiv preprint

arXiv:1709.05790.
You, Yi-Zhuang, Yang, Zhao, Qi, Xiao-Liang, 2017. Machine learning spatial geometry from entanglement features. ArXiv preprint arXiv:1709.01223.
Yu, Chao-Hua, Gao, Fei, Wen, Qiao-Yan, 2017. Quantum algorithms for ridge regression. ArXiv preprint arXiv:1707.09524.
Zdeborová, Lenka, Krzakala, Florent, 2016. Statistical physics of inference: Thresholds and algorithms. Adv. Phys. 65 (5), 453–552.
Zeiler, Matthew D., 2012. ADADELTA: an adaptive learning rate method. ArXiv preprint arXiv:1212.5701.
Zhang, Chiyuan, Bengio, Samy, Hardt, Moritz, Recht, Benjamin, Vinyals, Oriol, 2016. Understanding deep learning requires rethinking generalization.

ArXiv preprint arXiv:1611.03530.
Zhang, Xiao-Ming, Cui, Zi-Wei, Wang, Xin, Yung, Man-Hong, 2018. Automatic spin-chain learning to explore the quantum speed limit. ArXiv preprint

arXiv:1802.09248.
Zhang, Yi, Melko, Roger G., Kim, Eun-Ah, 2017a. Machine learning Z2 quantum spin liquids with quasi-particle statistics. ArXiv preprint arXiv:

1705.01947.
Zhang, Pengfei, Shen, Huitao, Zhai, Hui, 2017b. Machine learning topological invariants with neural networks. ArXiv preprint arXiv:1708.09401.
Zhang, Chengxian, Wang, Xin, 2018. Spin-qubit noise spectroscopy from randomized benchmarking by supervised learning. ArXiv preprint arXiv:

1810.07914.
Zimek, Arthur, Schubert, Erich, Kriegel, Hans-Peter, 2012. A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal.

Data Min. 5 (5), 363–387.
Zou, Hui, Hastie, Trevor, 2005. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 (2), 301–320.

https://arxiv.org/abs/1702.08586
https://arxiv.org/abs/1706.07977
https://arxiv.org/abs/1803.01205
https://arxiv.org/abs/1803.01205
https://arxiv.org/abs/1803.01205
https://arxiv.org/abs/1804.07296
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb324
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb325
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb326
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb327
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb327
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb327
https://arxiv.org/abs/1707.03114
https://arxiv.org/abs/1703.02435
https://arxiv.org/abs/1705.05582
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb331
http://arxiv.org/abs/1609.04468
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb333
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb334
http://arxiv.org/abs/1705.08292
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb336
https://arxiv.org/abs/1802.03930
https://arxiv.org/abs/1802.03930
https://arxiv.org/abs/1802.03930
https://arxiv.org/abs/1708.00238
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb341
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb341
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb341
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb342
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb342
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb342
https://arxiv.org/abs/1709.05790
https://arxiv.org/abs/1709.01223
https://arxiv.org/abs/1707.09524
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb346
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1802.09248
https://arxiv.org/abs/1705.01947
https://arxiv.org/abs/1705.01947
https://arxiv.org/abs/1705.01947
https://arxiv.org/abs/1708.09401
https://arxiv.org/abs/1810.07914
https://arxiv.org/abs/1810.07914
https://arxiv.org/abs/1810.07914
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb353
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb353
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb353
http://refhub.elsevier.com/S0370-1573(19)30076-6/sb354

	A high-bias, low-variance introduction to Machine Learning for physicists
	Introduction
	What is Machine Learning?
	Why study Machine Learning?
	Scope and structure of the review

	Why is Machine Learning difficult?
	Setting up a problem in ML and data science
	Polynomial regression

	Basics of statistical learning theory
	Three simple schematics that summarize the basic intuitions from Statistical Learning Theory
	Bias–Variance Decomposition

	Gradient descent and its generalizations
	Gradient descent and Newton's method
	Limitations of the simplest gradient descent algorithm
	Stochastic Gradient Descent (SGD) with mini-batches
	Adding momentum
	Methods that use the second moment of the gradient
	Comparison of various methods
	Gradient descent in practice: practical tips

