Solutions

Final Exam:
E&M 11 504

Spring 2018

Problem 1 [20 points]

Earth magnetism.

Rapid changes in the Earth’s magnetic field during storms have been known to cause
widespread power outages and surges in power lines. Let us try to investigate this phe-
nomenon quantitatively.

1. Consider a conducting circuit in a magnetic field B(x,t). Write down an expression

for EMF around this circuit induced by the changes in B.

. Suppose now that the conducting circuit is a square of side . Consider a spatially
uniform B changing with time at a rate 8|B|/dt. Derive an expression for the EMF
around the circuit if B is (a) perpendicular and (b) parallel to the circuit.

. For the perpendicular case, suppose that [ = 100 m and that 8|B|/dt = 10~* Gauss/s,
a typical value during a storm. What is the induced EMF, in volts? if the circuit’s
resistance is 100 Ohm, what is the energy dissipated in such a circuit per unit time,
in kilowatts?

. Estimate the energy stored in the Earth’s magnetic field by assuming for simplicity
that the field is constant with |B| = 1 Gauss and that it fills the volume of the
Earth (R = 6000 km). Give the answer in kilowatt-hours (1 J = 2.78 x 10~7 kW-h,
1 erg = 2.78 x 1071 kW-h). What is the fraction of the total available magnetic
energy dissipated by a circuit from part 3, if the storm lasts 2 hours?
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Problem 2 [20 points]

Plane waves.

1. Consider two counter-propagating plane waves: E(z,t) = Ey cos(kz—wt)i+FEq cos(kz+
wt)i. Find the corresponding magnetic field B(z, t).

2. Find the time-averaged electric and magnetic field energy densities and the time-
averaged Poynting vector.
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Problem 3 [20 points]

EM wave scattering by a bound electron.

Consider an electron with mass m and charge —e harmonically bound at the origin with
natural frequency wp. The electron is immersed in an incoming plane wave with k = kz,
frequency w, and fields Epg and ByZ. Assume that the bound electron moves only along

7.
1. Calculate the time-dependent electric dipole moment p(¢) for the bound electron.

2. Calculate the electric E and the magnetic B fields radiated by the electron in the
radiation zone. What are their polarizations relative to p?

3. Calculate the time-averaged power per unit solid angle, dP/df2, and the total power,
P, radiated by the electron. Show your work!

4. Sketch the radiation intensity pattern and explain why this radiation is called “elec-
tric dipole radiation”.
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Problem 4 [20 points]
Lorentz Transformations.

1. Under an infinitesimal Lorentz boost along the z-axis, the coordinates are trans-
formed as

SB; = T3 — (5)\1:0, 1}6 =2y — 5)\%3

(z, and z, remain unchanged). Show that the light cone coordinates, z+ = zo + z,
transform as

zl, = eFzy

under a finite Lorentz transform, which consists of repeating the infinitesimal Lorentz
boost N — oo times: A = NJA, A finite.

2. Find v, the velocity of the new frame as measured in the old frame, in terms of A,
and use it to write out explicit equations for the finite Lorentz transform.
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Problem 5 [20 points]
Covariance and stress-energy tensor.

1. Express E? — B? and E - B in terms of F*” and F*, and thereby prove that they
are Lorentz invariant.

2. Suppose there is an inertial frame in which the electromagnetic field is purely a
magnetic field. Does another inertial frame exist in which the electromagnetic field
is purely an electric field? Explain your reasoning.

3. Use the definition of the symmetric stress-energy tensor ©%¢ in Jackson to show
that

8,0% = —%F‘”‘J,\

Show your work!
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