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ABSTRACT OF THE DISSERTATION

Numerical studies in one and infinite dimensional quantum

systems

by Srivenkateswara Sarma Kancharla

Dissertation Director: Professor Gabriel B. Kotliar

The interplay between interactions and dimensionality is an important issue for strongly
correlated electronic materials and is central to this thesis. We present insights that
have been obtained into the optical response, charge gap and excitonic behavior in one-
dimensional Mott insulators utilizing the density matrix renormalization group (DMRG)
method. We show how a Mott-Hubbard exciton, a bound state between a double oc-
cupancy and an empty site in a background of singly occupied sites, can be formed
due to a nearest-neighbor Coulomb repulsion V' within the one-dimensional Hubbard
model. The interaction not only binds the exciton, but also renormalizes the spectral
gap and strongly couples the exciton to other electrons. We show that this leads to a
non-monotonic behavior of the excitonic properties as a function of V', and eventually
to a charge-density wave instability. The excitonic binding energy is comparable to
the optical gap itself making the problem non-perturbative. This should be contrasted
with excitons in conventional band insulators which exhibit a monotonic behavior as a
function of Coulomb repulsion.

Next, we consider the limit of infinite dimensionality, in particular, the cellular

dynamical mean field theory (CDMFT), wherein clusters of sites are embedded in
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a self-consistent medium. This method incorporates short range correlations and k-
dependence of the self energy which are missing in the original single impurity DMFT.
We solve the CDMFT self-consistent equations in the worst case scenario, viz., the
one-dimensional extended Hubbard model using the exact diagonalization method. We
compare with DMRG and find that even the smallest cluster sizes provide an accurate
description of the onsite correlations, while the offsite quantities improve systematically
with increasing cluster size. We also extend the CDMFT equations to describe bro-
ken symmetry and investigate the convergence as a function of bath size for clusters of
different sizes.

Lastly, we observe that both DMRG and CDMFT involve the embedding of a finite
size system in a larger one to describe the smaller system as part of a large or infinite
lattice. Based on this, we propose a new approach that blends the CDMFT and DMRG

ideas to perform calculations for realistic systems in two and three dimensions.
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Chapter 1

Numerical Methods - From brute force to RG

1.1 Introduction

Strongly correlated electronic systems, typified by materials such as heavy fermion com-
pounds, high temperature superconductors and manganates, amongst several others,
continue to challenge existing methods in many body physics. Except for special cases,
controlled analytical approaches are scarcely available. In the physically interesting
parameter regime these systems do not have a suitable small parameter and therefore
perturbative treatments are largely inappropriate. Although mean field approaches have
yielded a wealth of information, their role is limited by the fact that many of the ma-
terials are characterized by low dimensionality and strong fluctuations. The aforesaid
challenges have stimulated huge advances in the development and use of computational

methods for strongly correlated systems.

1.2 Numerical Quantum Many Body Methods

Amongst the numerical methods available to study quantum models for correlated elec-
trons, the least sophisticated approach is the exact diagonalization method (see [1] for
a review). In this method, the Hamiltonian for a finite sized cluster, along with the
operators of interest, are represented by a matrix. Using a special basis such as the
Lanczos basis, it is possible to obtain with large precision the ground state wavefunc-
tion, energy and other expectation values of interest. A recursion procedure permits
access to dynamical correlation functions as well. In order to investigate finite temper-
ature properties, one can diagonalize the Hamiltonian matrix in full using numerical

library routines. The primary constraint in applying matrix methods such as the above



on a computer to study many body Hamiltonians is the exponentially increasing sizes of
the Hilbert space as the cluster size increases. This, combined with the finite precision
available, drastically reduces the sizes that can be dealt with.

For example, the size of the Hilbert space for a Hubbard model (with four states
per site, viz., [0),|1) , ||) and |T])) on a finite cluster of N, sites scales as 4™¥s. It is
easy to see that the associated memory requirements and CPU time are enormous even
for a two dimensional lattice of size Ny = 4 x 4. The matrix sizes can be reduced

by invoking symmetries specific to the Hamiltonian and the boundary conditions. The

z

total? to

symmetries range from the obvious ones such as the number of particles and
more involved ones (in terms of implementation) such as translational invariance, spin
inversion, rotation about a lattice site for square lattices, reflections with respect to the
lattice axes and so on. Another circumstance which is often exploited to advantage,
is the sparseness of matrices when operators are expressed in the local basis. Memory
requirements are relaxed, because only the non—zero matrix elements are stored. In ef-
ficient exact diagonalization programs, the Hamiltonian matrix is usually not explicitly
generated. Instead, a procedure to multiply a vector by H is used which generates the
Hamiltonian matrix elements as they are needed. Inspite of the exploitation of sym-
metries and sparsity, full diagonalization of the Hamiltonian to get finite temperature
properties, except for very small system sizes, is beyond the reach of present day com-
puters and algorithms. Therefore, the term exact diagonalization refers largely to the
use of the Lanczos technique to deal with ground state properties and zero temperature
correlations.

Apart from direct applications to the study of model Hamiltonians, the exact diag-
onalization approach has proved valuable in conjunction with another non-perturbative
method, namely, the Dynamical Mean Field theory [2]. We shall discuss this in detail
in chapter 4. Exact diagonalization is also a valuable tool aiding comparative studies of

analytic approximation schemes and development of new methods.



1.2.1 The Lanczos method

The basic idea behind this method is that a special basis can be chosen where the
Hamiltonian has a tridiagonal representation [3]. The iterative procedure starts with
selecting a normalized random vector |¢o) in the Hilbert space of the model Hamiltonian.
This choice is made in order to have a non-zero overlap between the actual ground state
0), and the initial state |¢q).

We then define a new vector by applying the Hamiltonian H to |¢o) and subtracting

the projection over |¢y),

{¢o|H|¢o) 1| ¢o)
~(¢oldo)

Clearly, (¢o|p1) = 0. We can further build a state that is orthogonal to both |¢g) and

[61) = Hldo) — |90), (L.1)

|¢1> using,
(¢1\H\¢1> (P1]¢1)
(1lor) (¢ol¢o)

This procedure can be generalized to obtain the following orthogonal basis recursively,

|62) = Hl|ey) — |p1) — |P0)- (1.2)

(énr1) = Hldn) = anldn) = 0}ldn-1), (1.3)

where n = 0,1,2,- - --, and the coefficients a,, and b, are given by
n = ) bn = : 14
¢ <¢n‘¢n> <¢n—1’¢n—l> ( )

In this basis, it can be shown that the Hamiltonian matrix becomes tridiagonal,

ap by 0 O
by a1 by O

H=| 0 by ay by --- (1.5)
0 0 b3 as

Once in this form, the matrix can be diagonalized easily using standard library routines.
However, it is impractical to completely diagonalize the model being studied on a finite
cluster by performing Lanczos iterations equal to the size of the Hilbert space. The key

advantage of this technique is that sufficiently accurate information about the ground



state of the problem can be obtained after a small number of iterations (typically of the
order of ~ 100 or less). Thus the method is suitable for the analysis of low temperature
properties of the models of correlated electrons.

The most remarkable feature of the Lanczos method is that, apart from the ground-
state eigenvalues and eigenvectors, it provides accurate information about the dynamical
correlation functions for the given finite size system [4]. We define the zero temperature

correlation function for an operator O as:
Colt —t') = (Lol OT(H)O( ) ¢ho) (1.6)

The spectral function associated with this correlation is often related to an experimental

observable. It’s Fourier transform in frequency space is given by,

_ 1 5t 1 ;
I(w) = Wlm[<¢o|0 T Bt gOWo)]- (1.7)

|tho) and Ey are the ground state eigenvector and eigenvalue of the Hamiltonian H,
respectively. w is the frequency, and e is a small real number introduced in the calculation

to shift the poles of the Green’s function into the complex plane. Introducing a complete

set of basis states, and using the well-known distribution property, w}rie = P(im) —
imd(z), we obtain

I(w) =Y [(WnlOl0)|*0(w — (En — Ep)). (1.8)

Here, [¢,) are eigenvectors of the Hamiltonian with eigenvalues E,. In practice, the
d-functions are smeared by a finite ¢, i.e., they are replaced by Lorentzians according to
é(z) — %wg—;g

In order to numerically evaluate Eq. 1.7, it is convenient to write the Hamiltonian

matrix in a special basis. As before, we will apply the Lanczos method to write Hina

tridiagonal form but instead of starting the iterations with a random state, we choose

Olwo) .
\/ (10| OTOlabg)

Consider the matrix (z — H) and the identity (z — H)(z — H)~' = I, where z =

|$o) = (1.9)

w + Ey + ie. This identity can be decomposed in the Lanczos basis {|¢,)}, with |¢o) as

given by Eq. 1.9, to obtain, ) (2 — ﬁ)mn(z - ﬁ);z} = Opp. For the special case p = 0,



Doz — ]fl)mnmn = 0mo, where z,, = (2 — ]fl);ol This represents a system of linear
equations for the unknown z,,. The particular case of n = 0 corresponds to <¢0|ﬁ |0)
which is the quantity we wish to study. We can solve these linear equations using the

Cramer’s rule,
det B(]

"= e ) (1.10)
where, the matrices can be written in the {|¢,,)} basis as,
z—ag —b 0 0
b z—a1 —by 0
:—H= 0 by z—ay bz - (1.11)
0 0 —bs z—as
and
1 - 0 0
0 z—a; —by 0
Bo=10 —by z—ay —b3y - |- (1.12)
0 0 —bs z-—ag

The coefficients a,, and b,, were defined before when the Lanczos method was intro-
duced. The determinants of these matrices can be expanded to give det(z — H ) =
(z — ag)det D1 — b2 det Dy, and det By = det Dy, where in general the matrix D, is

obtained from Eq. 1.11 by removing the first n rows and columns. Then, it can be

shown that
1
z = . (1.13)
2z — ag — b}
The ratio of determinants in the above equation can be expanded in turn as
det D 1
2 = . (1.14)
det Dq z—al—b2 et D3

2 det Do
This procedure can be repeated until a full continued fraction is constructed. Recalling

the definition of the spectral intensity I(w), finally it can be shown that

L. (10|01 Olay)
g e
Vs 1

b3
w7a27“.

I(w) = — (1.15)
w—ap— o



Recalling that z = w + Ey + i€, we can obtain the spectral function for any value of
the frequency w and the width ¢, with a knowledge of the ground state energy of the
system. The only known way to test the convergence of the continued fraction expansion
is to plot the spectral function with a particular €, and observe that the results remain

essentially unchanged with additional poles.

1.3 The Numerical Renormalization Group (NRG) method

Exact diagonalization and Lanczos methods firmly established the trend of computa-
tional approaches to deal with the complexity of strongly correlated electronic models.
Nevertheless, the limitation of small cluster sizes leaves a substantial doubt in one’s
mind as to the validity of the results for real systems in the thermodynamic limit. In
practice, the spin-1/2 Heisenberg model can be diagonalized on up to about 36 sites
and the Hubbard model on up to about 20 sites. The exponentially increasing Hilbert
space with increasing system size is an uphill battle and contains largely insignificant
states as far as the low energy properties of interest are concerned. Therefore, a smarter
algorithm would involve a systematic truncation scheme. Historically, the first success-
ful algorithm to implement such a truncation was the numerical renormalization group
(NRG) developed by Wilson [5] to solve the Kondo problem. The idea of the NRG
for a quantum mechanical Hamiltonian H is to obtain the many-body eigenstates and
eigenvalues on all energy scales in a sequence of steps, with each step corresponding to
a distinct energy or length scale. Formally the procedure involves tracing out the high
energy states to give effective Hamiltonians Hy, describing the physics at successively
lower energy scales wy. The renormalization group (RG) transformation R relates effec-
tive Hamiltonians describing the physics on successive energy scales: Hyy1 = R[Hy].
Although the idea is straightforward, it’s efficacy as a tool to compute experimentally
relevant quantities lies in the ability to integrate out the non-essential degrees of freedom
and that turns out to be a difficult task.

The Kondo model describes a local magnetic moment (impurity) embedded in an
uncorrelated metal and interacting antiferromagnetically with the conduction electron

spin-density at the impurity (for a detailed discussion of physics of this model we refer



the reader to the monograph by Hewson [6]. The problem is highly non-perturbative in
the coupling J and the system changes qualitatively over many energy scales as it passes
through a crossover between a high temperature fixed point with well defined magnetic
moment to a Fermi liquid fixed point at temperatures below the crossover scale. In
order to describe this crossover the idea is to separate out the many energy scales in the
problem and to set up a procedure for treating each scale in turn. Wilson’s numerical
RG for impurity models achieves this by a logarithmic discretization of the conduction
band with intervals [A=("*Y A="] and A > 1 and a crucial mapping of the original
spherically symmetric Kondo problem onto a one-dimensional quantum lattice model.
The impurity is represented by the first site, and the spherically symmetric momentum
shells, following a logarithmic discretization of the conduction band, are represented by
a semi-infinite lattice with only near-neighbor hopping. Each successive site added along
the chain corresponds to adding lower energy degrees of freedom, measured relative to
the Fermi level.

After the mapping onto a 1D quantum lattice problem, the RG procedure proceeds

as follows:

1. The first step is to break up the 1D chain into finite identical blocks (say, of
size L) and create the block Hamiltonian Hp containing all terms of H involving
only sites within B. Information regarding the block is stored by enumerating
the quantum numbers of many-body states on the block and matrix elements of

operators between these states. Let m be the number of states kept in each block.

2. In the second step, we isolate two such blocks and create the ‘superblock’ Hamilto-

2 x m?) which comprises both intrablock and interblock terms.

nian Hpp (of size m
In order to do so, one needs to store m x m representations of the operators near

the edges of the block.
3. Next, we diagonalize Hpp, and obtain the m lowest energy eigenvectors u®.

4. We form matrix representations of the edge operators for the superblock BB from

the corresponding matrices for B.



5. We change basis to the u®, keeping only the lowest m states, using Hy =
OHppOt (O is an m x m? matrix with the rows made up of the eigenvectors
u®). The same transformation is used to obtain new operators at the edges of the
superblock. Since O (m xm?) is not a square matrix, the transformation truncates

away high energy states.

6. Finally, we replace B with B’ and go back to step 2 for the next iteration. The
iterative procedure is continued until the system is large enough to represent the

properties of the infinite system.

Although Wilson’s approach to the Kondo problem is very similar to the algorithm
described above, there is one important difference. Rather than doubling the system
size with each iteration, a single site is added to the block at a time. The size of the
superblock is nm (rather than m?), n being the number of degrees of freedom per site.
This allows for keeping a much larger number of states per block.

For a generic 1D lattice model, the neglect of the higher energy states at each
iteration step does not guarantee that it will not lead to inaccuracy in the low energy part
of the spectrum calcuated in subsequent iterations. However, in the Kondo and other
quantum impurity models, the addition of an energy shell is a perturbation of relative
strength A2 <1 and the coupling between successive “sites” decreases exponentially.
It is to be noted here that the perturbation is independent of the size of the running
couplings. Thus, due to the intrinsic separation of the energy scales and the logarithmic

discretization of the conduction band, Wilson’s RG works well for impurity models.

