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ABSTRACT OF THE DISSERTATION

Orbital selective Mott transition in 3d and 5f

materials

by Antonina Toropova

Dissertation Director: Professor Gabriel Kotliar

We study two types of strongly correlated electron systems in the example of the
transition oxide CrO, and actinide series. We found that the physics of both types
of materials can be interpreted and discussed using concept of orbital selective
Mott transition (OSMT). The theory of OSMT is discussed in framework of the
multiorbital Hubbard model applied to the description of ¢5, orbitals of Cr atoms
in chromium dioxide as well as in the framework of a more generalized model for
5f materials containing both Hubbard-like and Anderson-like contributions.

The electronic structure, transport, and magnetic properties of selected com-
pounds are investigated by means of Ab Initio calculations. The many body
techniques such as LDA+U and dynamical mean field theory (DMFT) have been
used in addition to density functional based local density approximation (LDA)
method.

The half-metallic ferromagnet CrOs has been shown to demonstrate effectively

weakly correlated behavior in ordered state due to big exchange splitting within

tyy orbitals. The detailed DMFT study with Quantum Monte Carlo (QMC)

11



impurity solver revealed that in the paramagnetic state this compound was on
the edge of a quantum transition.

In the case of the actinide series we first demonstrated the choice of basis which
optimum for DMFT based calculations. By means of detailed one-electron band
structure analysis we showed that hybridization term of 5 f-orbitals with conduc-
tion electrons must be included in the actinide Hamiltonian due to permanent
presence of uncorrelated states at Fermi level. We conclude study of 5 f-materials

presenting tight-binding parametrization and exploring magnetic characteristics.
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Introduction

The main goal of condensed matter physics is to understand and accurately de-
scribe various states of matter and possible transitions between them. The last
one and a half centuries of discovery shows that generally, with rare exceptions,
new ideas in the solid state physics come from experimental observations. In keep-
ing with this trend, in the last two decades the discovery of heavy fermion com-
pounds and high- temperature superconductivity has revolutionized condensed
matter physics and well-established views on the role of correlations between
electrons. Ever-growing classes of materials that lie outside of the conventional
weakly-interacting solid-state paradigm stimulated the explosion in theoretical
proposals for novel quantum states involving spin, orbital, charge, and ionic de-
grees of freedom.

The fundamental basis for understanding materials ultimately rests upon un-
derstanding their electronic structure [16]. The challenge for the electronic struc-
ture theory is that on one hand it requires detailed modelling of real materials
involving such specifics as atomic charge and lattice structure, but on the other
hand must provide universal quantitative methods which are not limited to any
particular type of bonding. With rapid advances in basic theory, new algorithms,
and computational physics the field of electronic structure is at a momentous
stage. Increasingly, electronic structure calculations are becoming tools used by
both experimentalists and theorists to understand the characteristic properties of
matter and to make the specific predictions for real materials and experimentally

observable phenomena.



Now condensed matter physicists have a firm understanding of weakly corre-
lated materials such as conventional metals and semiconductors. The quantitative
techniques applicable to electronic structure calculations for these materials are
developed and well tested. These techniques naturally fall into two categories
designed, respectively, to describe electronic ground state and electronic excita-
tion spectra. The the most popular “first principle” method used by electronic
structure community to calculate ground state properties is density functional
theory [17, [18], especially in the local density and generalized gradient approx-
imations (LDA and GGA) [19]. These methods can also be effectively used as
starting points for perturbative computation of one-electron spectra [20]. Even
though density functional methods have been proved to be very successful in treat-
ing weakly correlated compounds they often fail to capture the correct physics in
strongly correlated materials [21].

By strongly correlated electron systems one refers to complex materials, with
electrons occupying active 3d (transition metals), 4f (lanthanides), or 5f (ac-
tinides) orbitals. The excitation spectra in these materials can not be described
in terms of well-defined quasiparticles, making conventional band theory insuf-
ficient. The exploration of electronic structure of strongly correlated materials
became possible with introduction of new concepts such as Hubbard bands and
narrow coherent quasiparticle bands [21].

The exotic properties and complex phase diagram of strongly correlated ma-
terials result from competing interaction terms in their Hamiltonians. Thus,
Mott-Hubbard metal-insulator transition [22 23] one of the central topics of the
strongly correlated field, originates from the competition between tendencies of
the correlated electrons to delocalize due to their kinetic energy and localize due
to the Coulomb interaction between them. The tendency to delocalize leads to
the band formation and in the limiting case has a simple description in momen-

tum space. On the other hand, tendency to localize leads to atomic-like behavior



which is well described in real space. The crossover is difficult to treat theoreti-
cally even on the level of models since the electron kinetic energy and interaction
energy are of the same order of magnitude and there is no natural small parameter
to develop perturbation theory around either metallic or atomic limits.

The dynamical mean field theory (DMFT) [21] is the framework which offers
a minimal description of the electronic structure of correlated materials, treat-
ing both the atomic Hubbard bands and metallic quasiparticle bands on the same
footing. This method is based on the mapping of the full many-body problem onto
a quantum impurity model, which is essentially a small number of quantum de-
grees of freedom embedded in a bath that obeys a self-consistency condition [20].
DMEFT studies of one-band Hubbard model dramatically improved understanding
of bandwidth-controlled Mott-Hubbard transition [24], 25]. This success stimu-
lated further application of the DMFT to investigate properties and phase dia-
grams of many other models, among them multiorbital Hubbard model [26, 27],
periodic Anderson model [28, 29], and the Kondo lattice [29].

The necessity to understand and describe electronic structure of real strongly
correlated compounds resulted in combinational method of LDA and DMFT
(LDA+DMFT). This technique treats the light s, p (sometimes d) orbitals, which
have extended wave functions, in the LDA and the localized d or f orbitals in the
DMFT framework.

Further, the rich physics of real materials stimulated the investigations of
Mott transition in more general models than one-band Hubbard model. Many
strongly correlated materials, including the ones considered in this thesis, CrOq
[30] and the actinide series materials [31], have partially filled bands of very dif-
ferent width near the Fermi level. In these circumstances, the nature and the
scenario of transition from a weakly correlated metal to an insulating state with
increasing interaction U is ambiguous and still not well understood. In partic-

ular, the question was raised whether all bands undergo a common transition



at the same critical Coulomb energy, or whether a separate, orbital-dependent,
delocalization-localization transitions can take place in a subset of bands. The
qualitative idea in the later scenario is that when two bands differ substantially
in bandwidth, there should be a sequence of Mott transitions as the interaction
strength is increased. First, the most narrow band undergoes a localization transi-
tion with a broader band remaining itinerant, while at large U both bands become
localized. This phenomenon is known by the name orbital selective Mott transi-
tion (OSMT) and currently is a subject of numerous investigations in condensed
matter community.

Most of the work so far has focused on the case of half-filled symmetric bands.
The results are inconclusive yet. Even in the framework of DMFT, on the level of
two-band Hubbard model there are studies reporting single Mott transition [27],
and studies which have shown that OSMT is possible when ratio of the band-
widths of narrow and broad bands is small enough [32], 26, 33]. The source of this
controversy might be hidden in the fact that in the vicinity of Mott transition
different techniques, applied to solve the impurity problem, give slightly different
values of critical U, and hence very different spectra for a given value of U [20].

In real materials the bands are not necessarily symmetric and their center
of gravity may be shifted relative to each other. Crystal-field effects and the
Coulomb exchange energy (J) affect the energy of on-site atomic states, which no
longer depend only on the total local charge as in the orbitally degenerate case. A
fundamental issue is how crystal-field splittings and spin-orbit splitting are renor-
malized by many-body interactions, since they both are relevant perturbations
and can modify dramatically the nature of the OSMT.

This thesis deals with two selected classes of strongly correlated electron sys-
tems: chromium dioxide and the actinide series materials. We carry out realistic
modelling of chosen materials adopting conventional electronic structure tools

such as LDA, LDA+U, and DMFT, and developing new ones for the electronic



structure analysis. The considered compounds have in common the presence of
unfilled bands with substantially different bandwidth at the Fermi level. Also,
both systems are on the edge of localization-delocalization transition. Thus, we
presumed that the interpretation of the physics of both types of materials within
the concept of OSMT would provide original and fruitful discussion. In the case of
CrO, we discuss possible scenarios of OSMT in the framework of the multiorbital
Hubbard model applied to the description of 5, orbitals of Cr atoms. In chapters
devoted to actinides, we consider a Hamiltonian which includes terms of both
multiorbital Hubbard model and the periodic Anderson model. Here the OSMT
point of view is justified by the coexistence of broad 7s, 6p, 6d, and narrow 5f
bands near the Fermi level.

This thesis is organized as follows. In Chapter 1/ we introduce Ab Initio meth-
ods used throughout the later chapters: LDA, GGA, LDA+4U and DMFT. Chap-
ter 2 is devoted to the ground state and transport properties of chromium dioxide.
Despite its great technological importance [34] the electronic structure of this rare-
earth oxide has not been previously understood. Here we address the problem of
the importance of strong correlations for the electronic structure, transport and
magnetic properties of half-metallic ferromagnetic CrOs by performing density
functional electronic structure calculations in LDA scheme as well as using the
LDA+U method. We show that the corresponding low—temperature experimen-
tal data are best fitted without accounting for the Hubbard U corrections. We
conclude that the ordered phase of CrO, can be treated as weakly correlated.

In chapter 3 we proceed with a DMFT treatment of CrO4 at finite tempera-
tures. The Quantum Monte-Carlo technique has been applied to observed OSMT
in this compound. Moreover, CrO, has been shown to be on the edge of a quan-
tum transition.

Chapter |4 deals with the actinide series and presents detailed analysis of

the one-electron band structure in the specific examples of curium, plutonium



and uranium. In Chapter 5 we perform a tight-binding (TB) parametrization
of selected actinides. Here we show that the physics of actinides is governed by
nearest-neighbor hoppings. The detailed comparison of our TB parametrization
to the earlier reports in literature concludes chapter 5.

Curium is the first element from the actinide series experimentally known to
develop a macroscopic magnetic moment. In chapter 6l we calculate the exchange
constants and Néel temperature for this material and compare them to exper-
imental values. We conclude in chapter 7 with a summary of the thesis, and

directions for the future work.



Chapter 1

LDA, LDA+U and LDA+DMFT from the
perspective of effective action formalism

Here, we use unified functional approach to introduce electronic structure meth-
ods, used in the later chapters of the thesis. First, we review the abstract concept
of the effective action formalism. Then, we apply this concept to derive equations
of the density-functional theory (DFT) in its local density approximation (LDA).
Then we discuss methods that go beyond the LDA and designed to be applied to
strongly correlated systems: LDA+U and LDA+DMFT.

1.1 Effective action formalism

Effective action as a term refers to a generalized action functional, constructed
within concept of Legendre transformation. As a formalism, Legendre transfor-
mation is proven to be one of the most convenient and systematic techniques in
discussing field theoretical many particle systems. It allows to rewrite theory by
small number of selected variables [35].

The effective action approach for the density-functional theory was introduced
by R. Fukuda et al. [35]. Then G. Kotliar et al. [20] demonstrated that the ef-
fective action formalism provides simple and intuitive construction of many other
electronic structure methods, differing by the choice of observables or variables of
interest. Thus, as we show below, density-functional theory is constructed with
electron density being the observable. LDA+U introduces additional variables

which are occupancy numbers for the correlated orbitals. In DMFT local Green’s



function serves as a variable of interest.

Here we briefly sketch the idea of the effective action formalism. One begins

with the partition function of the system,

7 — exp(—F) = /D[zpw]eS, (1.1.1)

where F' is free energy, S is the action for a given Hamiltonian, and v is a
Grassman variable. Then one selects the observable A, and couples source J to
this observable. The source J allows to probe the variable A and at the end of
calculations will be set to zero. The modified action is " = S+ AJ, and the free
energy F'[J] is now a functional of source J. A Legendre transformation is then

used to eliminate the source in favor of the observable yielding a new functional,
['[A] = F[J[A]] — AJ[A]. (1.1.2)

The variational derivative of I'[A] with respect to A yields J. Since we are
free to set the source to zero, the extremum of I'[A] gives the free energy of the
system.

The effective action approach is advantageous since useful approximations to
the functional I'[A] can be constructed in practice using the inversion method [20].
The approach consists of carrying out systematic expansion of the functional I'[ 4]
to some order in a parameter or coupling constant A\. The action is written as

S =Sy + AS7 and then a systematic expansion is carried out,

T[A] = To[A] + ATY[A] + ..., (1.1.3)

J[A] = Jo[A] + AL [A] + .. .. (1.1.4)

The system described by Sy + AJy reproduces the correct value of A by con-
struction and can be considered as a reference system for the fully interacting

problem. Moreover, when observable A is properly chosen other observables of



the system can be obtained perturbatively from their values in the reference sys-
tem. Jy[A] is a central quantity in this formalism and is referred as ”constrained

field”.

Further, the functional I'[A] can be rewritten as,
['[A] = To[A] + AT'[4], (1.1.5)
and since ['g[A] = Fo[Jo] — AJy, we can consider
L[A, Jo] = Fol[Jo]) — Ado + AT'[4] (1.1.6)

as a functional which is stationary in two variables, the constraining field .Jy and
A. The equation 0AI'/0 A = Jy[A] together with the definition of Jy[A] determines
the exact constraining field for the problem.

In practice we decompose AI' = Fy + FE,., where Hartree contribution Epy
can usually be evaluated explicitly. The success of electronic structure method
depends strongly on obtaining good approximations to the “generalized exchange
correlation” FE..

In the subsequent sections we apply the abstract procedure described above

to the derivation of the equations of density-functional based methods.

1.2 Density-functional theory

Density functional theory [17, [18] is very popular and basic tool to study weakly
interacting electronic systems. Here, for the sake of transparency of the deriva-
tion, we construct non spin—polarized version of DFT first, generalizing to the
relativistic case in the next section. The central quantity of DF'T is the density of
electrons p(r). It is used as a physical variable in derivation of DFT functional.

Let’s consider a fermion system that is coupled to an external time-dependent



10

source field J(z). Here x = (r,7,0) denotes the space-imaginary time coordi-

nates and spin. The action of the system is

S'J] =8+ /da:J(JJ)@DT@)@D(:B), (1.2.7)

where S is action without source

S = /dwa(x)(?Tw(m) +/d¢H(T). (1.2.8)

For the system consisting of electrons moving in a external potential V,,,(z) and

interacting via Coulomb interactions V' the Hamiltonian H is
H=Y" / dr it (0)[=V2 + Viws () — i () (1.2.9)
1
43 3 [ drdr vl u @)V (x - ¥,

w1 stands for chemical potential, for the sake of conciseness we put it to zero
through the entire chapter.

The partition function Z becomes a functional of the auxiliary source field J,
7 = exp(—FLJ]) = / Dlutle5M. (1.2.10)

The effective action for the density, i.e. density functional is obtained as the

Legendre transform of I with respect to p(z):

Towrlp] = FIJ) ~ [ daJ(a)o(a) (1.2.11)

The construction of standard DFT restricts source J to be time independent.
The minimum of functional [1.2.11] gives the true density and the total energy.
The density appears as the variational derivative of the free energy with respect

to the source
oF

p(r) = 570 (1.2.12)

To construct approximations to the functional I'ppr it is very useful to intro-

duce the Kohn-Sham potential, Vg, which is defined as the potential such that



11

when added to the non-interacting kinetic energy, it produces the given density
in a reference system of non-interacting particles, i.e.
p(r) =T > (or|(iw, + V?/2 = Vics) Hor)e™". (1.2.13)
The exact functional can ZIOW be viewed as a functional of two variables
Torr(p, Vics) = —TZ Trlog(iw, + V?/2 — Vig) — / Vis(r)p(r)dr (1.2.14)

1 /
+§/%drdr’+/%xtﬂ(r)dr+Ewc[p]'

Further, I'ppr(p) is obtained by substituting Vi s(p) as a solution of equation1.2.13
(which makes 1.2.14 stationary) into I'ppr(p, Viks). Ei(p) is the exchange-
correlation energy which is a functional of the density and not of the external
potential.

Extremizing [1.2.14/ with respect to p gives

Vies(l = [ %dd V()] + Ve 0, (1.2.15)

where V,.(r) is the exchange-correlation potential obtained as

5E:1:c

=V,.. (1.2.16)

Since E,.(p) is not known explicitly some approximations are needed. The LDA

B = [ plr)esclpte), (1:2.17)

where €,.[p(r)] is the exchange-correlation energy of the uniform electron gas,
and is easily parameterized. In practice one frequently uses analytical formulas,
which are empirically designed to fit a functional form to Quantum Monte Carlo
(QMC) calculations. Particularly, in this thesis we used analytical approximation
to €4¢[p(r)] suggested by S. Vosko et al [36].

In the Chapter |6 of this thesis we also use Generalized Gradient approach
(GGA). This approximation of DFT differs from LDA by the fact that E,. is
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considered as functional of two variables: p(r) and Vp(r). Since 0Vp(r) = Vip(r)

the resulting expression for exchange potential is

O€ze O€re
= — . 1.2.1

At zero-temperature the Fermi function is interpreted as step function, then

equation 1.2.13/ can be rewritten as

[=V?/2 + Vigs(v)| s = et (1.2.19)
p(r) = Z f (e )l (x) g (x). (1.2.20)

and Vg is given as an explicit function of the density.

The total energy of the crystal is given as

L[ p)ole)
LDA _ /
Etot - %: f(ekj)ekj + 5 / Wd[‘dl‘ (1.2.21)

+/Vmp(r)dr—l—/dreu[p(r)]p(r) + Eq,
where
E. = —/VKS(r)p(r)dr (1.2.22)
simply subtracts the interaction energy from the Kohn-Sham eigenvalues which
are explicitly included in the Hartree and exchange-correlation term to avoid
double counting.
The density p(r) is uniquely expressed in terms of the orbitals ¢y;(r). In order

to truncate the DFT, we introduce a finite basis set xX(r) and expand
i (r) = xkAY (1.2.23)

keeping a finite set of a [37]. This truncation restricts the active part of the

multiplicative operator associated with the potential Vg to have a form

V= S I Vas (8. (1.2.24)
k

For a known potential Vig this construction can be done once and for all.
However, since Vi depends on the density, the basis ¥ is adapted iteratively to

the self-consistent solution.
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1.3 LDA+U and LDA+DMFT

The LDA method is very successful in many materials for which the one—electron
model of solids works. However, in correlated electron system this is not always
the case. In strongly correlated situations, the total energy is not very sensitive
to the potential since the electrons are localized due to the interactions between
themselves, and the lack of sensitivity of the functional to the density, does not
permit to devise good approximations to the exact functional in this regime.
DMFT is a method successfully describing strongly correlated systems [21] and
has been extended to electronic structure problems [20].

Here we extend functional formulation of the local density approximation to
the relativistic case, sometimes called local spin density approximation (LSDA) [38].
In this thesis we will refer by LDA to both non and spin—polarized versions of
LDA method, except cases when it is separately emphasized. We first construct
the most generalized functional representation of LDA+DMFT method and then
introduce LDA+U as Hartree-Fock approximation of DMFT.

First of all, the relativistic extension of the density-functional approach re-
quires introduction of the additional variable, namely the magnetic moment den-
sity m. Further, to account for the strong electron correlation we introduce one
more relevant variable, which is the local Green’s function. The latter is de-
fined by projecting the full Green’s function onto a separate subset of correlated
“heavy” orbitals distinguished by the orbital index a and the spin index ¢ from a
complete set of orbitals x7(r — R) = x%j of a tight-binding representation which
we assume for simplicity to be orthogonal. The local Green function is therefore

given by a matrix G with elements [39]
7 (1. R) = = (lnliw)ef (1)) = (1.3.25)
— [ = R (e )0 () o — Rydrar

We then construct a functional T'[ p, m, G | which gives the exact free energy at a
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stationary point.

We consider a fermion system under an external potential V,,; and an exter-
nal magnetic field h. The spin-orbit coupling, whose effects are important for
magnetic anisotropy calculations, is also considered. Spin-orbit coupling is in-
cluded according to the suggestion by Andersen [40]. It is useful to introduce the
notion of the Kohn-Sham potential Vg, the Kohn-Sham magnetic field hig and
its dynamical analog X7 (iw,). They are defined as the functions that one needs
to add to the kinetic energy matrix so as to obtain a given density and spectral
function of the heavy orbitals namely:

p(r) = TZ Tr, (rs |[(iw, + V?/2 — Vgs)I

Wn,

— 2ups - hgg — (1)l s — 5] 7 rs) 0T (1.3.26)
m(r) = —2upT» Tr,(rs|s[(iw, + V*/2 = Vis)l
—2ups - hgs — £(r)l-s — X' rs) en0” (1.3.27)

where Tr, is the trace over spin space, 1 and s are one-electron orbital and spin
angular momentum operator, respectively. The spin angular momentum operator
is expressed in terms of Pauli matrices s = ¢/2 and [ is 2 X 2 unit matrix. Vig
and hgg are functions of r. The chemical potential u is set to zero throughout
the current chapter, and ¥ is given by

¥ =Y(r, v, iw) Z X7 79" (iw)x§ (r' — R).

aboo’R

&(r) determines the strength of spin—orbit coupling and in practice is deter-
mined [41] by radial derivative of the [ = 0 component of the Kohn-Sham poten-

tial inside an atomic sphere:

z dVK5<T)

)= 53— (1.3.28)

When spin—orbit coupling is present, the intra—atomic magnetization m(r)

is not collinear, i.e., the direction of magnetization depends on the position r.
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Therefore, the magnetization must be treated as a general vector field, due to the
non-collinear intra-atomic nature of this quantity. Such a general magnetization
scheme has been recently discussed [42].

