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(c) Because the limits of integration of x and z are the same, Prob, ,, must gqual Prob, ,, = 0.609. The region
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includes one third of the well. The probability is less than a third for (1,2,1) because this center slice along
the y—axis is centered on a node in the standing wave. The other two probabilities are large because the
slice is centered on an antinode.

The longest wavelength Lyman series (ending on # = 1) line starts at » = 2. From Figure 7.5 we see that the
energy difference is 10.2eV, and Example 7.2 shows the wavelength of this line to be 122nm, far shorter than
visible. The shortest wavelength Paschen series (ending on # = 3) line starts at the largest » possible, giving an

energy difference of 1.5eV. E = h%——> Lsey = 1240¢V om 240? T = 2 =827nm far longer than visible. We know
. . . ~13.6eV

that the first four Balmer lines are visible. What of that for which 7, = 77 E i .cyon. tmitisl — Eetectron final = T

"'32‘fev = 3.12eV. 3.12eV = m = A= 397nm. This is slightly shorter than the usually quoted

visible range, and any higher-energy lines in the series would have even shorter wavelengths.

AE:E4—E,:(—13.6eV)( 22] =255V, E= h%—2.55V = E‘j"—mzﬂ,:mnm.

(b) The electron could jump back down to # = 2, emitting a 486nm photon, then to the n= 1 (2—1), or it could
Jjump to the n=3 (4—3) then to the # =1 (3—1), or n =2 (3--»2) then »# = 1. It might also jump direct down
to the m =1, As calculated in Example 7.2, the wavelengths of the 3—1, the 3—2, and the 2—1 are 103nm,

656nm and 122nm. For the 453 and 4—1 we may use Equation (7-13): % = 1.097 x10m '

11 11
[32 42J:>.3. lS?Snm,E—IOQ'leG (]—2—4—2)=>,1=97.2nm.

Setting the function equal at ¢= 0 and g¢=2r, &"P¥ =B0 =) cos(vD2x)+isin(VD2x)=1. If the real
partistobe I, VO must be an integer, at which values the imaginary part is zero.
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~13.6eV

Fe

=—0.85¢V.

(b) Magnitude of angular momentum: L= \Jé({+1) A where (=0, 1, ..., n-1. Thus £ can be 0, 1, 2, 3, with
L=0, Jih, Jgh, Jiza Z—-component of angular momentum: L. = m, h where m,=—£, —(+1, ..., -1,
0,+1, ..., £~1, £. With £ as large as 3, m, values could cover -3, -2, -1, 0, +1, +2, +3 with corresponding

L,=~3h,~2h, A, 0, +h, +2h, +3h.
For each £, m, may take on values from —£ to +£ in integral steps; there are 2£+1 such values. We must sum these

values for all allowed values of £: from zero to n—1 in integral steps.
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7.47 j@{ﬁ)’hrsine d6 should be equal to unity, where @, 4(8) is given by .#% cosé.
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