1.4 Failure of NRG for 1D Lattice models: Free particle on a chain

Following the success of NRG as applied to the Kondo problem, attempts were made to
use the technique to study a number of quantum lattice models such as the Hubbard
and Heisenberg models in one dimension. But it was observed that the method proved
to be rather unreliable even for a computation of static properties such as the ground
state energy. This result was not completely unanticipated because of a crucial difference

between the Kondo problem and 1D quantum lattice models. The solution of the Kondo



problem relies on a trick whereby the Hamiltonian can be put into a special form, a
chain with the impurity at one end and an exponentially decreasing hopping along the
chain. On the other hand, in the case of 1D quantum lattice models, the coupling
remains constant between adjacent sites all along the system. Another way to view the
difficulty with NRG is in terms of boundary conditions. At any stage in the iteration
procedure, the lowest lying states that are kept have inappropriate features at the ends
of the block, because the block has no connections to the rest of the lattice. The best
way to appreciate the inadequacy of the NRG idea for quantum lattice systems is to
consider its application to the case of a free particle on a chain. The Hamiltonian clearly
scales as the size of the chain L rather than an exponential of L as in an interacting
system. It was observed that NRG does poorly in computing even the ground state
energy as soon as the number of states per block m is less than L. It is easy to
understand why. The eigenfunction of a particle on a chain of length L with fixed
boundary conditions vanishes at both ends. If one imagines a system of size L to be
constituted of two blocks at an earlier stage in the NRG iteration, each of size L/2,
the ground states of the two blocks have nodes at their ends. Clearly a combination
of the ground states of two blocks of size L/2 cannot reproduce a finite value at L/2
for the ground state eigenfunction of the full system of size L as depicted in the figure
below. Thus a treatment of the boundaries of the block is crucial in formulating an
accurate RG procedure. White and Noack [7] formulated two types of RG procedures
which solve these problems in the non-interacting case. The first procedure is called
combination of boundary conditions (CBC) wherein the new truncated basis is made up
of low lying eigenstates of several different block Hamiltonians with differing boundary
conditions (for example, fixed and free, or periodic and anti-peridic). Although this
procedure works very well by simulating a sufficiently general set of boundary conditions
for the blocks, it is difficult to conceive a generalization to interacting Hamiltonians.
For example, the many-body wavefunction for a system of non-interacting fermions is a
Slater determinant of the single particle wavefunctions of the individual particles. Some
of these particles may have nodes and some others may have antinodes at the boundaries

of a block. Clearly, finding differing sets of boundary conditions which produce different
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P(L/2) e W(L/2)

N Kink
Figure 1.1: To remove the kink, one needs to keep almost all the states in each block

behavior for different particles is very difficult.

An alternative procedure is to diagonalize a larger system than that contained in a
block. The truncated basis for the block is then chosen by projecting the wavefunction
of the superblock onto the system block. This projection is expected to provide the
conditions at the boundaries that the transformed blocks would see as part of a larger
system, which is the one of interest. This procedure is called the superblock method.
Although the aforementioned projection is single-valued in the non-interacting system,
it becomes multivalued for the interacting case. The Density Matrix Renormalization
Group proposed by S.R. White [8,9], which we discuss in the next section, is based on

choosing an optimal way of carrying out this projection.

1.5 The Density Matrix Renormalization Group (DMRG) method

The DMRG algorithm allows for a systematic truncation of the Hilbert space by keeping
the most probable states of a subsystem required to accurately describe a set of states
(usually, just the ground state) of the full system (for a review we refer the reader to
the book [10]). This should be contrasted with the NRG method where just the lowest

energy states of the subsystem are kept. The use of the density matrix to choose the
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states to keep can be justified as follows.

Consider an isolated finite block at finite temperature. The probability that the
block is in an eigenstate « of the block Hamiltonian Hpg is proportional to the Boltz-
mann weight exp(—GE,). The Boltzmann weight is an eigenvalue of the density matrix
exp(—FHp), and an eigenstate of the Hamiltonian is also an eigenstate of the density
matrix. Since lowest energy corresponds to highest probability in the Boltzmann weight,
the NRG approach amounts to choosing the most probable eigenstates to represent the
block under the assumption that the block is isolated. However, the block is not iso-
lated from the rest of the system, but is in fact strongly coupled to it. The block density
matrix is no longer exp(—FGHp) and hence, the eigenstates of the Hamiltonian are not
eigenstates of the block’s density matrix. So it is more appropriate to describe the block
using the density matrix rather than the eigenstates of the block Hamiltonian.

Incorporating the density matrix idea discussed above into a numerical renormaliza-
tion group algorithm involves a fundamental departure from the NRG approach. Let us
consider a quantum mechanical system in a definite pure state, and look at the proper-
ties of a part of the system. We label the entire system as the ‘superblock’. The part
that we are interested in constructing a truncated basis for will be called the ‘system
block’ and the remainder of the system the ‘environment block’. Let |i) label the states
of the system block, and |j) label the states of the environment block, i.e., the rest of

the superblock. If |¢) is a state of the superblock,
) =y D) ®15) (1.16)
.3
The reduced density matrix for the system block is defined as
piit = Z Vij i (1.17)
J

By normalization, Trp = 1. The density matrix contains all the information needed
from the wavefunction v to calculate any property restricted to the system block. If
operator A acts only on the system block, then

(A) = Z Ay piir = TrpA (1.18)

1’
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In terms of the eigenvalues w, > 0 and the eigenvectors u® of the density matrix,

(A) = wa(u®|Alu®). (1.19)

If for a particular o, w, & 0, we make no error in (A), for any A, if we discard u®. This
naturally suggests a renormalization group procedure.

In particular it can be shown precisely that keeping the most probable eigenstates
of the density matrix gives us the most accurate representation of the state of the
superblock, i.e., the system block plus the environment block. We wish to construct an

accurate expansion for a state |¢) of the form
) = ) =D aa u®j) (1.20)
a?j

with o = 1, ..., m labeling the truncated states and m less than the actual number [ of

system block states. The error,

S = [} — [)” (1.21)

is to be minimized by varying over all a, ; and u®, subject to (u®|u®') = 8qqr. Defining

v = (j[v¥) = Nata,j, with N, chosen to set 3 ]v?‘]z =1, the error becomes,

S= (i — Y aaufv)? (1.22)
ij a=1

This error has to be minimized over all u®, v®, and a,, given the specified value of m.
The solution to this minimization problem can be obtained by using a singular value
decomposition of |¢),

Y =UDVT (1.23)

where U and D are [ x [ matrices, V' is an [ x J matrix, with J denoting the number of
states in the environment block. Here U is orthogonal, V' is column-orthogonal, and the

diagonal matrix D contains the singular values of . With this decomposition the u?,

a

v®, and a, which minimize S are given as follows: the m largest magnitude diagonal

elements of D are the a,, and the corresponding columns of U and V are the u® and

v,



13

The reduced density matrix as defined earlier can be written as
p=UD?UT, (1.24)

i.e., U diagonalizes p. The eigenvalues of p are w, = a2 and the optimal states u® are
the eigenstates of p with the largest eigenvalues. Each w,, represents the probability of
the block being in the state u®, with )~ w, = 1. The deviation of > """ | w, from unity,
i.e., the ‘discarded weight’ of the density matrix eigenvalues, measures the accuracy of
the truncation to m states.

To summarize, when the superblock is in a pure state, the optimal states to keep
are the m most significant eigenstates of the reduced density matrix of the system
block, obtained from the wavefunction of the superblock. The conclusion is found to be
identical even when the superblock is in a mixed state, as is the natural assumption for
a system at finite temperature.

The effectiveness of the truncation of the Hilbert space of the system block via the
density matrix depends crucially on the distribution of the density matrix eigenvalues
weq. For certain exactly solvable systems, it is possible to show that the distribution
of the density matrix eigenvalues decays exponentially. It is generally found that the
convergence of the discarded weight (and thus the ground state energy) as a function of
m for periodic boundary conditions is much slower than for open boundary conditions.
Therefore, bulk properties of a system are best obtained by treating large lattices with
open boundary conditions, rather than systems with periodic boundary conditions.

There are three main ingredients needed to define a DMRG algorithm: first, we have
to decide how to add degrees of freedom to the system, second, we have to determine the
configuration of the superblock and finally, we must choose which superblock eigenstate
or eigenstates to use to construct the density matrix. The most efficient density matrix
algorithms use one eigenstate, usually just the ground state or the lowest excited state
to form the density matrix. The state used to form the block density matrix is usually
called the ‘target state’. The fewer the number of target states, the higher is the accuracy
of their representation in terms of the block states. A density matrix algorithm is defined

mainly by the form of the superblock and the manner in which the blocks are enlarged.
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The typical superblock configuration used in most calculations is as shown below.

L R
Bj Bj/
....

BjL represents a block composed of j sites and Bﬁ is a block of j sites. The symbol
e represents a single site. The total number of sites in the superblock is therefore
L = j+ 7 + 2. In the next iteration, the new block is formed from the left block
plus one site, i.e., B]LH. The right hand block and site OB;? are only used to form the

. . L .
density matrix for Bj\;

the states on oBﬁ are traced over. The same configuration
above is used in two different algorithms: the infinite and finite chain algorithms, which

we discuss in detail further below.

1.5.1 Infinite Chain Algorithm

1. Start with a superblock configuration BjL ) oBf, having an equal number of sites
in the left and right blocks. Represent the blocks by listing the quantum numbers
of their states and set up matrices for the block Hamiltonian and other operators

in that basis.

2. Build the Hamiltonian matrix in sparse matrix form for the superblock. If there

are two states per site, then the superblock has 4m?.

3. Using the Lanczos method, diagonalize the superblock Hamiltonian to find the
target state; typically just the ground state. At this stage one can measure the

expectation values of any operators using the ground state wavefunction, [¢)).

4. Form the reduced density matrix for the left block plus the single site BjLo using

the target state. To do this, the target state is decomposed as,
W) = k) @ 1), (1.25)
k,l

Here, k and [ label the set of the basis states on the left block plus one site ,
BjLo and the right block plus one site .B]R respectively. We can regard B]-Lo as

the ‘system’ and oB}Lz as the ‘environment’. The reduced density matrix for the
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system is obtained by tracing over the degrees of freedom within the environment.
p=> Pty (1.26)
l

5. Diagonalize p to find a set of eigenvectors u® and eigenvalues w,. Discard all but

the m largest eigenvalues and associated eigenvectors.

6. Form matrix representations of operators such as H for the BjL ooB}Lz configuration

from operators for each separate block.

7. Form a new left block by changing basis to the u® and truncating to the m states
using H,BL = OHB;+1OT. O is an m x m? matrix with the rows made up of the
1 J

eigenvectors u®. The new right block is formed by reflecting the left block. Also we

obtain new operators at the edges of the superblock using the same transformation.

8. Start a new iteration with the configuration BjLJrl . ‘B]Plr One continues in this
manner, adding two sites at each step of the iteration, until each block represents

one half of an infinite chain.

The infinite chain algorithm converges from two separate causes: increase in the
left block size approaching an infinite chain and also in the sense that the left
block states are better adapted to an infinite sized environment to the right. This
algorithm is typically used for a quick and pretty accurate study of the ground

state properties of a system.

1.5.2 Finite Chain Algorithm

This algorithm is used to study the properties of a finite sized system of size, say L, (we

assume L to be even . It consists of the following steps:

1. During what is referred to as the first sweep, we start with a superblock configura-
tion BfeeBf with Bf and B¥ representing a single site. Then, we use the infinite
size algorithm to grow the superblock until it reaches the size LB% jo—1® ‘B§/2—17
the next step is to use B£/2 ° 035/2_2 to form B£/2+1. This and all other su-

perblocks to follow have L sites. We continue to increase the size of the left block



16

until it reaches L — 3, using the superblock B£_3 e o Bt Unlike the infinite size
algorithm, where the the block BlL is not required after the formation of BILH, all
the L — 3 blocks and the operators on them are stored. The blocks are labelled by
their size. During the sequence of iterations above, it is common to refer to the
left block plus one site to its right as the “system” and the right block plus one site

to its left as the “environment”. At each step the degrees of freedom within the

environment are traced over to obtain the reduced density matrix for the system.

2. In the next half of what is referred to as the first sweep, the meanings of the
environment and system are reversed. The starting superblock BZ , e eBf (BI
being a single site is represented exactly) is used to obtain Bf_ 4OOB§. In this step,
Bf_ 4 from the previous iteration is read from the stored version and its degrees of
freedom are traced out to obtain B4. This sequence of steps is continued, until at
the end of the first sweep we reach the configuration, Bf e 035_3. At each stage

the new blocks formed are written to disk for use during the next sweep.

3. The second sweep begins with B2L ) OBE_ 4, the right blocks now being read from
the disk at each iteration to form a reduced density matrix for the left block until
we reach Bf_g e oBft. The second half of this sweep comprises the iterations
taking the system from BY_; e ¢ B back to B e ¢ B | with now the left blocks

being read from disk.

4. The sweeps are continued until a convergence criterion is satisfied. The criterion
typically used is a comparison of the ground state energy in successive sweeps.

Usually a convergence is achieved in two or three sweeps.

5. On the very last sweep we usually stop after the diagonalization of Bf -1 ®
OBf/Q_l, and then use the ground state wave function (or the target state) of the

L—site system to measure various properties such as static averages.

The steps in one full sweep of the finite size algorithm are schematically represented

in Fig 1.2. For a given system of size L, the finite size algorithm is more accurate than
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Poor approximation for right block

Good approx. Better approx. for right block

Good approx. for left block

Good approx. for left block Excellent approx.

Excellent approx. for right block

Exc. approx. EXxc. approx.

Figure 1.2: One full sweep of the finite size algorithm
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the infinite chain algorithm, because both the left and right blocks of the superblock,
alternatively assume the role of the system and environment and are thereby equally
well adapted to represent the other. On the other hand, in the infinite size algorithm
only the system is adapted to respond to the environment. The higher accuracy of the
finite size algorithm comes at the price of a more complicated algorithm and also a
higher computational cost in terms of both CPU time and memory.

A detailed examination of the truncation error (or the error in the ground state
energy) as a function of m and number of finite size sweeps is useful. It is found
that there is virtually no dependence of the accuracy of the energy on m in the zeroth
iteration, the infinite system phase. After two or three sweeps, the error in the energy
saturates for a given m, with the saturation occuring after a larger number of sweeps
for larger m. Therefore, it makes sense not to have a uniform value of m for all the
sweeps, but to increase m rapidly with each iteration such that most of time is spent
in the last and most important sweep. Another noteworthy feature is that convergence
is completely independent of coupling parameters in the Hamiltonian such as U in the
Hubbard model. For a fixed number m of states retained, the discarded weight is higher
as you increase the range of the interaction in the Hamiltonian. One can get an idea of
the performance of the DMRG algorithm by considering a typical example, such as the
case of the spin-1 Heisenberg chain. The ground state energy for the infinite system is
obtained accurately up to seven decimal places, with as little as m = 100 states kept

and a discarded weight of 101!,

1.6 Dynamical Correlation Functions using DMRG

Some of the most significant insights into the properties of materials are obtained by an
investigation of dynamical observables. These are probed by several experiments which
include neutron scattering, optical absorption and photoemission, amongst others. Al-
though it has been possible to solve for the exact spectra of several one-dimensional
quantum systems using Bethe ansatz, calculation of dynamical properties within this

framework are difficult and rare. Given that the DMRG method performs remarkably
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well in calculating ground state energies and static properties of low dimensional sys-
tems, it is natural to ask whether it can provide a reliable framework for the study of
dynamical properties. Since the original idea of the DMRG method involves a strong
truncation of the Hilbert space at each step using a reduced density matrix, typically
built out of just the ground state, much information of the excited states vital to a com-
putation of dynamical properties is lost. It is clear that we need to ‘target’ more states
than just the ground state to build correlation functions. There are two fundamental

questions to be addressed in this context.

1. To what extent does the density of states for the superblock, which is constructed
by targeting only a few states, approach the true one for the full Hilbert space in

a wide energy range?

2. In order to describe dynamical properties reliably, what is the criterion to select

more target states?

The first question can only be addressed by making a comparative study with known
results for low dimensional systems. The second question leads naturally to different
methods within DMRG for studying correlation functions. In the ensuing discussion we
focus entirely on zero temperature dynamics. At finite temperature, it is possible to
evaluate local imaginary-time correlations quite accurately within the transfer matrix
renormalization group (TMRG) approach and we refer to [11] for details. In principle
one can extract real frequency information from imaginary-time correlation functions
using the maximum entropy method, but the quality is not as good as the source data
because of the intrinsically ill-conditioned inverse problem. The TMRG method as such
involves a diagonalization of the transfer matrix rather than the Hamiltonian. The free
energy and other thermodynamic quantities are determined by the maximum eigenvalue

of the transfer matrix.
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1.6.1 Lanczos vector method

We saw earlier that the zero temperature Green’s function for an operator A could be

written in the form of a continued fraction expansion using the Lanczos vector method.