In terms of these quantities and the matrix of local interactions U , We write

down the DMFT4+LSDA functional:

T'Lspasomer(p, Vs, m, hgg, G, 3) =

—TZ 0" Trlog[(iw 4+ V2 — Vis)T — 2uus - hgs

—€(r)l-s—X] — /drVKS(r)p(r) + /drm(r) - hgg(r)
= e T[S (iw) Giw)] + / dr Vg (r)p(r)
—/drh(r) -m(r) + l/drdr’M

2 lr — 1/

+E 5 p,m] + > "[®[G] — ©pcl. (1.3.29)

~

®[(G] is the sum of the two—particle irreducible local diagrams constructed with the
local interaction matrix U , and the local heavy propagator G. ®pe is the double
counting term which subtracts the average energy of the heavy level already
described by LDA. Expression (1.3.29) ensures that the Green’s function obtained
from its extremization will satisfy the Luttinger theorem.

EMPA[p m] is the LDA exchange correlation energy. When a nontrivial mag-
netic moment is present, the exchange correlation energy functional is assumed

to be dependent on density and magnetization:

BE ] = [ dreclofe). mlpte) + [ defclptr) m(e)] mer),  (1330)

where m = |m)|.
The functional (1.3.29) can be viewed as a functional of six independent vari-
ables, since the stationary condition in the conjugate fields reproduces the defini-

tion of the dynamical potential and the Weiss field. Extremizing it with respect
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Vks, hks, and X lead us to compute the density 1.3.26, the magnetic moment den-
sity [1.3.27, and the Green’s function G%/ "(iw) [1.3.34, respectively. The Kohn-
Sham potential Vkg(r) and Kohn-Sham magnetic field hkg(r) are obtained by

extremizing the functional with respect to p(r) and m(r):

p(x') | SB[, m]
= < dr’ = 1.3.31
Viks(r) Vext (1) +/ r Py + oplr) (1.3.31)
0B A o, m]
h = h —x - 1.3.32
ks(T) (r) + Sm(r) (1.3.32)
Extremizing with respect to G yields the equation for self energy
, 0P od
277" (jw) = pe (1.3.33)

T 0G (iw)  6GIE (iw)
The physical meaning of the dynamical potential X is parallel to the meaning
of the original Kohn-Sham potential Vkg: it is the function that one needs to add
to the correlated block of the one-electron Hamiltonian in order to obtain the

desired local Green function:
7 (iw) = Y [iw — H* — S(iw)]7 ", (1.3.34)
k

where HZ'* = (% |(= V2 + Vis) I 4+ 2pps - hycg 4+ £(r)1-s|xG.) is the one-electron
Hamiltonian in k-space. It is the frequency dependence of the dynamical potential
which allows us to treat Hubbard bands and quasiparticle bands on the same
footing.

In general, an explicit form of ®[G] is not available. DMFT maps the
DMFT+LDA function to an Anderson impurity model. Self-consistency equa-
tions obtained in this way are used to find the self energy (1.3.33)). To introduce
LDA+U method we confine ourselves to zero temperature and make an additional
assumption on solving the impurity model using the Hartree—Fock approximation.
In this limit an explicit form of ®[G] is available and DMFT self-consistency loop
is unnecessary. We first determine the Coulomb interaction by considering a

Hartree-Fock averaging of the original expression for the Coulomb interaction
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given by

—ZZ {(acho’ |—|cada) T g . (1.3.35)
oo’ abcd

In this limit, the sum of local graphs reduce to

A 1 —o—0o
o[G] = ) Z Uabedgp Mg
abcdo’
+ = Z abed — abcd) Zgngg
abcdcr
1 o—0, —00
—_ 5 Z Jabcdnab Neg - (1336)
abedo

Here, the matrices Uypeq = (aclve|bd) and Jupeq = (acjve|db) have the following

definitions:
Used — / T )X (Y (r — ) ()G () drdr,
Tued = / Xa(B)7 X2 (et — )G ()X () drdr,

where the Coulomb interaction ve(r — r’) has to take into account the effects of
screening by conduction electrons. Note that the matrices Ugpeq and J,peq are spin
independent since the Coulomb interaction is independent of spin. The occupancy

matrix ng¢ is a derived quantity of the Green function:

nge = TZG w)e 0" (1.3.37)

Notice that when spin—orbit coupling is taken into account, the occupancy matrix
becomes non—diagonal with respect to spin index even though the interaction
matrices Ugpeq and Jypeq are spin independent.

The self-energy ¥9¢7" now takes the from for spin diagonal elements

oo § : E o
Zab = Uabcdncd + abcd abcd)n d
cd

0Ppe
- __——PC 1.3.38
6G7 (iw)’ ( )
and for spin off-diagonal elements it is given by

_ _ 0P pc
Y = =N Jopean 7 — —— 2 1.3.39
ab Z bedeq (5ng_"(zw) ( )
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The off-diagonal elements of the self energy are only present when spin—orbit
coupling is included, hence it is a relativistic effect. To make it more physically
transparent we can introduce magnetic moments at the given shell by

mhy, =Y kg (1.3.40)

oo’

where p runs over z,y, z for Cartesian coordinates, or over,—1,0,+1 (z,4) for
spherical coordinates. Relativistic correction from strong correlations can be writ-

ten in physically transparent form

1 -0, —00 ]‘ -
5 D Jaeanly g 5 D My Jabeatigy
abedo abed
1 _
+ 5 Z mflb)Jabcdm((;) (1341)
abed

and in principle has room for further generalization of exchange matrix J,p.q to

be anisotropic, i.e depend on pu': ngi:i'

~

Part of the energy added by ®[G] is already included in LDA functional. The

A

double counting term @, is added to subtract this already included part of ®[G].

N

It was proposed [43] that the form for ®[G] is

1- 1-
(D%Odel — §U77L(77L _ 1) _ §J[ﬁT(ﬁT _ 1) + ﬁl(ﬁl — 1)]’ (1342)
where
U = — 3 (abl2]ab) (1.3.43)
N (21+1)2a aoraon o
J = U ! E ({ b!1|b> <b\1\b )) (1.3.44)
N 2020 + 1) £ VI AR, i

and n° = > _ng,, and i = i! + fit. The subtraction by 1 is made to take the

self-interaction into account. This generates the self energy in the form:

oo § —0o—0 E oo
ab Uabcdncd + (Uabcd - Jabcd)ncd
cd cd

— duU(n — %) + OapJ (77 — %) (1.3.45)

557 = = Jaeang” (1.3.46)



19

As an example, when only the effect of U is under investigation, the U and
J matrices are Ugpeq = 0ap0call, Jabed = 0aadesU, U = U, and J = 0. This simple
U and J matrices make it possible to write down corrections to LDA functional

and LDA Kohn-Sham potential:

A oae 1 oo, .00 o—o, —00 1 =
D[G] — Plodel — —§;§U(nabnba+nab %) = 5Un (13.47)
1
X = U(§5ab—”2¢f) (1.3.48)
o7 = Uny° (1.3.49)

The DMF'T self consistency equation identifies the Green function of the orig-
inal model and the Green function of the mapped impurity model to find the self
energy. Now that we can express the sum of local graphs QD[G] in terms of the
original Green function, the DMFT loop need not to be performed. The problem
is now reduced to extremizing the functional [Eq. (1.3.29)] with the expression for
the sum of local graphs [Eq. (1.3.36)], which is exactly the LDA+U method [44].

The DMFT functional and its static correspondent LDA+U functional are
defined once a set of projectors { x7(r)} and a matrix of interactions Ugpeq and Jupeq
are prescribed. When [ orbitals are used as the projection operators, the matrix is
expressed in terms of Slater parameters F*. For a = lm,b=lk,c=1'm/,d = 'K
and representing x!(r) = ¢, (r)(1,0)T, where ¢p,(r) = ¢(r)ilY;,,(7), we can

express the matrices Uypeq and Jypeq in the following manner:

min(27,20")
1 4 )
(Iml'm| JIKUK) = 3 T ) (1.3.50)
17=0,2,...
(el
1 min(27,20") A v
(tml'm|—|I'K1k) - = > ST F (1.3.51)
1"=0,2,...
< (el

where the quantities CE;, are the Gaunt coefficients which are the integrals of the
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products of three spherical harmonics
oL, = / YL ()Y} (8) Yy (£)dE. (1.3.52)
The quantities F™ and F) are given by the following radial integrals
(i TR
F’ll’ - mqsl (T)le/ (7“ )d’r’dr (1353)
l//
N7 T
Fl(ﬂ)l - /WQM (r)ou (r)pu(r") gy (r')drdr'. (1.3.54)

When [ = I, the quantities F® and FU) are equal and have a name of Slater
integrals which for s—electrons are reduced to one constant F(, for p-electrons
there are two constants: F(©, F® for d’s: FO, F®) F@® ete. In this case, the

expressions for U and J are reduced to

(m,m" |vc|m/,m") = Z ar(m,m',m”, m")F*, (1.3.55)
K

where 0 < k < 2[, and

ak(m, m/’ m//’ m///) —
47

_1)aCkasmem! ckg=m"em? 1.3.56
ok + 1( ) ( )

Imlm/ Im/"lm

Slater integrals can be linked to Coulomb and Stoner parameters U and .J obtained
from LSDA supercell procedures via U = F? and J = (F? + F*)/14. The ratio
F?/F* is to good accuracy a constant ~ 0.625 for d electrons. For f electrons,
the corresponding expression is U = F? and J = (286 F? + 195 + 250F) /6435.

To summarize, we have shown the equivalence of Hartree-Fock approximation
of DMFT and LDA+U method. LDA+U is the method proposed to overcome
the difficulties of LDA when strong correlations are present [45]. Since the den-
sity uniquely defines the Kohn-Sham orbitals, and they in turn, determine the
occupancy matrix of the correlated orbitals, once a choice of correlated orbitals is
made, we still have a functional of the density alone. However it is useful to pro-

ceed with Eq. (1.3.29), and think of the LDA+U functional as a functional of p,
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Vks, m, hgg, G% ', and b4 ', whose minimum gives better approximations to the
ground—state energy in strongly correlated situations. Allowing the functional to
depend on the projection of the Kohn—Sham energies onto a given orbital, allows
the possibility of orbitally ordered states. This is a major advance over LDA in
situations where this orbital order is present. As recognized many years ago, this

is a very efficient way of gaining energy in correlated situations, and is realized

in a wide variety of systems.

1.4 Conclusion

We used effective action formalism to describe density-functional based methods,
used in the later chapters. In particular, we presented LDA and LDA+DMFT
methods, and introduce LDA+U as Hartree—Fock approximation of LDA+DMFT.
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Chapter 2

Half-metallic Ferromagnet CrQO,

In this chapter, the problem of the importance of strong correlations for the
electronic structure, transport and magnetic properties of half-metallic ferro-
magnetic CrOs is addressed by performing density functional electronic structure
calculations in the local spin density approximation (LSDA) as well as using the
LSDA+U method. It is shown that the corresponding low—temperature experi-
mental data are best fitted without accounting for the Hubbard U corrections.

We conclude that the ordered phase of CrO, is weakly correlated.

2.1 Introduction and motivation

Chromium dioxide is an unusual member of wide class of 3d metal oxides. CrO, is
a half metallic ferromagnet, which means that it is a conductor in one spin chan-
nel and a semiconductor in the other. The highest measured spin-polarization
of all materials [46], [47] together with a Curie temperature 393°K allows one
to consider CrOy as a good candidate for spinotronic and magnetoelectronic de-
vices [34]. These and other multiple industrial applications as well as funda-
mental interest in its half-metallic electronic structure led to intensive theoret-
ical [2, 48, 3, 14, 49, 50, B0] and experimental [6, 51, 52, 5, 53|, 54] studies of
chromium dioxide in recent years.

The main discussion was centered around the role of strong correlations for
the description of CrO, ferromagnetic phase. Since Cr in its formal 44 valence

state has two 3d electrons of ¢y, symmetry, one would expect manifestation of
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correlation effects of the Mott—Hubbard nature. On the other hand, the metal-
lic behavior of the spin majority band suggests that Coulomb interactions of the
Hubbard type can be screened out [3]. The comparison with the available photoe-
mission and optical conductivity data did not clarify the situation. One—electron
spectra calculated using the LSDA+U method [55) 44] fit the photoemission and
inverse photoemission experiments well with the choice of intra—atomic Coulomb
and exchange parameters U = 3 eV and J = 0.87 eV [3, 6]. This indicates
the importance of strong correlations. Contrary to this result, the LSDA optical
conductivity calculations explain experimental data [4], suggesting the regime of
weak coupling.

In this chapter we address the controversial role of strong correlations in ferro-
magnetic CrO, by presenting combined studies of its electronic structure, optical
conductivity, and magnetic anisotropy using the LSDA and LSDA-+U schemes.
We employ a linear-muffin-tin—orbital (LMTO) method in its atomic sphere ap-
proximation (ASA) [40, 56] (also will be discussed in Section 4.2.2) for our elec-
tronic structure calculations. The chapter is organized as follows. In Section 2.2
the crystalline structure of CrOs is described. The rutile structure of this ma-
terial causes additional technical difficulties in computations. Two subsections
are devoted to their solutions. In Section 2.3 the calculated densities of states
(DOSes) and band structure are presented and compared with the photoemis-
sion spectroscopy (PES) data. Sections 2.4 and 2.5 are devoted to calculations
and to comparison with experimental data of optical conductivity and magnetic

anisotropy energy respectively. Finally, we conclude in Section 2.6.
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2.2 Rutile Structure

2.2.1 Description of unit cell of CrQO,

CrOs is a challenging material for ab Initio calculations due to its open rutile
structure with space group D}}(P4,/mnm). The unit cell contains two CrO, for-
mula units. The Bravais lattice is tetragonal with ¢/a = 0.65958 and a constant
lattice a =0.4421 nm [57]. The Cr atoms, surrounded by a slightly distorted octa-
hedras of oxygen atoms, form a body-centered tetragonal lattice. The octahedra
surrounding Cr at the center and corner positions differ by a 90° rotation about

z-axis (see Figure 2.1).

(A) Z[001]

Y[010]

X[100]

(B)

Figure 2.1: Primitive unit cell for CrO, in the rutile structure. (A) larger spheres
represent the O atoms and smaller Cr. Two Cr atoms with non-equivalent
positions are indicated by numbers 1 (at position (0,0,0)) and 2 (at position
(1/2,1/2,1/2)). In (B) the connectivity of the oxygen octahedra projected on the
[110] plane is demonstrated.
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Table 2.1: High-symmetry sites of the rutile structure [1] (z =1 — x).

Atom | Wyckoff notation coordinates

Cr 2 a m.mm 0,0,0 %,%,%

O 4 f m.2m z,z,0 | z,%,0 f+%,x+%,% q}+%’j+%7%
B dcm 030 053] Lol L0.0

Es 4 g m.2m z,%,0 | Z,2,0 :c—i—%,x—i-%,% j+%,j~+%7%

The rutile structure can also be described by considering an array of anions
of approximately hexagonal close packed form in which only half of the octahe-
dral holes are occupied by metal atoms. The half occupation of the octahedral,
however, leads to a low packing fraction, so that no more than 36% of the unit
cell volume can be filled with touching hard spheres. This is caused by the short
anion-anion distance between the positions (z,x,0) and (1 — 2,1 —z,0). In order
to increase the filling factor of unit cell in ASA calculations we introduce two
types of “empty spheres” E; and E, (for details see Section 2.3.1)). All atoms and
empty spheres positions are listed in Table 2.1. In the case of CrO, the parameter

x = 0.3053 a.u.

2.2.2 Local basis of Cr atoms

The natural classification of crystalline field for Cr atoms could be performed only
in the local basis by taking into account the symmetry of surrounding oxygen oc-
tahedra. Thus, the electronic structure of chromium dioxide could be understood
and analyzed only in terms of this local coordinates. The surrounding oxygen
octahedra leads to new natural local coordinate system for spheres of chromium
(see Figure 2.2). Strictly speaking, due to distortion each octahedra has a rect-
angular rather than a square in the base. Thus, in the Figure 2.2 local axes X
and Y point not to the exact locations of O atoms, but slightly off to the outer

directions.
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Figure 2.2: Local coordinate system for chromium atom Cr at the position
(1/2,1/2,1/2), indicated by number 2. Z axis points exactly to the location
of O atom, while axes X and Y point to the outer directions slightly off the
locations of O atoms.

Each of two Cr atoms in the unit cell has its one local basis. Even though
orientation of two neighbor oxygen octahedras differs by 90° in the ab-plane the
transformation to the local basis cannot be done for both Cr atoms simultaneously
because of noncommutativity of space rotations. Thus, each Cr atom requires its
own matrix of rotation to the local basis. For Cr atom at (0,0,0) (here and later

we refer to this atom as Cr@1) the new local coordinates (primed) are related to

Cartesian coordinates of the unit cell as:

7' —1/2 12 1/V2 T
y = 12 -1/2 1/V2 y (2.2.1)
2 1/\/§ 1/\/§ 0 z

This matrix has eigenvector (1,1,v/2) with corresponding eigenvalue 1. So
transformation 2.2.1/is equivalent to the rotation about (1,1, /2) axis for 7.
For Cr at (1/2,1/2,1/2) (here and later we refer to this atom as Cr@2) the

new coordinates are related to the old ones as:

' /2 —1/2 1/v2 T
y =1 12 -1/2 -1/V2 y (2.2.2)
2 1/vV2 1/vV2 0 z
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This matrix has eigenvector (v/2,0,1) with corresponding eigenvalue 1. So
transformation (2.2.2) is equivalent to the rotation about (v/2,0, 1) axis for 27/3.
Before the discussion of the structure of Cr 3d orbitals in the local basis, we
note that cubic harmonics in Cartesian coordinates are defined according to the

following formulas[58]:

. 2uyz . 2zx 2x
Yo (r) = _:,Jg a, Yo(r) = 2% Yo3(7) = y (2.2.3)
2 —y? 322 a
V) = “ 0, el = (5 - >—¢g

where a = 1/15/7/4 is a normalization constant and r? = 22 + y® 4 22. Here and
below we will refer to these orbitals as (yz), (zz), (zy), (z* — y?), and (32% — 1)
correspondingly due to their symmetry properties.

In the local basis the cubic component of the octahedral crystal field splits the
fivefold degenerate 3d orbital into higher energy doubly degenerate e, level and
lower energy triple degenerate t, level. Distortions of oxygen octahedra further
split the ¢y, states into lower energy tH orbital (zy character) and higher energy
twofold degenerate t;, orbitals (yz and zz characters) [3]. The t,, and e, orbitals
of the rutile structure in the local basis in terms of cubic harmonics of the unit

cell are given in Table 2.2.

Table 2.2: Expressions for 3d e, and ¢, orbitals in rutile structure through cubic
harmonics.

Type of atom Cr@1l Cr@2

(eg)r: (32 = 1) | B(ay)r — 5(32° — 1) 3(xy)2 — 5(32° — 1)y

(eg)2 : (2 —4?) | J5((y2)1 — (z2)1) V2((z2)s — (yZ) )

(2g)1 = (') s(yh — 3(32% — 1) s(@y)2 + 7(32% — 1)z

(t2g)2 = (v'2) s+ 5(20)1 + 55—y | =52 — 3(za) + 557 — P
(t2g)s : (2'2) s+ 5(22)1 — 5 (@ — 9P | 5(wa)i + 5 (@) + 55 (2" — 97

Since the physical interpretation of calculated quantities can be done only in

the local basis it is useful to write down corresponding transformations for the
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Hamiltonian and overlap matrix. The Hamiltonian H’ and overlap matrix O’ in
the local basis are related to the Hamiltonian H and overlap matrix O in the

cartesian basis as:

H =U'HU, (2.2.4)

o' =Utoy, (2.2.5)

where matrix U has block diagonal structure with identity matrices for s and p

orbitals and 5 x 5 matrices J; and J, for 3d orbitals of atoms Cr@l and Cr@2

correspondingly:
I 0 0 O
U 0 J 0 0
0 0 I O
0 0 0 Jy
With the following order of orbitals:
_ » - _ o :
2x 2!
xy = 'y
22— o2 2% — o2
322 -1 327 —1

the J; and J; matrices are:

1/2 1/2 0 V2
1/2 1/2 0 —V2
J1 = 0 0 1/2 0
1/2v/2 —1/2v2 0 0 0
0 0 1/4 0 —1/2

w o O
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and

—1/2  1/2 0 —v2 0

—1/2  1/2 0 V2 0
3

Jo = 0 0o -1/2 0
1/2v2 1/2v2 0 0 0
0 0 —1/4 0 —1/2

2.3 Electronic structure of CrO,

2.3.1 Details of calculations

We performed LSDA and LSDA+U calculations within the atomic sphere approx-
imation (ASA) [16]. As was mentioned before in order to increase the filling factor
of CrO; unit cell we introduce two types of “empty spheres” E; and E5. The ne-
cessity of empty spheres was proven by the fact that without them within LSDA
calculations ASA predicted CrOs to be a metal in both channels in contradiction
with the experiment. The strong sensitivity of the calculated total energy on the
filling factor of the unit cell forced us to use three different sets of MT-spheres.
Set I was generated by LMTART program, set II and III were used in [3] and [2]
respectively. The radii of all MT-spheres as well as corresponding filling factor
of the unit cell are listed in Table 2.3, For the electronic structure and transport
calculations set I of MT-spheres has been used. However, taking into account
small values of magnetic anisotropy energy and strong sensitivity of LDA+U ap-
proximation to the filling factor of unit cell we used all three MT-spheres sets for
MAE calculations.

The basis set adopted in the calculations is consist of 4s, 4p, and 3d orbitals

for Cr atoms, and 2s, 2p orbitals for O atoms.
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Table 2.3: Coordinates and Muffin-Tin Radii Ry;r of the Atomic Spheres for
three different sets (x=0.3053 a.u.).

