
1	  
	  

Mach's Principle and an Inertial Solution to Dark Matter 

by 

Terry Matilsky 

Department of Physics and Astronomy, Rutgers University 

136 Frelinghuysen Rd. 

Piscataway, NJ 08854 

matilsky@physics.rutgers.edu 

 

ABSTRACT 

We introduce a novel way to implement Mach's Principle, by using the kinematics of 
inertial motion in a local reference frame, and derive a dynamical inertial force term in a 
straightforward manner.  Using observational data from large scale structures in the 
visible Universe, we find that the fundamental equation of MOND is produced simply, 
and naturally.  Moreover, with no free parameters, the MOND acceleration magnitude is 
determined uniquely.  Thus, the puzzling existence of ubiquitous, flat galactic rotation 
curves can be explained in a truly physical (as opposed to phenomenological) fashion  
without using dark matter, relying solely on the observed distribution of large-scale 
structure in the Universe.   
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I. KINEMATICS AND DYNAMICS USING MACH'S PRINCIPLE 

Few, if any,  ideas in physics have generated more confusion than Mach's Principle.  His 
notorious distrust of theory, coupled with a penchant for philosophizing in sometimes 
ambiguous  non-mathematical terms, has resulted in hundreds of interpretations of what 
is even meant by the term.   Zeitschrift für Physik  even refused papers on the subject, 
because of the ubiquity of rampant polemical replies (Pais, 1982).  About the only 
premise agreed upon is that Mach explicitly states that the motion of any test body is to 
be defined with respect to the rest of the entire Universe. To implement this,  we 
visualize  an idealized 2-body system, generalizing shortly to n-bodies below.  

 

Initially, we consider a 2-body system exhibiting "inertial"  motion, as in Figure 1. 

Figure 1:  Idealized inertial motion in a two body system with constant V0. 

 

We see that in polar coordinates using  M1 as origin: 

r2 = b2 + (V0t)
2   and 

 r dr = V0
2  t dt,  so that  

d2r/dt2 = 1/r [ V0
2 - (dr/dt)2]                                                                              1) 

It is quite amusing to note how coyly Mach considered this inertial velocity V0.  Of 
course, he couldn't call it that since it would be a Newtonian reference to absolute 
space.  Instead, he calls it  "a", describing it as a  "constant dependent on the directions 
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and velocities..."  (Mach, 1919) thus maintaining a relativist approach.  Let us pursue 
this further. 

A material point which is supposedly unaffected by external forces (such as gravity) 
moves in a straight line at constant speed only relative to a distinguished set of co-
ordinate systems.  Such a system cannot be assured locally, as we see above.  The GR 
approach  dictates that the way out of this conundrum is via geometry: a correct metric 
should accommodate any co-ordinate system, however bizarre or pathological.  What is 
interesting in this case is that Newton's law of inertia breaks down precisely when it 
ought to be easiest!  I.e. when ΔV = 0.  Why is that?  Because as soon as you use your 
local environment to define your coordinates (and hence V0) you introduce three inertial 
terms: centrifugal, transverse, and Coriolis (as can be seen easily by deriving the 
equation of motion for θ). 

However, requirements of general covariance demand that we take Eq. 1 seriously, 
especially if the 2 bodies are local.  (We can operationally define "local" as 2 bodies that 
admit of a non-zero measurement of "b" in Figure 1.  If b=0, the objects are sufficiently 
far away so that motion is purely radial, V0 →  dr/dt, and our co-ordinates become 
"inertial".)  Newton avoids  this "problem" altogether by merely taking  M1 and M2 as 
completely unrelated to each other, and taking V0 = constant as being defined by an 
inertial system at essentially infinity.  Mach, of course, says no to this approach.  The 
problem becomes one of constructing a formalism in which motions of bodies are 
influenced by each other, but in which the concept of an inertial frame is not introduced 
a priori.  But if there is a relationship between M1 and M2, what is its dynamical nature? 