Ga(z) = (Wo| AT(z— H)"A|W) (1.27)
_ <wo|ATAI%f2o> (1.28)
z—ag————

In this equation the coefficients a,, and b, are defined through the recursion relation
Eg. 1.3 and Eq. 1.4. In practice, the continued fraction often converges to a limit already
for finite n (~ 100 — 120) since b,, goes to zero and a, becomes very large.

The first reliable DMRG scheme to compute zero temperature correlation functions,
proposed by K. Hallberg [12], is based on this continued fraction representation. The
key idea of the method is to use the Lanczos basis states {|¢,)} as additional target
states along with the ground state while building the density matrix at every DMRG
iteration. It is expected that the states in the reduced Hilbert space relevant to the
excited states connected to the ground state via the operator A, are included in this set.
The full density matrix used to truncate the Hilbert space is then a weighted average

of the density matrices for each target vector.

M
Piit = Zpl Z <Z5éj¢£'j (1.29)
=1 J

where M is the total number of target states, ¢ and j denote the states of the system
and the environment, respectively, and p; (3> ;p1 = 1 to keep a unitary trace in p)
is the weight of the target state ¢!. Here ¢' is the ground state and ¢!(I = 2,..M)
represent the Lanczos basis states. There is no known optimal way of assigning a
relative weight between the ground state density matrix and the density matrices built
from the Lanczos basis states. Typically, 50% of the weight is assigned to the ground
state, and the remaining is distributed amongst the Lanczos target states. The weight
of a Lanczos vector ¢ in the spectrum is given by

pr=Y_ ({0 [tm)) 2 ((¢"[tom))? (1.30)

m
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Here |1),,,) represents the eigenvector of the Hamiltonian with eigenvalue E,,,. The actual
calculation of the correlation function is made when the system block is the same size as
the environment block, since the truncation errors are smallest in that step. To do this,
one not only uses the Lanczos vectors that were target states, but keeps calculating new
Lanczos vectors until orthogonality breaks down due to the finite numerical precision.
With the number m of states retained per block fixed, the more the number of target
states considered, the less is the precision of each one of them. The prime source of
error stems from the approximation of the identity in terms of the small number of
Lanczos basis vectors that can be used as target states in practical calculations. Every
additional Lanczos vector adds another peak, typically at high energy, and so higher
energy excitations will become inaccurate. Therefore, an optimal number of target
states M and of retained states per block m has to be found in each case. Proper sum
rules have to be calculated to determine the errors involved.

The convergence of the Lanczos procedure depends crucially upon the level spacing
of a given system, getting worse with reducing level spacing. Since the DMRG technique
treats much larger systems than exact diagonalization, the level spacing is much smaller,

naturally making the algorithm less accurate for extremely large systems.

1.6.2 Correction vector method

Since the Lanczos vector method represents the correlation function with discrete poles,
it works very well when the spectrum consists of a few sharp features at low energy.
Therefore it is ill-suited to reproduce higher energy properties, such as the shape of
a broad excitation band. Since increasing the number of target states merely reduces
the quality of targeting for each state, a different method is required. This method [13]
proposes the targeting of the ground state plus another state called the correction vector,

to reproduce the spectrum at a fixed frequency, z = w + . The target states include:

[1o) the ground state
|A) = Alo) the first Lanczos vector
1
lz(2)) = |A)  the correction vector (1.31)

z—H



22

Since a finite broadening n is used, the correction vector can be split into it’s real and
imaginary part. The imaginary part is obtained by solving the following linear set of

equations, typically using the conjugate gradient method:
(H = w)? +n*)[Im(x(2))) = —nlA) (1.32)

This equation becomes singular as w gets closer to an eigenenergy of the Hamiltonian,
and as the broadening factor n becomes smaller. Naturally, the conjugate gradient
algorithm converges much faster for larger 7’s, but that clearly limits the resolution of
the spectrum. Therefore, a suitable compromise between resolution of the spectrum and
computation time for the conjugate gradient algorithm has to be reached empirically.

The real part of the correction vector is calculated using

[Re(x(2))) = —(H — w)[Im(x(2))) (1.33)

1
n

In terms of the correction vector the Green’s function can be written directly as:
Ga(z) = (Alz(z)) (1.34)

The use of the above three vectors as target states, optimizes the DMRG basis to rep-
resent them and allows for a direct computation of the Green’s function at a given
frequency w with a broadening factor 7. In practice, the correlation function is still
computed as in the Lanczos vector method, except that the spectrum is accurate only
near w. Extremely precise results for the spectra can be obtained by using two cor-
rection vectors close in frequency and using them to compute the Green’s function
for frequencies between them. Clearly, the correction vector method is more costly in
terms of computation time as compared to the Lanczos vector method which provides
the Green’s function over the entire frequency range in one DMRG run. Nevertheless,
it is better suited for the study of broad excitation bands. In practice, depending on
the problem at hand, one would first use the Lanczos vector method and then ascertain
the necessity of using the correction vector method to obtain the Green’s function in a

particular frequency range more accurately.
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1.7 Extension to two dimensions

The issue of how to optimally extend the DMRG to two or more dimensional quantum
systems is difficult and is a subject of active development. It is instructive to first
consider the extension of the one-dimensional algorithm to one of finite width, i.e., a
ladder. A simple extension of DMRG to solve for this system would be to replace the
single sites added between the blocks with rows of sites. However, the extra degrees
of freedom added to the system would make the Hilbert space prohibitively large. The
most straightforward way to have a two dimensional algorithm which adds only a single
site to a system block at a time is to map the 2D system onto a 1D system, viz., to
choose a path to order all the lattice sites. Therefore, the 2D procedure differs from the
1D one in that there are additional connections between the system and environment
blocks. A typical path running up and down the width of the system is illustrated

in the figure below. The number of states needed to maintain a certain truncation

System Environment

Figure 1.3: A 2D DMRG algorithm obtained by mapping onto a 1D lattice

error in the density matrix projection procedure depends strongly on the number of
operators connecting the two system and environment. Best accuracy is obtained when
the number of connections between the two is minimized. Therefore it is common to
study open systems or periodic only along the width of the ladder. It was found by

Liang and Pang [14] that the number of states needed to maintain a certain accuracy
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grows exponentially with the width of the lattice. Although the system studied by them
was a gas of non—interacting spinless fermions, it is expected that the above statement
is probably valid for any 2D DMRG calculation performed by using the 1D mapping.
Thus this algorithm, is not a true 2D DMRG algorithm.

The momentum space DMRG provides an alternative way to implement the DMRG
in two or more dimensions. In this representation, the momentum is conserved and
kinetic energy is treated rigorously since it is diagonal. However, interactions such as
the Hubbard term are non-diagonal in momentum space. The Hubbard interaction
in momentum space involves a sum over three momenta leading to N? terms in the
Hamiltonian. Therefore, a straightforward implementation is not possible for realistic
calculations. It was observed in [15] that the three-fold summations in the interaction
can be reduced to a sum containing an order N number of terms by defining certain
composite operators. To carry out the DMRG iterations, one needs to order the (ko)
points. In general, all (ko) points are connected to each other by interactions, and
the rate of convergence of the ground state energy depends strongly on the ordering.
A rule of thumb for ordering the (ko) points is that those (ko) pairs which have the
strongest interaction should be arranged as close as possible in the ordered (ko) chain.
In the Hubbard model, however, the interaction strength does not depend on k and
one may choose any ordering. This is not the case, for example, with the extended
Hubbard model with nearest neighbor Coulomb repulsion. Results obtained in both
one and two dimensions for the Hubbard model using the momentum space DMRG,
although reasonable, show that the method is good only at weak coupling. For the one
dimensional half filled Hubbard model a comparison to real space DMRG shows that
momentum space DMRG performs poorer. This is because the Hubbard interaction
is local in real space and electrons tend to be localized in space at half filling. In
two dimensions the method performs better than in one dimension, but only because
the relative contribution of the kinetic energy term to the ground state energy, which
is treated rigorously, compared with the potential energy, is larger in two dimensions
than in one. Therefore, although it is a step towards a true 2D DMRG algorithm,

the momentum space DMRG is not quite one, because its performance depends on the
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strength of the interactions.
We shall discuss in Chapter 5 an approach to combine the DMRG idea with dynam-

ical mean field theory in order to obtain a ‘better candidate’ for a 2D RG algorithm.
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Chapter 2

Optical response and excitons in one dimensional Mott

insulators

2.1 Introduction

In recent years, several materials have been discovered that allow the investigation of the
properties of the 1D electronic state under the influence of both strong electron-lattice
and electron-electron correlation. These quasi one dimensional systems include materials
such as SrCuQ,, SroCuO3, conjugated polymers and Ni halides [16-18] amongst several
others. These systems, well described as Mott insulators, remain a challenge to existing
theoretical methods. In this chapter we shall discuss some insights that have been
obtained into the optical response, charge gap and the behavior of excitons in one
dimensional Mott insulators utilizing the density matrix renormalization group (DMRG)

method.

2.2 Wannier and Mott Excitons

Excitons in conventional band insulators are well described by Wannier theory. A Wan-
nier exciton is a charge neutral optical excitation made of an electron in the conduction
band and a hole in the valence band, bound together by the Coulomb attraction between
them. In inorganic semiconductors like GaAs, the typical binding energy, as defined by
the energy difference between the exciton and the band edge of the particle hole con-
tinuum, is several meV. This should be compared with the band gap itself, which is
of the order of one éV. The typical size of a Wannier exciton at 100A is almost two

orders of magnitude larger than the lattice spacing. We also note that although the
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total spin of an optically excited exciton is necessarily zero, it is composed of two quasi-
particles carrying spin-1/2. In Wannier theory, exciton properties, such as size, binding
energy, effective mass, or optical weight, are related by simple equations and exhibit a
monotonic behavior as a function of the Coulomb repulsion strength. This simplicity
is due to a drastic assumption of this theory: optical excitations are represented by
electron-hole pairs which are independent from the system’s other degrees of freedom.
The interaction with these degrees of freedom is taken into account only through renor-
malized parameters such as effective masses for the electron and hole, and an effective
background dielectric constant for the Coulomb interaction between electron and hole.

In the case of Mott insulators, the situation is quite different and the exciton proper-
ties show a more complex behavior. Although a Mott-Hubbard exciton can be described
as a bound pair of excitations with opposite charges, the Coulomb interaction at the
same time determines the size of the Mott gap, the exciton properties, and the cou-
pling of the exciton to the other electrons in the system. Therefore, an increase of the
Coulomb interaction strength does not simply bind the exciton more tightly, but also
renormalizes the gap and couples the particle-hole excitation more strongly to the other
electrons. This leads to a non-monotonic behavior of Mott-Hubbard exciton properties
as a function of the Coulomb repulsion strength, and even to instabilities toward the
formation of charge-density wave droplets. The exciton binding energy, in e.g., polydi-
acetylenes [19,20]is found to be of the order of 0.5 €V and is comparable to the optical
gap which is of the order of 2.4 eV. The exciton size has been estimated to be as small
as 12A and hence comparable to the length of the unit cell at 5A. These facts naturally
suggest that electron-electron interactions will play an important role in any theoretical

description of excitons in these materials.

2.3 Model Hamiltonian

Realistic models for the aforementioned systems must account for the effects of both
electron-electron and electron-phonon interactions. Given the complexity of the task,
as a first step it is natural to investigate the effects of the two mechanisms separately.

We focus entirely on the effects of electron-electron interaction and study the Extended



28

Hubbard Model (EHM) defined by

H= —tz (c;r-Hcha + h.c.> +UZ <an - %) <”jl - %) —i—VZ (nj —1) (nj41 —1)
3o J J

(2.1)
The first two terms corresponding to hopping between nearest neighbor sites and the
onsite Coulomb repulsion provide the competition between itineracy and localization in
the regular Hubbard model. The third term represents Coulomb repulsion between elec-
trons occupying nearest neighbor sites. The Hamiltonian as written above guarantees
an insulating ground state with a filling of one electron per site.

Although this model has been widely studied, many questions remain unanswered.
The Bethe Ansatz method provides an exact solution, but only when V' = 0 [21]. The
method has been used to obtain the energy spectrum and thermodynamics, but a reliable
computation of dynamical quantities such as the optical response remains elusive. Non-
perturbative analytic studies of the dynamical response in these systems have largely
been restricted to the continuum limit [22,23]. We discuss the relevance of these studies
later in this chapter.

Numerical methods such as exact diagonalization, although valuable in providing real
frequency information, are limited to small system sizes [24]. Quantum Monte Carlo
methods can treat large finite size clusters, but analytic continuation from imaginary to
real frequencies is an unreliable procedure.

The renormalization group idea has helped with some of the toughest problems in
physics in which, typically, a large number of degrees of freedom play an essential role.
The efficacy of this idea as a tool to compute experimentally relevant quantities lies in
the ability to integrate out the non-essential degrees of freedom. This has been brought
to fruition with tremendous success in a numerical algorithm for low dimensional in-
teracting systems, namely the Density Matrix Renormalization Group (DMRG) [8,9],
which was discussed in detail in the previous chapter. The standard DMRG method
coupled with the “Lanczos vector method” is expected to be very efficient in capturing
sharp features at low energies such as excitons in the optical spectrum. Although exci-

tonic features in multi-particle correlation functions have been reported in the EHM in
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previous studies, there has been no reliable non-pertubative computation of the optical

conductivity over the entire range of frequency and coupling parameters [25-27].

2.4 Phase diagram

The EHM at half-filling shows an interesting phase diagram. In the weak coupling
limit (U < t) the system undergoes a second order transition from a spin density wave
(SDW) phase to a charge density wave (CDW) state as a function of increasing V', at
V =U/2+46(U). For intermediate values of U the SDW and CDW phases are separated
by a narrow region with a bond charge density wave (BCDW) order. As one approaches
strong coupling (U > t), the transition is again from an SDW to a CDW phase at
V =U/2+ §(U), but it is now first order. The small correction §(U) is positive and
approaches zero at both the weak and strong coupling ends. The precise location of a
tricritical point at the crossover between the first and second order transitions has been
a subject of much investigation [22,28-31] and is complicated by the existence of the

BCDW order.

2.5 Optical response and spectral functions

In this section we look at the optical response and local spectral function of the EHM in
the strong coupling regime. We fix U at a realistic value of 12¢ (eg. SrCuQO3). The first
order transition between the SDW and CDW phases is manifest in the optical properties
as well as in the ground state energy. All the results presented here were obtained from
computations performed with finite size chains of Ny = 50 sites with open boundary
conditions using the Lanczos vector method. Studying other sizes (Ng = 18,34,66)
shows that the results for Ny = 50 are fairly representative of the thermodynamic limit.
We use the finite size version of the DMRG algorithm and choose m = 300 for the
largest system sizes we consider. Selected runs performed with higher values of m did
not introduce significant changes in the results. Typical discarded weights were O(107°).
To validate our code, we compared our results for the static and dynamic properties

with exact diagonalization for short chains.
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We use the following definition for the response function:

xan() =+ / e ][4, B0)] |0 (2.2)

The real part of the optical conductivity is defined through the imaginary part of the

current—current response with ¢ — 0,

1
o'(w) = () (23
where
j = —it Z <c;'.+10_cjg — c}gcﬂ_lg) (2.4)
j7o—

is the paramagnetic current operator. The non-resonant Raman spectrum in a Mott-
Hubbard system is given by the response function of the stress energy tensor [32],
T = —tz <c}+1gcjg + C}UCjJ,_lo-) (2.5)
j.o
In the case of an insulator, y,, is not the dominant contribution to the total Raman
spectrum. But it is interesting for a comparison with x;; because, j and 7 are odd and
even respectively under parity conjugation, apart from an overall phase.

Apart from the particle-hole symmetry, the Hamiltonian has two other discrete sym-
metries relevant to the computation of optical excitations: a spin-flip symmetry and a
spatial reflection symmetry through the lattice center. Therefore each eigenstate of the
Hamiltonian has a well-defined parity under charge conjugation (P. = +1) and spin-
flip (Ps = £1), and belongs to one of the irreducible representations, A, or B,, of a
one-dimensional lattice reflection symmetry group. We note here that the current op-
erator is invariant under the spin-flip transformation, but antisymmetric under charge
conjugation and spatial reflection. Therefore, if the ground state belongs to the sym-
metry subspace (Ag, P, Ps), only excited states belonging to the symmetry subspace
(By, —P., Ps) contribute to the optical conductivity.