Atom Cr O E b, filling
Wyckoff notation 2a 4f 4c 4g
Coordinates 000 xx 0 01/20 | x-x0

Radii of MT-sp.(au), set I 1.974707 | 1.615 1.378 1.434 || 0.59
Radius of MT-sp.(au), set II | 2.06 2.06 1.78 1.62 0.88
Radius of MT-sp.(au), set IIT | 2.12381 | 2.12381 | 1.9 1.2 0.86

2.3.2 Fat Bands and Density of States

The results of the LSDA band structure calculation for the spin majority and spin
minority carries in the vicinity of the Fermi energy are shown in Figures 2.3 and
2.4 correspondingly. The Fermi level crosses the spin majority ¢s, manifold. The
rest of the Cr 3d states is formed from four e, bands and three ¢y, spin minority
bands which are located above the Fermi level. In both spin channels e, and t5,
bands are well separated for all momenta except for the I'-point. The whole 3d
complex is strongly hybridized with oxygen 2p bands.

In Figure 2.4/ one can see that there is a gap of approximately 1.3 eV between
the oxygen 2p band and the chromium d band in the spin minority channel. This
gap leads to 100% spin polarization at Er and assures the magnetic moment to
be precisely equal to 4 up per unit cell. The ¢y, bands that cross the Fermi level
in the spin majority channel mainly consist of the t;, orbitals (see Figure 2.3).
Almost non—dispersive narrow band below Ep (shown as lightly shaded, green

in color version) is formed by the th orbital. This localized state undergoes

5y Orbitals unoccupied (see

large exchange splitting A® making spin minority ¢
Figure 2.4).

The main changes which occur in the band structure for non-zero values of
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Energy (eV)

6.0

TXMT ZRA Z

Figure 2.3: LSDA band structure of CrOy for spin majority carriers. Dark and
light shaded areas (red and green in color version) show the specific weight of t2lg

and th orbitals respectively in the particular band.

U and J within the LSDA+U method are schematically shown in Figure 2.5.
These calculations were performed with U = 3 eV and J = 0.87 ¢V. The center
of gravity of occupied t!g band is pushed down by 0.6 eV. The spin minority
unoccupied e, bands are pushed up by 0.6 eV, which opens 0.4 eV gap between
tjg and e, bands above the Fermi level. In the spin minority channel the occupied
oxygen bands are shifted up by 0.3 eV. The upper unoccupied ¢y, and e, bands
are shifted up by 1.1 eV. As a result, the insulating gap is increased and reaches

the value of 2.1 eV.

Before we proceed we would like to compare our results with earlier reported
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Figure 2.4: LSDA band structure of CrO, for spin minority carriers. Dark and
light shaded areas (red and green in color version) show the specific weight of tzig

and tgg orbitals respectively in the particular band.

calculations. TableI summarizes values of spin minority energy gap A and ex-
change splitting A.,, reported in literature as well as the ones obtained by us.
We would like to emphasize that our results obtained using ASA are in the ex-
cellent agreement with full potential calculations performed by I. I. Mazin and
coworkers [4].

Now we compare calculated electronic structure using the LSDA and the
LSDA+U methods with the available experimental data. Figure 2.6/ shows com-
parison of ultraviolet photoemission spectroscopy (UPS) experiments [6] (photon

energy hv = 40.8 eV) with the theoretical spectra which are calculated densities
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LDA LDA+U

EF ﬁa
T

T29

Figure 2.5: Schematic density of states (DOS) of CrO, deduced from the LSDA
and LSDA+U calculations. Shaded semicircles from right and left represent the
bands for spin majority and spin minority carriers.

Energy gap and exchange splitting (in eV).

LSDA® | LSDA+U® | LSDA® | LSDA+U® | GGA? | CGAY
A |13 2.1 1.5 2.0 1.3 1.8
A, | 2.3 4.6 1.8 4.5 2.5 2.9

Table 2.4: Here @ our calculations, ® as reported by Schwartz [2], ¢ as reported by
Korotin et al. [3] , ¢ as reported by I.I. Mazin et al. [4], 9 as reported by Kunes et
al. [5]. Values of A and A., in b-g are approximate and extracted from the DOS
reported in these papers.

of states smeared by both Gaussian and Lorentzian broadening functions. The
Gaussian broadening takes into account experimental resolution while Lorentzian
takes into account finite lifetime effects. The Gaussian broadening parameter is
taken to be 0.4 eV. The full width at half maximum (FWHM) of the Lorentzian
was taken to be energy dependent and equal to 0.2|E — Ep| eV. We can distin-
guish two main features in the UPS spectra: (i) a small hump in around —1.5 eV
which arises from the to, band of Cr, and (ii) a big hump around —6.0 ¢V which

comes from the broad 2p oxygen band. Both features are fairly well described by
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both the LSDA and the LSDA+U calculation. The small discrepancy between
the LSDA calculation and experiment could be referred to the fact that at small
photon energies photoemission is a more surface sensitive technique. Indeed, re-
cent PES studies of Vanadium oxides [59] have been found to yield spectra not
characteristic of the bulk, but rather of surface atoms whose lower coordination

number can render more strongly correlated surface layer.

T T T
+

‘Experiment

Intensity (arbitrary units)

.
1 1 1 1 . 1 . %Lumu

5 4 3 -2 -1 0

8 -7 -6

Energy (eV)

Figure 2.6: Comparison between theoretical densities of states and experimental
[6] UPS spectra for CrOy. The theoretical DOS were smeared out by Gaussian
and Lorentzian broadening functions to account for experimental resolution and
lifetime effects. The secondary electron background has been taken into account.

For the unoccupied states we have chosen to compare our results with the
available x—ray absorption spectra (XAS) [7] rather than with the inverse photoe-
mission as it had been done before [6]. The main reason for this is that XAS is
a bulk (not surface) sensitive method. The 2p Cr XAS spectrum [7] is compared

to our theoretical calculations in Figure 2.7. To deduce theoretical spectra we
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performed both Gaussian and Lorentzian broadening of 3d and 4s partial DOSes.
Two first peaks around 0.5 eV and around 1.5 eV come from the unoccupied 3d
orbitals of chromium. The main contribution to the second peak comes from the
tyy orbitals in the spin minority channel. Thus, the LSDA+U overestimates the

spin minority gap by a factor of two.
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Figure 2.7: Comparison between theory and experiment[7] for Cr 2p x-ray ab-
sorption (XAS) spectrum. To deduce theoretical curve from the partial Cr 3d
DOS we used 0.1 eV for Gaussian FWHM. The Lorentzian FWHM was taken to
be energy dependent and equal to 0.2|E — Ep|. The binding energy of core 2ps/,
Cr state 577 eV has been subtracted from the experimental spectrum.

2.4 Optical conductivity

Below we discuss the optical conductivity of CrO,. In Figure 2.8 diagonal z-

components of the optical conductivity calculated using the LSDA and LSDA+U
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methods are compared with the experimental results reported by Basov and

coworkers [§] (z coordinate refers to the basis of unit cell).
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Figure 2.8: Comparison of the optical conductivity of CrO, obtained using the
LSDA and LSDA+U methods against the experimental data [§].

The main two features of the calculated optical conductivity are a shoulder
around 2 — 3 eV and a broad hump located at energies 0.2 — 1.5 eV. In both
LSDA and LSDA+U schemes the shoulder can be identified with two types of
transitions. First contribution arises from the minority spin gap transitions and
the second one comes from transitions between the occupied tgg and unoccupied
eg bands. The hump is formed by interband transitions within the ¢5,-manifold
and the oxygen 2p bands near the Fermi level in the spin majority channel. The
LSDA prediction is much closer to the experimental curve than the LSDA+U one.

The LSDA+U calculations overestimate the minority gap, and hence, the spin
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minority transitions occur at higher energies. Our conclusion completely agrees
with conclusions of earlier published studies by I. I. Mazin and coworkers [4], as

well as by J. Kunes and coworkers [60].

2.5 Magnetic Anisotropy Energy

Results of calculated magnetic anisotropy energy (MAE) for CrOy are presented
below. We remind that magnetic anisotropy is the dependence of the internal
energy on the direction of spontaneous magnetization. The magnetic anisotropy
is a relativistic phenomenon arising due to spin—orbit coupling, where the spin
degrees of freedom interact with the spatial anisotropy through the coupling to
the orbital degrees of freedom. The experimental measurement of MAE for CrO,
were hindered by the fact that chromium dioxide is a metastable compound,
which irreversibly decomposes at about 200°C [61]. The most recent reliable
measurements were performed on epitaxial CrO, layers [62, 63, [64]. For thicker
films (0.7 - 1.2um) the in—plane magnetic anisotropy was observed with [001] and
[010] easy and hard axis directions respectively. The value of magnetocrystalline
anisotropy constant K; reported by different groups are 6.7ueV [62], 9.6ueV [63]
and 15.6peV per cell [64]. These values are bigger than typical values of MAE for
metals (e.g. for Ni and Fe they are 2.8 and 1.4 peV per atom correspondingly [65]).
This may be due to the fact that such metals as Fe and Ni have cubic crystal
structure where MAE identically vanishes in the second order and arises as fourth
order effect in the spin-orbit coupling [65]. The low crystal symmetry of CrO,
provides MAE to appear already in the second order of the perturbation theory,
leading to the bigger value of MAE than typical metal values.

Within our LSDA calculation the direction [001] was found to be the easy
magnetization axis, which is consistent with latest thin film experiments [62, 63,

64]. To calculate the magnetic anisotropy energies (MAEs) we subtract the total
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energy for easy magnetization axis from the total energies with different directions
of magnetization ([010], [111] and [102]). For the momentum space integration
in the total energy calculations, we follow the analysis given by Trygg and co—
workers [66] and use the special point method [67] with a Gaussian broadening [6§]
of 15 mRy. The validity and convergence of this procedure has been tested in
their work [66]. We used about 1000 k—points in the irreducible Brillouin zone,
while the convergence of MAE is tested up to 8000 k—points for all three sets of
MT-spheres listed in Table 2.3 Numerical values of MAE in LSDA calculation
exceed the maximum experimental value by approximately four times [64].

To determine the influence of intra—atomic repulsion U on the magnetic anisotropy,
we have performed LSDA+U calculations for different values of U increasing it
from 0 to 6 eV (J = 0.87 eV was kept constant except for the LSDA U = 0
case). The results of these calculations are presented in Figure 2.9. MAE de-
creases rapidly starting from the LSDA value (which is approximately equal to
68 peV per cell) and changes its sign around U ~ 0.9eV. This leads to switching
correct easy magnetization axis [001] to the wrong one, namely [102]. The biggest
experimental value of the MAE reported in the literature is 15.6 peV per cell [64].
The calculated MAE approaches this value around U = 0.6 eV. This signals that
correlation effects in the d—shell may be important for this compound although
they are strongly screened out.

Another question can arise whether DMFT treatment would change the values
of MAE or not. From our experience we expect the total energy to be sufficiently
robust quantity, almost insensitive to whether we include dynamical correlations
or not. Within the DMFT framework the redistribution of the spectral weight
near the Fermi level usually occurs, but the total energy seems to remain almost

the same.
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Figure 2.9: The magneto—crystalline anisotropy energies for CrO, as functions of
U. The experimental value of MAE FE[010] — E[001] = 15.6ueV per cell is shown
by arrow.

2.6 Conclusion

To conclude, we have reported the LSDA and LSDA+U calculations of electronic
structure, optical conductivity and magnetic anisotropy of CrOs. Our compar-
isons with the experimental data point out the local spin density approximation
as the proper method to describe this material. We explained the discrepancy
between the LSDA and photoemission studies, discussed earlier by other au-
thors [3, 6], by the fact that due to small photon energies used in PES, it is
more surface rather than bulk sensitive technique. We resolved this problem by
showing that XAS spectrum is unambiguously described by the LSDA calculation.
Is has been also shown that even intermediate values of U (of the order of 1-2 eV)

lead to the failure of the LSDA+U method to describe the magnetic anisotropy
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and the optical conductivity of CrO,. Since the LSDA+U is not adequate for the
description of electronic structure of CrO, as well as of its optical and magnetic
properties, we conclude that the ordered phase of CrOy could be described as
weakly correlated material with small values of on-site Coulomb repulsion. It is
important to notice that while we have found that the simple one-electron picture

describes the ferromagnetic phase of this material well, there is a narrow band

5, Orbitals (zy character) which in the paramag-

formed by the non-dispersive ¢
netic phase will be single occupied, due to the on-site Coulomb interactions, an
effect which cannot be described in LDA and will require a dynamical mean-field
treatment for this materials as done in Ref. [49]. The physical basis for the appli-
cability of static mean—field picture in the ferromagnetic phase of this material is

due to the large exchange splitting which is able to effectively enforce the single

occupancy of the tg , orbitals.
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Chapter 3

DMEFT study: CrO, on the edge of orbital
selective Mott transition

In this chapter we discuss the possible scenarios of orbital selective Mott transition
(OSMT) in the case of two-bands Hubbard model on the example of paramagnetic
CrO2. DMFT calculations are performed for the block of ¢y, orbitals. CrO, is
shown to be on the edge of a quantum transition, where small energy scales (of

the order < 0.5eV) separate phases with completely different physics.

3.1 Introduction and Motivation

We discuss the scenario for metal insulator transition for the case of two bands,
considering particular case of chromium dioxide. The electronic structure for
ordered phase of this material has been discussed in details in the previous chapter
with conclusion that low-energy physics of this compound is ruled by three bands
(two of them are degenerate) around Fermi level, formed by t¢5,-orbitals of Cr
atoms. The discussion will be restricted to paramagnetic case only to clarify the
nature of Mott transition and all calculations will be performed for temperature
~ 390K (0 =1/16).

As was discussed earlier, the position of a narrow tg , band was the source of nu-
merous debates in the literature, particularly for recent DMFT and LDA+DMFT
studies [50, [69]. In order to investigate all possible scenarios for the Mott tran-
sition we carried out DMFT calculations for several shifted positions of narrow

tgg band. The starting point was LDA paramagnetic partial DOSes shown in
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Figure 3.1 with occupancies and bands positions listed in Table 3.1 (the positions

are given in half band width of the broad band (h.b.w.),(h.b.w =~ 1.1632¢V")).

Table 3.1: Partial LDA occupancies and band positions in paramagnetic case.

ty, | oy
(ny) | 0.267 | 0.489
e (h.b.w.) | -0.038 | -0.341

Thus, there is in total approximately one electron per spin per three bands.

The narrow th band is almost completely occupied, containing one-half of an

electron per each spin. The other one-half of an electron is accommodated by

two degenerate half-filled broad tZLg bands centered around the Fermi level. The

discussion here and below will refer to occupancies of ¢, bands per spin.
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Figure 3.1: The renormalized to unity partial LDA DOSes for ¢y, bands of Cr were
used as input for DMFT calculations. Energy scale h.b.w ~ 1.1632¢V. Inset: to
investigate all possible scenarios of OSMT in CrOs the position of narrow band
was shifted down in energies by value of parameter s.

Starting with different relative positions of ty, bands: el = EQD 4 — s and
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et = €tp,, controlled by parameter s, we investigate evolution of the system

under applied Coulomb interaction U and seek for the metal and insulating states

for each orbital in (s, U)-parameter space.

3.2 Model Hamiltonian and self-consistent DMFT loop

We consider the symmetric case of multiorbital Hubbard model:

H = Z(Ea - 'Laa diae — Z taﬂdlaa jBo (321)

o (i3),aB0
1 /
—|—§ Z Unmgnia,U + 5 Z/ (U - J)”iozo”ia’m

with Coulomb interaction parameters U’ = U and J = 0. Here d!,, (dias) creates
(annihilates) an electron on the site 4, in the orbital «, with spin o. The €,’s are
crystal-field levels, and p is chemical potential. The index a refers to three ty,
orbitals: zy (also referred as t” ,) and two degenerate yz and zx (also referred as
tgg).

The self-consistent DMFT loop starts with the solution of the impurity prob-
lem stated by Hamiltonian [3.2.1 carried out by quantum Monte Carlo (QMC)
method. A seed Weiss function was chosen to be G,(7) =7 — 14 i(7 — 1) at the
first step. The Green’s function G,(7) obtained in the QMC routine for orbital «
was Fourier transformed to the imaginary frequencies axis and used to calculate

self-energies:

Yo (iwn) = Gt (iwy,) — Go(iw,) L. (3.2.2)

We used the following DMFT self-consistency condition:

, > D,(e€)
new = d 2.
G (iwy,) /oo € o = S (i) =€ (3.2.3)

where D, (¢€) are partial DOS for orbital a obtained from LDA calculations (see

below for detailed description of Input parameters). The new Weiss function is
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calculated as

(G (dwn)] ™" = [Ga™ (iwn)] ™ + Zaiwn), (3.24)

Fourier transformed back to the time axis and feed to the QMC solver. This
concludes the DMFT loop.

Once consistency is reached the analytical continuation of a new Green’s func-
tions G2 (iw,,) to real frequencies was performed using the maximum entropy

method.

3.3 Impurity solver: Quantum Monte Carlo

In these calculations we used the QMC solver (version 9.0) implemented by
V. S. Oudovenko (for the description of code see online material of [20]). Be-
low we sketch the main ideas behind Hirsch-Fye QMC method for generalized
case of n bands (in the present study n = 3). The purpose of the QMC impurity

solver is to compute the Green’s function
Gn(7) = (Tdp(7)d],(0)) 5. (3.3.5)

Here 7 is imaginary time and index m represents pair («, o). For our case of three

bands:

m=1=a=yzt )0 =T; m=2= a=yzts )0 =1 (3.3.6)
m:3:>oz:yz(t2Lg),J:T; m:4:>04:yz(t2Lg),a:l;

—5:>a—xy(t)a =T; m—6:>a—xy(t) =] .
The average in 13.3.5 is taken with effective action

/ / deTZdT L1 — 7 dp (') + /0 BdTHmt(T). (3.3.7)

The bath Green’s function G,,(7,7’) is guessed to be G, (1) =7 —1+i(r — 1)

at first step and derived from self-consistency condition 3.2.3 at all subsequent
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steps. For the purpose of equation derivation we denote Hamiltonian generating
G (T) by Hy. The interaction term reads

Hie =32 3 Ul — 3 (0 + 1), (33.8)

m m/>m

B(Ho+H;

To start the calculation of partition function Z = Tr e~ ) we discretize

imaginary time interval [0, 5] into L slices of length A7 so that 7, = A7, [ =

1,2,..., L. Then expression for partition function:
Z = TrH e~ A7 (Hot+Hint) (3.3.9)
can be simplified further using the Trotter formula

L L
Zr 2% = Tr][e o [[e " (3.3.10)

Hirsch-Fye QMC requires Gaussian type of integral for partition function. The

Hubbard — Stratonovich transformation is usually used to decouple the interaction

term Hi:
, 1
77,ATH¢nt _
e =3 Z: exp [;lASmm/(nm - nm/)] : (3.3.11)
with
A
A = arccosh [e:cp (%U)} . (3.3.12)

The introduced discrete variables S,,.,,» are auxiliary Ising fields at each time slice
taking values S,,,,» = £1. The number of auxiliary fields is equal to the number

of (m,m’)-pairs, i.e. °Cy = 15 in our case. Thus,

e—Aﬂ—lHim:% > exp (Zd* VE({ShHd ) (3.3.13)

S/ =%1

mm

with diagonal matrix

VLUSH =X D S (n)(0(m —m') — 0(m’ — m)), (3.3.14)
m/ (#m)
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where 0(x) is step-function.

The final expression for the partition function:
Z = Trs, ) | [ det Oml{Smm (7)}], (3.3.15)
where (2nL) x (2nL) matrix O,, consist of zero elements except:

Om)iy=1 (3.3.16)

(Om)ii—1 = — exp(—A7Hp) exp(VE 1) (1 — 26,4).

It can be shown [20] that Green’s function G,, can be expressed trough O,,

matrix:

Gn=0." (3.3.17)

Further, for two different configurations of Ising fields {Sy,./} and {S/,,.,} there
exist two different matrices V,,, and V. The corresponding Green’s functions G,,

and G’ are related by (we omit index m for the sake of clarity):
G'=G+(G-D[eVV -1a. (3.3.18)
The last relation can be rewritten as:
G'=A"'G, (3.3.19)

where
A=IT+I-)e" vV -1. (3.3.20)
We note that Dyson equation 3.3.18 also holds for a special case V,, = 0 and

Gm = gm-

The Boltzmann factor for different configurations is given by:

R=]]Rn. (3.3.21)

where
det(O;,)

" o) det[I — (G — D"V —1]]. (3.3.22)
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If we make a local change in the field S,,,» — S! . = Sy for m < m' at
time slice [, then the matrix [exp(V,!, — V;,,) — I] has only one non-zero diagonal
element at the f-location in the [-th submatrix. Then determinants [3.3.22 are

just those non-zero elements and:

R=R,R., (3.3.23)
Ry =1~ (gn(l,1) — 1)[e"2mm' — 1], (3.3.24)
Ry =1 — (g (1,1) — 1)[eT2Ammr — 1], (3.3.25)

where ¢, is L x L matrix of f-Greens function. Further we use the heat bath
condition to accept or reject flip:
R/(1+ R) > rand() = flip accepted,
R/(14+ R) <rand() = flip rejected.
If the flip is accepted then all time components of the f-Green’s function for

the new configuration are obtained from the old one through the relation:

/ =2\
gm(lla l2> - gm(lh l?) + Z(gm(lh l) - 5ll,l)R—gm(la l2)7 (3326)
l m
e+2)\5mm/
g:n’(llv 12) = gm’(lb 12) + Z(gm’(llv l) - 61171>R—gm’(l’ l2>’ (3327)
) m/

which follows from Dyson equation 3.3.18.

