HO \# 1
(1.) Bishop 3.4
(2.) Bishop 3.7
(3.) ML and Bayesian curve fitting Consider $y(x)=a_{0}+a_{1} x^{2}$ with $a_{0}=1, a_{1}=2$ and $x \in[-3,3]$ generate $N=100$ dutapoints by:
(i) randomly sampling x in the $[-3,3]$ range using a uniform distribution
(ii) compruting $y(x)$
(iii) computing $t=y(x)+\xi$, where q is a random variable sampled from $\mathcal{N}(b_{0} \mid 0, \underbrace{0.01})$.

Consider a linear model of the form $y(x, \vec{w})=w_{0}+w_{1} x+w_{2} x^{2}$.
(a) Find the ML weights and plat $y\left(x, \vec{w}_{M L}\right)$ alongside $y(x)$ [report $\vec{\sigma}_{\mathrm{ML}}$ as well]
(b) Find $\beta M L$ using $\vec{w}_{M L}$.

Use $\beta_{M L}$ and $\alpha=1.0$ to conyrute the predictive distribution in the $x \in[-3,3]$ range. Slat the mean of the predictive distribution alongside leith $\pm \sigma_{N}(x)$ curves [cf .Fig. 3.8] and $y(x)$, the "true" curve.
Dears, samples from the posterior $k=10$ distribution for $\vec{\omega}$ and plat the corresponding. $y(x, \vec{v})$ curves, alongside with $y(x)$ [cf .Fig. 3.9].