We note that  any two masses M2 and M2'  with differing distances from M1 but with 
identical V0  ought to be able to preserve their direction and magnitude independent of 
placement in space ( i.e. independent of 𝑟).  Thus, if we imagine these masses at some 

moment  in line with 𝑏 and 𝑏′  and moving with the pictured velocity V0,  (i.e. co-linear at 
t,t'=0), dr/dt = dr'/dt' = 0.  Therefore, in order to preserve the constancy of V0 in both 
cases, Equation 1 requires any putative dynamical force related to the masses to be 
proportional to 1/r.  Only if  

 𝐹 ∝ 1/𝑟                                                                                                            2)     

can we ensure that any possible  inertial "force" be universal and capable of maintaining 
a supposedly constant V0 , independent of position in space.  (It is perhaps prudent at 
this point to point out that we do not have any direction defined yet, since Eq. 1 is a 
scalar relationship.)  Interestingly, this 1/r dependence is  the functional form suggested 
by Sciama  (1953) and Ciufolini and Wheeler  (1995),  in their attempts to induce inertia 
via radiation fields.  Unmodified  gravity cannot fundamentally do this.  Its r -2   
dependence means that some function of r must remain in the kinematics.  In the 
absence of a metrical change (which is probably inevitable for a relativistic 
implementation), only a dynamical force proportional to 1/r can save the phenomenon of 
a constant V0.    

Furthermore, various elementary observational requirements demand from central 
forces that |F| ∝ Mi mk .  Now, our task is to implement a vector position.  The only 
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means at our disposal to extract direction is to appeal to the equivalence principle, 
which at  least allows  us to use "G" as a universal constant, as a linkage to gravity, via 
minertial ♡mgrav .   Thus, we can utilize GMjmk   as a valid factor to extend   Eq. 2.   Thus,  

 𝐹! ∝ 𝐺𝑀!  𝑚!/r!"                                                                                                                                              3) 

So, if there is any  hitherto unknown connection between Minertial  and Mgrav,  the inertial 
aspect  must be related to gravity via  direction  toward distant objects, since inertia 
appears to be independent of local position, in the sense that V0 is arbitrary in both 
magnitude and orientation with respect to any and all local mass elements present in the 
dynamical system.   In short, we appeal to classical gravity's vector nature to provide  
direction for our putative inertial condition. 

Clearly, in  2-body systems, the direction of gravitational acceleration is always unique, 
but when we proceed to n-body systems, complications arise.  All we can say, in an 
arbitrary n-body system, is if we observe the local direction of gravitational acceleration 
(introducing a test particle at any point in spacetime), this direction  will always contain, 
as time goes on,  a component toward the source of the dominant gravitational field.  

In order to allow a direction to be thus defined everywhere by gravity, it is therefore 
reasonable to choose the maximum gravitational/inertial extent of an object as the 
directional determining parameter necessary to bring Eq. 3  into a dimensionally correct 
form.  This directional  extent, which we designate as ui, becomes the measure of 
inertial "influence"  of any Mi.  It determines the limiting distance beyond which the 
gravitational field of Mi is no longer the strongest in the system.  Only if rik < ui will any 
test mass mk  have at least  a component  of its motion toward Mi.  For rik  >  ui , the mass 
mk will moves towards another direction determined by the position of Mj  where now  rjk 
<  uj ,  and which thus determines the  source (and direction) of the dominant 
gravitational/inertial mass acceleration.  Therefore, the proposed force in  Equation 3 
becomes: 

𝐹!  =  −   𝐺  𝑀𝑖  
𝑢𝑖
∗     𝑚𝑘

𝑟𝑖𝑘
      (if attractive)                                                               4) 

The existence of  ui  for any system of Mi  merely implies the fact that an equilibrium 
value of the center of mass between any two objects can be found.  In a sense, ui 
defines a Lagrange point for inertial interactions.  But, there is absolutely no reason a 
priori  to expect that these values will have any functional significance.  For example, in 
a uniformly populated distribution of stars of equal mass, ui will be invariant and equal to 
about half the interstellar spacing of the distribution.  To take another example, we 
imagine the 3 body system pictured in Figure 2. 
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Figure 2.  Showing changes in ui for two different simple  distributions of  3 masses. 
 
 
This schematic diagram clearly indicates the fact that we can alter the magnitude of  ui 
significantly and apparently at will, simply  by altering the relative positions of the Mi .  
Any systematic distribution of ui and hence Mi in the Universe would be truly surprising. 
 