Finally, the physical Green’s function is calculated as:

. 1
anhyszcal(ﬁ’ 7’1/) _ E Trsmm/gm(la l/)detom[{Smm’H' (3.3.28)

Now we can describe implementation of Hirsch-Fye algorithm in QMC code:

(1) The calculation starts from discretized version of Weiss function G(7),
which must be provided as input file (see for details section 3.5). Weiss function
is used from the previous iteration of DMFT loop or guessed on the first step.

(2) The Green’s function G, (7, ) for an arbitrary initial configurations of

Spme (1) = £1 is calculated by explicit inversion of matrix A [3.3.19-3.3.20.
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(3) From then on, configurations are visited using single spin flip at time 7;.
The determinants 3.3.22/ and their product 3.3.22/ are calculated. If the heat bath
condition allows acceptance of the spin flip, Green’s functions are updated with
3.3.263.3.26. After specified number of so called dirty updates the clean update
of Green’s function is done using formulas [3.3.19 and 13.3.19.

(4) The physical Green’s function is determined as averages of configuration-

dependent functions g, (7, 7) 3.3.28.

3.4 Analytical Continuation

The output of DMFT loop is Green’s function at imaginary time. To analytically
continue to the real axis we used standard technique called Maximum Entropy
method (MEM) [70], which was developed to circumvent the solution of the fol-

lowing integral equation:

G(r) = / i f(—w)e=™ A(w). (3.4.29)

Here A(w) is the unknown spectral function and f(w) is the Fermi function. The
solution of Eq. 3.4.29 is known to be numerically ill-posed problem since at large

positive and negative frequencies the kernel of 3.4.29

e—w‘r

K(t,w) = f(—w)e ™" = TEoor

(3.4.30)

is exponentially small, so the high frequency features of A(w) depend upon sub-
tle features in G(7). Furthermore, obtaining G(7) from QMC complicates the
problem as the data are incomplete and noisy.

The MEM combines the use of Bayesian inference and the principle of maxi-
mum entropy. The ill-posed inverse problem 3.4.29 strictly speaking has an infi-
nite number of solutions because of insensitivity to high-frequency details of A(w)
and noisy QMC information about G(7). The idea of MEM is to choose among

those solutions spectral density which is the most probable. The non-negativity
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(A(w) > 0 for fermions ) and normalizibility ([~ A(w)dw < oo) allows one to
interpret spectral density as a probability function. If we choose as events func-
tions G(7) and A(w), where G(7) is measured value of G(7), then the criterion
for a best solution will be a function that maximizes the conditional probability

Pr{A|G] over all possible A. The Bayes’s theorem gives the following equality:
Pr{A|G] = Pr{G|A]|Pr{A]/ Pr|G]. (3.4.31)

Thus, the problem of maximization with respect to A breaks down into two parts:
(1) maximize Pr{G|A], and (2) maximize Pr{A].

The maximization of Pr{G|A] can be done with a maximum likelihood method.
Using the data to findA(w) is type of parameter fitting problem as much as we
determine a set A = (Ay, A, ..., Ax) of values A at a number of discrete values

w; of w. The discrete version of Eq. 3.4.29:
Gz‘ == EjKZ'jAjAWj, (3432)

where K;; = K(7;,w;), suggests that a given A makes a specific prediction for a
set of G(7) values G = (G4, Gy, ...,GL) at various discrete values 7; of 7. In the
maximum likelihood method, the G(7) are regarded as random variables drawn
from a likelihood function f(G;G) specified by G. For a single GY) the number
dPU) = f(GUY):G)dG represents probability for given measurement to occur.
For M independent measurements, dP = H]]Vil f(GY); G)dG. The logarithm of
the likelihood function is L = Z]J‘il f(GY):G) and thus Pr{A|G] oc e7*. The
method of maximum likelihood is based on the assumption that a single peak
in the space of the parameters G dominates likelihood function and when the

number of measurements become large, by Central Limit Theorem:
PriA|G] oc e7F = X/ (3.4.33)

where

X = Z(@i — Gy Y5(Gy — GY) (3.4.34)
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and

_ 1 M

C%:MEZQQ (3.4.35)

j=1
C is the covariance matrix
1 M
- A _ Uy _ Al) 4
Cie = 31T ;@ GGy —GY). (3.4.36)

The principle of maximum entropy says that the values of a probability func-

tion A(w) are to be assigned by maximizing the entropy, and thus
Pr{A] o e (3.4.37)
where entropy term .S takes form
S[A] = —/dw{A(w) —m(w) — A(w)In[A(w)/m(w)]}. (3.4.38)

Here m(w) is so called default model, usually constant, or, alternatively, taken to
be the solution of the same model but calculated by an approximation.

Substitution of results 3.4.33/ and 3.4.37 into Bayes’s formula 3.4.31 gives:
Pr{A|G] o e? (3.4.39)
with a new functional to be maximized:
Q[A] = aS[A] — Zx*[A]. (3.4.40)

For each value of parameter «, numeric maximization of () gives the corresponding
spectral function A(w). The classical MEM]71] incorporates empirical Bayesian

methods to fix the parameter a. Making explicit the dependence in 3.4.31/ on a:
Pr[A, o|G] = Pr|G|A]Pr{Ala) Pria]/ Pr{G], (3.4.41)
one can obtain the following algebraic equation for «:

—2aS(a) = Tr{A(a)[al + A(a)] 1} (3.4.42)
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Here S(«) in the solution A% which maximizes @, and A(«) is:

A(Oé)ij = \/A_?[KTO_IK]Z‘]‘\/A»?. (3443)

K,; = K(71;,w;) i discretized kernel and A; = A(w;)dw; and Cj; is defined above

covariant matrix.

3.5 Technical note on the DMFT run

Here we describe technical details on the conduction of DMFT run.

Code compilation.

To compile QMC code the file param.dat, containing information about imagi-
nary time step and number of bands must be provided. The example of the file
param.dat is shown below in Table 3.5. We used mesh of imaginary time axis
A7 = (/L with L = 128. Also, we considered case of three bands. The corre-
sponding parameter is Nim, the total number of bands is controlled by parameter

Nd = 2Nlm.

Table 3.2: Example of param.dat
IMPLICIT REAL«*8 (A-H,0-Z)
parameter(L= 128, Iwmax= 2 * *13, Nom=Iwmax+1)
parameter(Nlm= 3,Nd= 2+Nlm,Nf=NIm=(Nd—1),Ns= 1)
complex*16 ci
parameter (ci=(0.d0,1.d0))
parameter (pi=3.1415926535898d0)

common/global /Beta,Zero,One, Two

By default the degeneracy among bands trough computations is forced by
parameter SUN. Since in our calculations the degeneracy among ty, bands is
broken we put in main.f flag SUN=.FALSE.

Input files.

Once the code is compiled to make QMC run one has to provide three files: inp,
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Table 3.3: Explanation of input parameters in param.dat

L — Number of time slices

Iwmax — Number of points on imaginary frequencies axis
NIm — Number of orbitals

Nd — Number of orbitals with accounted spin degeneracy
Nf — Number of Ising spins

pdos.in, and gOinit. Below we explain the contents of each file. The template
used for file inp is demonstrated in Table [3.5. The meaning of input parameters

is explained in Table 3.5.

Table 3.4: Example of inp file.

3.0 0.0 U, J

16 280000 Beta, Nsweep

0.0 0.0 1.0 Ef, dEf, Znm (Not used if def=null )
0 20 1 istart, nscf, iout

0.5 0.0005 alpha, small

1 T NewFourier FS (T or F)

T F TBDOS (T or F)

Once parameter TB in file inp set to be TRUE, the file pdos.in must be pro-
vided. The file contains Nlm+1 columns. The first column must list energies with
prescribed by param.dat mesh, and the other Nlm columns — partial renormalized

DOSes. The file can be prepared in the following 3 steps:
1. LDA DOS around Fermi level is selected with identifiable bandwidth D.
2. LDA DOS are renormalized to range: D — [—1:0;1 : 0]
3. The derived DOS is extended by zeros to be defined on range [—10, 10].
4. The energy mesh is redefined to contain Iwmax number of points

5. the integrated intensity of all bands in renormalized to be 1.0 per spin.
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Table 3.5: Explanation of input parameters in inp

Uu,J
beta
Nsweep
Ef

dEf

znum
istart

nscf
iout

alpha

small
NewFourier

FS
B

LSC

— Hubbard parameters

— inverse temperature

— number of Mote-Carlo sweeps

— the chemical potential

— energy step to search Fermi level

= (0 the chemical potential is fixed and program finds doping

else the doping is fixed (znum) and program searches for Ef

— Guess for doping

— controls status of file Sig containing self-energy

= (0 program does not read Sig

= 1 program reads in self-energy from Sig, but does not rewrites it
= 2 program reads and rewrite self-energy stored in file Sig

— maximal number of iterations

— controls output files

= 0 keeps only one last iteration in output files

— small mixing coefficient (of the order of 0.05-0.5)

— Self-consistency threshold for self-energy

— identify different Fourier Transformation (FT) routines to be used
= 1 most precise scheme (first derivatives of function to be provided)
= 2 less precise scheme (the moments of the function to be provided)
= 3 least precise scheme (does not requires any information)
provides extrapolated first derivatives in FT1 (LOGICAL)

— chooses between semicircular and arbitrary DOS (LOGICAL)

=F, then semicircular DOS is used

=T, DOS in file pdos.in (must be provided) is used

— reserved for external k-summations (LOGICAL)

The result of this procedure for the case of paramagnetic CrO, is shown in Fig-

ure [3.1.

The third input file g0init must contain 2%*Nlm-+1 columns corresponding to

7, ReGi(7), ImG;(7) for i = 1,2,... Nlm. The functions must be given for the

negative L/2 time slices. We chose the initial Weiss function to be ReG;(7) =

ImGi(r)=7forTt<0andi=1,23.

Analytical continuation.

The output of QMC code is Green’s function on the imaginary time axis. To
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find the spectral density we use the maximum entropy code for the analytical
continuation to the real axis. The MazFEnt code takes two input files and pro-
duces output file with partial DOSes. The first input file called inpmaz contains
information about input parameters of MEM and its example shown in Table 3.5l
We run MazEnt code separately for each band, thus number of degenerate bands
(first line in inpmaz) equals 1. The explanation of the other parameters is given

in Table [3.5.

Table 3.6: Example of inpmax file.

1 ' Ns

65 'L

1 0.004 ! idg, delta-G
16.0 ! Beta

600 ! Ne

0.02 ' De

3000 ' Nmc

1200 I alpha

1 ' Nrun

1234 ! rand

0 0.040 ! iflat, eim
-1.5 1.0 'mu U

The other input file called Gtaul.dat must contain imaginary time mesh, real
and imaginary parts of Green’s function for the given band. The output of MazEnt

is written to the files with name dos.

3.6 Calculated DOSes and observation of OSMT

The DOS for different pairs of (s, U) parameters are shown in Figures 13.243.6.
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Table 3.7: Explanation of input parameters in inpmax

Ns — number of time slices

L — number of time slices, defined in QMC code

idg — identifies way the model function for MEM is built
delta-G - deviation from GF (recommended 0.001-0.005 range)
Beta — inverse temperature

Ne — number of points on real axis (maximum 600)

de — frequency step on real axis

Nmec — number of annealing steps

alpha — « parameter in functional 3.4.42

Nrun — number of smoothing runs

rand — random seed number

[flat =0 selects default model in [3.4.38 to be a constant
Eim — irrelavant for the choice of iflat = 0

mu — chemical potential

U — Coulomb repulsion

We start discussion with case of s = 0.0, i.e. when paramagnetic LDA partial
DOSes were used in self-consistency condition 13.2.3. In Figure 3.2 the DOSes
for narrow th and broad t5, bands are shown as function of Coulomb repulsion
U measured in half bandwidth of broad LDA band. For U = 1.0 the narrow
band becomes almost unoccupied shifting its spectral weight higher the Fermi
level. The broad band stays half-filled and increases in bandwidth. Both bands
formed sharp quasiparticle peaks and noticeable upper and lower Hubbard bands.
As U increases to value of 2.0 the Hubbard bands become bigger accumulating
spectral weight from quasiparticle peak. The narrow band is already approaching
insulating stage as Coulomb parameter is usually quite small for transition oxides.
Finally, at U = 3.0 the narrow band underwent localization transition, and broad
band approaching it while still being conducting. The last plot of Figure 3.2
suggests that localization transition occurs at different values of U for narrow

and broad tyy bands.
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Figure 3.2: DOS for s = 0.0 and U = 0.0, 1.0, 2.0 and 3.0.

Since DOSes are derived through analytical continuation of Green’s function
from imaginary times to the real axis employing MEM which by construction
may produce small noises. To assure the insulating behavior of narrow band at
U = 3.0 we show in Figure [3.3 the imaginary part of Green’s function on the
axis of imaginary frequencies which is output of QMC routine. The shape of
Im Gtég(z'wn) suggests that broad band remains conducting up to U = 3.0, while

Im Gtg(iwn) curves up for U = 2.0
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In Figure 3.4/the DOS are shown for the case s = 0.1 h.b.w. The third panel of
Figure 3.4 demonstrate that already for U = 2.0 the narrow band becomes insu-
lating while the broad band still metallic with almost smoothed out quisiparticle
peak. The fourth panel of Figure 3.4/ shows that for U = 3.0 both bands devel-
oped upper and lower Hubbard bands which are separated by ~ 1.2eV energy
gap.

The comparison of Figures 3.2 where s = 0.0 and 3.4 where s = 0.1 leads to
the conclusion that localization transition occurs for smaller values of U in the

case of s = 0.1. Also, while in the case of s = 0.0 narrow band becomes almost
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Figure 3.4: DOS for s = 0.1 and U = 0.0, 1.0, 2.0, and 3.0.

fully unoccupied, in the case of s = 0.1 the spectral weight of broad and narrow
bands become comparable below the Fermi energy.

This tendency of the narrow band to become more occupied and leave more
spectral weight below the Fermi level persists with further increase of parameter
s. As a result more and more spectral weight of the broad band is pushed above
the Fermi level. The dynamics of spectral weight redistribution can be traced in
Figures [3.5 and 3.6. All three panes of the Figure [3.6 where s = 0.4 indicate the

situation opposite to one when s = 0.0 (see Figure 3.6). Now the narrow band
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Figure 3.5: DOS for s = 0.2 and U = 0.0, 1.0, 2.0, and 3.0.

is almost completely occupied, but the broad band shifted all its spectral weight
above the Fermi level. It should be noticed that increase of s did not accelerate
further the localization transition with increase of U.

We studied the redistribution of electron density between the narrow and
broad bands in the space of parameters (U, s). The three lower panels of Fig-
ure 3.7 present partial occupancies of narrow and broad bands per spin as func-

tion of parameter s for U =1.0, 2.0 and 3.0. First, we discuss case U = 1.0 (see
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Figure 3.6: DOS for s = 0.4 and U = 0.0, 1.0, 2.0, and 3.0.

to panel of Figure [3.7). Here and later, the occupancies of broad bands repre-
sent the summary electron occupancy of two degenerate broad bands per spin.
The total occupancy of all three bands is also demonstrated to be 1 per spin as
expected. For small values of parameter s, i.e. if one starts with LDA DOSes,
the narrow band becomes almost completely unoccupied left with only ~ 15% of
total electron density. The situation is changing rapidly with increase between
initial relative positions of narrow and broad bands. As s becomes bigger by

magnitude the narrow band is accumulating electron density leaving broad bands
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less occupied. At s &~ —0.28 h.b.w. the narrow and broad bands have equal occu-
pancies of 0.5 each. This cross-section is followed by the narrow band being more
and more occupied and the broad bands correspondingly unoccupied. Finally at
s &~ —0.6 h.b.w. the narrow band gains almost 100% of electron density pushing

the broad bands above Fermi energy.
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Figure 3.7: The partial occupancies of broad and narrow bands as a function
of parameter s for different values of U. The dashed vertical line in each panel
indicates that the transition occurs for s with smaller magnitudes as U increases.
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In the cases of U = 2.0 and U = 3.0 the similar dynamics of electron density
can be observed with correction that the cross-section occurs for smaller values
of parameters s. For U = 2.0 the transition takes place at s &~ —0.24 h.b.w. and
for U = 3.0 at s = —0.28 h.b.w.

Thus, a very small difference (of =~ 0.5 eV) in the parameter s leads to com-
pletely different physics. As s varies from 0 to ~ —0.5 eV the three possible
scenarios of orbital selective Mott transition take over each other:

Scenario 1 (s < 0.1) — the broad band undergoes a localization transition while
the narrow band shifts above the Fermi level (see Figure 3.8).

Scenario 2 (0.1 <'s < 0.4) — both broad and narrow bands undergo a localization
transition (see Figure [3.9).

Scenario 3 (0.4 < s) — the broad band shifts its spectral weight while the narrow
band stays completely occupied (see Figure 3.10).

The extreme sensitivity to the small changes of parameter s suggests that
CrO, is on the edge of a quantum transition. The discussion in the previous
chapter implies that parameter s =~ 0 in CrOs, indicating the scenario 1 of Mott

transition (Figure 3.8).

U>Uc1>Ue:
>

a

E, E,

Figure 3.8: Schematic representation of Scenario 1 of OSMT. Under application
of Coulomb repulsion U broad band undergoes localization transition, forming
upper and lower Hubbard bands while narrow band from completely occupied
becomes almost completely unoccupied. The scheme is shown for big values of
U (U > U, > Us), where U, and Uy — critical U for broad and narrow band
correspondingly.
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U>Uci1>Uec2
>

E, E,

Figure 3.9: Schematic representation of Scenario 2 of OSMT. Under application
of Coulomb repulsion U both broad and narrow bands undergo localization tran-
sition. The scheme is shown for big values of U (U > U, > U.), where U, and
U., — critical U for broad and narrow band correspondingly.

U>Uc1>Ue2 t
ﬂ
= E

Figure 3.10: Schematic representation of Scenario 3 of OSMT. Under applica-
tion of Coulomb repulsion U broad band becomes completely unoccupied and
narrow band stays completely occupied. The scheme is shown for big values of
U (U > Uy > Us), where U, and U — critical U for broad and narrow band
correspondingly.

F

3.7 Model Hartree calculations

To investigate the role of many-body effects in considered quantum transition
we perform model Hartree calculations for three bands with semicircle DOSes.
Namely, we have three bands, each of them is normalized to have on electron.
Two bands are degenerate, broad and half filled. The third narrow band is fully
occupied, has width twice as less and shifted down to have its upper edge exactly

at the Fermi level. The initial density of states is shown in Figure [3.7.
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Figure 3.11: Input DOS for model Hartree calculations.

Let’s recall that the self-consistency condition in DMFT for one-band case is:

> ! ! : (3.7.44)

— W — € — Dignp(w) T W+t p— Y (w) — Aw)
imp(w) = Bjae(w).

Here X, (w) is self-energy of the impurity, 3;,,(w) is self-energy of the particle
in the lattice, A(w) is the bath spectral density, and u is chemical potential. For

Bethe lattice A(w) and Weiss function are related through
Aw) = t*Guw, (3.7.45)

where t is hopping parameter.

Let’s denote by indexes 1 and 2 two degenerate broad bands and by index 3
narrow band. Then t; =ty = 2t3 = t and by n; we will refer to the occupancy of
i-th band. Then for three bath Green’s functions, using condition [3.7.45/ we have

self-consistent quadratic equations:

1
= 3.7.46
g W p— X — t7G; ( )
= G+ Ww+pu—%)G—-1=0,i=1,2,3,
which have the following solutions:
1 2
Gi= sglwt = Sik y(w +p— T0)? — 4£2). (3.7.47)

21
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In the Hartree approximation:
Y, =U(N —ny), (3.7.48)
where N = n; + no + n3. Since occupancies can be found out as:

1 2
n; = ——/ Im G;(w)dw, (3.7.49)

™

—00

one finally can obtain the following system of equations:

n1+n2—|—n3:N

9 [(r=U(N-n2—n3))/2t
/ V1—22dz

ny = —
@ 0o
8 (pt+s+t/2—U(N—n1—n2))/t
n3:—/ V1 — 22dz
L

With N = 2, n; = ny = n and therefore ng = 2—2n, this system can be rewritten
as system of two equations for 1 and n. Parameters ¢, s and U we assume to be

given:

9 [(a=Un)/2
n = —/ V1 —22%dz, (3.7.51)

Q )

4 f+0.54+5—20(1—n)
1—n:—/ V1 —22dz.
™

Here fi, § and U are measured in terms of half band width of broad band .

Using the fact that
1 1
/\/ 1 —22dz = —3 arcsin z + 52V 1 — 22 (3.7.52)

one finds:

2
1 1 .

n = — 4+ — arcsin
2 7

/]—Un
2

,&—Un
2

1a—Un
T 2

9 .
—n = —arcsin[ji + § — 2U(1 — n)]
m

(3.7.53)

245 — 201 — )1 - [3+5— 2001 —n)]2

T



66

The numerical solution of the system 3.7.53 gave the curves for occupancies of
broad and narrow bands compared to the ones provided by QMC in Figure 3.7.
The same slope but still quite different shape suggests that Hartee approximation
can be used as tool to see general tendency of electron density redistribution but

consideration of many-body effects is crucial in CrO,.

broad bands narrow band

1 -
09
= |
g 08 I DMFT, U=1.0 —l—
g
5 0.7 [ DMFT, U=2.0 —0—
% o6 . DMFT, U=3.0 —&—
Q_ .
3 0.5 | Hartree, U=1.0
S | nn"...... ]
= 04 - | Hartree, U=2.0
8 03 | Hartree, U=3.0 ++rses
0.2
0.1
0 1 1 1 1 1

-08 -06 -04 -02 0 -06 -04 -02 0
parameter s, h.b.w. parameter s, h.b.w.

