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smaller, its mass is so much larger that its momentum is much larger and wavelength smaller. In situations in
which dimensions are comparable to or smaller than nanometers, the electron will exhibit its wave nature. A.l the
same temperature, dimensions would have to be smaller by a factor of about forty for the proton to similarly

exhibit its wave nature.

= 6.29nm.
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= 0.147nm. Though the proton’s speed would be

For a proton, 4 =

4.25 Ifits speed at one angstrom were greater than that for circular orbit, its orbit would not be a circle. It would at
some other point reach farther from the proton than one angstrom. To find wavelength we need the speed for
circular orbit. Assuming that it does behave as a classical particle, we use £ = ma, where the electrostatic force
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gives the electron centripetal acceleration: ——
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calculation we conclude that at some point in its orbit the electron’s wavelength is well over 0.1nm. which is
larger than the dimensions of the region where the electron moves. We see. then, that it cannot be treated
classically.

= 4.6%10"°m = 0.46nm. From this
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For a massless particle. £ = pe. or hf = % 50
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(d) The quotients in (b) and (c¢) depend on the particle speed. which is a variable. For massless particles, the
speed is not subject to variation,

() Asu— c. y — < and both quotients approach ¢. The internal energy becomes negligible and the massive
particle behaves more like a massless one.
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Its KE wc;uld be + (1 67xlO'27kg)(6.3xlO"m/s)zs 0.2MeV. on the low side of typical energies in the nucleus.
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464 Given that A()) =~ p()= _[ T
the rest of the integrand is an even function of &, the sin kv term will integrate to zero as the integral of an odd

3% ; = "2 C sin(kw/ 2)(cos kx) =
function over an interval symmetric about the origin. What remains is w(x)= I;—k— -

&% dk . We know that ¢ = cos kx + i sin kx. Because

i) = 2C T8N0 2)cosk) 1 ooking up the integral in a table of integrals shows its value to be 0 if x| >
n k

w2 and Z if [x| < w/2. Including the coefficient multiplying the integral we see that y(x) = 0 if [x{ > w/2 and C
2

if [x| < w/2. This is the original y/(x).
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A cosine is a sum of two complex exponentials, but because this cosine is spatially truncated, of width L. the
complex exponentials have only approximate wave numbers +&; and —k,. A(k) is peaked at both & values but the
peaks are not precise. Their widths are inversely proportional to L. Only if L is infinite would the peaks be of
infinitesimal width; only then would f(x) be a sum of two complex exponentials at precisely +k, and —k,.
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467 The question is: what wave number will never be measured? To answer this, find A(k).
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This is zero when g =nrork= hE ,sothat p = hk = nxh

will never be found.



