
Ph 444 Numerical Assignment 2

Due: Tuesday, December 9, 2014

The small anisotropies in the CMB are a rich source of information on the proper-
ties of the universe. This assignment explores how this information is extracted from
the observed map of CMB intensity as a function of position on the sky and then
interpreted in terms of values for parameters of a model for the universe.

Files available on the class website give the antenna temperatures for either real
WMAP data or for similar artificial data. The unit of the antenna temperatures in
all of the files is milliKelvins. Each file contains data for a complete ring around
the sky along a line of constant galactic latitude and the spacing between the points
is about 0.139◦ on the sky. The files have 2048 points and each line is a separate
point. The first number on the line is the angular displacement of the point around
the ring in degrees (starting at 0), the second is the antenna temperature (with the
mean and, possibly, other quantities subtracted — see below), and, the third, when
present, is the estimated uncertainty in the antenna temperature due to noise in the
measurements.

The data measured by WMAP are at a frequency of 60 GHz and along a ring in
the sky with a galactic latitude of about 38◦. These data are the average results for
the first five years of WMAP observations. Actually, what is listed in the file is a
modified antenna temperature. First, the mean temperature, which we will assume to
be 2725 mK, has been subtracted. Second, both the dipole variation and a model for
the contamination by galactic foreground emission have been subtracted from these
data (see http://lambda.gsfc.nasa.gov/product/foreground/ for more details), leaving
just the anisotropies imposed (principally) at the epoch of decoupling. Three files of
WMAP data are present on the website and contain the ring at galactic latitude 38◦

and the two rings offset by about ±0.6◦ in latitude. The offsets are about twice the
WMAP beam width at 60 GHz, so the three sets of data are independent.

Another file on the website gives a set of artificial antenna temperatures with
a simple sinusoidal variation with location on the sky. The number of points and
format of the file is the same as for the WMAP data, except that no uncertainties
are present. Again, the numbers in the file are antenna temperature minus 2725 mK.

Finally, two files contain artificial data resembling the central WMAP ring but
containing artificial data that consists of Gaussian random numbers with a root-
mean-square (rms) dispersion equal to the measurement uncertainties of the WMAP
data. The second file is the same as the first, but has been smoothed with the WMAP
beam at 60 GHz. In particular each pixel was combined with its six nearest neighbors
using the weights (0.0091, 0.0500, 0.2340, 0.4138, 0.2340, 0.0500, 0.0091).

1. Use a spreadsheet, a computer program, or a plotting utility to plot the three sets
of WMAP data as a function of position along the ring. Connect the points with



lines. The strings of data extend through about 284◦ because they are along a small
circle at a latitude of 38◦ (360◦ × cos(38◦) = 283.7◦). Make the three plots for both
the full angular range of the data sets and for the first 25◦. It is easier to see the
individual measurements in the latter plot. Can you visually detect any correlations
between the three rings of data using your plots? In other words, do the temperatures
vary in a similar way along the rings?

2. Make similar pairs of plots (full range and first 25◦) for the artificial data with
Gaussian random numbers both with and without smoothing. Finally, make a similar
pair of plots for the sinusoidal artificial data.

3. Calculate the mean antenna temperature, 〈T 〉, for each of the three sets of WMAP
data; the root-mean-square (rms) variation about the mean, 〈(T −〈T 〉)2〉1/2, and the
rms fractional temperature deviation, 〈((T −〈T 〉)/T )2〉1/2. For the first two averages,
use the mean-subtracted antenna temperatures (so you are actually calculating the
mean and rms δT ). For the third average add the mean of 2725 mK to the antenna
temperature in the denominator of (T − 〈T 〉)/T . Why are your three values of 〈T 〉
not equal to zero? How do the three values compare to each other? How do the three
rms variations compare with the typical measurement uncertainty per point given in
the three data files?

4. Calculate the same mean, rms variation, and fractional rms variation for the two
sets of artificial data composed of Gaussian noise. How closely do the mean antenna
temperatures differ from zero? How do the rms variations compare to the typical
measurement uncertainty per point? Calculate the same mean, rms variation, and
fractional rms variation for the sinusoidal artificial data.