Figure 3.12: The occupancies calculated in Hartree approximation are compared
to occupancies calculated within DMFT with QMC impurity solver for broad
bands (left panel) and narrow band (right panel).

3.8 Conclusion

In this chapter we used the DMFT technique with QMC impurity solver to show
that normal state of CrO; is on the edge of a quantum transition when small en-
ergy scales (= 0.5 eV) lead to the phases with completely different physics. Also,

we observed OSMT taking place in ¢y, manifold of Cr atoms. The application of
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considerably small Coulomb repulsion U to the ¢y, orbitals lead to the opposite
of intuitively expected result when the broad initially half-filled band undergoes
localization transition while the narrow band where applied U must be effectively

stronger becomes completely unoccupied.
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Chapter 4

Electronic structure of actinides under ambient
pressure

In this chapter we discuss in details the localization-delocalization transition in
actinides, accompanying low-energy physics, and appropriate model for its de-
scription within one-electron picture. The first section is devoted to the review
of basic facts of actinide physics and theoretical studies reported earlier in the
literature. In section 4.2 various LMTO basis sets are analyzed in order to deter-
mine a robust bare Hamiltonian for the actinides. Finally, having chosen a basis
we report a detailed analysis of the one-electron band-structure of actinides in
Section 4.3. The hybridization between f- an spd- states is compared with the
f — f hopping in order to understand the Anderson-like and Hubbard-like contri-
butions to itineracy in the actinides. We show that both contributions decrease

strongly as one move from the light actinides to the heavy actinides.

4.1 Introduction

4.1.1 Background of the actinides

The actinide series encompasses the 15 chemical elements that lie between ac-
tinium and lawrencium on the periodic table, with atomic numbers 89 - 103 and
generally characterized by filling 5f sub-shell. Here we will concentrate on the
part of series from Thorium till Einsteinium. The corresponding valent states of

those elements are provided in Tables 4.1 and 4.2l



Table 4.1: Valent states of Actinides I.

Thi;,

91
Pay3,

92
U238

NP%%?

94
Puyy,

6d27s?

5f26d! 7s?

5f36d!7s?

5t6d! 7s?

5106d°7s?

Table 4.2: Valent states of Actinides I1.

95
Amy;;

96
Cmjy;

BkSi,

Cf35

99
Esys,

5f76d°7s?

5f76d ! 7s?

5196d°7s?

5f106d°7s?

5f116d°7s?
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It is well accepted [72] that the actinides are divided into two groups based on
the behavior of the 5f-electrons. The lighter actinides (Th to Pu) have smaller
atomic volumes, low-symmetry crystal structures and itinerant 5f states that
participate in metallic bonding [73]. Alternatively, the heavy actinides (Am to
Es) have larger atomic volumes, high-symmetry crystal structures, and relatively
localized 5 f-electrons. The disparity in behavior is associated with delocalization-
localization transition of 5 f-electrons happening in the vicinity of Pu. In light
actinides 5 f-orbitals are not localized due to particular screening of nuclei charge
by 4 f-electrons and extend enough to participate in metallic bonding. Narrow
5 f-bands with high density of states at Fermi level result in low symmetry crystal
structure and small atomic volumes. As nuclei charge increases with increase of
atomic number 5 f-electrons are pulled stronger into the core and at Am become
completely localized. As a result unit cell volume increase dramatically (see inset
of Figure [4.1) and spd-orbitals become solely responsible for bonding favoring
high symmetry crystal structures observed in conventional metals.

The big atomic volumes and small bulk modulus make heavy actinides to be
“soft” materials. Applying pressure to the heavy actinides results in a series of
crystallographic phase transitions, and the respective phases often have signifi-
cantly smaller volumes [12, 11] (see Figure[4.1)). Transitions of this sort are often
referred to as “volume collapse” transitions. Given that the application of ample

pressure to any system of localized electrons will eventually cause a delocalization
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Figure 4.1: Relative volume V/V; as a function of pressure for a-uranium [9], Am
[10, 11] and Cm [12]. Vertical lines separate the pressure ranges for each Am and Cm
(crystallographic) phase. Percentage values indicate the collapses in atomic volume.
Unfortunately, I was not able to find the same phase diagram for Pu. The pink strips
indicates volumes observed for different crystallographic modifications of Pu (from bot-
tom to top): a-phase, S-phase, y-phase, e-phase, §’-phase and, finally, 6-phase. (Inset)
Ambient pressure atomic volumes and (solid circles, left-hand side) and bulk moduli
(open squares, right-hand side) across the actinide series. The plot is copied from [12].

transition, understanding what role the electronic delocalization transition may
play in the volume collapse transition has been and continues to be an active area
of study [74, [75].

Plutonium is considered to be dividing line of actinide series, with the a- and
0- phases associated with light and heavy behavior, respectively. This dual nature
of Pu, along with an enormous 25% volume collapse for the § — « transition,
made Pu the most interesting element among 5 f compounds for basic theoretical
research over the past 50 years 76, [77].

The actinides are among the most complicated classes of materials in terms of
understanding electronic correlations given the presence of s, p, d, and f electrons

near the Fermi surface and the unusual behavior observed in experiment. Broad
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discussion in the literature was devoted to the following questions: abrupt change
in volume and bulk modulus [78]; unique crystal structures|73]; partial localization
of f-electrons [79], Mott transition [80), 81]; paramagnetism in light actinides and

formation of magnetic moments in heavier actinides (starting from Cm) [77].

4.1.2 Earlier reported in literature calculations

Numerous Ab Initio electronic structure calculations have been performed for the
actinides. Standard DFT based LDA [82, 83] and GGA [84], 85] calculations for
experimentally observed paramagnetic ground state gave good results for equilib-
rium volumes of earlier actinides from Th till Np. However, already for a-phase
of Pu there is an underestimation of the theoretical volume comparing with the
experimental one [86, 87] and for the J-phase the disagreement is rather large
(more than 20%). Recently it was found that combination of GGA and spin-
polarization taken into account results in drastic improvement of the DFT results
on equilibrium volume values of Pu phases [75]. However, any improvement in
the DFT description inevitably lead to a magnetic ground state of Pu, contrary
to experiment [77].

The problem of “first principles” calculations of electronic structure and ground
state properties of plutonium is associated with the question how to describe 5 f-
electrons localization [88]. A. Svane et al. in [89] accounted for partial localization
of 5 f-orbitals using SIC-LSD approximation (SIC for self-interaction correction)
which postulates a manifold of coexisting localized and delocalized f-electrons.
Authors were able to predict non-magnetic/magnetic ground states for U, Np,
Cm and Bk in agreement with experiment. Still, the ground state for Am and
Pu were predicted to be magnetic.

The physical origin of localization are correlation effects due to Coulomb inter-

action between 5 f-electrons. Therefore, such methods as LDA+U and LDA+DMFET
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should provide better results in the description of actinides. Indeed, LDA+U cal-
culations for 0-Pu [90, 91] gave a significant increase in the equilibrium volume
in good agreement with experiment, but preserved the strong spin-orbit polariza-
tion with large values of magnetic moments. Recently, it was found that LDA+U
equations can give a non-magnetic solutions [92, 93] for Pu with 5 f-shell in ground
state with S = L = J = 0 and calculated equilibrium volume is in good agreement
with the experimental value. Analogical calculations for Am were carried out in
[94]. While LDA+U method was able to solve the problem of 5 f-localization
without developing magnetism it fails to predict experimentally observed photoe-
mission spectra missing the quasi—particle peak near the Fermi energy.

Most earlier implementations of the LDA+DMFT approach for plutonium
were done by S. Savrasov et. al. in [74]. To solve the impurity problem
authors used an interpolative approach with a simple analytical form for self-
energy. Another attempt was done in [95, 96] where the authors had started from
non-magnetic LDA+U solution and included fluctuation via “spin-orbit T-matrix
FLEX approach” based on the perturbation theory in Coulomb interaction pa-
rameter U. Recently, both QMC and Hubbard I approaches were used in [97]
to solve the impurity problem. All listed calculations provide qualitatively closer
description of experimental photoemission spectrum than LDA+U. The recent

LDA+DMFT study of Curium has been done in Ref. [98].

4.1.3 Actinide Hamiltonian

We consider the following model Hamiltonian for the actinides:

H =Y Vijaslchifa; +cc)+ > thoaflifs; (4.1.1)

ijaf ijaf

+ Z tZIgd(k>CLackb + Z Uaﬂv6flifgif7if6i

kab iafByd

where f,; is the annihilation operator for 5f-electron in state o = |j, j,) at site i,

and c,; is annihilation operator for conduction electrons in the state a = |n, j’, ji).
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This model can be understood as a periodic Anderson model in which additional
direct hopping is allowed between the correlated states. Equivalently, this model
can be thought of as a Hubbard model with additional uncorrelated states that
hybridize with the correlated states. Therefore, the model for the actinides con-
tains the physics of both the periodic Anderson model and the Hubbard model (if
the hybridization is set to zero). In the Hubbard model ¢/ competes with U to de-
termine the degree of localization of the electrons, while in the periodic Anderson
model V competes with U. In the model of the actinides ¢/ and V cooperatively
compete with U, and the relative magnitudes of ¢/ and V will determine the
degree of Hubbard-like and Anderson-like contributions to the itineracy of the
f-electrons. The main focus of this study is to determine the relative importance
of t/ and V across the actinide series. This is the first step towards understanding
wether the localization of the f electrons which occurs as one traverses the ac-
tinides is an Anderson transition, a Mott transition, or some combination thereof.
The spd hopping term t*?? may be pertinent to the low energy physics of the ac-
tinides given that the spd electrons may be present at the Fermi energy even if
the f electrons are completely localized.

In general, the parameters V and ¢/ depend on the choice of basis set and
therefore are not unique. The secondary objective of this study is to determine
the best basis for parameterizing the actinide model. The earlier attempts to
construct tight-binding parametrization for actinides resulted in two limited mod-
els. The first provided parametrization of f-bands only with spin-orbit coupling
incorporated trough intra-atomic matrix elements [99]. The other considered hy-
bridization of f-orbitals with spd-orbitals but ignored spin-orbit coupling [100].
We provide details on tight-binding parametrization and comparison to earlier

work reported in literature in the next chapter.
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4.1.4 Further Motivation

The idea of a Mott transition in the actinides was brought forward by Johans-
son [L01] based on empirical comparison of canonical 5 f-bandwidth with the esti-
mates of the Coulomb interaction in the form of a Hubbard U. Later elaboration
of these ideas in the context of the a-d transition in Pu took place in [102, [103].

The important role of d — f hybridization in actinide metals and alloys was
stressed in the early work of R. Jullien et al. [104} 105] who considered a model
similar to4.1.1), including f — f hopping and Coulomb repulsion U. The magnetic
solutions of the model were investigated as function of the position of 5f-band
and using reasonable estimates for the rest of the parameters.

In this study, we reconsider the issue of the description of the Mott transition
in the actinide series, from a perspective which is motivated by recent DMFT and
LDA+DMFT works [98, 96]. These works, have provided further demonstration
of the hypothesis that a localization-delocalization transition takes place across
the actinide series. However, within the DMFT framework, there are two different
roads to localization in a multiorbital model. One possibility is to argue that the
bands near the Fermi level have large f character, and form a Hubbard model
out of them. This leads to a multiorbital Hubbard model where the Hubbard U
is applied to the f bands near the Fermi level. This approach is very successful
in the description of transition metals, for which the multiorbital Hubbard model
successfully describes the photoemission and the magnetic properties, and the
Friedel model describes the bonding properties.

An alternative approach is to retain both f and spd bands, and their hy-
bridization term. While the U is still applied to the f states, the localization-
delocalization transition which takes place in the f states are driven by the
changes in the hybridization. Since the spd bands are very broad and always
remain metallic, the Mott transition takes place in the f band only, namely this

is a realization of the orbitally selective Mott transition, where only a subset of
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orbitals go from itinerant to localized. The “metallic” side of the transition is
characterized by a Fermi surface containing both f and spd electrons, while in
the “insulating” or localized side of the transition, the Fermi surface contains only
spd electrons. In this picture the transition can be driven by either changes in
the hybridization or the direct f — f hopping.

While some aspects of localization-delocalization in the Anderson model and
the Hubbard model treated by DMFT are very similar at intermediate tempera-
tures [106] (for example they both exhibit a line of first order phase transitions
ending at a second order point), there are significant differences at very low tem-
peratures when hybridization becomes a relevant perturbation suppressing Mott
transition [28]. Furthermore, the behavior at large U and high temperatures
should be quite different in the two models, due to the presence of the broad
metallic band in the Anderson model.

To address these issues we study whether the delocalization is driven mainly
by changes in the hybridization term, or by changes in the hopping among the f
orbitals. This question of course, depends on the definition of what one means
by “f electron orbital”. In the context of the Hamiltonian (4.1.1) viewed as a
truncation of the full many body problem, the f electron orbital is defined by the
fact that only the Coulomb interaction on that orbital is retain. More generally,
the LDA+U method, and the LDA+DMFT method, require the definition of a

set, of correlated orbitals.

4.2 Orbitals and basis

4.2.1 Basis set dependence issue

While the issue of representing the Kohn-Sham Hamiltonian in different basis
sets has been a subject of numerous studies, the dependence of the results of

correlated electronic structure methods such as LDA+DMFT on the choice of
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Table 4.3: Choice of basis.

Bare LMTO Screened LMTO
Lowdin transform | Lowdin transform
Bare LMTO Screened LMTO
projective basis projective basis

correlated orbitals is only beginning to be explored [107].

In this study, we investigate the role of the choice of the correlated f or-
bital. We first take the f electron orbital as the f element of the LMTO basis,
both in the bare and screened representations [108, 109]. The LMTO basis is
non-orthogonal and therefore must be orthogonalized in order to avoid the com-
plications of solving the many-body problem in a non-orthogonal basis. As we
will show in this study, the method of orthogonalization has a large influence
on the results. We utilize both the Léwdin orthogonalization [110] and the pro-
jective orthogonalization [111, O8] that was used in earlier implementations of
LDA+DMEFT. This effectively results in four different constructions of f orbitals,
listed in Table 4.3.

4.2.2 Bare and Screened LMTO within ASA scheme

The basis set of linear muffin-tin orbitals (LMTOs) has been extensively used in
electronic structure calculations [108, 112]. Within the atomic sphere approxima-
tion (ASA), LMTO is a minimal and efficient basis set with one basis function per
site I and quantum pair L = (I,m). Although, the LMTO method is physically
transparent the constructed basis is non-orthogonal.

Below we sketch the derivation of the bare and screened LMTO basis set
within the ASA. The construction of the bare LMTOs xz(r) starts with so called
envelope function [112], which is a decaying solution of the Laplace equation

centered at the site I:

Ki(r;) = Ki(r))Yy(81) = <ﬂ)l+l Y1 (), (4.2.2)

rr



77

here r; = r — Ry, unit vector r; indicates the direction of r;, Y, (£;) is a spherical
function, and w is scaling parameter associated with the linear size of unit cell.

In any atomic sphere other than I, K (r;) can be represented as:
Kyp(ry) = - Z SrrrpJu(rr). (4.2.3)
L/

The function Ji(r;) = (r;/w)'Y7(¢r) stands for the regular solutions of Laplace
equation, and Sy, ;1 are structure constants.

Inside each atomic sphere we construct a linear combination of the solution
¢rr(ry) of Schrodinger equation and its first derivative with respect to energy
é;L(rI) at some fixed energy F,.

The final step is to smoothly match the boundary conditions at the surface of
sphere I:

®if (v;) = AfLdrn(rr) + B}(L@L(I‘I) — Kp(ry) (4.2.4)

and at the surface of sphere I’ for all I’ # I:
Cbi/(r[/) = A{/L/QﬁpL/(I‘]I) + BIJ/L/QZ.S[/L/(I‘[/) — JL/(I']/). (425)

With the array of constants A and B determined from 4.2.4'-4.2.5 we conclude

the construction of bare LMTO basis function:

(I)[I_/I(rf)a ry SI)
XIL(rI) = _ZL/ S[L’I/Lléi,(rp), ry € SI/(I 7£ [,)’ (426)
Kp(rp), r € Interstitial.

The Fourier transform of the LMTOs with respect to R; — R/ gives:

S (r) =S, ®7,(r)Skry, |r| < Rur,
Xkr(r) = 2 ) 2z P )Sers I] u (4.2.7)
Zk elkRKL(I‘ — R), |I‘| > RMT-

The standard LMTO method outlined above yields long-range orbitals. The

concept of a screened LMTO was created to overcome the non-locality of the
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bare LMTO basis set [109]. The method is based upon the idea of localizing the
LMTOs by screening with multipoles added on the neighboring spheres. Namely,

to each regular solution of Laplace equation we add —ajy, of the irregular solution:
Ji(rr) = Ji(rr) — arn Kp(ry). (4.2.8)

The condition that the on-site Laplace solution should not change leads to

the Dyson-like equation for the screened structure constants:
Sear = Saa0arar + Qe S o] = Sa,aUar ot (4.2.9)

where matrix index a refers to the pair (1, L) and implies summation over repeated
indices. The matrices a, = «; are diagonal for each [. In our calculations the
choice of a’s was as follows: «a; = 5.5166, o, = 0.5242, ay = 0.1382 and ay =
0.0355.

The screened and bare envelope functions are related by the transformation
Uy o introduced in 4.2.9:

K (vr) =Y Kp(er)0rp i + arwSip), (4.2.10)
ry

Or in matrix notations:

@
Ka = Ka/Ua’,m

where K, = Ky (r;) and K¢ = K&(ry).
With the definitions 4.2.8, 14.2.9 and 4.2.10 the construction of screened LM-
TOs proceeds exactly in the same way as in the case of the bare LMTOs. Namely,

we construct new linear combinations
7 (ry) = Af b1 (rr) + By éro(ry)

inside the sphere I by matching smoothly K¢ (r;) on its surface. Also, we con-

struct new linear combination

oI (rp) = Al ¢ () + B dr (tr)
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inside sphere I’ by matching smoothly J§ (r;) on its surface for each I’ # I.

Thus, we arrive to the definition of screened LMTO:

(I)ga<r1)7 ry c SI>
K¢(ry), r € Interstitial.

The Fourier transform of screened LMTOs with respect to R; — Ry gives:

o7 (r) = >, ®L(r)Sipr, vl < Ry,
Xier(r) = ‘ (4.2.12)
S K (r - R), r| > Rur.

The Hamiltonian and overlap matrices in screened and bare LMTO represen-
tations (O , H, and O%, H* respectively) are related through the transformation
U introduced in 4.2.9:

H* =U'HU (4.2.13)
0* =U'OU. (4.2.14)
Have constructed the basis, one has to solve the generalized eigenvalue prob-

lem:

(H(k) — €(k)O(k))¢i(k) = 0. (4.2.15)

As described above, it is necessary to transform to an orthogonal basis when per-
forming many-body calculations, such as DMFT, in order to avoid the difficulties

associated with a non-orthogonal basis.

4.2.3 Lowdin orthogonalization

Lowdin orthogonalization [110] is a straightforward orthogonalization of the Hamil-

tonian which uses no information from the basis set:

H(k) = H(k) . (4.2.16)
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As will be shown below, this orthogonalization procedure may lead to a further

mixing of L characters among the LMTOs and hence unphysical results.

4.2.4 Projective orthogonalization

A physically guided, orthogonalization procedure is to find a basis where each
function contains the maximum amount of a particular L character. This ap-
proach proposed by K. Haule was used in earlier LDA+DMFT studies of cerium
and plutonium [111]. This basis has an important advantage. The “f electron”
in this basis has mostly f character. Mathematically, the non-interacting spec-
tral function of f electron Green’s function in this basis agrees with the LDA f
density of states. This allowed us to identify the f occupation in this basis set
with the occupation numbers inferred from EELS and X-Ray absorption which
are sensitive to angular momentum selection rules [113, 114, [115].

Here we follow [111]. It is straightforward using 4.2.7 and 4.2.14/ to show that

overlapping matrix within MT-sphere can be represented as [116]:

HH JH HJ
Oxr,1, = 5L1L201(1 ) SltLleoz(Q ) — Ol(1 )SkL1L2 (4.2.17)
JJ
+Sl1;L1L/Ol(/ )SkL/LQ'
The quantities o/, of*, o7 and o/’ are numbers in each I-subspace. For A

and B representing H or J:
opt? = (07 |97 )01, 1, (4.2.18)
In each L-subspace the overlapping matrix is:
Oy = o) _ §loUH) _ o) g 1 §To(I) g, (4.2.19)

In order to find the transform to the orthonormal base we must represent O(k)
as the square of a matrix. As we show below, the most intelligent choice would
be:

O(k) ~ (H — JSk) (H — T Sk) (4.2.20)
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for each L-subspace. Here H and [J are diagonal matrixes proportional to unity
in each subspace of definite L just like the overlaps o) defined above.

The above equation cannot be made exact, because overlap numbers are ob-
tained by integration over the radial part of wave functions. However, in most
cases the overlap numbers can become very close to their approximations:

o'~ HIH,
(JH)

0 ~ J"H,
" L (4.2.21)
o~ M,
o’ ~ T

For each L we have three independent equations for two unknowns. An ap-

proximate solution can be found by minimizing the following function:

10 — i 2 + [0 — TH| (4.2.22)

+|01(HJ) —Hi T + |Ol(JJ) — T T|? = man.
The desired transformation to the new base is:
Ti=(H-TS)™" (4.2.23)

Finally:

orew = TiIOT =~ 1,
k kT (4.2.24)
Hpw = T H T

4.2.5 Slicing

In order to determine the optimum basis, we need to define a criteria to judge
the different bases. When performing DMFT calculations, one accounts only for
a subset of local electronic correlations (those on the f orbital). Therefore, from
the perspective of DMFT it is best to have f orbitals with the largest on-site

Coulomb repulsion U [117, 118]. A simpler criteria, in the same spirit, is to
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search for the smallest value of /. The different terms in Hamiltonian 4.1.1] can

be easily identified at each k-point of the Brillouin zone:

Hgpa(k W
H(k) = wll) - Vi (4.2.25)
W Hp(k)
The hybridization V' in the Hamiltonian (4.1.1) may be set to zero. What
remains are the two blocks Hy and Hgpg of (4.2.25) which are now completely

decoupled. The Hamiltonian may now be diagonalized resulting in distinct spd

and f bands, and any dispersion of the f bands is due to t/.

