

The Collider Detector at Fermilab

Amitabh Lath Rutgers University July 25, 2002

What is Fermilab?

A "user" facility
with the **Tevatron:**4 mile ring with

- 4 mile ring with superconducting magnets.
- Collides protons with antiprotons.
- Energies up to 2 TRILLION eV achieved.

The Tevatron at Fermilab

Many stages of boosting.

- ► Note p-bar production.
- A "user" facility.
 - ► Fixed-target or collider.

The Cockroft-Walton and Linac (where protons start out)

The Tevatron

The Tevatron in Numbers

	Run 1B	Run IIa	Run IIb
Energy/beam	900 GeV	1000 GeV	1000 GeV
Peak Luminosity	1.6×10^{31}	2.0×10^{32}	5.0×10^{32}
Number of bunches	6	36/108	~108
Bunch spacing	3500 nsec	396/132 nsec	132 nsec
Interactions/crossing	2.8	5.8/1.9	4.9
Run period	1992-96	2001-03	2004-07
Integral Luminosity	118 pb ⁻¹	2 fb^{-1}	13 fb^{-1}

Note integral luminosity given in inverse **barns.** (10^{-28} m^2) Some important numbers:

- •pp total cross-section (2TeV) \sim 70mb.
- •pp¯-> W, (Z) boson production (2TeV) ~ 2.5 nb , (250 pb) *leptonic decay*. •pp¯-> t \overline{t} cross section (2TeV) ~ 5 pb.

•pp¯-> Higgs +X cross section (2TeV) ~ few fb (?) depends on M_H .

The CDF Collider Detector

Particle Identification (basic)

- Electron track, contained cluster, E/P~1 γ, no track
- <u>Hadron (p,π,K)</u> track, extended (had) cluster
 n, no track
 - Muon penetrating track
- <u>Short lived (b)</u> Displaced (mm) vertex.
- <u>Weak, no charge</u> (v,LSP) Missing momentum

The CDF detector quarter view

Silicon Vertex Tracking

- The silicon strip detector is a stand-alone 3D tracking system
- Impact parameter resolution $\sigma_d = \sqrt{a^2 + (b/P_t)^2}$ (a =7µm, b =20-30µm)
- Increase in B tagging for tt: Run I Run II single tag 25% 52%

CDF Silicon Vertex Detector

CDF Rolling into Collision Hall

Z decay to electrons

- All energy contained in **EM calorimeter**.
- 2 hard tracks. Lots of soft ones.
- Electron ID?
 - •EM energy: 36.97, 39.71 GeV
 - •Had energy: 0.73, 0.0 GeV
 - •P: 34.65, 61.57 GeV/c

Jpsi to muons Mass

Kshort Mass

π π **Mass**

Lambda Mass

B Meson Lifetime B -> Jpsi

Figure 14: Sideband-subtracted J/ψ pseudo- $c\tau$ distribution.

Top Quark Event in Run 1

 $M_{top}^{Fit} = 170 \pm 10 \text{ GeV/c}^2$

24 September, 1992 run #40758, event #44414

Basic Idea of Hadron Collider/Detector

- Collide hadrons at highest energy possible.
 Cross-sections increase with energy.
- Highest collision rates possible.
- General purpose detector that detects and identifies:
 - Electrons, muons, photons, pions, (missing P).
 - Displaced vertices from B mesons.
- Look for final states with specific signatures.
 Like Higgs. (SM or SUSY).
- Quick identification (in *trigger*) better than later (in analysis).

CDF Deadtimeless Trigger.

Calorimeter energy Central Tracker (Pt,φ) Muon stubs

50 kHz

Cal Energy-track match E/P, EM shower max Silicon secondary vertex Multi object triggers

300 Hz

L1

L2 <

Farm of PC's running fast versions of Offline Code → more sophisticated selections

Mass Storage (1 Pb in 2 years)

30 – 50 Hz

CDF Secondary Vertex Trigger

NEW for Run 2 -- level 2 impact parameter trigger SVT Provides access to *hadronic* B decays

Data from commissioning run

SVT Impact Parameter

In Run 1, b-quark decays were tagged by decays to leptons.

In Run 2, we hope to tag hadronic decays of B.

Approx 5x increase in B acceptance possible.

Physics Analyses

Sample of main results

► QCD

- Properties of jets and photons
- Is there quark substructure?

B

-Bc discovery (The "last meson")

-Lifetimes, mixing

-sin(2b) (CP violation in the B system)

► Top/Electroweak.

- -Top quark discovery
- -Top mass, W mass

Searches for new particles (EXOTICS).

- -Several limits set
 - →Z', W', SM/MSSM Higgs
 - → SUSY, Technicolor, Leptoquarks

Why do all this?

Isn't this good enough?

Isn't this good enough?

Even before QED, we knew that classical electrodynamics could not be the whole story . . .

The classical theory predicts its own demise with an infinite electron self-energy

(This is a recurring and important theme)

Nonsensical predictions, and solutions

Fermi theory of the 1930's

This process violates unitarity at high energies. (Simple muon decay, for instance).

What do we do? Modify the diagram to cancel the divergence.

Nonsensical predictions, and solutions cont.

But now this process violates unitarity at high energies! (Simple

e+e- annihilation).

What do we do? Introduce another diagram that cancels the divergence

(also observed at CERN in 1983)

Nonsensical predictions, and solutions cont 2.

The **Higgs**

diagrams to cancel the divergence

Nonsense Predictions don't stop here!

Thus far we have <u>no direct evidence</u> for the Higgs boson^{*}

but so what:

If the Higgs exists, this process violates unitarity at high energies ("fine-tuning" or "universe is size of basketball" problem)

What do we do? Introduce other diagrams to cancel the divergence without fine-tuning supersymmetry strong dynamics extra dimensions

The Higgs Boson.

Even though we know the simple (Standard Model) Higgs Boson is not viable, it makes a good benchmark.

But you just said Higgs has problems...

The simple Higgs theory does have problems but it solves the many problems quite elegantly, so we are loath to throw it out entirely.

What do we hope/expect to find?

Whatever is responsible for EW symmetry breaking - obviously not SM Higgs - should be at $M \sim 150$ GeV (see Steve Schnetzer's talk). These should be observable.

Possibilities at 1 TeV

Logically, the possible options now are:

a) A Higgs-like field does not exist $\rightarrow \exists$ other interesting physics at ≈ 1 TeV

b) A Higgs-like field does exist

i) A parameter is tuned to 1 part in 10^{16} \rightarrow No need for new physics at \approx 1 TeV

ii) The parameter is not tuned to 1 part in 10^{16} $\rightarrow \exists$ other interesting physics at ≈ 1 TeV

Hence the excitement!

Conclusion

- CDF is a good general purpose detector.
 - Good tracking: electron, muon id.
 - Good vertex finding: b-tagging.
 - Smart trigger.
- We need this, since we cannot be certain of the signature of the new physics.
 - SM Higgs? SUSY? Technicolor? N-dim?
- Indirect indicators are encouraging.
- •Watch this space!