Solutions

Midterm Exam: E&M II 504

Spring 2018

Problem 1 [20 points]

Consider a particle with charge q and mass m moving in a uniform magnetic field $\vec{B} = B\hat{z}$ which is allowed to change adiabatically with time. Let us assume for simplicity that the initial velocity of the particle, $\vec{v}_{\perp}(0)$, is perpendicular to \vec{B} . The adiabatic condition means that the magnetic field changes negligibly during any one orbit, so that the particle orbit remains nearly circular.

- 1. Find the orbital angular speed $\vec{\omega}_B$ of the particle's motion. Write the result in vector form (i.e. find both amplitude and direction of $\vec{\omega}_B$).
- 2. Show that the orbital magnetic moment of the charged particle is given by

$$\vec{\mathbf{m}} = -\frac{mv_\perp^2}{2}\frac{\vec{B}}{B^2},\tag{1}$$

where $\vec{v}_{\perp}(t)$ is the component of the particle velocity perpendicular to \vec{B} .

3. Show that the power delivered to the charge by the time-dependent field is

$$P = \frac{mv_{\perp}^2}{2} \frac{d}{dt} (\ln B). \tag{2}$$

4. Use the result above to show that $\vec{\mathbf{m}}$ is invariant.

1. The foresty force is acting on the charge:
$$\frac{mv_1^2}{r^2} = q_1v_1B$$
.

Since
$$W_B = \frac{v_\perp}{r}$$

$$m \omega_B = q_0 B$$
, or $\omega_B = \frac{q_0 B}{m}$.

2.
$$\vec{m} = \vec{I} \vec{A} = -\left(\frac{q_0 U_B}{2\pi}\right) \pi r^2 \vec{2} = -\left(\frac{q_0 U_B}{2\pi}\right) \pi \left(\frac{v_\perp}{v_B}\right)^2 \hat{2} =$$

$$\frac{B}{T} = \frac{B \circ B}{2\pi} = -\frac{m \circ \frac{7}{2}}{2} \frac{B}{B^2}.$$

3.
$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \Rightarrow \oint \vec{E} \cdot d\vec{l} = -\frac{d\vec{P}_B}{dt}$$
, or $\vec{E}(2\pi r) = -\pi r^2 \frac{d\vec{B}}{dt} \Rightarrow \vec{E} = -\frac{r}{2} \frac{d\vec{B}}{dt}$.

Then the power
$$P = q_1 \vec{E} \cdot \vec{v}_1 = q_1 \vec{E} | v_1 = q_2 \vec{E} \cdot \vec{v}_1 = q_1 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_1 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_1 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_2 \vec{E} \cdot \vec{v}_1 = q_1 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_1 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_1 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_1 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_1 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_1 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_1 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_2 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_2 \vec{E} \cdot \vec{v}_1 = q_2 \vec{E} | v_2 = q_2 \vec{E} \cdot \vec{v}_1 = q_2 \vec{E} | v_2 = q_2 \vec$$

not conserved: $\frac{d}{dt}(\frac{n^2}{2}) = \frac{mv_1^2}{2} \frac{d}{dt}(\log B)$, $\frac{d}{dt}(\log(\frac{mv_1^2}{2})) = \frac{d}{dt}(\log B) = \frac{mv_1^2}{2} = \frac{B \times constant}{2}.$ But $m = -\frac{mv_1^2}{2} = \frac{2}{B} = -\frac{constant}{2}.$

Problem 2 [10 points]

Consider a simple harmonic oscillator which consists of a particle with charge q and mass m connected to an ideal spring with a spring constant κ (there is no gravity). The particle is set oscillating with the initial amplitude A(0). Assuming non-relativistic motion, find the radiated power per unit solid angle and the total radiated power. Find E(t), where E is the total energy of the harmonic oscillator and t is time.

$$P = \frac{C^{2} \frac{2}{20} k^{4}}{125\Gamma} q^{2} A^{2} = \frac{q^{2} A^{2} \frac{2}{20} \kappa^{2}}{12 \pi C^{2} m^{2}} = \frac{1}{12 \pi C^{2} m^{2}} = \frac{q^{2} A^{2} \kappa^{2}}{12 \pi C^{2} m^{2}}$$

As the oscillator is losing energy through variation, A decreases:

$$\frac{dE}{dt} = -\frac{4e^2 A^2 K^2}{12\pi 6e^3 m^2}, \text{ where}$$

$$E(t) = \frac{1}{2} K A^2(t)$$

So,
$$\frac{dE}{dt} = -\frac{q_0^2 \kappa}{6\pi \epsilon_0 c^3 m^2} E$$
, or

$$E(t) = E(0) e^{-t/\tau}$$
, where

Problem 3 [10 points]

A long cylindrical ohmic conductor of radius a and length L carries a current I due to a constant potential difference V between its ends. Calculate the Poynting vector \vec{S} (both its magnitude and direction) and use it to obtain work per unit time done on the charges moving inside the conductor.

$$|E| = \frac{V}{L}$$
,
 $|B| = \frac{100}{2\pi a}$.

$$\vec{S} = \vec{E} \times \vec{H} \Rightarrow |\vec{S}| = \frac{VI}{2\pi aL}$$

is is pointing I to the surface of the roise of away from it.

Recall that in a steady-state situation, $\int \vec{\nabla} \cdot \vec{S} d^3x = -\int \vec{J} \cdot \vec{E} d^3x$

roork per unit time, which is the total power dissipated into heat in the system