4.2.6 Technical note

The procedure of extraction of Hamiltonian in the representation of four basis
sets listed in Table 4.3 is schematically shown in Figure 4.2. The starting point of
the analysis, namely Hamiltonian and overlap matrix in either bare or screened
LMTO basis are printed to files ham.dat and olp.dat by the exporting version of
LMTART code. The detailed description of LMTART code’s input, output files
and run modes can be found in [37] and as online material of review [20]. The
switch “Bare/Screened” LMTO is set in <CNTRLS> section of INI-file.

The Lowdin orthogonalization was implemented through python script which
takes as input files with Hamiltonian, overlap matrix and list of k-points of Bril-
louin zone.

The projective orthogonalization is implemented by K. Haule in KSUM code.
The detailed description of input files and run modes can be found in online
material for [20]. To perform only projective transformation zero self-energy
stored in file sig.inp has been used. Also all orbitals in ciz.dat file must be
identified as correlated in order to have transformation to be applied to all orbitals.

After orthogonalization of the Hamiltonian we proceed with slicing procedure

described in previous subsection and comparison of band structure of H; and
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From LMTART: Hppa(k), Oppa(k)

(_m bare or screened LMTO representation) stored in ham.dat, olp.dat

Ll {1l
p .
) o Only at irreducable points of Brillouin zone
at all points of Brillouin zone Also : Sk.dat, bz.dat, grp.dat, wig.dat,
Also: bz.dat opar.dat, func.dat, oener.dat, idx.dat
A And finally: cix.dat, sig.inp
Lowdin orthogonalization Projective orthogonalization
Implemented in Python seript implemented in KSUM code
| SLICING ]

U s

Compare band structure of spd and f blocks
to original LDA bands

Figure 4.2: Procedure.

H,pq with original spd bands.

4.3 Results

4.3.1 Starting point: self-consistent LDA calculations.

We performed relativistic, spin-restricted LDA calculations within the ASA scheme.
7s, 6p, 6d and 5 f-orbitals were chosen to represent valent states, and 103 k-points
were used for the integration over first Brillouin zone. The same type of cal-
culations were carried out for 4 different materials, picked to evenly represent
actinide series: U, a-Pu, §-Pu and Cm II (fec phase of curium). For simplic-
ity, we used the fcc crystal structure for each element. The lattice parameters

listed in Table 4.4 were chosen to match the experimentally measured volumes
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for corresponding phases in case of Pu and Cm II. For U we use the equilibrium

volume predicted within GGA calculations. The Brillouin zone of fcc structure

with major high symmetry directions is shown in Figure /4.3l

Table 4.4: Lattice parameters (in angstroms).

a-U 4.3378
a-Pu 4.3074
0-Pu 4.6400
CmII| 4.9726

Figure 4.3: Brillouin zone of fcc structure with indicated high symmetry direc-

tions.

In Figure 4.4/ we present LDA band structure of Cm II with indicated contri-

butions of 5f- and 6d- characters. The overwhelming domination of f characters

within 1eV window around Fermi level forces the conclusion that the low-energy

physics of actinides is completely controlled by f — f bonding. As we show below

this intuitive interpretation turns out to be mistaken and Hubbard model alone

can not be considered as ground state Hamiltonian for actinides. One has to ac-

count for presence of spd-characters at the Fermi level trough the hybridization.

Moreover, the hybridization energy scale in actinides turns out to be larger than

the average f — f hopping.



85

T X W X K I

Figure 4.4: Band structure of Cm with indicated contribution of 5f (red) and
6d (green) characters. The layout is chosen to show d-contributions over f-
contribution.

4.3.2 Determining a robust basis for the actinides

We begin by analyzing the bare LMTOs orthogonalized with the Lowdin proce-
dure (see top left panel Figure 4.5/ ). Some f bands have a dispersion greater
than 1.5 eV which is unfavorable. Using the bare LMTOs orthogonalized with
the projective procedure, the f bands are far more narrow with a width of less
than 0.4 eV (see left bottom panel of Figure 4.5). In this case the two sets of
bands can be identified as S = % and S = g The Lowdin orthogonalization mixes
the spd states into the f states which causes a larger dispersion and a mixing of f
bands between the S = % and S = g states. Alternatively, the projective orthog-
onalization minimizes the amount of spd character in the f states which results
in weakly dispersing f states.

The same exercise can be performed using the screened LMTOs (see right
top and bottom panels of Figure 4.5). In this case, both the Léwdin and the
projective orthogonalization produce nearly identical results to the projective
orthogonalization of the bare LMTOs. The screened LMTOs are insensitive to

the method of orthogonalization due to the fact that orbitals are already well

localized with a well-defined character. In conclusion, one may use bare LMTOs
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Figure 4.5: Basis difference for fcc Curium. In all panels dashed grey line rep-
resent band structure produced by whole hamiltonian, solid green line - by spd
block, and solid red line - by f block. Both Lowdin and projective orthogonaliza-
tion result in the same band structure while applied to Hamiltonian in screened
LMTO representation. In the case of bare LMTOs the major difference between
Lowdin and projective orthogonalization occurs within f bands (solid red lines).
Finally, it should be noticed that projective orthogonalization is basis indepen-
dent and provides the same band structure for Hamiltonian in both bare and
screened LMTO representations.

orthogonalized with the projective procedure or screened LMTOs orthogonalized
in an arbitrary manner as a robust basis for the actinides.

The major contribution among spd-orbital to mixing with and expanding f
bands comes from s-characters. Indeed, Lowdin and projective orthogonalization
differ by terms containing containing structure constants, which are in turn pro-

J

portional to 077, 0’ and o"7. In case of Cm the overlap numbers are shown in

Table 4.5.

In case of bare LMTO, s-orbitals are very long-range and have o/7 ~ 115.
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s ‘ P ‘ d f
Bare LMTO
oftf | (2.27124,0.000) (9.16427,0.000) | (35.40434,0.000) | (907.78568,0.000)
ofl7 | (15.85822,0.000) (7.91339,0.000) (6.97400,0.000) | (-41.06287,0.000)
o’H | (15.85822,0.000) (7.91339,0.000) (6.97400,0.000) | (-41.06287,0.000)
0?7 | (115.09151,0.000) | (7.64477,0.000) (2.18279,0.000) (3.04675,0.000)
Screened LMTO
oftH | (2.26435,0.000) | (171.31688,0.000) | (34.70583,0.000) | (836.94498,0.000)
of7 | (3.31761,0.000) (-4.83644,0.000) | (2.15627,0.000) | (-70.61786,0.000)
o’H | (3.31761,0.000) (-4.83644,0.000) | (2.15627,0.000) | (-70.61786,0.000)
o’ (9.23412,0.000) (2.36841,0.000) (0.92777,0.000) (7.17800,0.000)

While in the projective orthogonalization these fat tails of s-orbitals are accu-

rately subtracted in Lowdin transformation they are mix in f-characters. To

JH and

justify this point we performed projective orthogonalization with 0’7, o
o’ forced to be zeros. This condition makes transformation 4.2.23 to be T = H
and formally concise with Lowdin transformation. The band structure resulted
from this calculation is compared to band structure resulted from Lowdin trans-
formation in Figure 4.6, The shape of 5f-bands are almost identical confirming

that without subtraction of tails of s-orbital wave function these characters mix

into 5f orbitals resulting in artificial broadening of later.

4.3.3 Decomposition of the actinide band structures

Having established a sensible basis for the actinides we choose to proceed with
projective orthogonalization of bare LMTOs. It is instructive to zero the hy-
bridization V' of the Hamiltonian for U, a-Pu, §-Pu, and Cm, and to compare the
full band structure with the spd and f bands (see Figures 4.7 and 4.8). The same
generic behavior can be seen in all four systems. The spd bands have a strong

dispersion and cross the Fermi energy in all cases, and the f bands are relatively
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Straightforward diagonalization

Energy, eV

Figure 4.6: Sliced band structures obtained trough Lowdin transformation is
compared to band structures obtained through projective orthogonalization when
in later all terms proportional to structure constants are forced to be zeros.

narrow. The fact that the spd bands cross the Fermi energy in all cases is a criti-
cal point which indicates that there will be spd states at the Fermi energy even if
the f states become completely localized. When the hybridization V' is switched
on, the f and spd bands interact via V' and mix. Therefore the strength of V' can
qualitatively be seen as the difference between the full DFT bands and the f+spd
bands. The spd bands change relatively little across the actinides, with the values
at the I' point being nearly independent of atomic number. Alternatively, the f
bands are relatively wide for uranium and become increasingly narrow as curium

is approached. The relative values of V' and ¢/ will be quantified below.



89

Figure 4.7: Band structure of a-U (top) and Cm II (bottom). Grey dashed lines
represent LDA bands, green lines represent bands of H,4, and red lines represent
bands of Hy

4.3.4 Quantitative analysis of V and ¢/.

In order to quantify V and ¢/ for the different actinides, we introduce an average
V and t/ so each actinide may be characterized by two numbers.

First, we remind that the Hamiltonian [4.1.1] is consist of four blocks:
H*(k) Vi
H(k) = (4.3.26)
Vi H(K)

Then the average strength of hybridization per band is defined as follows:

(= Tr(H (k) H (k))]"/2, (4.3.27)
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Figure 4.8: Band structure of a-Pu (top) and 6-Pu(bottom). Grey dashed lines
represent LDA bands, green lines represent bands of H,q, and red lines represent
bands of Hy

where H (k) stands for hamiltonian 4.3.26| with H,,(k) = H;(k) = 0 and N; =
14 stands for number of f-bands. The definition 4.3.27 was chosen to match

hybridization V' of standard Anderson model in two-band limit.

The average value of ¢/ is defined as follows:

t

S UTCHR)?) — (00 (43.28)
!

and matches t/ of canonical Hubbard model in the limit of one-band model. In

the above expressions 4.3.27 and 4.3.28| the brackets mean the following: (...) =

o S
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Table 4.6: Quantitative characteristics for actinide series (in eV).

V t_f V/t_f €5/2 — 1 €7/2 —
Bare LMTO
a-U 0.483 0.188 2.569 0.442 1.353
a-Pu 0.423 0.146 2.897 -0.180 0.971
0-Pu 0.305 0.099 3.081 -0.129 1.008
Cm II 0.189 0.050 3.780 -1.152 0.238
Screened LMTO
a-U 0.490 0.188 2.606 0.444 1.355
a-Pu 0.429 0.146 2.938 -0.178 0.973
0-Pu 0.309 0.098 3.153 -0.128 1.009
Cm II 0.192 0.050 3.840 -1.151 0.238

Table 4.6 lists calculated values of the average hybridization V and ¢/ and the
average energy level for j = 5/2 and j = 7/2 of f manifold relative to the Fermi
energy. The ¢/ are generally the same for bare and screened LMTOs, with the
exception of the average hybridization being slightly larger in the case of screened
LMTOs.

These results are displayed graphically in Figure 5.7. The blue bars represent
average hybridization, while red bars represent average strength of f — f hoppings.
In all cases, V is significantly greater than tf. As one moves along actinides
series from U to Cm ¢/ decreases as much as four times. The average value of
hybridization V also decreases but at a slower rate, as indicated by the inset plot
of the ratio of V and ¢/. The strong decrease in V and t/ will both contribute to
the localization of the f states. In order to determine if the localization could be
predominantly assigned to either Mott or Anderson character, explicit many-body

calculations such as DMFT would need to be performed.
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Figure 4.9: Histogram represents average hybridization (blue bars) and average
f — [ hopping (red bars) as functions of atomic number along actinide series. In
inset: the ratio V' /t/ (squares) as function of atomic number.

4.4 Conclusion

In summary, a one-electron analysis of band structure of the actinides was pre-
sented. We demonstrated that bare LMTOs orthogonalized with the projective
method and screened LMTOs are robust bases, in the sense that they give rise
to f orbitals with minimal hopping. Analysis of the Hamiltonian in these bases
yielded a number of interesting results. When switching off the hybridization V/,
it was shown that the spd states cross the Fermi energy and hence will be present
at the Fermi energy even if the f electrons become localized.

Evaluation of the average hybridization V and average f — f hopping ¢/ as
a function of the actinides showed that both quantities decrease strongly. The
quantity t/ decreased faster than V and V was larger in all actinides. Hence,

the Anderson model of the localization-delocalization transition, rather than a
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multiorbital Hubbard model is needed to describe the physics of the actinides
once explicit many-body calculations are added. This is the point of view taken
in recent DMFT work [98], and no further reduction to a model containing only

f bands seems possible.
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Chapter 5

Real space analysis for actinides

In this chapter we report a detailed real space analysis for actinides. After an
introduction and motivation in Section 5.1, we develop and describe tools to probe
the locality of 5f-orbitals in these materials in Section [5.2. Then in Section 5.3
the results of real space analysis are reported. We demonstrate that 5f orbitals
are very local and only first nearest neighbors are required to reproduce band
structure within f-block. Also, we provide a tight-binding (TB) parametrization
of the low-energy Hamiltonian, and finally compare parametrization to the earlier

reported in literature in Section 5.4\

5.1 Introduction and motivations

The tight-binding (TB) formulation plays an important role in electronic struc-
ture. Of all methods, perhaps tight-binding provides the simplest understanding
of the fundamental features of electronic bands. Particularly, an empirical tight-
binding parametrization can provide accurate, useful descriptions of electronic
bands and total energies. In this approach, given few tight-binding parameters
one assumes a form for the Hamiltonian and overlap matrix elements without
actually specifying anything about the orbitals except their symmetry [16]. The
values of the matrix elements may be derived approximately or maybe fitted
to the experiment or other theory. Here we derive tight-binding parameters for
actinides from LSDA-calculations given in the previous chapter.

The earlier attempts to construct tight-binding parametrization for actinides
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Figure 5.1: Diagram shows the sequence of steps completed in tight-binding anal-
ysis.

resulted in two limited models. The first provided parametrization of f-bands only
with spin-orbit coupling incorporated trough intra-atomic matrix elements [99)].
The other considered hybridization of f-orbitals with spd-orbitals but ignored
spin-orbit coupling [100].

5.2 The tools of analysis

The idea of reported analysis is to probe the locality of 5 f orbitals observing how
well bands constructed with specified number of nearest neighbors fit the original

LSDA bands.

In the Figure 5.1 we show sequence of steps that were performed. The main

~— " | [ |

e L)) | L0y

[ <:l criginal <j Hyew(k) = A, | [H]

S LDA bands e L
A S

!
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two steps are:

Hyspa(k) — H((R;)) — H(K). (5.2.1)

Here (R;) indicate nearest neighbors. First, we Fourier transform Hpspa(k) to
real space using a given number of nearest neighbors, and then transform back
to k-space and observe changes in the band structure. If one would use all atoms
of the sample for the discrete Fourier transform then LSDA band structure must
be reproduced perfectly. On the other side if we include a list of first nearest
neighbors the obtained band structure might differ significantly from the original
LSDA bands if 5 f-orbitals are not localized enough.

The starting point of the performed tight-binding analysis as shown in Fig-
ure 5.2 is the output of LMTART code in the basis of screened LMTO. Namely,
files with the Hamiltonian, overlapping matrix and information about Brillouin
zone are required (the details were given in the previous chapter). Files ham.dat
and olp.dat contain the Hamiltonian and overlapping matrix only at irreducible
points of Brillouin zone.

In order to print out orthogonalized Hamiltonian at all k-points in jj-representation
we run KSUM code in the mode:

./ksum -mod wan+j -sig sig.inp -pn Cm -mu 6.9

where one has to use correct value for chemical potential. In the input file ciz.dat
all orbitals must be indicated as correlated, then all of them will be transformed
into the jj-base. The sig.inp file contains zero self-energy.

Once the orthogonalized Hamiltonian is available we proceed by forming a list
of given order N of nearest neighbors and their coordinates. Thus list of order
N = 0 will consist of site itself only. The list of order N = 1 will consist of site
itself and 12 first nearest neighbors in fcc structure. In Figure 5.2 up to fourth
nearest neighbors are indicated in different colors.

To construct a tight-binding Hamiltonian we perform a Fourier transform to

the real space and back. Since we know that spd-orbitals are itinerant we use
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Figure 5.2: The nearest neighbors in fcc structure. The center atom (grey) is
located in the origin. First nearest neighbors are filled with red, second — with
green, third — with yellow, and fourth — with blue.

spd-block of Hpgpa instead of spd-block of H(k). The final step is to compare

the band structure of new constructed Hamiltonian to the original LDA bands.

5.3 Results

The result of real space analysis procedure described in Section 5.2/ for Cm is
shown in Figure 5.3l Here we compare three cases: on-site for 5 f-electrons band
structure (N = 0), when only nearest neighbors are included (N = 1), and
four nearest neighbors are included(N = 4). The red solid lines represent bands
of Fourier transformed Hamiltonian, while dashed grey lines are original LSDA
bands. When one accounts only for on-site 5 f-orbitals, the band structure consist
of flat lines representing on-site energies of 5 f-electrons and bands of spd-block.
Strictly speaking, since the projective orthogonalization is only approximate there
are non-zero off-diagonal elements in the Hamiltonian’s hybridization block, but
we checked that they are irrelevant and do not change band structure in any

noticeable way. The LDA band structure is already reproduced almost perfectly
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Curium
7

Figure 5.3: Band structure of Curium when N nearest neighbors are taken into
account for f-orbitals (red solid line) is compared to original LDA bands (dashed
grey line). The band structures are plotted for I'-X direction.

when one takes into consideration the nearest neighbors. This confirms that 5f-
orbitals are very local and extended barely enough to form the bands. Bands of
transformed Hamiltonian match LDA band structure exactly when four nearest
neighbors are included. The only noticeable discrepancy is located approximately
1.0 eV below the Fermi energy. This long-range feature exists due to the long
broad tails of the s-orbitals.

The corresponding tight-binding parametrization including only first nearest
neighbors for Cm in jj-representation is given in Tables 5.1/ and 5.2/ in meV.
This parametrization is obtained for the central atom to be at the origin and

the nearest neighbor to be at position (1/2,0,1/2) in Cartesian coordinates. The
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0 -Plutonium
/ N=0 | N=1 N = 4

Figure 5.4: Band structure of J-Pu when N nearest neighbors are taken into
account for f-orbitals (red solid line) is compared to original LDA bands (dashed
grey line). The band structures are plotted for I'-X direction.

parametrization for the other nearest neighbors can be obtained by transformation
OTHO, where H is given in Tables 5.1 and [5.2 matrix, and O is matrix describing
transformation of 5 f orbitals under given spatial rotation. The energy scale of ~1
eV of spin-orbit coupling in actinides means the jj-base is the only one acceptable
for work. Unfortunately, in this representation there are no obvious way to reduce
the number of matrix elements to few significant ones. One can see that all
hoppings, i.e. f— f, f—s, f —p, and f — d, have the same order of magnitude

and none of them can be ignored.