A very useful consistency check of the method we use to compute dynamical correla-
tion functions is to test various sum rules, relating the moments of the function o(w) or

the spectral function A(w) to ground state expectation values, which can be evaluated
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with great accuracy using the standard DMRG method. For instance, for a Hamiltonian

with open boundary conditions we can write the following sum rules:

00 1 N
/ dw wo(w) = 2(0[}2]0) (2.6)
0 L
o0 et
/0 dwo(w) = E@\ %: (C;[‘—i-locja + C}L-ch-i-la) 0) (2.7)

/OO dwA(w) =1 (2.8)

— 00

In Fig. 2.1 we show the local spectral function for various values of V ranging from 0
to 9t. In the SDW phase, the single particle gap (Ay) stays constant until a threshold
value of V' around 3t is reached and then starts reducing (cf. Fig. 2.4). Here and
further in this letter when we refer to the gap in a correlation function we measure the
position of the lowest energy peak. We ignore the tail part which originates from the
small finite broadening that is used to represent the Lanczos continued fraction. This
implies that our values for the gaps are tight upper bounds to the actual ones. At the
SDW-CDW transition, the spectral gap reduces abruptly, reaches a finite value, jumps
up and then starts increasing again in the CDW phase. Note that in the CDW phase,
the site on which we compute the spectral function is empty in the ground state. In
Fig. 2.2 we report the current-current and non-resonant Raman response functions in
the left and right columns respectively. A systematic change in the optical response in
the odd (x;;) and even (x,-) channels is discernible as we sweep through V' across the
SDW and into the CDW phase. For V = 0 we see a broad feature centered at around
U, in good agreement with a recent calculation for the standard Hubbard model within
the DMRG approach [33]. Our method does not allow a resolution of the tiny bump
seen in the middle of the broad optical absorption band by Jeckelmann et al [33]. But,
as V is increased we do notice the formation of a resonance which gradually gains in
weight and shifts towards lower frequencies [26,27,34]. This constitutes a precursor of
the excitonic feature that we describe further below.

For small values of V' the optical (A;;) and Raman (A,;) gaps would be expected
to coincide with the spectral gap, A;. We find them to be slightly larger because it

is not possible to create fully non-interacting electron—hole pairs in a finite size chain.
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Figure 2.1: Local spectral functions for different values of the coupling V. Note the
abrupt change in particle-hole symmetry between the two phases.
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Figure 2.2: Optical and Raman response functions for different values of the coupling
V. The vertical dotted line indicates the magnitude of the single—particle spectral gap

in each case.



34

Around V ~ 1.5t, the optical gap falls below the spectral gap in agreement with previous
work [25]. The same happens for the Raman gap at V' ~ 3t. We define a quantity that
we will call the excitonic weight (Wjj(TT)) as the fraction of the weight in the optical

(Raman) spectrum below Ag;

A,
W= Jo A Xgien (@)
AT dw X (@)

In Fig. 2.3 we plot this excitonic weight as a function of V. In the case of both response

1

(2.9)

Figure 2.3: Excitonic weight as a function of the coupling V.

functions it is seen that the excitonic weight is zero until the above mentioned crossing
of gaps occurs (cf. Fig. 2.4). As V is increased further, the excitonic weight starts
appearing and a resonance begins separating from the rest of the spectrum. When
W;j(rr) reaches a maximum around V' ~ 4¢, the spectrum is dominated by a sharp
excitonic feature carrying most of the weight, 86% and 77% for the optical and Raman
response. This peak, well differentiated from the rest of the spectrum, is clearly located
inside the single—particle spectral gap while the rest of the weight falls outside. The
Lanczos method is rather well suited to describe these excitonic features, but it is not

so good in capturing detail at the higher end of the spectrum. The optical bands inside
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Figure 2.4: Gaps for different values of the coupling V.

the one—particle continuum tend to be shifted towards higher energies. At the same
time the relative weight in the excitonic features is accurately represented, since we find
that the sum rule for the optical conductivity in terms of kinetic energy is obeyed with
1% accuracy or better (except very close to the transition). As V is increased further
beyond V' ~ 4t, the excitonic feature starts loosing weight and at the same time moves
towards zero frequency. At the precise point of the SDW-CDW transition, the excitonic
mode reaches the lowest frequencies we can resolve (w ~ 1/L).

In a Mott insulator represented by the half-filled Hubbard model, creation of an
independent double occupancy and an empty lattice site in a background of singly
occupied sites (or a holon—antiholon pair in the Bethe ansatz language) has a finite
energy threshold; namely the spectral gap. This threshold is lowered in the presence
of an attractive force by the binding energy of the double occupancy and empty site,
which we call a Mott-Hubbard exciton. This attraction is due to the increased range
of Coulomb repulsion in the EHM and is significantly absent in the standard Hubbard

model. To some extent, this is reminiscent of the situation encountered in Wannier
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theory for a band insulator. However, unlike in Wannier theory, the double occupancy
and the hole are not fermionic quasi-particles, but spinless hard-core bosons. Even more
importantly, there is a critical value of V below which no exciton appears under the
threshold of the particle-hole continuum. As we increase V, the binding energy of the
exciton keeps growing continuously, and the excitonic feature moves closer and closer
to zero frequency. At the same time, the density of electron and hole states available
for binding first increases, reaches a maximum and then goes to zero at the SDW-CDW
boundary. This non-monotonic behavior of Mott-Hubbard exciton as a function of the
Coulomb repulsion strength is a consequence of the fact that an increase of the Coulomb
interaction strength does not simply bind the exciton more tightly, but also renormalizes
the gap and couples the particle-hole excitation more strongly to the other electrons.
When the energy gained from binding the electron-hole pairs equals the energy cost of
creating them across the single particle gap, the optical gap vanishes in both the odd
(xjj) and even (x,r) channels.

As one of the examples of 1D Mott insulators mentioned earlier, let us consider the
case of SroCuQj3 to indicate the experimental relevance of our results. From previous
literature [35,36], the values of the parameters for this material are estimated to be:
t~0.55—0.6eV,U =~ 7.2¢eV and V = 0.8 eV. Therefore the material lies right near the
boundary where excitonic weight in x;; begins to appear. Nevertheless, the exciton or
its precusor in the form of a narrow peak distinguished from the rest of the spectrum

should already be seen in the optical conductivity.

2.6 'Weak Coupling: Field theoretic approach

The regime of small Mott gaps can be addressed by studying the field theoretical limit
(or scaling limit), which corresponds to having the bandwidth as the largest scale in the

problem. It is defined by choosing

t
t—oo, U/t—0, M:8—\/%exp(—27rt/U) fixed. (2.10)
T
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and has been studied by many authors [22,23,37-39]. On an operator level the field

theory is constructed by splitting the electron operators into fast and slow components
o — /g [exp(ikrpz) Ry(2) + exp(—ikpz) Ly(2)]. (2.11)

Here kp is the Fermi momentum (it is 7/2 for the half-filled band), R, and L, are right
and left moving electron fields and x = lag, where ag is the lattice spacing. Inserting

this prescription into the extended Hubbard Hamiltonian one obtains

Hoxt - HC+HS7

H, = 27;“0/dx BEIENEH +/dx g0 (I'T~ + I T%) 4+ g, I°T7].
H, = 27;05/dx[:J-J:+:J-J:]—2gl/da;J-J. (2.12)
where
g1 =U=2V)ag , gy =2U +12V)ao , (2.13)
vc:vF—l—W , vs =vp — Uag/2m. (2.14)

Furthermore, vp = 2tag is the Fermi velocity, and J and I are the chiral components of

SU(2) spin and pseudospin currents
1
3 _ = L7t . + it
o= S Ll It =LiL],
g
_ 1 _
3 _ = . pi . + _ pipt
I’ = 2E RIR,:, I _RTRL’

1
3 _ T T +_ gt
JP = §<LTLT—LLL1), Jt=1iL,

1 _
P (enoain). remn e

There is a clear spin-charge separation, and the two parts of the Hamiltonian (2.12) can
be bosonized separately. In the field theory limit, the electric current operator of the

lattice model is given by

‘_4et

i=— dz [IP(z) — I (2)] (2.16)

The current couples only to the charge part of the Hamiltonian and therefore we can

ignore the spin part. It is worthwhile to note here that the spin sector is gapless if
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U > 2V and gapped otherwise. Applying the standard bosonization rules to H. one
arrives at the Hamiltonian of the Sine-Gordon model (SGM) (2.17) [40]. given by

1

He = 10— [(00)" + (ve:9)?] + 2cos G, (2.17)

where p and 3 are functions of U and V.

5 = 4mup
dmop + 4 /gﬁ - gi

The pure Hubbard model corresponds to the limit 3 — 1 and the effect of increasing V'

(2.18)

is to decrease the value of 5. The SGM posesses a conserved (topological) charge

Y L A L
Q—/_OO Jodr = or | ox dz , (2.19)
where
, g
W
J 5 € Ovd (2.20)

is the Noether current. The electric current (2.16) is proportional to the Noether current

jl

j=vVAddo, (2.21)

where A is some nonuniversal constant '. The SGM is integrable and has been studied
in great detail over the last 25 years [37,38,41]. The spectrum of the SGM depends on
the value of the coupling constant 32 or, alternatively, on

ﬁ2

=1 (2.22)

For 3% < 1 the cosine term is relevant in the renormalization group (RG) sense and
dynamically generates a spectral gap M in the excitation spectrum. In the repulsive
regime 1 < £ < oo the spectrum contains only charged particles of charge QQ = =+1,
which are called solitons and antisolitons. In this regime the spectral gap M is related
to the “optical gap” A, i.e., the gap seen in the optical absorption spectra through the
relation, A = 2M. At the so-called “Luther-Emery” [42] (LE) point { = 1 the SGM

Tt is assumed that A is nonuniversal because the electric current is not a conserved quantity for the
lattice model.
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is equivalent to a free massive Dirac fermion. In this limit the solitons become non-
interacting particles and the Mott insulator turns into a conventional band insulator.
In the limit £ — oo, the Sine-Gordon model acquires an SU(2) symmetry and describes
the charge sector of the Hubbard model at half-filling in the limit of weak interactions
as discussed above. In the attractive regime 0 < £ < 1 soliton-antisoliton bound states
called “breathers” are formed and they correspond to the excitons which we observe in

our lattice model.

2.7 Summary and conclusions

To conclude, we have shown that sharp excitonic features dominate the transport be-
havior in a particular regime of the EHM at half-filling. This is a direct consequence
of the inclusion of non—local Coulomb interaction in this model. These excitons are of
fundamentally different origin as compared to those in semiconductors formed by the
binding of electron—hole pairs. Although a Mott-Hubbard exciton can be described as
a bound pair of excitations with opposite charges, the Coulomb interaction at the same
time determines the size of the Mott gap, the exciton properties, and the coupling of
the exciton to the other electrons in the system. Therefore, an increase of the Coulomb
interaction strength does not simply bind the exciton more tightly, but also renormalizes
the gap and couples the particle-hole excitation more strongly to the other electrons.
This leads to a non-monotonic behavior of Mott-Hubbard exciton properties as a func-
tion of the Coulomb repulsion strength, and even to instabilities toward the formation
of charge-density wave droplets. Due to strong correlation and low dimensionality, elec-
trons decouple into new elementary excitations, namely, spinons and holons [43]. This
necessitates a careful treatment of the full many-body problem. The Lanczos method
combined with the DMRG approach is a powerful non-perturbative tool for computing
the dynamical correlation functions of a non-trivial system like this. Our numerical ap-
proach permits us to easily include other ingredients such as explicit dimerization and
interchain hopping which are present in these materials in order to allow for a better
quantitative comparison with experiments in the future.

A closely related problem of much interest, on which the DMRG approach may
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shed light and which is under investigation, is that of the phase diagram of quasi-
one dimensional organic compounds TMTTF and TMTSF and their unusual metallic
behavior [44-46]. These materials are believed to be quarter filled Mott Insulators and
close to the Mott transition point. By varying the anistropy of the system and the
energy scale at which it is probed, a wide range of behaviors has been reported. The
metallic phase shows a broad feature representative of the Mott insulating gap, carrying
a majority of the spectral weight and a very narrow Drude peak. Thus, these compounds

are very far from being Fermi liquids and present interesting challenges.
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Chapter 3

The DMRG Program

3.1 Why Fortran 907

The DMRG algorithm to solve for a one dimensional extended Hubbard model (EHM)
was implemented in a computer program which we describe in this chapter. The program
is close to 3000 lines, and was written in Fortran 90 which allows for greater flexibility
and modularity than standard Fortran 77. We list below the key advantages and features

of Fortran 90 which make it conducive for scientific programming:

e Fortran 90 allows for a free format, with no reliance on specific positioning of
special characters and up to 132 columns per line. In-line comments are allowed,

making it easier to annotate code.

e Arithmetic may now be performed on whole arrays and array sections. This
makes the code shorter and much more readable. Operations in an array valued

expression are potentially performed in parallel.

e It allows for dynamic memory allocation. This is key to programming the DMRG

algorithm where memory requirements can be demanding.

e [t is possible to specify the desired precision of an object in a portable way. Type
specifications can be parametrized, meaning that the precision of a particular type

of variables can be changed by altering the value of one constant.

e Modules replace many unreliable features of Fortran 77 open to inadvertent abuse
such as the common block. They can be used for global definitions of types, objects,
operators and procedures, and can be used to provide functionality whose internal

details can be hidden from the user.
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e Interfaces between procedures allow for efficient passing of arrays. Array bounds
do not have to be passed as arguments and array shape can be inherited from the

actual argument.

e There is a vastly improved set of intrinsic functions, especially useful in the alge-

braic manipulation of arrays.

3.2 Introduction

As in all computer programs there is a compromise to be made between generality
and length. We have written the DMRG program sufficiently general that it can solve
for both the static and dynamical properties of a 1D quantum system with arbitrary
hopping, local and nearest neighbor interactions along the length of the chain. The
program is easily generalizable to other model Hamiltonians with more complicated
interactions. We use the finite size algorithm with open boundary conditions since
it is much more accurate than the infinite size one. Dynamical properties have been
computed using the Lanczos vector method, which was discussed in Chapter 1. Again it
is possible to modify the program to target other vectors to obtain dynamical properties
with reasonable ease. To reduce the sizes of matrices of operators, symmetries associated
with the conservation of S, and particle number are implemented throughout.

The program uses certain library routines for linear algebra and other purposes
which can be obtained from various sources such as LAPACK, Numerical recipes or

NAG program libraries. These include:

e A routine to obtain the lowest eigenvalue and eigenvector of a real symmetric
tridiagonal matrix. This is used after the Lanczos procedure is performed on
the Hamiltonian (consisting of the system plus environment and two sites in the

middle) to reduce it to a tridiagonal form and obtain the ground state.

e A routine to fully diagonalize the density matrix and obtain all it’s eigenvalues

and eigenvectors.

e A routine to sort the eigenvalues of the density matrix.
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The first step in the procedure is to rewrite the original Hamiltonian in a notation of
spinless sites, by separating the up and down spin degrees of freedom. The basis then

looks as follows:

(T®l)1®(T®l)2®(T®U3®(T®U4®(T®l)5”'

The advantage of this step is that at each DMRG iteration a spin up or down site with
two degrees of freedom is added to the system block as it grows, rather than a full site
with four degrees of freedom on it. This makes the total system size 2m x 2m rather than
4m x 4m and thereby allows for more states to be kept in the system and environment

block.

