- (1.) Bishop 3.4
- (2.) Bishop 3.7
- (3.) ML and Bayesian curve fitting

 Consider $y(x) = a_0 + a_1 x^2$ with $a_0 = 1$, $a_1 = 2$ and $x \in [-3, 3]$ Generate N = 100 datapoints by:

 (i) randomly Sampling x in the [-3,3] range using a uniform distribution

 (ii) Computing y(x)
 - (iii) computing t = y(sc) + 2, where 2 is a random variable sampled from 10 is a random variable sampled from 10 is 10 is

Consider a linear model of the form $y(x, \vec{w}) = \omega_0 + \omega_1 x + \omega_2 x^2$.

(a) Find the ML weights and plot $y(x, \vec{w}_{ML})$ alongside y(x) [report \vec{w}_{ML} as well]

(6) Find BML Using JML.

Mse β_{ML} and d=1.0 to compute the predictive distribution in the $x\in[-3,3]$ range. Plat the mean of the predictive distribution alongeide with $\pm 6_N(x)$ curves [cf. Fig. 3.8] and y(x), the "true" curve.

Draw samples from the posterior K=10 distribution for ω and plot the corresponding $y(x, \overline{\omega})$ curves, alongside with y(x) [cf. Fig. 3.9].