100

Table 5.1: Tight-binding Parametrization for Cm II(in meV). 5f shell with j =
5/2
5f D E-D 5D BD EDED
7s:|3,—3) | -0.000 39.518  0.000 56.250  -0.000  -44.203
Ts: |3, %) | 44203 0.000 -56.250 -0.000 -39.518  0.000
6p: |3, —%) | -3.191  -0.035 -2.018 -0.045 -1.427  -0.086
6p:[3,4) | 0086 -1.427  0.045 -2.018  0.035  -3.191
6p:[3,—32) | 0.047 -17.637 -0.068 34.668  0.150  16.319
—1) |-15.552  0.082  32.334 -0.162 -50.143  -0.301

6p::]3,3) | -0.301 50.143  -0.162 -32.334  0.082  15.552
6p:|3,2) |-16.319 0.150 -34.668 -0.068 17.637  0.047
6d :: [2,—3) | 10.666  0.000 12,990 -0.000  -8.107  0.000
6d ::|3,—3) | -0.000 -3.092  0.000 3.915  0.000  3.197
6d::[2,4) | 3197  0.000 3915  0.000 -3.092  -0.000
6d:[3,2) | 0.000 -8.107 -0.000 12.990  0.000  10.666
6d:[3,—2) | 0.000 18338 -0.000 56.954  0.000 -29.337

-17.279  0.000 -30.519  0.000 -107.268  0.000
0.000  32.228 -0.000  38.520 0.000 74.782
6d :: |2, L) -74.782  -0.000 -38.520 0.000  -32.228  -0.000

D
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6d::|5,2) | -0.000 107.268 -0.000 30.519  -0.000  17.279
6d::|3,2) | 29.337  -0.000 -56.954 0.000 -18.338  -0.000
5f:1]3,-3) | -4.491  -0.061  3.559  0.040 1522  0.000
5f:05,=3) ] -0.061 -2.711 -0.015 -1.592  0.000  1.522
5f:12,—-4) | 3559  -0.015 -6.060 0.000 -1.592  -0.040
5f 3.4y | 0040  -1.592  0.000 -6.060  0.015  3.559
5f:13,3) 1.522  0.000 -1.592 0.015  -2.711  0.061
5f:05,%) | 0.000 1522 -0.040 3559  0.061  -4.491
5f |2, =%y -0.021 2815 -0.020 -17.130 -0.086  -7.192
5f:=1%,-3) | -0.332  -0.031 -0.332  0.163  36.628  0.098
5f |2, =3y | -0.002 4375 0113 -5483  -0.218 -25.923
5f %, —%) | -2531  0.109 -12.234 -0.133  3.966  0.075
5|24y | 0075  -3.966 -0.133 12.234  0.109  2.531
5f=1%,3) 125923 -0.218 5483  0.113  -4.375  -0.002
5f:=1%,2) | 0.098 -36.628 0.163 0332  -0.031  0.332
5f:|2,%) | 7192 -0.086 17.130 -0.020  -2.815  -0.021
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Table 5.2: Tight-binding Parametrization for Cm II(in meV). 5f shell with j =
7/2

IE T D 5D D B snh BD By 15D
7s |%, —%) -53.977  0.000 70.717  -0.000 54.438 -0.000 -19.822 -0.000
7s |%, %) -0.000 -19.822  -0.000 54.438 -0.000 70.717  0.000 -53.977
6p |%, —%> 0.087 -8.278 0.085 7.728  -0.030 -14.338 -0.014 -5.984
6p :: |%, %) 5.984 -0.014 14.338  -0.030 -7.728 0.085 8.278 0.087
6p |%, —§> -0.674 0.135 -30.176 -0.091 32.368  0.108 7.124 0.006
6p :: %, %> 0.313  -42.590 0.288 9.322 -0.246 -0.131  -0.010 10.693

6p :: %,%) 10.693 0.010 -0.131  0.246 9.322  -0.288 -42.590 -0.313
6p |2, 2) -0.006 7.124 -0.108 32368  0.091 -30.176 -0.135 -0.674

6d :: %,—%> -0.000  -19.453  -0.000 -33.390 -0.000 -92.480 -0.000  30.603
6d :: %,—%> 44.632  -0.000  36.527  0.000  39.317  0.000  109.004  0.000

6d :: |2, L) -0.000  -109.004 -0.000 -39.317 -0.000 -36.527 0.000 -44.632
6d :: |2, 32) -30.603  0.000 92.480  0.000  33.390 0.000  19.453  0.000
22425  -0.000  32.428 0.000  54.791 -0.000 -13.797  0.000
-0.000  -20.729  0.000 -13.821 0.000 -32.339 -0.000 -15.796
57.247 0.000 21.865 -0.000  6.218 0.000  -56.385  0.000

~—

D
QU
|
o
NI B[ M|t
~

~—

6d::(2,4) | 0.000 -56.385  0.000 6218 -0.000 21.865  0.000  57.247
6d::12,3) |-15.796 -0.000 -32.339  0.000 -13.821 0.000 -20.729 -0.000
6d::12,2) | 0.000 -13.797 -0.000 54.791  0.000  32.428  -0.000  22.425
5f=13,-3) ] -0.021  -0.332  -0.002 -2531 0.075 25923 0.098  7.192
5f=13,-2) | 2815  -0.031 4375  0.109 -3.966 -0.218 -36.628 -0.086
5f:12,-4) | -0.020 -0.332  0.113 -12.234 -0.133 5483  0.163  17.130
5f:12,3) |-17.130  0.163  -5.483 -0.133 12234 0.113 0332  -0.020
5[=13,3) | -0.086 36.628 -0.218 3.966  0.109 -4.375 -0.031 -2.815
5f=13,3) | -7.192  0.098 -25.923 0.075 2531  -0.002 0.332  -0.021
5f =1L, —%) | -5.887  -0.063  4.795 -0.028 -16.488 -0.057 -3.447  0.000
5f=1L,-2) | -0.063 -7.110  -0.098  3.071  0.139 14.737  0.000  -3.447
5f=15,—3) | 4795  -0.098 0510  0.054 -3.779  0.000 14.737  0.057
5f=1%,—3) | -0.028  3.071  0.054 -11.743 0.000 -3.779  -0.139 -16.488
5f=1%,3) |-16.488 0139  -3.779  0.000 -11.743 -0.054  3.071  0.028
5f=1L,3) | -0.057 14737 0.000 -3.779 -0.054 0510  0.098  4.795
5f=1L,5) | -3.447  0.000 14737 -0.139  3.071  0.098  -7.110  0.063
5f=1%,%) | 0000  -3.447  0.057 -16.48% 0.028  4.795  0.063  -5.887
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Table 5.3: Tight-binding Parametrization for 6-Pu(in meV). 5f shell with j = 5/2
5 2o B0 Bd By BD BD
7s:]3,—3) | -0.000 65442 -0.000 93.187  0.000  -75.761
75 |3.3) 75.761  -0.000 -93.187  0.000  -65.442  0.000
6p |3, —3) | -11.462  0.031  -7.249 -0.185  -5.126  -0.245
6p:: [3,1) 0.245  -5126  0.185 -7.249  -0.031  -11.462
6p:|3,—3) | 0.085 -34.700 -0.128 67.359  0.278  31.121
6p::]3,—3) | -30.108  0.225  63.537 -0.401 -97.673  -0.691
6p :: 15, 5) -0.691  97.673  -0.401 -63.537  0.225  30.108
6p::]3,2) | -31.121 0278 -67.359 -0.128  34.700  0.085
6d:[3,—3) | 20495  -0.000 23.139 -0.000 -15.188  -0.000
6d:: |3, —3) | -0.000  -4.984  0.000  6.167  0.000  6.429
6d :: |3, 3) 6.429  0.000  6.167  0.000  -4.984  -0.000
6d :: |5, 3) -0.000  -15.188  -0.000 23.139  -0.000  20.495
6d:[3,—2) | 0.000 31255 -0.000 88.606  0.000  -48.892
6d :: ]2, —3) | -29.423  -0.000 -50.447 0.000 -172.109  -0.000
6d::|5,—3) | -0.000  51.845 0.000 62223  -0.000  122.310
6d::(2,1) ]-122.310  0.000 -62.223 -0.000 -51.845  0.000
6d :: |3, 3) 0.000  172.109 -0.000 50.447  0.000  29.423
6d::12,3) | 48.892  -0.000 -88.606 0.000  -31.255  -0.000
5f:13,-3) | -11.028  -0.121  7.980  0.095  3.633  0.000
5f=15,-3)| -0.121  -7.136 -0.037 -3.779  -0.000  3.633
5f:=|3,—-3)| 7.980  -0.037 -14.302 -0.000 -3.779  -0.095
5f:15,%) 0.095  -3.779  -0.000 -14.302  0.037  7.980
5f 13,3 3.633  -0.000 -3.779  0.037  -7.136  0.121
5f:12,3) | 0.000 3633 -0095 7.980 0121  -11.028
5f =%, —%) | -0.039  6.137  -0.028 -32.926 -0.172  -14.453
5f=]L,=2) | -0435  -0.074 -1.048 0.337  71.869  0.195
5f =L, —2) | -0.014 8162 0246 -11.428 -0.457  -50.190
5f |2, —3) | -5.679  0.240 -23.693 -0.287 8109  0.142
5f:1%,3) 0.142  -8109 -0.287 23.693  0.240  5.679
5f=1%,3) | 50190  -0.457 11428 0.246  -8.162  -0.014
5 L,2) 0.195 -71.869 0.337  1.048  -0.074  0.435
5f 1%, %) 14.453  -0.172 32,926 -0.028  -6.137  -0.039
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a-Plutonium

Figure 5.5: Band structure of a-Pu when N nearest neighbors are taken into
account for f-orbitals (red solid line) is compared to original LDA bands (dashed
grey line). The band structures are plotted for I'-X direction.

The result of the same real space analysis for §-Pu is shown in Figure [5.4. At most
left panel one can see the on-site energy levels of 5f electrons in §-Pu. As discussed
earlier the 5f-orbitals of §-Pu are slightly more itinerant than ones of Cm. At the
second panel of Figure 5.4 one can see when nearest neighbors are included there
small discrepancies among bands of real space Hamiltonian and original LSDA bands
even within 5f block. Around I'-point the coincidence of two is amazing, but in the
vicinity of X-point inconsistency is more noticeable than in the case of Cm. However,

the range of extension 5f orbitals is the same: hoppings to the nearest neighbors very
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Table 5.4: Tight-binding Parametrization for 6-Pu(in meV). 5f shell with j = 7/2

5f . %7_%> ‘27__> |27__> ’27__> ;%) %7%> %7%> %7%>

7s |%, —%) -89.263  0.000  113.127 0.000  87.147  -0.000 -32.822 -0.000
7s |%, %) -0.000  -32.822 -0.000 87.147 0.000  113.127  0.000 -89.263
6p |%, —%> 0.283  -27.776  0.241  29.408 -0.121 -48.109 -0.128 -17.139
6p |%, %) 17.139  -0.128  48.109 -0.121 -29.408  0.241 27776 0.283
6p |%, —%> -1.793 0.247  -58.670 -0.179  62.045 0.200 13.409  0.016
6p %,—%) 0.736  -82.131  0.647 17984 -0.554  -0.408 -0.077  20.071
6p g,% 20.071 0.077 -0.408  0.554 17984  -0.647 -82.131 -0.736

)
6p |2, 3) -0.016  13.409  -0.200 62.045 0.179  -38.670  -0.247  -1.793

6d :: [3,—3) | -0.000 -31.813  -0.000 -54.565 -0.000 -142.988  0.000  49.849
6d |3, —3) | 71.902  -0.000  57.510 -0.000 62129  0.000  172.802  0.000
6d::13,5) | -0.000 -172.802 -0.000 -62.129 0.000 -57.510  0.000  -71.902
6d:[3,2) |-49.849 -0.000 142.988 0.000 54.565  0.000  31.813  0.000
6d :: 3,—-3) | 39.319  -0.000 53.729  0.000 83.179  -0.000 -22.347 -0.000
6d:: |3, —3) | 0.000 -31.147  0.000 -20.918 0.000 -52.706  0.000 -25.616
6d: |3, —3) | 91.791  0.000  34.975 -0.000 9.811  -0.000 -88.055  0.000
6d:13,5) | 0.000 -88.055 -0.000  9.811  -0.000 34.975  0.000  91.791
6d::[3,%) |-25.616 0.000 -52.706 0.000 -20.918  0.000  -31.147  0.000
6d:03,2) | -0.000 -22.347 -0.000 83.179 0.000  53.720  -0.000  39.319
5f:12,-3) | -0.039  -0435 -0.014 -5679 0.142  50.190  0.195  14.453
5f=15,-3)| 6137 -0.074 8162 0240 -8.109 -0.457 -71.869 -0.172
5f=13,—3) ] -0.028  -1.048  0.246 -23.693 -0.287 11.428  0.337  32.926
5f 13,4y 1-32926  0.337  -11.428 -0.287 23.693  0.246  1.048  -0.028
5f:=153,3) | -0.172 71869  -0.457 8109  0.240  -8.162  -0.074  -6.137
5f:12,2) |-14.453  0.195  -50.190 0.142 5679  -0.014 0435 -0.039
5|3, —2)|-13.323  -0.124  10.089 -0.038 -30.984 -0.110  -6.749  -0.000
5fw]%,=2) ] -0.124 -15.187 -0.210  6.104  0.295  28.591  0.000  -6.749
5f=1L,—2) ] 10.089 -0210 -1.182  0.109 -7.834  -0.000  28.591  0.110
5|5, —3) | -0.038 6104 0109 -24513 -0.000 -7.834  -0.295 -30.984
5f:0%,3) |-30.984 0295  -7.834  -0.000 -24.513 -0.109  6.104  0.038
5f:=1%,3) | -0.110 28591  -0.000 -7.834 -0.109 -1.182  0.210  10.089
515,85y | -6.749  0.000 28591 -0.295 6.104 0210 -15.187  0.124
5f:0%5,%) | -0.000 -6.749  0.110 -30.984 0.038  10.089  0.124 -13.323
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a-Uranium

Figure 5.6: Band structure of a-U when N nearest neighbors are taken into ac-
count for f-orbitals (red solid line) is compared to original LDA bands (dashed
grey line). The band structures are plotted for I'-X direction.

well reproduce LSDA bands. Again, inclusion of four nearest neighbors make two band
structures look even closer (see right panel of Figure 5.4). The corresponding tight-
binding parametrization is provided in Tables 5.3/ and 5.2. The parametrization is
given for (1/2,0,1/2) spatial direction.

Finally, the analogous plot for a-Pu and a-U are presented in Figures 5.5 and 5.6
correspondingly. The first nearest neighbors still reproduce qualitatively the LSDA
band structure. Omne can see that some discrepancies between bands of real space
Hamiltonian and LSDA bands remain even when four nearest neighbors are taken into
account. This suggests that 5f-orbitals in light actinides tend to long-range behavior.
Tables 5.5, 5.6}, 5.7 and /5.8 list corresponding tight-binding parametrizations in j; base
for (1/2, 0, 1/2) spatial direction.
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Table 5.5: Tight-binding Parametrization for a-Pu(in meV). 5 f shell with j = 5/2

5f . ’27__> ’27__> ’27__> gv%> %7%) ;g)

) -1.066  150.257  -0.598  -98.284  0.317 46.180
6p |2, 3) -47.263 0.447  -103.499 -0.190  53.691 0.142

7s |%, —%} -0.000 87.896 -0.000  125.415 0.000  -105.125
7s i |%, %> 105.125  -0.000  -125.415  0.000 -87.896 0.000
6p :: |%, —%> -19.838 0.108 -12.546  -0.295 -8.872 -0.365
6p :: |%, %) 0.365 -8.872 0.295 -12.546  -0.108 -19.838
6p |%, —%> 0.142 -53.691 -0.190  103.499 0.447 47.263
6p :: %,—%) -46.180 0.317 98.284 -0.598  -150.257  -1.066
6p 3 1

IR P!

6d :: %,—%> 28.073 0.000 32.132 0.000  -21.135 0.000
6d :: %,—%> 0.000 -8.044 0.000 8.447 -0.000 9.456

6d :: %, %) 9.456 -0.000 8.447 0.000 -8.044 0.000
)

6d :: |3, 2 0.000  -21.135  0.000 32132  0.000  28.073
6d::|3,—32) | -0.000  43.250  0.000  122.549 -0.000  -66.892
6d :: 3, —3) | -41.255  0.000  -69.648  -0.000 -238.129  -0.000
6d::|3,—3) | 0.000 72515  -0.000 85797  0.000  169.800
6d::|3,5) |-169.800 -0.000  -85.797  0.000  -72.515  -0.000
6d :: |3, 3) 0.000 238129  0.000  69.648  -0.000  41.255
6d::[3,3) | 66.892  0.000 -122.549 -0.000 -43.250  0.000
5f:13,-5) | -17.520  -0.160 12278  0.133 5594  0.000
5f:12,-3) | -0.160  -11.288  -0.046  -5.992  0.000 5.594
505, —3) | 12278 -0.046  -22429  0.000  -5.992  -0.133
5f:12,3) 0133 -5.992  0.000 -22429  0.046  12.278
5f::133) 5594 0.000  -5.992  0.046 -11.288  0.160
5f:12,2) 0.000 5594  -0.133 12278  0.160  -17.520
5fu|5,—2) | -0.048 9420  -0.046 -48.720 -0.248  -20.785
5f:|5,—5)| -0.447  -0.110  -1.969  0.498  106.485  0.276
5f:03,—3)| -0.026  12.049  0.359  -16.888  -0.672  -74.259
5f:|3,—%) | -8845 0350  -35.659 -0.427  11.862  0.214
5f:1%,3) 0.214  -11.862  -0.427  35.659  0.350 8.845
5f:|%,3) | 74259  -0.672 16888  0.359  -12.049  -0.026
5 L,2) 0276 -106.485  0.498 1969  -0.110  0.447
5f|3, %) | 20785 -0.248 48720  -0.046  -9.420  -0.048
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Table 5.6: Tight-binding Parametrization for a-Pu(in meV). 5 f shell with j = 7/2

5f
7s
7s
6p

[0 NI N

[NJEN

[CIENECIEN RIENEIEN]

N |
~
N = N[
~ ~

100 N[ N~ N N[
=
~

|
N[ N
~—

~—

Nt
|
N DWW N|ot
~ ~—

Nl
WIOT[Co NI= |
o <~
g

DOt
N[ N|W DOt
~ ~—

~—

N
N N|W N[Ot N~

~ ~ ~— ~—

~ ~ ~ ~—

N N[O N[W N|—=

’ 29 __>
-122.919
0.000
0.449
28.537
-2.935
1.142
30.174
-0.031
-0.000
99.207
-0.000
-67.630
53.526
0.000
126.327
0.000
-34.609
0.000
-0.048
9.420
-0.046
-48.720
-0.248
-20.785
-20.464
-0.168
15.154
-0.059
-45.538
-0.155
-9.709
0.000

L)
0.000
-44.967
-48.186
-0.258
0.403
-125.590
0.110
20.245
-44.187
-0.000
-237.550
0.000
0.000
-43.648
0.000
-120.456
-0.000
-30.343
-0.447
-0.110
-1.969
0.498
106.485
0.276
-0.168
-22.743
-0.293
8.901
0.432
41.939
0.000
-9.709

| 29 __>
151.060
-0.000
0.348
83.461
-90.168
0.971
-0.617
-0.318
-0.000
79.410
0.000
196.634
73.530
-0.000
47.734
0.000
-72.400
0.000
-0.026
12.049
0.359
-16.888
-0.672
-74.259
15.154
-0.293
-2.221
0.167
-11.603
0.000
41.939
0.155

‘ 29 __>
0.000
116.231
52.432
-0.191
-0.274
27.706
0.832
94.637
-74.619
0.000
-84.880
-0.000
-0.000
-28.405
-0.000
13.558
-0.000
113.928
-8.845
0.350
-35.659
-0.427
11.862
0.214
-0.059
8.901
0.167
-37.103
0.000
-11.603
-0.432
-45.538

33)
116.231
0.000
-0.191
-52.432
94.637
-0.832
27.706
0.274
0.000
84.880
-0.000
74.619
113.928
-0.000
13.558
-0.000
-28.405
-0.000
0.214
-11.862
-0.427
35.659
0.350
8.845
-45.538
0.432
-11.603
0.000
-37.103
-0.167
8.901
0.059

32

-0.000

151.060

-83.461
0.348
0.318

-0.617
-0.971
-90.168

-196.634

-0.000
-79.410
0.000
0.000
-72.400
0.000
47.734
-0.000
73.530
74.259
-0.672
16.888
0.359
-12.049
-0.026
-0.155
41.939
0.000
-11.603
-0.167
-2.221
0.293
15.154

3 5)
-44.967
0.000
-0.258
48.186
20.245
-0.110
-125.590
-0.403
-0.000
237.550
0.000
44187
-30.343
-0.000
-120.456
0.000
-43.648
0.000
0.276
-106.485
0.498
1.969
-0.110
0.447
-9.709
0.000
41.939
-0.432
8.901
0.293
-22.743
0.168

3 3)
0.000
-122.91¢
-28.537
0.449
0.031
30.174
-1.142
-2.935
67.630
0.000
-99.207
0.000
0.000
-34.609
0.000
126.327
0.000
53.526
20.785
-0.248
48.720
-0.046
-9.420
-0.048
0.000
-9.709
0.155
-45.538
0.059
15.154
0.168
-20.464
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Table 5.7: Tight-binding Parametrization for a-U(in meV). 5f shell with j = 5/2

5f 3-8 152 15— 133 5f:153) 5f:u053)
Ts:|3,—3) | -0.000  99.202  -0.000  141.540  0.000 -120.642
Ts:l3,5) | 120642 -0.000 -141.540  0.000  -99.202 0.000
6p:: |5, —3) | -25.446  0.164  -16.093  -0.388  -11.380 -0.469
6p :: |5, 3) 0469  -11.380  0.388  -16.093  -0.164 -25.446
6p:|3,—3) | 0157  -63.190 -0.218  121.859  0.510 55.603
6p:|3,—3) | -54.401 0383 115750  -0.703  -176.848  -1.270
6p :: 15, 5) 1270 176.848  -0.703  -115.750  0.383 54.401
6p:|3,2) | -55.603 0510 -121.859 -0.218  63.190 0.157
6d:[3,—3) | 32.681  0.000  37.292  0.000  -24.242 0.000
6d::|3,—3) | 0.000  -9.142  0.000  10.328  -0.000 11.334
6d :: |3, 3) 11.334  -0.000  10.328  0.000 -9.142 0.000
6d :: 3, 3) 0.000  -24.242  0.000  37.292 0.000 32.681
6d:: [3,—2) | -0.000  49.843  0.000 141073  -0.000 -76.691
6d 3, —3) | -47.682  0.000  -79.937  -0.000  -273.878  -0.000
6d:: |3, —3) | 0.000  83.817  -0.000 98978 0.000 195.822
6d:13,5) |-195822 -0.000 -98.978  0.000  -83.817 -0.000
6d :: |3, 3) 0.000 273878  0.000  79.937  -0.000 A7.682
6d:12,3) | 76.691 0000 -141.073 -0.000  -49.843  0.000
5f:=13,-3) | 23985  -0.201  16.003  0.167 7.211 0.000
5f:=15,-3)| -0201  -16.301  -0.052  -7.398 0.000 7.211
5f:13,—-%)| 16.003  -0.052  -30.711  0.000 -7.398 -0.167
5f:15,%) 0.167  -7.398  0.000  -30.711  0.052 16.003
5f 13,3 7211 0.000  -7.398  0.052  -16.301 0.201
5f:15,2) 0.000 7211  -0.167  16.003 0.201 -23.985
5f %, —%) | -0.059  12.016  -0.066  -62.628  -0.318 -26.474
5|5, =3y | -0.747  -0.139  -2.294  0.643  136.499 0.353
503, —3)| -0.035 15523 0462  -21.324  -0.864 -95.380
5|5, —%) | -11.203 0448  -45.864  -0.558  15.152 0.283
5f:1%,3) 0.283  -15.152  -0.558  45.864 0.448 11.203
5f:0%5,3) | 95380  -0.864  21.324 0462  -15.523 -0.035
5%, 2) 0.353  -136.499  0.643  2.294 -0.139 0.747
5f:03,%) | 26474 -0.318 62628  -0.066  -12.016 -0.059
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Table 5.8: Tight-binding Parametrization for a-U(in meV). 5f shell with j = 7/2
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-139.181
0.000
0.575
35.623
-3.391
1.354
35.194
-0.037
0.000
113.004
0.000
-76.527
61.062
-0.000
143.693
-0.000
-39.136
0.000
-0.059
12.016
-0.066
-62.628
-0.318
-26.474
-26.921
-0.206
19.090
-0.083
-07.824
-0.196
-12.201
0.000