5. Most of the information contained in the CMB anisotropies comes from the average
amplitude of the fluctuations as a function of angular scale. This information is
contained in the angular correlation function defined by Ryden equation (9.46):
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Here the average is over all of the pairs of points on the sky with angular separations
of θ. Use the sinusoidal artificial data to calculate C(θ) using all of the pairs of points
in a ring with locations (i, i + 2), which are separated by θ ≈ 0.28◦. Repeat for the
pairs (i, i + 4), separated by about 0.55◦, and for pairs separated by 6, 8, 10, 12, 14,
16, and 20 — this last is a separation of 2.77◦. Plot your C(θ) vs. θ. You should
confirm that C(θ) varies sinusoidally with the same period as the artificial data. If
not, check your method/program until you find the error. Explain the behavior of
C(θ) using the sinusoidal variation of the antenna temperature. A perfect correlation
between pairs of points would result in a value for C(θ) equal to 〈((T−〈T 〉)/T )2〉 (the
square of the value you calculated in part 4). A perfect anti-correlation would be the
negative of this value. How strong are the strongest correlations and anti-correlations
seen in your C(θ) in units of the maximum possible values?



6. Use the Gaussian-random artificial data to calculate C(θ) using the pairs of points
with positions (i, i + 1) and for pairs separated by 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20,
30, and 40. This last is a separation of about 5.5◦. Plot this C(θ) vs. θ. Discuss the
difference between this C(θ) and that for the sinusoidal data.

7. Repeat the calculation and plot of C(θ) in part 6 for the smoothed Gaussian
data. Where does the maximum C(θ) occur and what is it in units of the maximum
possible correlation? Explain what causes the difference between this C(θ) and that
from part 6.

8. Calculate C(θ) separately for each of the three sets of WMAP data using the
same angular separations as parts 6 and 7. Plot your your three C(θ)s vs. θ on a
single plot. How well do your three estimates of C(θ) agree? The differences are an
estimate of the statistical uncertainty in your estimate of C(θ). Briefly discuss where
the statistical uncertainty in your C(θ) comes from.

9. Average your three WMAP C(θ)s and plot the average. The separations between
the points are actually slightly different for the three sets of data, but ignore this
and just average each group of three points with nearly the same θ. Where does the
maximum C(θ) occur and what is it in units of the maximum possible correlation?
How does your plot compare to the plot of C(θ) handed out in class, which was
calculated for the entire WMAP dataset? How does your average WMAP C(θ)
compare to the C(θ)s for the unsmoothed and smoothed Gaussian artificial data
from parts 6 and 7? Explain the origin of the differences between the average WMAP
C(θ) and those of the two Gaussian artifical datasets in as much detail as you can.
In particular, discuss the evidence that the increasing values of the WMAP C(θ) for
θ < 1◦ are NOT explainable solely by the angular resolution of the WMAP antennas.

10. The shape of the WMAP C(θ) reflects the angular size of the temperature
fluctuations in the CMB caused by primordial energy density fluctuations at the time
of decoupling. In particular, the shape of C(θ) is determined by the angular size of
the particle horizon at the time of decoupling, which corresponds to the first peak in
the angular power spectrum of C(θ) (e.g., Figure 9.6 in Ryden and the similar plot
handed out in class). Calculating the full power spectrum is beyond the scope of a
homework set. However, because the temperature fluctuations on the angular scale
of the first peak are dominant, we can approximate C(θ) for θ ≤ 1◦ with the function

A cos(θ(360◦/W )). (2)

Here A is an amplitude that depends on the strength of the fluctuations in the antenna
temperature and W/2 is the size (the full-width at half-maximum) of the fluctuations
(i.e., compare to the sinusoidal temperature fluctuations in part 5). We can think
of this as the dominant term in the spherical harmonic representation of C(θ). Try
adjusting A and W in equation 2 to produce the best match to the first seven points of
your average WMAP C(θ) (i.e., θ < 1◦). How does your best value for W/2 compare
to the angular size corresponding to the first peak in the power spectrum?