3.3 The routines

Now we discuss the details of individual subroutines, their inputs and outputs and the

tasks they perform. The first routine of importance is a module, called global.f90.

e global.f90: As the name implies this module is used to declare variables and ar-
rays along with their shape and make them accessible everywhere they are needed.
These global variables are accessed in each routine with the command USE global.
A parameter, named DBL, used to fix the precision of all real and complex variables
in the program is declared and assigned here. Other variables include the size of
the lattice, Ng, the number of states to be kept in a DMRG truncation m, the
location of the site where the local spectral function is computed, the number of
finite size DMRG sweeps and the tolerance to be achieved in the Lanczos proce-
dure. Then follow the various arrays storing the left and right blocks, superblocks
and the operators at the edges of the blocks out of which the Hamiltonian is con-
structed. For the extended Hubbard model, the operators at the edges of blocks
include the creation or destruction operator and the number operator for build-
ing the nearest-neighbor and local Coulomb interaction. A logical variable called
firstgrow is used to distinguish between the different procedures to be adopted
in the first DMRG sweep when the system size is growing and the later sweeps

when the full system size has been attained. The logical variable grow is used to



44

distinguish the cases when the left block is the system and the right block is the

environment and vice versa.

Much efficiency is gained in the algorithm by storing the quantum numbers of
the states rather than the states themselves. So the various arrays denoting the
quantum numbers, viz., the number of up and down spin electrons (nup and ndo)
of states on the system and environment blocks and the entire system are also

declared in module global.

Other miscellaneous variables include the number of Lanczos basis states to be
targetted (Nlanc) for building the dynamical correlation functions and the relative
weight (weightgs) to be assigned for the ground state density matrix. The last
variables to be accessible everywhere are the parameters in the Hamiltonian such
as the Hubbard interaction U, the nearest-neighbor coupling V', the hopping ¢ and

the chemical potential.

input.f90: This routine is the first one to be called from the main program,
dmrg.f£90. Again as the name suggests, all the inputs to the program are provided
through this routine. Typically, three finite DMRG sweeps are needed to attain
convergence. 50% of the weight in the full density matrix is assigned to the ground

state and the rest to the Lanczos basis states.

dmrg.f90: This is the main program which controls the sequence of calls to the
various routines. The first call is to the subroutine input.f90. The spinless sites
along the chain are labelled from left to right with integers. With each DMRG
iteration, two spinless sites in between system and environment slide along the
length of the chain to the right and then to the left. Each DMRG step is labelled
by the integer variable LL denoting the location of the first of the two sites between
system and environment. A call is then made to the program superblock.f90 to
build the left and right blocks and the edge operators with the argument LL (see

description of superblock.f90 for details of this procedure).

With the help of these block and edge operators, the Hamiltonian is constructed

in each sector with fixed S,. The ground state eigenvalue and eigenvector is then
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obtained by a call to 1anc.£90. The next step involves building the density matrix
out of the ground state and any other states to be targetted. This is achieved
through a call to the subroutine buildrho.f90 (for details see the description
below of this routine). The full density matrix is stored in the array called rho.
The quantum numbers of the basis states in which rho is written are either those
on the left or right superblock depending upon whether one is sweeping to the right
or left, respectively. The density matrix is diagonalized in each subsector of fixed
up and down spin on the system block. After obtaining all the eigenvectors and
eigenvalues, a routine eigsrt is used to sort the eigenvalues of the density matrix
across all spin sectors. The m eigenvectors with the largest eigenvalues are stored
in a rectangular array called 0T. One minus the sum of the m largest eigenvalues
stored in the array ‘W _alfa’ gives the discarded weight, DscWght. Depending on
whether one is sweeping to the right or the left, the left superblock or the right
superblock (i.e., the system block) is truncated by using the m eigenstates of the
density matrix stored in OT. This truncation is carried out for the Hamiltonian as
well as other operators situated on the edge of the block and any other operators
whose ground state expectation values are sought. All the operators on the block

are of size m x m and we are now ready to begin a new DMRG iteration.

supblock.f90: In our notation the left and right superblock denote the left block
plus a spinless site and the right block plus a spinless site respectively. At the
beginning, supblock.f90 makes calls to routines left_block and right_block
(see description of block.£90) with argument LL to build the left and right blocks.
Next, by using the stored operators at the edges of the left and right blocks, the
right and left superblock are constructed. This involves tensor products which
are performed using a routine called dirpsum. The edge operators are then trans-
formed to the superblock basis and their quantum numbers in the new basis are

created. Using the quantum numbers in the left and right superblock, quantum
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numbers for the full system plus environment are now built using:

af +¢%

L
e

This tensor summation is achieved by defining an operator .QN. (in a module
called direct_product.f90) to be inserted in between the two arrays of quantum

numbers.

block.f90: This consists of two routines - left_block and right_block. It
takes the argument LL and it’s action depends crucially on the variable ‘firstgrow’
and ‘grow’. These routines are responsible for building the left and right block
Hamiltonians as well as their quantum numbers. Initially when LL is the lowest
value and firstgrow is true, the left and right block are constructed with four
spinless sites each. So the starting size of the Hamiltonian that is diagonalized
exactly is 10 sites, with four in each block and two in the middle. At each stage
as you grow the chain, the left block plus a spinless site act as the system and
the associated operators are written to disk to be read again while sweeping to
the left. If one is sweeping to the left, then the left block is read from the disk
from the previous sweep. The right block is constructed exactly of four spinless
sites during the first sweep to the right and each time one reaches the right end
during the sweeps. From the second sweep onwards when one is sweeping to the
right, the right block is read from the disk as saved from the first sweep. When
one is sweeping to the left, the right block plus a spinless site acts as the system,
and therefore the right block is written to disk. Note that the superblocks of one

iteration form the blocks for the next DMRG iteration.

buildrho.f90: This routine builds the density matrix out of the ground state
or other states such as the Lanczos basis when correlation functions are desired.
The input to this routine is the ground state vgs, the ground state quantum
numbers and the sizes of the system and the environment. Once the system grows

to its full size, the system and the environment are equally represented by 2m
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states each. In order to build the density matrix, the ground state eigenvector
which is in the full basis of the system plus the environment needs to be projected
onto the states residing entirely on the system and entirely on the environment.
This is performed by an intrinsic function called RESHAPE. Given the sizes of the
system and environment, and the ordering convention in the tensor summation
of quantum numbers, RESHAPE rearranges the one-dimensional array consisting of
the ground state eigenvector into a 2D array, psi in the left and right superblock
basis. This projection followed by a trace over the states of the environment gives

the density matrix.

If dynamical correlations are being computed then, for example, in the case of the
local spectral function, the destruction operator has to be acted on the ground
state eigenvector. This matrix multiplication has to be done with much care be-
cause the operator could exist on either the left superblock or the right superblock
depending on the DMRG iteration step. Since the destruction or creation oper-
ator itself is defined on the superblock basis, the multiplication is performed on
the projected ground state psi. The intrinsic function PACK, which performs the
exact reverse task of the intrinsic RESHAPE, is used to build the first Lanczos vec-
tor in the full basis of the system plus the environment. This Lanczos vector is
then fed to the routine lanc to build the rest of the Lanczos basis. After building
the Lanczos basis, each of them is reshaped to project onto the left and right
superblock just as was done for the ground state, to build a density matrix. The
full density matrix is a weighted sum of the ground state density matrix and the

density matrices obtained from the Lanczos basis vectors.

buildham.f90: This routine builds the Hamiltonian in a subsector with fixed
quantum number S, for the entire system plus the environment. The inputs to
this subroutine include, LL, the sizes of the left and right superblocks and the
quantum number S,. Only the upper triangle of the matrix and non-zero off-

diagonal matrix elements are stored. We use the following sparse matrix notation
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to store the Hamiltonian as illustrated by the following example:

01 0 2 00
1 2 0 3 0 5
000 O0T1O0

Hex =
301 00
001010
050000

would be represented using:

hdiag = (0,2,0,1,1,0)
hoffdiag = (1,2,3,5,1)
hpos = (2,4,4,6,5)

nrow = (2,2,1,0,0,0)

hdiag stores all the diagonal elements. hoffdiag stores all the non-zero off diago-
nal matrix elements in the upper triangular part. hpos stores the column number
of each offdiagonal element. nrow contains the number of non-zero off-diagonal
matrix elements in each row. In order to pick the matrix elements of the Hamil-
tonian, one has to consider all possible combinations of quantum numbers in the
left and right superblock which give rise to the fixed value of S,. The matrix ele-
ments themselves are constructed by calling a function called hamil. This function
hamil takes as arguments the basis states on the left and right superblock to give

a matrix element in the full basis.

To ensure that the DMRG procedure is always stable and convergent, the system
ground state usually has to be determined to a rather high accuracy. It also happens
to be the most time-consuming part of a DMRG calculation. A substantial amount of
CPU time can be saved by having a very good initial guess for either the Lanczos or
Davidson algorithm to determine the ground state. An ideal initial guess, for the case of
the finite system DMRG algorithm, is the final wavefunction from the previous DMRG

step. This wavefunction, although corresponding to a different system configuration,
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can be transformed into the current configuration. Use of this initial state reduces the
number of iterations by almost a factor of two and also the chances of converging onto
an incorrect low-lying eigenstate. Measurements of ground state expectation values and
dynamical correlation functions are most accurate when the DMRG iterations terminate
at the geometric center of the 1D lattice. This is because the system and environment

blocks consist of the same number of sites and are equally well represented by 2m states.
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Chapter 4

The Dynamical Mean Field Method

4.1 Introduction

It is a well-known fact that theoretical investigations of quantum-mechanical many
body systems are faced with severe technical challenges, particularly in those dimensions
which are most interesting, i.e., d = 2, 3. In the absence of exact methods in this domain
there is clearly a great need for reliable, controlled approximation schemes. There exist
several approximation techniques which make use of the simplifications that occur when
some parameter, e.g., the length of spins S or the spin degeneracy N are taken to be
large. Investigations in this limit, supplemented by an expansion in the inverse of the
large parameter, can provide insight into the fundamental properties of systems where
this parameter is not large.

In the last decade a new approach to fermionic systems, based on the limit of d — oo
has been used successfully to describe several aspects of strongly correlated systems,
most notably the Mott transition (for reviews see [2,47]). Presently, a lot of research is
focussed on applications of this method to the study of real materials. In this chapter we

present an overview of this method called the Dynamical Mean Field Theory (DMFT).

4.2 Classical spin models

The limit of infinite coordination number, Z — oo, allows for the construction of a
mean field theory (MFT) in the case of classical spin models such as the Ising model.

For instance, the ferromagnetic Ising model Hamiltonian (J > 0)

H=-7]) 58, (4.1)
(i)
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can be replaced by a single site mean field Hamiltonian, if we assume that each spin S;

interacts with a static local field produced by its nearest neighbors at the site i:
1
MF _ 1 2
HYY = —hyp g Si + 2NJZ<S) , (4.2)

where hyp = JZ(S) and N is the total number of lattice sites. This corresponds to

neglecting the correlated fluctuations of spins at sites ¢ and j, i.e.,
([Si = (9)[S; = (9)]) =0 (4.3)

For hjsr to remain constant in the limit Z — oo, J has to be rescaled as

*

J — J7, with J* held constant. (4.4)
The mean field parameter hjsr is determined self-consistently using
(S) = tanh(pJ*(S)), pB=1/T. (4.5)

The scaling of the coupling constant J above is typical for isotropic spin models with
a non-zero spatial average, J;; = J. In the case of random spin models, such as spin
glass systems with jij = 0, the appropriate scaling to achieve a mean field theory can

be shown to be J — J*/V/Z.

4.3 Itinerant quantum mechanical models

The limit Z — oo leads to significant simplifications in the investigation of quantum
lattice models such as the Hubbard model and is much more subtle than the case of
classical spin models [48]. The Hubbard model is defined by the following Hamiltonian:

H = —t Z (cjacjo + h.c.) + UZ”anjl (4.6)

(ij),o J

The first and second terms correspond to hopping between nearest neighbor sites and the
onsite Coulomb repulsion, respectively and provide a competition between itineracy and
localization. This model was first introduced independently by Hubbard and Gutzwiller
in an attempt to describe the physics of transition metals with partially filled d-bands.

These systems show both a band-like delocalised and an atom-like localised behavior
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depending on the strength of the Coulomb interactions which can be controlled by the
application of pressure.
The Fourier transform of the kinetic energy term on a d-dimensional hypercubic

lattice with unit lattice spacing involves a dispersion ¢ given by

d
€ = —2t Z cos k;. (4.7)

The density of states (DOS) corresponding to this dispersion in the limit of infinite
dimensions is a sum of independent random numbers and is given by the central limit

theorem as a Gaussian,

) = e E 2
hm Ny(E hm Zé k) YW p| (2t\/3) - (4.8)

A non-trivial DOS is obtained under the scaling,

*

t
t — —, t* held constant, Z = 2d. 4.9
VZ (49)

The interaction term in Eq. 4.6 is purely local and independent of the surrounding sites
and consequently remains the same irrespective of the dimension of the system. Thus,
the scaled Hamiltonian

H = \/_ Z <cwcﬂ,— +h.c. > + UZHJTn” (4.10)

(i3),0
has a non-trivial Z — oo limit, such that both the kinetic energy and interaction terms

can compete on an equal footing as in finite dimensions.

4.4 Local self energy

In order to visualize the implications of the limit Z — oo, we consider a perturbation

theory in terms of U. At T'=0 and U = 0, the kinetic energy may be written as
Bl =—tY g, (4.11)

where 9%,0 = <cggcjo>0 is the free one particle density matrix. For Egm to remain

constant in the limit d — oo we find

9o ™ O(%), (4.12)
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since t ~ 1/v/d and there are O(d) nearest neighbor sites j to the site i. The same
dependence holds for the full one particle Green’s function of the non—interacting system,

Glio(w),

ij,0

EY = —— Z / dwGY; (W) (4.13)

It is to be noted that although the propagator ng,o ~ 1/ v/d vanishes as d — oo, the
particles are still mobile, since a particle may hop to d nearest neighbors with reduced
amplitude t*/v/2d. In general, if || R;;|| represents the so called “Manhattan distance”
(distance measured only along horizontal and vertical lines connecting i and j) it can
be shown that

GO~ O(1/dIRull/2y, (4.14)

ij,0

This property is an essential consequence of the scaling of the hopping parameter ¢
and leads to all simplifications arising in the limit d — oo. In particular, it implies
the collapse of all connected, irreducible perturbation diagrams in position space as
illustrated below. We consider the second order contribution to the perturbation series
of the irreducible self energy 25]2) in U. By considering the scaling of the individual
Green’s functions and the summation over R;; it can be seen that 21(32) ~1/V/d, and it

vanishes, unless ¢ = j. Hence, in the limit d — oo any two vertices which are connected

1/vd J 0ij

Figure 4.1: Collapse of the second order contribution to the irreducible self energy in
the limit d — oo.

by more than two separate paths will collapse on the same site. Since the external
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vertices of any irreducible self energy diagram are always connected by at least three

separate paths, they always collapse to give a local self energy,

lim Eijﬁ(u)) = Eij7g(w)5ij (415)

d—o00

Consequently, the Fourier transform of ¥;; , becomes momentum independent.

lim ¥,(k,w) = X5(w) (4.16)

d—oo

This simplification is physically justifiable as an excellent approximation in several cir-
cumstances, for example, in d = 3 the coordination number 7 is already quite large
(Z = 12 for a face centered cubic lattice). One of the most prominent examples con-
trary to this, is the case of the high temperature superconductors which have a strongly
anisotropic 2D character. We shall revisit this issue in the next chapter when we dis-
cuss cluster methods to incorporate short range correlations within DMFT. The most
important obstacle which makes the problem of performing diagrammatic calculations
in finite dimensions intractable is the integration over intermediate momenta with the
constraint of momentum conservation. This is no longer the case for d = co, where one
can replace the multidimensional integrals over momentum by one dimensional integrals
over the DOS. At the same time it should be noted that the limit d — oo retains the
full dynamics of the system as there is no collapse in the frequency variables and time
is always unidimensional.