 

II.   LARGE SCALE STRUCTURE AND MOND 

One of the more  remarkable (yet seemingly trivial) property of the Universe is that it 
doesn't  consist of a uniform sprinkling of individual masses.  For example, long before 
we get to the half-way point from the Sun to, say, α  Centauri (which we might naively 
assume to approximate usun), we encounter the dominant field of the Milky Way itself.  
Beyond the u  value quoted below for the Milky Way, to take yet another example, the 
Virgo cluster becomes the dominant gravitational source rather than M31.  

For  extended systems, such as globular clusters, galaxies, etc., we can approximate ui  
by the observed physical size of the object itself.  In this fashion, u  becomes a tidal 
radius.  For systems like the Sun, of course, we need to resort to the maximum influence 
distance as elucidated above.  The results are shown in Table 1 and Figure 3 below:     
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  M	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  u	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  M/u	  

Sun:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2	  x	  1033	  g	  	  	  	  	  	  	  	  8	  x	  1016	  cm	  	  	  	  	  	  	  	  2.5	  x	  1016	  g/cm	  	  	  	  	  
Globular	  clusters:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2	  x	  1038	  g	  	  	  	  	  	  	  	  5	  x	  1019	  cm	  	  	  	  	  	  	  	  4	  x	  1018	  g/cm	  	  	  	  	  	  	  	  	  	  	  	  	  
Dwarf	  Spheroidals:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2	  x	  1041	  g	  	  	  	  	  	  	  	  2	  x	  1021	  cm	  	  	  	  	  	  	  	  1	  x	  1020	  g/cm	  	  	  	  	  	  	  	  	  	  	  	  	  
Milky	  Way:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  2	  x	  1044	  g	  	  	  	  	  	  	  	  1	  x	  1023	  cm	  	  	  	  	  	  	  	  2	  x	  1021	  g/cm	  	  	  	  	  	  	  	  	  	  	  	  
Coma	  Cluster:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  6	  x	  1047	  g	  	  	  	  	  	  	  	  1	  x	  1025	  cm	  	  	  	  	  	  	  	  6	  x	  1022	  g/cm	  

Notes:	  	  value	  for	  dSph	  is	  the	  tidal	  radius,	  GC's	  use	  r=0.9	  total	  light,	  Coma	  mass	  is	  x-‐ray	  gas	  mass,	  with	  r=	  3	  Mpc	  
	  	  	  	  	  	  	  	  (isothermal	  sphere	  value),	  Milky	  Way	  shows	  radius	  of	  the	  globular	  cluster	  system	  ~30	  kpc,	  
	  	  	  	  	  	  	  	  Sun	  uses	  distance	  at	  which	  Sun's	  gravitational	  field	  equals	  that	  of	  the	  Milky	  Way.	  
 

Table 1:  All values of mass and size are taken from Carroll and Ostlie (2006).  
Moreover, only luminous  masses are quoted. 

 

 

 Figure 3:  The resulting plot of values shown in Table 1.  Errors shown are purely 
formal, and merely represent order of magnitude uncertainties in the quoted values.   
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Quite astonishingly,  we see that "u"   in Eq. 4 can now be transformed away, since M/u 
∝ √M   Thus,  √M/u  becomes a universal invariant independent of  mass.  Even more 
remarkable is the quantitative value that this transformation yields: 

|𝑎!  | =   
!
!
   ∙   !!

!!
= !

!
   ∙ 𝑘!     𝑀!   =    𝐺 ∙   𝑘!            !   ∙ !!!

!!
  =    𝑎!    ∙   𝑎!               5) 

where R now replaces  rik  as the distance between the test particle and the most 
dominant source of gravity locally. 

This is the exact functional form of MOND (Milgrom, 1983a),  

where aN is the Newtonian acceleration, and a0 = G  ∙   𝑘!! ≈ 6     ∙   10!!  𝑐𝑚/𝑠! , 

quite close to the value chosen purely phenomenologically by Milgrom (1983b). 

Note that at R = ui , 

|𝑎!  |  = G Mi / ui
2 = G k4

2 =  a0 , independent of M.                                            5a) 

Thus, using an explicitly Machian analysis of large scale structure throughout the 
Universe,  we  can for the first time place MOND on a firm dynamically empirical  basis.  
Therefore, dark matter may be unnecessary to explain (for example) the ubiquitous, flat 
galactic rotation curves that have puzzled astrophysicists for over half a century.   
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