	Overview of Bayesian inference
	Bayes rule
	Bayesian Decisions
	Hyperparameters

	Linear regression
	Least-square regression
	Ridge-regression
	LASSO And sparse regression
	Using linear regression to learn the ising hamiltonian
	Convexity of regularizer
	Bayesian formulation of linear regression
	Recap and a general perspective on regularizers

	Logistic regression
	The cross-entropy as a cost function for logistic regression
	Minimizing the cross entropy
	Examples of binary classification
	Identifying the phases of the 2D Ising model
	SUSY

	Softmax regression
	An example of SoftMax classification: MNIST digit classification

	Combining models
	Revisiting the Bias–Variance Tradeoff for Ensembles
	Bias–Variance Decomposition for Ensembles
	Summarizing the theory and intuitions behind ensembles

	Bagging
	Boosting
	Random forests
	Gradient boosted trees and XGBoost
	Applications to the Ising model and supersymmetry datasets

	An introduction to feed-forward deep neural networks (DNNs)
	Neural network basics
	The basic building block: neurons
	Layering neurons to build deep networks: network architecture

	Training deep networks
	The backpropagation algorithm
	Deriving and implementing the backpropagation equations
	Computing gradients in deep networks: what can go wrong with backprop?

	Regularizing neural networks and other practical considerations
	Implicit regularization using SGD: initialization, hyper-parameter tuning, and Early Stopping
	Dropout
	Batch Normalization

	Deep neural networks in practice: examples
	Deep learning packages
	Approaching the learning problem
	SUSY dataset
	Phases of the 2D Ising model

	Convolutional Neural Networks (CNNS)
	The structure of convolutional neural networks
	Example: CNNs for the 2D Ising model
	Pre-trained CNNs and transfer learning

	High-level concepts in deep neural networks
	Organizing deep learning workflows using the bias–variance tradeoff
	Why neural networks are so successful: three high-level perspectives on neural networks
	Neural networks as representation learning
	Neural networks can exploit large amounts of data
	Neural networks scale up well computationally

	Limitations of supervised learning with deep networks

	Dimensional reduction and data visualization
	Some of the challenges of high-dimensional data
	Principal component analysis (PCA)
	Multidimensional scaling
	t-SNE

	Clustering
	Practical clustering methods
	K-Means
	Hierarchical clustering: Agglomerative methods
	Density-based (DB) clustering

	Clustering and latent variables via the Gaussian mixture models
	Clustering in high dimensions

	Variational methods and mean-field theory (MFT)
	Variational mean-field theory for the Ising model
	Expectation MaximizationExpectation–Maximization(EM)

	Energy based models: Maximum entropy (MaxEnt) principle, generative models, and Boltzmann learning
	An overview of energy-based generative models
	Maximum entropy models: the simplest energy-based generative models
	MaxEnt models in statistical mechanics
	From statistical mechanics to machine learning
	Generalized Ising models from MaxEnt

	Cost functions for training energy-based models
	Maximum likelihood
	Regularization

	Computing gradients
	Summary of the training procedure

	Deep generative models: Hidden variables and restricted Boltzmann machines (RBMs)
	Why hidden (latent) variables?
	Restricted Boltzmann machines (RBMs)
	Training RBMs
	Gibbs sampling and contrastive divergence (CD)
	Practical considerations

	Deep Boltzmann machine
	Generative models in practice: examples
	MNIST
	Example: 2D Ising model

	Generative models in physics

	Variational autoencoders (VAEs) and generative adversarial networks (GANs)
	The limitations of maximizing likelihood
	Generative models and adversarial learning
	Variational Autoencoders (VAEs)
	VAEs as variational models
	Training via the reparametrization trick
	Connection to the information bottleneck

	VAE with Gaussian latent variables and Gaussian encoder
	Implementing the Gaussian VAE
	VAEs for the MNIST dataset
	VAEs for the 2D Ising model

	Outlook
	Research at the intersection of physics and ML
	Topics not covered in review
	Rebranding machine learning as ``Artificial Intelligence''
	Social implications of machine learning

	Acknowledgments
	Appendix. Overview of the Datasets used in the Review
	Ising dataset
	SUSY Dataset
	MNIST Dataset

	References