The simplifications introduced by the limit d — oo can be used to derive a single site
effective action by tracing out all the degrees of freedom external to the site in analogy

to the classical Ising model. The original action of the Hubbard model
7 T T
S = / dr Z cw@TciU — Z tijCiUCjU - /LZ Nio + UZ ning| | (4.17)
0 o ijo i 7
can be split into three parts, S(© + S, + AS, where S(© is the lattice action with the
site ‘o’ removed, S, consists of terms purely on the site ‘o’ and AS consisting of terms

connecting the site ‘0’ to the rest of the lattice. By using the scaling of the propagator

discussed in the previous section, it is possible to formally integrate the degrees of
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freedom i # o, to obtain a purely local action of the form [2]:

B8 6 B8
= — T T’ c (NG — 7 eps (T TNt (T )Mo (T). .
St = /od /0 3 )G (7 = e >+U/0 drg (7)) (7). (4.18)

where

Gy ' (iwn) = S(iwy) + </_Z Cion + L l—)(:)— Z(iwn)>_1

Here, D(e) is the bare lattice density of states. This provides a closed set of mean

(4.19)

field equations relating the Weiss field G (iw;,) to a quantity computable from the local

effective action itself.

4.5 Impurity model parametrization and Exact Diagonalization algo-

rithm

Although the interaction between the electrons on different lattice sites has been reduced
to an interaction of electrons with a mean field, the dynamics of the latter interaction
is still non-trivial. The many-body nature of the Hubbard model survives even in
d = oo, making an analytic evaluation of the local propagator generally impossible.
In this context, it was pointed out by Georges and Kotliar [49] that the single site
action derived in the earlier section corresponds to the action for an auxiliary impurity
problem. In particular, the action can be viewed to be that of an Anderson impurity
model,

Haryg = Z ekaloa;m + Z Vk(aLUdJ + diako) — Z d:f,da + Unging, (4.20)

ko ko o

This mapping has the advantage that the form of the effective propagator (Weiss field)

is already known:
Go_l(z’wn)AIM =W, +p— / dw——""—, (4.21)

where
Alw) =) ViP(w - e) (4.22)
ko

is the hybridization function characterizing the bath of conduction electrons. This

fact together with the extensive numerical and analytical experience that has been
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accumulated in the treatment of impurity models has made the numerical solution of
the self-consistency problem generally tractable.

We now describe a method of solving the DMFT self-consistency equations based on
the exact diagonalization approach to the impurity model. In this method, the Weiss

function defined above in Eq. 4.21, is approximated by a discretized version:

N, 5
V
1y Ny _ - l
GQ (an) b = 1w, + n— IZ; m (423)

with IV bath orbitals. This discretization of the bath should be thought of as a func-
tional projection for the Weiss field and should not be confused with a finite-size lattice
for the original model.

The Hamiltonian corresponding to this discrete bath is diagonalized exactly, either at
finite temperature using exact diagonalization or at zero temperature using the Lanczos
method to obtain the local Green’s function G(iw,). The self consistency condition leads
to a new Weiss function, which needs to be projected onto a function with a discrete
number of parameters €; and Vj. This projection is best carried out on the Matsubara

axis by defining a distance function to be mininimized.

1 Nmax

4= (nmax+ 1) Z

n=0

~

Aiwn)™ — A(iw,, )Mo

(4.24)

Here, npyax denotes the number of points on the Matsubara grid. The minimization is
typically carried out using the conjugate gradient minimization algorithm. This distance
converges rapidly as a function of N, signifying that the solution of the DMFT self-
consistent equations within the restricted subspace used for the discretized Anderson
model is indeed representative of the ‘actual’ solution. This method of solving for the
impurity model within DMFT is valuable, because it provides real frequency information

directly, unlike Quantum Monte Carlo (QMC), and is also more efficient in comparison.

4.6 Limitations of single impurity approach

The dynamical mean field theory (DMFT) [2] has been successful in accessing certain

aspects of the non-perturbative phenomena in strongly correlated electron systems. For
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example, it has given new insights and predicted various qualitative trends in the redis-
tribution of spectral weight as temperature, pressure and doping are varied in optical
and photoemission experiments near the Mott transition.

Single site DMFT extracts physical quantities such as the self energy from a local
impurity model with a self consistent bath (also refered to as LISA for local impurity
self-consistent approximation) and by construction, this approach misses the effects of
short range correlations, such as the k-dependence of the self energy, which are bound
to become important at low temperatures.

In the case of more general interactions than the Hubbard interaction, such as near
neighbor Coulomb repulsion V', the interaction has to be scaled too, in the limit of

d — o0. It is easy to see that the interaction V has to be scaled in the form

Vo V7 (4.25)

to be of the same order in d as the hopping and local interaction terms. Since the

propagator scales as before as 1/1/d, the self-energy is of the general form shown below.

1/d

0. e
—

i i i 1/\/8
0(1) O(1/V4d)

Figure 4.2: Only the Hartree contribution survives the limit d — oo for near neighbor
Coulomb repulsion.

Due to the scaling in Eq. 4.25, all contributions, except for the Hartree term, are
found to vanish in d — oco. Hence, nonlocal interactions only contribute via their
Hartree-contribution, which is purely static. This implies that, of all the interactions
for fermionic lattice models, only the Hubbard interaction remains dynamical in the

limit d — oo. This is clearly a limitation of the single impurity approach. In the next



chapter we discuss a method to incorporate these missing short range interactions.
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Chapter 5

Cellular Dynamical Mean Field Theory for the Hubbard
Model

5.1 Introduction

There have been significant efforts to extend the DMFT methodology to address the
limitations that were discussed in the last section of the previous chapter [2,46,50-55].
Many of the elements of the DMFT method can be traced back to the coherent potential
approximation (CPA) [56] which has been very successful in disordered systems. In
this context, the search for extensions of the CPA was fraught with many difficulties,
and extensions of DMFT should be scrutinized carefully in this light. The DMFT
equations, while having a similar spirit to those of CPA for determining the effective
medium, are considerably more complex because they involve the solution of a quantum
impurity model, which plays the role of the effecive Hamiltonian for the local degrees of
freedom treated in the DMFT. To analyse these equations, new concepts and numerous
techniques have been developed over the last decade. Their incorporation into cluster
methods is promising but requires substantial new work.

In this chapter, we focus on one cluster extension of DMFT, the Cellular Dynamical
Mean Field Theory (CDMFT) [53,57]. The aim of this work [58] is to investigate how
the exact diagonalization aproach which was so successful in the context of the single
site DMFT [59-61], can be used in the CDMFT context.

We solve the self-consistent cluster equations for the one dimensional Hubbard and
extended Hubbard models using exact diagonalization of the effective underlying cluster
impurity. We choose these models because of their generic nature, as well as the fact
that DMFT, which becomes exact in the limit of infinite coordination number [48],

faces the worst case scenario in one dimension. Furthermore, in one dimension fairly
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reliable computations of static as well as dynamic quantities can be made using the
Density Matrix Renormalization Group (DMRG) [8,9,12,13] approach to carry out a
comparative study.

The exact diagonalization approach, within the single site DMFT context, leads to
the development of a technique inspired by renormalization group ideas which resulted
in the first quantitative study of the critical properties near the Mott transition [62].
With a view towards the future, we discuss the possibility of combining renormalization
group ideas and CDMFT to develop a new numerical method in the spirit of the DMRG
method.

The Extended Hubbard Model (EHM) is defined by the following Hamiltonian:

H = _tz < Ci+16Cjo + h.c. > + UZ”JT”JL
+Vann]+1 ,uZn] (5.1)

The two terms corresponding to hopping between nearest neighbor sites and to the
onsite Coulomb repulsion provide the competition between itineracy and localization in
the regular Hubbard model. The third term represents the Coulomb repulsion between
electrons occupying nearest neighbor sites. The Hamiltonian as written above with
w = U/2 + 2V guarantees an insulating ground state with a filling of one electron per
site.

In the following section we introduce and discuss the CDMFT self-consistency equa-
tions and show how they can be generalized to treat non-local Coulomb interactions
even in the presence of broken symmetries. In the next and subsequent sections we

present results for the regular and the extended Hubbard models respectively.

5.2 The CDMFT Method

The CDMFT [53] method is a straightforward generalization of the single site DMFT, in
which local degrees of freedom within a cluster are treated exactly and those outside the

cluster are replaced by a bath of non-interacting electrons determined self-consistently.
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This approach, formulated with realistic studies in mind, deals in principle with over-
lapping cells and with clusters which are not necessarily defined in real space and could
even be defined by non-orthogonal orbitals. In this paper, we ignore these complications
and work with real space clusters using an orthogonal basis. It is worth pointing out
that if we apply the approach to non-interacting disordered alloys, the self-consistency
condition of CDMFT becomes identical to that used in the molecular CPA approxima-
tion of Ducastelle [63]. This is analogous to the way the self-consistency condition in
single site DMFT becomes identical to the single site CPA and the two-impurity approx-
imation proposed by Ingersent and Schiller [64] and by Georges and Kotliar [2], becomes
identical to the pair CPA. However, unlike the single site case, where the transition from
real space to momentum space is unambiguous, one has to be careful in interpreting
the results of the CDMFT equations in k-space. This is because the goal of CDMFT
is to obtain the best possible estimates of local quantities that live within a cluster.
For this purpose, a cluster self energy is introduced. Long distance properties such as
the ones contained in the lattice Green’s function and the lattice self energy are then
inferred from the cluster Green’s function or the cluster self energy while maintaining

causality [53].

5.2.1 The Cavity Construction

The most economical way to arrive at the concepts of a dynamical mean field theory is
via the cavity construction, which stresses the point made above, that the focus of the
method is in extracting local quantities. The original lattice is divided into equal clusters
of size N.. Integrating out the degrees of freedom external to a chosen cluster (labelled
0), we can formally write an effective action which would allow the computation of local

quantities as

1 - i 1
Z_e Seft [COMochMU] = E / H ’DC;[»LW’DC]‘MUG_S- (52)
cft 70,0

Here j labels individual clusters and p is an index labelling sites within each cluster.

We can split the original action into three parts,

S =804+ 8;+AS, (5.3)
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where S(© includes terms outside the chosen cluster (the full action with the cluster
replaced by a cavity), Sy comprises terms solely within the cluster, and finally, AS
includes those terms that couple the cluster with its environment. Explicitly, in the
case of the EHM,

&
S(] = / dr Z Cguo(aﬂyécrpaﬂ'+E23,Up)COVP
0
uv,ap

+ Z Unournop, +V Z nOuNow (5.4)
H (kv

B
_ jo 0j I
AS = /0 dr E E;U/,Upcj,ucrcOVp+EVM7/"TCOVPCJMJ
(Gp,0v),0p

+V Z 5oy (55)
(3p,0v)

Here £% includes the hopping matrix as well as the chemical potential within the zeroeth
cluster and (ju,0v) denotes all intercluster nearest neighbors. It is to be noted that,
while the onsite Coulomb interaction U contributes only to Sp, a nonlocal interaction
such as the nearest neighbor Coulomb repulsion V' contributes to both Sy as well as AS.
This cavity construction is so far merely a relabeling of terms in the original action and is
exact. However approximations need to be made to actually access the local properties
within the cluster. We approximate the effective action of the cluster by keeping only
the renormalization of the quadratic terms obtained after integrating out the degrees
of freedom of the surrounding environment [2]. Notice that this approximation violates
the translational symmetry of the original lattice. But this is not a problem, since the
spirit of the approach is to estimate local quantities. The Gaussian approximation for
the effects of the environment seen by the cluster becomes exact in the limit of large
coordination [2], and therefore, our test case in one dimension constitutes the most

difficult case. The effective action for the cluster can then be approximated as,

B .
Seft [ngy COuU] = / dr 5 Cg,w |:g0_1:| Covp
0

o p,op
+ Z UnOMnoul +V Z nopNow- (56)
t (wv)

Here, the time dependent Weiss field ng_ ! is now a matrix in the cluster variables and

is a functional of the EHM Green’s function with the cluster replaced by a cavity.
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Suppressing spin indices, it can be written on the Matsubara axis as
[Qo—l (iwn)] =G = By =V D ()
8 (Ju' ,0v)

- Y > ERGY) L (iwn) B,

(ip’,0p) (jv',0v)
Relating the cavity Green’s function, GO to the full Green’s function of the EHM, the

following self-consistency condition to determine the Weiss field can be obtained:

Gy M (iwn) = Gt (iwn) + Se(iwn), (5.7)

loc

where the local Green’s function on the cluster in one dimension is defined as (with an
obvious generalization to higher dimensions)

~ 7/Ne
Colion) = [ L 8)
—r /N, Gwn + o — Be(iwy) — (k) 27/ Ne

3. is the cluster self energy as obtained from S, t(k) is the Fourier transform of the
cluster hopping matrix of the EHM and k is a vector in the reduced Brillouin zone of
T

the superlattice (—3-, 5-]. Explicitly for a one dimensional model with only nearest

neighbor hopping,

(k) = —t[0u—va1 +e TN Ly

+e"Ne5 N ] (5.9)

5.2.2 A functional interpretation

A second approach to derive the above approximation is via the construction of a func-
tional of the quantities of interest, say the Green’s function restricted to a local cluster
and its supercell translations, such that the stationary point of the functional yields
those quantities [65,66]. In principle such a functional can be constructed order by
order in a perturbative expansion in the hopping or the interactions while constraining
the Green’s function to a fixed value. In practice, sensible approximations to the exact
functional are contructed by starting with the full Baym-Kadanoff functional ®[G] and
restricting its argument from the full Green’s function to the Green’s function defined

only inside the cluster and its periodic supercell repetitions. This constraint is realized
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by the cluster self energy which plays the role of the Lagrange multiplier [65-68]. Differ-
entiation of this functional gives the CDMF'T equations. Viewed as an approximation
to the Baym-Kadanoff functional for the full lattice, this procedure may seem a bad
approximation [69]. However, this construction of the functional should be viewed as
an approximation to the exact effective action for local quantities, and CDMFT uses it
precisely for such a purpose.

The functional approach is useful because it clarifies the level of approximation used
in treating the broken symmetry state. In the case that we consider, all the Hartree
graphs are added to the functional (see Eq. 5.11). The E-DMFT [54, 55, 65, 66, 70]
includes additional graphs to the Hartree terms, but the quality of the results presented

below show that they would make a very small contribution.

5.2.3 An Exact Diagonalization Algorithm

For the purpose of practical implementation of the algorithm it is convenient to consider
the cluster effective action to arise from a generalized impurity Hamiltonian,

Himp = Z EHVCLO'CVO' +U Z Ny M|
pva 1

+ Z Viwnumny, + Z ekoazaakg
5% ko

+ Z(Vk};“a};gcw + Vk}?“cltaaka) (5.10)
ko,u

Here, €, represents the dispersion of an auxiliary non-interacting bath and Vk}; 18
the hybridization matrix between the bath and the impurity cluster. The second and
third terms include all the intra-cluster interaction terms. In F we lump together the
cluster hopping matrix and chemical potential, as well as the Hartree terms arising from

non-local interactions between clusters. For the EHM
00
Eyx = EPC + V(SpC Z <njp/> , (5.11)
(3p',0¢)
where <nj p/> is computed by using the translational invariance of the system at the level

of the superlattice.
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In terms of the impurity model, the parametrization of the Weiss field function is
readily obtained as,

C;o_l(iwn) = Wy — E - A(iwn)y (5.12)

where the hybridization function is given by

th* th

. h o, o,V

Ao (iwn)[€ros Vig,s] = E h (5.13)
n a

k

Thus the algorithm involves determining the bath parameters €, and Vk}; L self-consistently,
subject to the condition given by Eq. 5.7. Our implementation relies on the solution of
the impurity model using exact diagonalization [59]. Starting with an inital guess for

the bath parameters we obtain the cluster self energy 3., and using the self-consistency

new

condition determine a new Weiss field, QJ L (iwn) In turn, this defines a new hy-

bridization function A(iw, To close the self-consistency loop we project onto a

)HCW‘
finite subspace of bath size N,. This projection is carried out using a conjugate gradi-

ent minimization of the following distance function,

_ 1 SR : new _ A (s Ny
D= VAR nZ::O A(iwy) Al(iwy) (5.14)

where npay is the number of grid points on the Matsubara axis. Although we study the
CDMFT equations only at zero temperature, the self-consistency equations are solved
on the Matsubara axis.

Note: The parametrization of the bath in terms of an Anderson impurity model
of the form discussed above, as we shall see below, provides a powerful tool. But
it is to be noted that this parametrization is not the most general one that can be
conceived. The matrix hybridization function A(iw,) is a function of the parameters
€ko and Vk}; - Strictly speaking, the diagonal and off-diagonal elements of this matrix
are independent of each other and should be parametrized with independent variables.
So the form chosen above in Eq. 5.13 makes an approximation to the most general form
where Vk}; 4 and €, are matrices, rather than vectors. Without loss of generality it is
always possible to diagonalize the €;, matrix. This form for the hybridization and the

underlying Anderson impurity model are given by:

AMV7J(iwn)[6k0,)\C7 kazr,ép] = Z ka?j;ry [an - gk‘U]«_/«} Vk}g,fyu (515)
k
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Figure 5.1: A schematic illustration of the cluster dynamical mean field algorithm

Hipmp = Z EWCLUC,,U +U Z Nyt )
pva 7

+ Z Viwrnyn, + Z €ka,y [alg,yakm + h-C]
w ko,y

h hx
+ Z (Vkmwalwcw + Vkmwciaakw) (5.16)
ko,uv

An exact diagonalization algorithm based on this parametrization involves as many
baths as the number of sites on the cluster and is computationally so expensive that it is
not feasible in dimensions higher than one. We restrict our study to the parametrization

of the bath as specified in Eq. 5.13.

5.3 Determination of the Cluster Self Energy

The first step in the CDMFT iterative scheme is to compute the cluster self energy 3, for
an initial guess of the bath parameters. This can be done using Eq. 5.7 by subtracting
the inverses of the numerically determined cluster Green’s function, éimp(iwn) from

the exactly known Weiss field. Although this is accurate enough for most purposes,
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when the self energy is small, it can introduce numerical errors. To deal with this,
an alternative procedure was proposed in the context of the single impurity Anderson
model [71]. The idea is to isolate contributions to the self energy coming purely from
the hybridization and the interactions. The terms arising from the interactions can be
written as ratios of correlation functions of composite operators leading to a more stable
numerical procedure. We generalize this procedure to the cluster Anderson impurity

model to write the self energy in the form

Seliwn) = Sy (iwn) 4+ Sy (iwy) (5.17)
where
S (iwn) = UL (iwn) |[Gipy| (i) (5.18)
S (i) = KB (i) [é;,;p]:” (itwn) (5.19)
and
FI = < CuaChoCus, Chy > (5.20)
K(l;V = ZV‘W’ < CpuoNys, :LU >
+D Vi K gy chy > (5.21)

l//

Here, < A, B > denotes the Green’s function of operators A and B. This method of
computing the self energy is particularly robust for small values of U/t, when the self

energy is relatively small in magnitude, as compared to the direct approach.

5.4 Results for the Hubbard Model (V' = 0)

In order to highlight the differences between the single impurity (LISA) and cluster
dynamical mean field schemes, we present results obtained for the local spectral gap as
a function of the onsite Coulomb repulsion U. To keep the computational cost similar,
we initially fix the total number of sites in the cluster and bath, N; = N.+ N, = 6, for
both schemes. The exact result for the gap is known from Bethe ansatz and is given

by [72]

_ 162 / VY= (5.22)

d
sinh 27rty/U) Y
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Figure 5.2: Spectral gap as a function of U/t for the half filled Hubbard model.

Fig. 5.2 shows that there is a characteristically different behavior between the single
impurity (V. = 1) and cluster schemes (N. = 2). In the single impurity case, for
U > 7.5t the gap follows the exact result, whereas for U < 7t it reduces to values much
smaller than the exact gap and approaches zero. For the range 7t < U < 7.5t we observe
a coexistence of the gapless and gapped phases. This transition from an insulating to a
metallic phase is an artifact of the mean field approach which incorporates the physics
of higher dimensions where the Mott transition is indeed present. On the other hand,
CDMFT compares excellently to the exact gap and an insulating solution exists through
all finite values of U, in agreement with the well known physics of the one dimensional
Hubbard model. We measure the half spectral gap as the point where the strength of
the lowest frequency pole falls to 25% of its peak height. This percentage is arrived
at by requiring that the gap at strong coupling be fixed at the exact value. We also
find, as expected from the cavity construction and noted recently [69], that in the case

of CDMFT, the bath only couples to sites on the boundary of the cluster, whereas for
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other cluster methods such as the dynamical cluster approximation (DCA), all the sites
in the cluster are equivalently coupled to the bath. The self-consistent procedure is
robust and generates these two different kinds of solutions regardless of the nature of

the starting guess.

0
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Figure 5.3: Imaginary part of the onsite Green’s function (left column) and real part of
the nearest neighbor Green’s function (right column) on the Matsubara axis for different
values of U (in units of ).

To further illustrate the performance of the CDMFT method, in Fig. 5.3 we compare
the onsite as well as nearest neighbor Green’s functions on the Matsubara axis to those
we obtain using the DMRG method. The calculation of dynamical correlation functions
within the DMRG method is carried out using the finite size algorithm [9] combined
with the Lanczos vector method [12,13]. The results shown in the figures are those
for chains with 18 sites and open boundary conditions. We verify that the results are
close to those found by even longer chains and hence representative of the system in the

thermodynamic limit. To highlight the role of the bath within the CDMFT method,
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Figure 5.4: Deviation of LISA and CDMFT Green’s functions from the DMRG results
as a function of the bath size Np.

we also overlay results obtained from exact diagonalization (ED) of a cluster of size
N. = 2, but without the bath. As U decreases, we expect the difference between onsite
Green’s functions from the isolated cluster (ED) and the DMRG to increase, since the
physics becomes less local. The contribution of the bath in CDMF'T therefore becomes
more significant with decreasing U and shows a systematic improvement with bath size
as will be discussed later. Throughout the range of U we consider, the imaginary part
of the onsite Green’s function computed using CDMFT matches remarkably well with
the DMRG curve. On the other hand, a comparison for the real part of the nearest
neighbour Green’s function shows that the self-consistent CDMFT solution achieves
only a marginal improvement over the ED calculation for small U and almost none
for large U. It can be clearly seen that the single impurity approach (LISA) performs
poorly for the onsite Green’s function for all U, except when U is large. Likewise, the
nearest neighbor Green’s function computed using LISA agrees poorly with the exact
result throughout the entire range in U.

An important question to address is the issue of convergence and the nature of the
self-consistent solution as a function of the size of the effective impurity cluster and the
bath. In order to find a satisfactory self-consistent solution, we find that the size of the
Hilbert space allotted to the bath has to be at least comparable to that of the cluster
itself. For instance, clusters of size N, = 2 require a minimum bath of size N, = 4 for
good convergence. Even and odd clusters show qualitatively different types of solutions,
as we discuss further below. In Fig. 5.4 we plot x, a measure of the deviation of the
LISA and CDMFT solutions for the onsite and nearest neighbor Green’s function from

accurate results obtained using DMRG, as a function of the bath size N;. This measure
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X is defined as the integrated absolute difference between the CDMFT (or LISA) and
DMRG Green’s functions.

Let us first discuss the results for the strong coupling case (U = 12t). The onsite
Green’s function computed using LISA compares excellently with DMRG and this con-
tinues to be so with the CDMFT method. There is practically no dependence of x on
the bath size. For the offsite Green’s function, x shows a systematic reduction with
increasing cluster size, but remains fairly independent of the bath size.

For weak coupling, both LISA and CDMFT become exact. The toughest case is
when U is of the order of the bandwidth; so in the following we discuss the results
for U = 2t. For even clusters, we find that x for the onsite Green’s function shows a
systematic decrease with increasing bath size, once a minimum bath size is reached. On
the other hand,  for the offsite Green’s function shows no definite trend with increasing

bath size.
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Figure 5.5: From left to right we show the local spectral functions for sites one through
three in a cluster of size N, = 3 with U = 12t. The bath size is fixed at N, = 6.

Contrary to the expectations for a mean field solution, even cluster sizes (N, = 2,4)
show no explicit local spin symmetry breaking. Odd clusters (N. = 3,5) show similar
behavior for small bath sizes up to Ny = N.. For larger bath sizes, N, > N, and large
enough U, the behavior of the local spectral function is spin dependent as can be seen
from Fig. 5.5 for U = 12t. Odd clusters with broken symmetry are clearly inconsistent

with cluster periodicty and consequently show poorer convergence. Thus, for all even
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clusters and odd clusters with small enough bath sizes, the one dimensional character
of the problem is dominant over the role of the bath and prevents the self-consistency
from showing explicit spin symmetry breaking. On the other hand, odd clusters (we
were able to test only the case N, = 3) with large U and a sufficiently large bath show
a symmetry broken solution consistent with the mean field approach.

The effect of the bath for N. = 3 has an even more dramatic consequence at smaller
U. As opposed to even clusters which correctly see only an insulating solution in one
dimension, we see both a metallic and an insulating solution for N, > 5 and U < 3t.
In the region of coexistence, the metallic solution shows a better convergence than the
insulating one. Thus, the improvement gained in going from LISA to N, = 3 is that
the region of coexistence moves to smaller U’s and the insulating solution is present all
the way upto U = 0. Small baths, due to the absence of enough degrees of freedom to
impose a mean field character to the solution, show an insulating state throughout the
range in U. Beyond N, = 3 for sufficiently large odd clusters, we expect to see only an

insulating solution for all U > 0.

5.5 Results for the EHM (V #0)

In this section we study the performance of cluster mean field methods as applied to
the Extended Hubbard Model. This model constitutes a natural test case since the
non-local nearest neighbor Coulomb repulsion among different sites within the cluster
can be accounted for exactly.

At half filling, for large enough U (strong coupling), the system goes through a
first order transition from a spin density wave (SDW) to a charge density wave (CDW)
ordered state at roughly V' = U/2 [31,39,73]. We work in this regime, by fixing U = 12¢
and scanning through the nearest neighbor Coulomb repulsion V. The CDMFT method
shows a clear signature of this transition with a cluster as small as N, = 2. In Fig. 5.6
we report a comparison of the imaginary part of the onsite Green’s function and the real
part of the nearest-neighbor Green’s function in the SDW phase. As seen in the V =10

case, the comparison with DMRG is better for the former than the latter. We note
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Figure 5.6: Imaginary part of the onsite Green’s function (left column) and real part of
the nearest neighbor Green’s function (right column) on the Matsubara axis for different
values of V' in the SDW phase.
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Figure 5.8: Imaginary part of the onsite Green’s function in the CDW phase.
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Figure 5.9: Real part of the nearest neighbor Green’s function in the CDW phase.

that with increasing V' the offsite Green’s function compares better with the DMRG
result. Figs. 5.7, 5.8 and 5.9 compare the Green’s functions within the CDW phase.
Across the range in V, the agreement with DMRG is so remarkable that only one set
of curves are discernable within the figures. In particular, Fig. 5.7 shows the real part
of the onsite Green’s function which is zero in the SDW phase but acquires a non-zero
value in the CDW phase. This indicates a breaking of local particle-hole symmetry of
the system that is now conserved only on the average every two sites. Notice how the
curves for different values of V' cross, defining a characteristic scale approximately equal
to U. The versatility of CDMFT in being able to treat the ordered phase stems from the
fact that it only assumes supercell periodicity and consequently allows for complicated
ordered states within a cell. This is in contrast to the DCA method that assumes
full periodicity of the lattice, and therefore requires a fine discretization in momentum
space to adequately capture the discontinuities in the Brillouin zone that appear with

the emergence of short range ordered phases.
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Figure 5.10: Schematic representation of an RG procedure intended to reach large cluster
sizes.



7

5.6 Conclusions and Outlook

We have shown that the CDMFT method produces remarkably good results when tested
in one dimensional systems. This is very encouraging, since one would expect mean field
methods to perform even better as the dimensionality increases. We saw that even the
smallest possible cluster size (V. = 2) along with a self-consistent bath of modest size
allows for an accurate determination of onsite correlations, while the offsite quantities
improve systematically with increasing cluster size. Furthermore, the success of our
extension of the CDMFT equations to describe the discrete broken symmetry of the
CDW order clearly demonstrates the power of the method to incorporate short range
correlations.

Following the example of the EHM, with the simplest kind of short range correlation,
it should be possible to treat the physics of more complicated ordered phases as well
as unit cells of realistic materials within the cellular mean field approach. The main
obstacle in this program is the computational effort that goes into solving the self-
consistent equations for the large clusters required by real world applications. This
calls for a systematic approach that blends together cluster dynamical mean field and
renormalization group ideas [5,8,9] to select the most relevant degrees of freedom to
represent a cluster.

We suggest that the CDMFT approach can be used iteratively in complete analogy
with the density matrix renormalization group approach. It is useful to compare the
similarities and differences between these two methods. In both of them, one improves on
the exact diagonalization of a small finite size system by embedding the small system
in a larger one; an embedding which can be described by a reduced density matrix.
Within DMRG the density matrix is determined by an exact diagonalization of the
larger system containing the subsystem of interest. In CDMFT, one can approximate
the density matrix by modelling the environment with a Gaussian Weiss field.

The CDMFT assumption of a self-consistent Gaussian bath as the environment,
that one can integrate out exactly in order to define a reduced density matrix for the

cluster, becomes more and more accurate as the dimensionality increases. This choice
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of bath is optimal in a dynamical mean field sense (optimized for the computation of
the local one particle Green’s function of the cluster) and sidesteps the conventional
DMRG procedure for building the reduced density matrix out of a few target states.
Further, the DMRG prescription [8] of selecting the states for which the reduced density
matrix has the largest eigenvalues allows for a truncation of the cluster Hilbert space
while retaining the relevant physical information. In Fig. 5.10 we indicate schematically
how such a method would proceed by doing CDMFT on small clusters, truncating their
Hilbert space using the DMRG prescription and finally using them as building blocks of
even larger clusters. This procedure can be repeated until either a desired cluster size or
convergence in a certain observable of interest is reached. We believe this scheme should
open new vistas for numerical renormalization group calculations of realistic systems in

two and three dimensions.
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Chapter 6

The CDMFT Program

In this chapter we discuss a computer program to the solve the CDMFT self-consistency
equations using the exact diagonalization method. We restrict ourselves to zero tem-
perature and utilize the Lanczos method (discussed in Chapter 3) to solve the Anderson
impurity model.

Apart from the routines we discuss below, one needs two programs that can be
typically found in Numerical library packages such as LAPACK, NAG or Numerical
Recipes. The first program is one that solves for all the eigenvalues and eigenvectors of
a real symmetric tridiagonal matrix after the Lanczos step. The second program is one

that can invert a general complex matrix. The main routines in our program include:

e global.f90: This module serves the purpose of making global variables available
wherever needed with the command USE global. The precision of all real and
complex variables in the program can be set by a single variable, which we call
DBL, and is initialized here. The key parameters declared in this module include
the number of sites in the cluster impurity, Nc, the number of sites on the bath, Nb
and the total system size, Ns=Nc+Nb. The total z-component of the spin, S, is a
conserved quantity, and we exploit the block diagonal nature of the Hamiltonian by
restricting to sectors with fixed number of up and down spin electrons, denoted by
nup and ndo respectively. Nsmax denotes the maximum size of a sector for a fixed
system size, Ns. Next, we define the parameters of the Hubbard Hamiltonian,
the hopping t, the onsite Coulomb repulsion U, the nearest neighbor Coulomb
repulsion V and finally the chemical potential mu. Hopping in real space within
the cluster is stored in the array Emat (of size NcxNc) and in Fourier space in

the array tk, defined on a grid of Nk k-points. The bath is parametrized in
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terms of the site energies stored in epsi and the hybridization in Vmat. We allow
for these to be determined independently for both up and down spin. Other
parameters we define in this module include the maximum number of iterations in
the Lanczos procedure, the CDMFT scheme and the conjugate gradient routine.
The Hamiltonian is stored in the same sparse matrix notation as described in the
DMRG program in Chapter 3. Lastly, we define the hybridization function (Delta
and Deltret), the cluster Green’s function (Gimp and Gret) and the self energy
(self and selfret), on the imaginary and real frequency (retarded) axis with

allocatable arrays.

input.f90: As the name suggests, this routine is used to provide the parameters
of the Hubbard Hamiltonian and the starting guess for the bath in the Anderson
impurity model. Also assigned here are the values for the size of the cluster,
the bath, the maximum number of iterations and tolerances for convergence for
the Lanczos and CDMFT procedures, the size of the grid in k-space and on the

Matsubara and real axis for the Green’s functions and self energies.

buildbasis.f90: This routine builds the set of basis states given a fixed value of
S, and a fixed system size. The basis states are represented by integers, which is
explained in the following example. If we have, say, 2 sites in the cluster and 4

sites in the bath then a typical configuration with, say, 6 electrons would be:
(Ielj{eo@lele 0});@(l® Je{0 ® 0 @1® 0}),

In the above configuration, the square brackets enclose the sites on the cluster
and those within curly braces represent sites on the bath. The string of 1s and
Os represent occupied and empty sites, respectively. The left half of the string
represents spin-up and the right half the spin-down basis. The string of 12 spinless
sites with a 0 or 1 can now be imagined to be the binary representation of an
integer, by assigning weights, (2°,2'---2'1). This choice of representing a basis
state as an integer is useful because the intrinsic manipulation of bits on the
computer is a very fast operation and can be used to achieve highly optimized

code. The basis states are sent as output by the routine buildbasis into an array
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called Nstock. The sizes of different sectors are themselves stored in an array,

Nstates.

create/destroy: These routines carry out the action of a fermionic creation or
a destruction operator on a given basis state. The input constitutes the location
of the site, and the basis state represented by an integer. The output is again an
integer and a plus or a minus sign resulting from the anticommuting nature of
fermionic operators. The actual task is done quite efficiently by using the intrinsic
function IBSET (in create) or IBCLR (in destroy) which either raise a bit from 0
to a 1 or lower it from a 1 to a 0 at the appropriate location. These routines are
used in both building the Hamiltonian as well in obtaining the starting Lanczos

vectors for constructing dynamical correlation functions.

hamil.f90: This routine builds the Anderson impurity cluster Hamiltonian in a
sparse matrix notation (refer to Chapter 3) in a sector with fixed number of up and
down spin electrons. It makes calls to create and destroy to build the matrix
elements of the Hamiltonian. This is optimized by the use of bit operations on
the basis states which are stored as integers. The logical operator BTEST is used

to check the value of a bit, to create or destroy a particle on a particular site.

anderson.f90: This subroutine is the impurity solver. With an outer DO loop
over nup and ndo, it builds the basis in a sector with fixed S, (by calling buildbasis),
then builds the Hamiltonian by calling hamil.f90, makes a call to lanczos in or-
der to obtain the ground state eigenvalue and eigenvector in each sector and finally
obtains the global ground state gsvec. For each sector, initvec is a complex ran-
dom vector sent to the Lanczos routine along with the Hamiltonian to obtain the
ground state evec. The ground state sector (or sectors) are stored in variables
nupgs and ndogs. Once the ground state eigenvector and eigenvalue have been
obtained, the next task is to build the cluster Green’s function. This is performed
for each ground state by calls to diagcorrel.f90 and the results are averaged over
the number of ground states, ngs. The Lanczos iterations require the Hamiltonian

in the appropriate sector (ground state plus or minus a particle) and hence we call
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buildbasis and hamil.f90 before calling diagcorrel.f90.

diagcorrel.f90: As the name suggests, this routine computes the impurity clus-
ter Green’s function within the continued fraction representation. To construct
diagonal parts of the cluster Green’s function, (T'A(t)Af(t")), the starting vec-
tor to perform Lanczos iterations is alternately A|G'S) and AT|GS), for the hole
and particle portions, respectively. This starting vector in the program is named
actongs and building it requires access to both the basis states of the ground state
as well as those in sectors with one less or one greater particle than the ground
state. The ground state basis is stored in Nstockgs and the particle or hole sector
is stored in Nstock. To use a continued fraction representation for off-diagonal
Green’s functions of the type, (ABT) (suppressing the time labels for compactness
of notation) as well, we construct Green’s functions with suitable combinations of

A and B. Therefore, if we define,
C=A+B , Gc=(CCh, (6.1)

D=A+iB , Gp= (DD, (6.2)

then the off-diagonal Green’s function, (ABT) can be expressed as:
2AB"Y = Go —iGp — (1 —i)(Ga + GB) (6.3)

The basic operation involved in the Lanczos procedure is the multiplication of
a Hamiltonian matrix with a vector. This task cannot be done by an intrinsic
function of Fortran 90 such as MATMUL since the Hamiltonian is stored in sparse
matrix notation. It is done by the routine atimex. The coeflicients of the continued
fraction expansion obtained after a fixed number of Lanczos steps, Nlanc, are
stored in arrays Af and Bf and sent to the routine computegreen. This routine

actually builds the Matsubara, retarded and advanced Green’s functions.

cluster.f90: This is the main program which controls the sequence of calls to
other routines. The first step is to initialize the sizes of various allocatable ar-

rays which store the cluster Green’s functions, the hybridization function, the
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self energy and lattice Green’s functions. Since the self-consistency equations are
solved on the Matsubara axis, all the above functions are defined over a grid of
Nw points in imaginary frequency. The real frequency information is also stored in
corresponding arrays for output. Before the call to input is made for obtaining
the parameters of the Hamiltonian as well as the starting guess for a solution,
the Fourier transform of the hopping matrix on the cluster, tk, is defined over a
grid with Nk k-points. The parameters for a starting guess of the self-consistent
solution, epsi (bath site energies) and Vmat (cluster-bath hybridization) are then
obtained by a call to the subroutine input. The next step is to obtain the initial
hybridization function Delta and call the subroutine anderson to solve for the
ground state and impurity cluster Green’s function. Subsequent to this, we build
the cluster self energy using the Dyson equation. This self energy is then used
in the self-consistent CDMFT equations to obtain the lattice Green’s function
Gloc and the new hybridization function, named Deltanew. The new hybridiza-
tion function is projected onto a discrete bath using a call to the routine search.
These new bath parameters are compared to the starting guess (or a previous
iteration) by defining a distance, chisq. This distance, chisq, is defined as the
absolute difference between the hybridization functions in consecutive CDMFT
iterations. If the distance is smaller than a specified tolerance, the CDMFT self-
consistent solution has been obtained, otherwise we begin the next iteration with

a call to the routine anderson with new bath parameters.

search.f90 This is the routine responsible for the crucial task of projecting the
hybridization function obtained from the CDMFT self-consistency condition in
cluster.f90 onto a discretized functional subspace with a finite number of bath pa-
rameters to start a new iteration. The projection is achieved by using a conjugate
gradient routine called minimize to minimize a defined distance between the dis-
crete and continous hybridization functions on the Matsubara axis. This distance
is computed by the subroutine energy. The total number of parameters (epsi and
Vmat) to be varied is 2Nb(2Nc+1) and is denoted by nbparm. The actual proce-

dure is as follows. First, the existing parameters from a previous iteration stored
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in arrays epsi (of size Nbx2) and Vmat (of size Nbx2xNc) are arranged into a one
dimensional array xtemp. This is done efficiently by the intrinsic function PACK.
This array xtemp is the starting guess to fit the new hybridization function and
is sent as input to the routine minimize. In the subroutine minimize, xtemp is
varied to minimize the distance defined in energy with a specified tolerance. The
subroutine energy performs the reverse task of rearranging the one dimensional
array xtemp after each conjugate gradient iteration into epsi and Vmat, using the
intrinsic function RESHAPE and then computing a distance from the hybridization
function to be projected. The parameters for a new CDMFT iteration are deter-
mined as a weighted average of those found by the conjugate gradient routine and
the parameters from a previous iteration to increase the stability of the iterative

procedure.
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Chapter 7

Summary, conclusions and outlook

Many of the systems of interest in quantum-many body physics are characterized by low
dimensionality and strong interaction, rendering the investigation of even the simplest
models a difficult task. There is a huge dearth of analytical methods in dimensions
higher than one. This circumstance has in the past decade stimulated huge advances
in the development and use of computational methods for quantum many-body sys-
tems. Numerical methods have come a long way from brute force exact diagonaliza-
tion of a Hamiltonian on finite clusters [1,4] to elegant renormalization group algo-
rithms [5,8,9]. The density matrix renormalization group (DMRG) method and the
dynamical mean field theory (DMFT) [2] are probably two of the most powerful nu-
merical quantum many-body methods developed in the past decade and are central to
this thesis. The DMRG method has been highly successful in elucidating the properties
of one-dimensional quantum many-body systems. The DMFT, on the other hand, is
a self-consistent mean field approximation which becomes exact in the limit of infinite
dimensions. It has given new insights and predicted various qualitative trends in the re-
distribution of spectral weight as temperature, pressure and doping are varied in optical
and photoemission experiments near the Mott transition.

In recent years, several materials have been discovered that allow the investiga-
tion of the properties of the 1D electronic state under the influence of both strong
electron-lattice and electron-electron correlation. These quasi one-dimensional systems
include materials such as SrCuOs, SroCuQs, conjugated polymers and Ni halides [16-18]
amongst several others. These systems, well described as Mott insulators, have remained
a challenge to existing theoretical methods. Non-perturbative studies of the dynamical

response in these systems have largely been restricted to the continuum limit [22,23] and



86

very little was known about the lattice problem. In this thesis we have presented some
insights that have been obtained into the optical response, charge gap and the behavior
of excitons in one-dimensional Mott insulators utilizing the DMRG method. We have
used the finite size algorithm of DMRG with open boundary conditions to develop our
computer program. Dynamical correlation functions were computed by targeting the
appropriate Lanczos vectors. We have shown how a Mott-Hubbard exciton, a bound
state between a double occupancy and an empty site in a background of singly occupied
sites, can be formed in the presence of a nearest-neighbor Coulomb repulsion, V', within
the one-dimensional Hubbard model [73]. We compute the current-current (optical re-
sponse function) and kinetic-kinetic (Raman response function) correlators as a function
of the nearest-neighbor Coulomb repulsion as the system undergoes a transition from a
spin density wave (SDW) to a charge density wave (CDW) state. We also compute the
local spectral function over the same range in V. Within the SDW phase, the spectral
gap remains constant until a critical value of V' is reached and then rapidly goes to zero
near the SDW-CDW phase boundary. At V' = 0 the optical and Raman response func-
tions show a broad feature representative of the Mott insulating gap centered around
U. As V becomes non-zero, an excitonic feature starts to develop in both the optical
and Raman response functions around the same critical value of V' as in the case of the
spectral function. With a further increase in V', the excitonic feature gains in optical
weight, reaches a maximum and then vanishes near the SDW-CDW boundary. Although
a Mott-Hubbard exciton can be described as a bound pair of excitations with opposite
charges, the Coulomb interaction at the same time determines the size of the Mott gap,
the exciton properties, and the coupling of the exciton to the other electrons in the
system. Therefore, an increase of the Coulomb interaction strength does not simply
bind the exciton more tightly, but also renormalizes the gap and couples the particle-
hole excitation more strongly to the other electrons. This leads to a non-monotonic
behavior in the properties of the Mott-Hubbard exciton as a function of the Coulomb
repulsion strength, for example, its optical weight, and even to instabilities toward the
formation of charge-density wave droplets. The exciton binding energy is comparable to

the optical gap itself and hence the problem is highly non-perturbative. This should be
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contrasted with the excitons in conventional band insulators which exhibit a monotonic
behavior as a function of the Coulomb repulsion strength due to the large separation
in energy scale between the band gap and the binding energy of the excitons. Due
to strong correlation and low dimensionality, electrons within the 1D Hubbard model
are known to decouple into new elementary excitations, namely, spinons (a chargeless
spin-1/2 object) and holons (a spinless object with unit charge) [43]. This necessitates a
careful treatment of the full many-body problem. The Lanczos method combined with
the DMRG approach is a powerful non-perturbative tool for computing the dynamical
correlation functions of a non-trivial system like this. Our numerical approach and the
generality of our computer program permits us to easily include other ingredients such
as explicit dimerization and interchain hopping which are present in these materials in
order to allow for a detailed quantitative comparison with experiments in the future.

A closely related problem of much interest, on which the DMRG approach may
shed light and which is under investigation, is that of the phase diagram of quasi-
one-dimensional organic compounds TMTTF and TMTSF and their unusual metallic
behavior [44-46]. These materials are believed to be quarter-filled Mott Insulators
and close to the Mott transition point. By varying the anistropy of the system and
the energy scale at which it is probed, a wide range of behaviors has been reported.
The metallic phase shows a broad feature representative of the Mott insulating gap,
carrying a majority of the spectral weight and a very narrow Drude peak. Thus, these
compounds are very far from being Fermi liquids and present interesting challenges.
Also of substantial interest by itself is an understanding of the dynamical properties of
the quarter filled one-dimensional extended Hubbard model (EHM) and is being studied
at the time of writing this thesis.

In the thesis, we have also considered the limit of infinite dimensionality, in partic-
ular, a method wherein clusters of sites are embedded in a self-consistent medium [53].
This method incorporates short range correlations, k-dependence of the self energy as
well as dimensionality which are missing in the original single impurity dynamical mean
field theory (DMFT) [2]. We solve the self-consistent equations for the cluster-DMFT

(CDMFT) in the worst case scenario, viz., the one dimensional extended Hubbard model
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using the exact diagonalization approach. We compare with DMRG and find that even
the smallest possible cluster size (N, = 2) along with a bath of modest size provides
an accurate description of the onsite correlations, while the offsite quantities improve
systematically with increasing cluster size. This is very encouraging, since one would
expect mean field methods to perform even better as the dimensionality increases. We
also extend the CDMFT equations to describe broken symmetry and study dynamical
correlations in the CDW phase to find an excellent agreement with calculations using
the DMRG method. Following the example of the EHM, with the simplest kind of short
range correlation, it should be possible to treat the physics of more complicated ordered
phases as well as unit cells of realistic materials within the cellular mean field approach.
The main obstacle in this program is the computational effort that goes into solving
the self-consistent equations for the large clusters required by real world applications.
This calls for a systematic approach that blends together cluster dynamical mean field
and renormalization group ideas [5,8,9] to select the most relevant degrees of freedom
to represent a cluster.

We observe that both DMRG and CDMFT involve the embedding of a finite size
system in a larger one to describe the smaller system as part of the infinite lattice.
Based on this, we have proposed a new approach that blends the CDMFT (derived
from the limit of infinite dimensions) and the DMRG (successful in one dimension)
ideas to perform calculations for realistic systems in two and three dimensions. The
CDMFT assumption of a self-consistent Gaussian bath as the environment, that one
can integrate out exactly in order to define a reduced density matrix for the cluster,
becomes more and more accurate as the dimensionality increases. This choice of bath is
optimal in a dynamical mean field sense (optimized for the computation of the local one
particle Green’s function of the cluster) and sidesteps the conventional DMRG procedure
for building the reduced density matrix out of a few target states. Further, the DMRG
prescription [8] of selecting the states for which the reduced density matrix has the
largest eigenvalues allows for a truncation of the cluster Hilbert space while retaining
the relevant physical information. Schematically, such a method would proceed by doing

CDMFT on small clusters, truncating their Hilbert space using the DMRG prescription
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and finally using them as building blocks of even larger clusters. This procedure can
be repeated until either a desired cluster size or convergence in a certain observable
of interest is reached. We believe this scheme should open new vistas for numerical
renormalization group calculations of realistic systems in two and three dimensions.
The directions for future work with the CDMFT method are numerous and several
investigations are underway. One of the problems being investigated is the nature of
the spectral weight as a function of doping. The physics of the Hubbard model in
two dimensions at zero temperature is a subject of intense interest and quite an open
problem. We are currently studying this model at and away from half-filling. Prominent
amongst the questions under investigation is whether there is a correlation driven Mott
transition at half-filling as in higher dimensions. Also of interest is the nature of the
spectral weight and the closing of the gap in the doped case. Following our extension
of the CDMF'T equations to incorporate broken symmetry, we are also investigating
the competition between antiferromagnetism and d-wave superconductivity in a doped

cluster in 2D.
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