L)
0.000
-50.964
-61.031
-0.338
0.439
-146.370
0.150
23.602
-50.320
-0.000
-269.637
-0.000
0.000
-49.527
0.000
-136.254
-0.000
-34.255
-0.747
-0.139
-2.294
0.643
136.499
0.353
-0.206
-30.153
-0.364
11.465
0.546
52.900
0.000
-12.201

L)
168.320
-0.000
0.427
105.709
-105.074
1.115
-0.720
-0.358
-0.000
90.736
0.000
223.397
83.531
-0.000
54.677
0.000
-81.835
0.000
-0.035
15.523
0.462
-21.324
-0.864
-95.380
19.090
-0.364
-4.178
0.222
-14.136
0.000
52.900
0.196

‘ 2y _>
0.000
129.529
67.026
-0.232
-0.313
32.300
0.961
110.331
-84.623
0.000
-96.447
-0.000
-0.000
-31.773
-0.000
16.180
-0.000
129.378
-11.203
0.448
-45.864
-0.558
15.152
0.283
-0.083
11.465
0.222
-48.533
0.000
-14.136
-0.546
-57.824

33)
129.529
0.000
-0.232
-67.026
110.331
-0.961
32.300
0.313
0.000
96.447
-0.000
84.623
129.378
-0.000
16.180
-0.000
-31.773
-0.000
0.283
-15.152
-0.558
45.864
0.448
11.203
-57.824
0.546
-14.136
0.000
-48.533
-0.222
11.465
0.083

22)

-0.000
168.320
-105.709
0.427
0.358
-0.720
-1.115
-105.074
-223.397
-0.000
-90.736
0.000
0.000
-81.835
0.000
54.677
-0.000
83.531
95.380
-0.864
21.324
0.462
-15.523
-0.035
-0.196
52.900
0.000
-14.136
-0.222
-4.178
0.364
19.090

33)
-50.964
0.000
-0.338
61.031
23.602
-0.150
-146.370
-0.439
0.000
269.637
0.000
50.320
-34.255
-0.000
-136.254
0.000
-49.527
0.000
0.353
-136.499
0.643
2.294
-0.139
0.747
-12.201
0.000
52.900
-0.546
11.465
0.364
-30.153
0.206

33)
0.000
-139.18
-35.62.
0.575
0.037
35.194
-1.354
-3.391
76.521
-0.000
-113.00
-0.000
0.000
-39.13¢
-0.000
143.69
-0.000
61.062
26.47¢
-0.318
62.628
-0.066
-12.01¢
-0.059
0.000
-12.20
0.196
-57.82:
0.083
19.09(
0.206
-26.92°
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Table 5.9: Nearest Neighbors contributions to V' and t;.

4 tys Vitss
a-U 0.371 0.172 2.157
a-Pu | 0.324 0.134 2.418
0-Pu 0.232 0.090 2.578
Cm II 0.143 0.045 3.178

5.3.1 Table for t/ and V

In the previous chapter we calculated static quantitative characteristics of the
Hamiltonian average f — f hooping t/ and average hybridization V. Since, as
was shown in previous section, f-orbitals are extremely local in actinide and
the low energy physics is ruled by nearest neighbor hoppings, it is of particular
interest to calculate the contribution of first nearest neighbors to ¢/ and V. These
contributions are listed in Table 5.9 and compared to the integral values in the
diagram 5.7.

In the histogram the shadowed bars represent V (red) and tf (green) for the
original Hamiltonian while the bright bars represent contributions from nearest
neighbors. First nearest neighbors contribute ~ 75% to the hybridization and
~ 90% to the f — f hoppings. In the inset of Figure [5.7 we plot ratio of V/{f for
the integral values (blue squares) and partial first nearest neighbors contributions
(green circles). The similarity of shapes and slopes of those two curves implies

that first nearest neighbors contribution governs the dynamic of V' and ¢¢.
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Figure 5.7: Histogram represents average hybridization among f- and spd-
blocks(red bars) and f — f hoppings (green bars) as functions of atomic num-
ber. The shadow bars show V' and t;f for the original Hamiltonian and bright
bars represent values of V' and t;; calculated with inclusion of nearest neighbors
for 5f shell only. In inset: the ratio V/t;; as function of atomic number.

5.4 Comparison with earlier parametrization of W. A.

Harrison

In this section we compare our tight-binding parametrization for actinides with
earlier reported in literature by W. A. Harrison [99]. The evaluation will be
carried out on the example of Cm. The discussion will consist of three parts
focusing on hybridization parameters V, f — f hoppings ¢/ and matrix elements
of spin-orbit coupling.

The ultimate idea which W. Harrison has been trying to develop for many d-

and f-shell compounds and alloys is a formulation of tight-binding theory with
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universal parameters [119]. Indeed, within this theory one could make direct ele-
mentary estimates of all the bonding properties without the addition of empirical
parameters.

Eventually, the Hamiltonian to be considered:
HHa,rrison - Z EkCLCk + Z Efmf;rmfim + HSO (542)
- :

+ Z(szmCszm + C.C.) + Z ti;m/f;[mfjm’
(

k,im ijymm/
where ¢, and f;,, are annihilation operators for the conduction electron in state
|k) and 5f-electron with magnetic number m at site ¢ correspondingly. €y, are
on-site energies for 5 f-electrons and €y is spectrum of conduction electrons. Vi, im
stands for the hybridization matrix elements of local 5 f- and conduction electrons.
We will compare parameters Vi i, tfnm, and matrix elements of Hgp reported
by W. Harrison with values calculated in this study in subsequent Sections 5.4.1]
5.4.2/ and 5.4.3| correspondingly.
W. Harrison assumes f — f hoppings by magnitude to be much smaller than
hybridization parameters and starts with model 5.4.2 where tim/ = 0. Then he

calculates tfnm, using second order perturbation theory with respect to hybridiza-

tion.

5.4.1 Hybridization parameters

The calculation of ti;m, is carried out within second-order perturbation theory:

*
Vie om Vijm/

Ef—Ek ’

k

(5.4.3)
where site j is first nearest neighbor of central site. The hybridization parameters:
Viim = (K|A[fim), (5.4.4)

where state |k) is written as orthogonalized plane wave (OPW) (for details of

construction see Ref. [119]) and expanded in spherical harmonics and spherical



113

Bessel functions around the atomic nuclei. The perturbation A which couples
this OPW to the atomic f state arises from the difference in the potential oV
between the metal and what it would be in the free atom. Further, W. Harrison
proceeds with atomic sphere approximation taking the potential to be atomic
within muffin-tin sphere and €, outside. Then the difference §V' = 0 inside the
muffin-tin sphere and € — Viomic(r) outside.

With the given assumptions, the angular integration in [5.4.4 gives:

4
VQ

where R,3 is the radial f-state wave function. The angles (0, px) parameterize

(k|A|f,m) = Y})m(ﬁk,gok)/jg(k:r)ARngerr, (5.4.5)

the direction of the k-vector in Brillouin zone. The last simplification considers
the fact that f-state is strongly localized and then js(kr) ~ (kr)3.

The final form of the hybridization:

4mr Y2 g - : )
50 Wkrng Ok, or) [ js(kr)AR,srdr, (5.4.6)

where 7y depends only upon the atomic f state.

astgm)  (

We argue that formula'5.4.6 does not reflect the actual symmetry of hybridiza-

tion in actinides. We consider the following expansion:

Vidom = D @l Vi (Or, ), (5.4.7)
U'm/

where V' acquired additional index L to distinguish s, p and d characters of
conduction electrons. If Equation 5.4.6/ holds then coefficients a with I’ = 3 will

be much bigger than those with I’ < 2.

L
ml'm

To extract coefficients a’,, , we multiply 5.4.7 by [V (0x, ox)]* and sum over

Brillouin zone. This gives the following expression for coefficients:

CLL _ Zk VkL,Om [Y}TN (eka Sok)]*
S Y (Ors i)Y (O, 1)

In expansion 5.4.7 we included spherical harmonics with [ < 3. The partial

(5.4.8)

contribution of different harmonics to hybridization of 7s- and 5f-orbitals are
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presented in Figure 5.8. Figure 5.9 represents the partial contribution of different

spherical harmonics to the hybridization of 6d with [ = —1 and 5f orbitals.

t 1 T |3 T T T T T T T T T T T T T T
m=3 PN
S |3l
C
(@)
[
n .
© &, . . ...
0 L+ e f DT T S N Mt Ve, ot S ? TP Y W R |
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Figure 5.8: Partial contributions of spherical harmonics into s-f hybridization
matrix element.

As can be observed independently of the character of 5f-orbital one of the
biggest contributions into s-f hybridization comes from Y2(k) and Y; 2(k). We
will provide additional qualitative reasons for such behavior in next section.

We conclude that the symmetry of hybridization in our parametrization differs

from the one assumed by W. Harrison.
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Figure 5.9: Partial contributions of spherical harmonics into dg—_1;-f hybridiza-
tion matrix element.

5.4.2 f — f hoppings

Finally, in the perturbation-theoretical expansion |5.4.3 one assumes the denom-
inator to be equal to h%k?/(2m). After integration, 5.4.3 becomes (for details of

integration see [120]):

th = npplrh/md’, (5.4.9)
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with

Nffo = 20(525/2’/T), Ners = 6(525/27T), (5.4.10)

Mise = —15(525/27), npgp = —(525/2m).

Here d is scaling parameter.

W. Harrison provides generic forms for Viy,,:

Vigm = Udfth('f’z'f’?)l/z/de, (5.4.11)

5/2
Viprm = ns,pfmFLQrf/ /md9/2>

but does not give the values for coefficients 7;,,.
In order to compare given ¢/ parameters to ours, we rewrote Tables 5.1 and
5.2/ in LS-representation in Table |5.10.

We calculate t/, for each type of bond as:

th = %\/TT VIV, (5.4.12)

where V},, is matrix 2 x 2 consisting of ¢/ parameters with m and —m indexes of
Table [5.10 within the block with spin up.

We will comment on the relative importance of o-, 7-, - and p-bonding rather
than on absolute value of parameters because of the presence of scaling parameters
ry and d. Calculations of W. Harrison suggest that o-bonding dominates all other

types of bonding, 7- is stronger than 6-bond which in turn stronger than -bond.

The values at Table 5.11 suggest that the symmetry of f — f hopping reported by
W. Harrison is not consistent with one reported in this study. Our calculations
show d-bonding is a dominant type of bonding among 5 f-orbitals. o-bonds are
also favored while 7- and ¢-bonds give a much smaller contribution.

Also, our calculation show that matrix elements among spherical harmonics

with different m are of the same order of magnitude as those with the same m, and
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Table 5.10: Nearest neighbors parametrization for Cm II in spherical harmonics

in LS-base.

5fi{-3} 5 {-2} 5f;{-1} 5f{0} 5f{1} 5f{2}  5f{3}
7$,{0} |-51.242 -0.000 82.640 -0.000 84.944 0.000  -55.956
6pi{-1} | -1.498  -0.006 -18.657 -0.059 27.507  0.049  11.895
6p1{0} 0.367  -42.625  0.364 27.314 -0.368 -45.087  -0.397
6pi{1} | 18.035 -0.174 48.742  0.115 -36.610 -0.136 -1.346
6d,{-2} | 21.843 0.000 37.367  -0.000 75.381 0.000  -35.913
6d:{-1} | 0.000 -26.436 -0.000 -33.916 -0.000 -127.919  0.000
6d;{0} | 65.768 0.000 43.346  0.000  45.536  -0.000  73.308
6d;{1} | -0.000 -121.468 0.000 -34.599  0.000  -28.698  -0.000
6d:{2} |-33.769 -0.000 74.849 0.000 40.027  -0.000  25.396
5f;{-3} | -5.161 -0.066 5.613  -0.018 -21.509 -0.108 -8.459
5f;{-2} | -0.066 -5.841 -0.116 2.053 0.237 41.604 0.112
5f1{-1} 5.513 -0.116 2.666 0.147  -8.453 -0.247  -22.987
5f,{0} -0.018 2.053 0.147 -21.432 -0.150 2.114 0.024
5f;{1} |-21.509 0.237 -8.453  -0.150 2.584 0.124 6.248
5f1{2} -0.108 41.604  -0.247 2.114 0.124 -7.071 0.076
5f,{3} -8.459 0.112  -22.987 0.024 6.248 0.076 -6.480

Table 5.11: Comparison of ¢/, /t/.
5/ | 18/t | 15 /¢
W. Harrison[99] | 20.0 15.0 6.0
present study | 3.001 | 3.280 | 4.092
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Table 5.12: Nearest neighbors parametrization for Cm II in cubic harmonics in

LS-base.

x(5x2-3);  y(5y2-3); 2(522-3); y(x2-22); z(x2-2); x(y2-2z2); xyz;
7s{s}; 3.633 0.351 -0.000 0.026 0.000 -0.754 4.589
6p{x}+ 27.314 -0.000 -0.124 0.000 0.177 62.021 19.727
6p{y -0.000 -17.131 -3.502 0.000 39.642 -0.000 -0.047
6p{z}; 0.110 -3.460 27.314 39.772 -62.021 -0.740 0.000
6d{yz}; -2.396 0.000 0.044 0.000 0.149 1.970 4.356
6d{zx}y 0.000 4.098 0.483 0.412 -2.094 0.000 0.416
6d{xy}; 0.233 2.903 1.674 -0.903 -3.521 -0.062 0.000
6d{x2-y2}, 0.421 -0.034 -0.000 -0.093 -0.000 1.693 -0.554
6d{3z2-1}; -3.267 -0.313 -0.000 0.453 0.000 4.489 -2.883
B{x(5x2-3)}; | -21.432  -0.000  -0.152  0.000  0.079  -2.947  29.600
5f{y(5y2-3) }4 -0.000 -26.958 41.868 0.000 16.260 -0.000 -0.106
5f{z(522-3) }4 -0.152 41.868 -21.432 16.270 2.947 -0.147 -0.000
{y(x222)}; | 0.000  0.000 16270 6851 35540  0.000  -0.073
5f{z(x2-2) }4 0.079 16.260 2.947 35.540 35.148 0.397 0.000
B{x(y2-22)}; | 2947  -0.000  -0.147  0.000  0.397  35.148  0.082
5f{xyz}; 29.600 -0.106 -0.000 -0.073 0.000 0.082 -48.060

so cannot be omitted. These type of matrix elements have not been considered

in [99] that also reflects the wrong symmetry of hybridization.

To visualize the domination of §-bonds we will transform TB-parametrization

into cubic harmonics. Let us remind that cubic harmonics which reflect symmetry

of the crystal are connected to spherical in the following way [58]:

—

—

—

—

z(52% — 3)

z(5x? — 3), y(5y? — 3)

2

y(z? — =z

2(2? —y?), wyz

2)7 ZL’(y2 - 22)'

Now we can recalculate nearest neighbors parametrization in LS-base presented

in Table [5.10/ in the representation of cubic harmonics(see Table 5.12)).

In Table 5.12 the biggest matrix element among 5 f-block is one between xyz
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Figure 5.10: The zyz(left) and z(52% — 3)(right) cubic f orbitals in fcc unit
cell. The geometry of the unit cell suggests that d-bonds formed by zyz orbitals
dominate over o-bonds formed by z(5z — 3) orbitals

orbitals of different sites and correspond to d-type of bonding. The matrix element
corresponding to ¢ is twice as small. The visual and intuitive demonstration for
this observation is shown in Figure/5.10. Indeed, the geometry of unit cell suggests

that d-bonding must be stronger than o-bonding.

5.4.3 Matrix elements of spin-orbit coupling

The other point considered in [99] was the incorporation of spin-orbit coupling
into intra-atomic matrix elements. W. Harrison treats spin-orbit coupling as a
one-electron effect:

1 10V~

Hsop = ——=- l-c 5.4.13
SO = ome2r ar ( )

where V'(r) is the spherically symmetric potential seen by the electron, and [
and ¢ are the orbital and spin angular momentum operators. The corresponding
matric elements for [ - & can be rewritten in terms of total angular momentum

operator j = [+ as:

[-6= (17— (5.4.14)
The corresponding one-electron eigenstates for free-atom have eigenvalues:

f—&th[j(j+1)—3(3+1)—%(%Jrl)], (5.4.15)
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Table 5.13: On-site parametrization for Cm II in jj-base for j = 5/2 (in meV).

o: 2D B B-D B B BD
5f:13,-2) | -1148.744  0.000 -0.000 0.000 -3.759 0.000
5f=13,-2) | 0.000 -1142.020  0.000 0.000 0.000 -3.759
5f=13,—3) | -0.000 0.000  -1150.425  0.000 -0.000 -0.000
SYRERES! 0.000 0.000 0.000  -1150.425  0.000 -0.000
5f:13,3) -3.759 0.000 -0.000 0.000  -1142.020  0.000
5f:13,5) 0.000 -3.759 -0.000 -0.000 0.000  -1148.744

Table 5.14: On-site parametrization for Cm II in jj-base for j = 7/2(in meV).

: LD -9 15D B-b BH BY BYH 5D
5f |1~y |239.472  -0.000 -0.000  0.000 -19.444  0.000  -0.000  0.000
5f:|1,=53)| -0.000 246.196 0.000  -0.000  0.000 5606  0.000  -0.000
5f: 1, =3)| -0.000  0.000 252669 -0.000  0.000  0.000 5606  -0.000
5F: T, —1) | 0.000 -0.000 -0.000 232.899 0.000 -0.000  0.000 -19.444
5f:|1.h)y | -19444 0000  0.000  0.000 232.899 0.000  -0.000  -0.000
5f:13,3) | 0000 5606 0000 -0.000 0.000 252.669 -0.000  0.000
5f:1,8) | -0.000 0.000 5606  0.000 -0.000 -0.000 246.196  0.000
5F:15, 0y | 0000 -0.000 -0.000 -19.444 -0.000  0.000  0.000  239.472

with j = 5/2 and j = 7/2, leading to diagonal in jj-representation matrix ele-

ments of Hgo, —2Vso, and 3Vso /2, respectively. Particularly, for Cm W. Harrison

provides Vso = 0.39 eV. This fixes matrix elements of Hgp to be -780 meV and

585 meV.

The on-site parametrization derived here for the spin-orbit matrix elements is

consistent with that suggested by W. Harrison atomic-like picture. Tables 5.13

and 5.14/list the on-site matrix elements for 5 f-block within the jj-representation

for j =5/2 and j = 7/2 correspondingly. Both tables have a diagonal shape with

average diagonal values to be ~ -1150 meV and 250 meV for j = 5/2 and j = 7/2

correspondingly, giving raise for spin-orbit splitting of 1.4 eV. This number is in

good agreement with value of 1.19 eV predicted by W. Harrison.
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5.5 Conclusion

In this chapter we performed real space analysis of electronic structure of ac-
tinides. We showed that 5 f-orbitals in this class of materials extend just enough
to overlap. Hence, the low energy physics of actinides is ruled by nearest neighbor
hoppings. We also provide tight-binding parametrization for chosen actinides and
compare it to the one reported earlier in literature by W. Harrison. The tight-
binding parametrization obtained here agrees with reported by W. Harrison on
spin-orbit coupling matrix elements. However, we have shown that the symmetry
of both f — f hoppings and hybridization is completely different than assumed
by W. Harrison.
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Chapter 6

Calculation of magnetic exchange constants and
Néel Temperature for Curium metal

Available up-to-date experimental data suggest curium to be the element with
the smallest atomic number among actinides to develop a macroscopic magnetic
moment. In this chapter we calculate the magnetic coupling parameters for fcc
curium by mapping LSDA total energies of different magnetic arrangements onto
a Heisenberg model. Within the framework of semiclassical molecular field theory
we calculate the Néel temperature for fcc Cm and compare it to the experimental

value.

6.1 Review of experimental data on magnetic properties

of Curium

The very early magnetic studies of curium are summarized and reported in the
review by M. B. Brodsky [13] devoted to magnetic properties of metallic actinides.
At that time only two first high-pressure modifications of curium were known,
namely dhcp and fce phases. M. Brodsky presents susceptibility curves reported
by different groups at the same year (1976). These curves are shown in Figure 6.1.

The data were collected for stable phases between ~ 2 and 300 K. In both cases
Curie-Weiss temperature dependence were found. The first group of Kanellakop-
ulos et al. observed antiferromagnetic behavior with Neel temperature around

50 K [121]. The other group of Fujita et al. was able measure susceptibility
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Figure 6.1: Inverse Magnetic susceptibility, the plot is taken from review by
M. B. Brodsky [13].

only in paramagnetic region [122]. Also Fujita et al. reported the effective mo-
ment to be 7.8 + 8.1 up [122], which is in fair agreement with Russel-Saunders
values of 7.7 up (5f7). Russel-Saunders numbers are free-ion effective magnetic
moment values predicted by L-S coupling and Hunds rule. Thus, it points to the
conclusion that J must be a good quantum number for heavy actinides. Fujita
concludes that for Cm and Bk (next after Cm in periodic table) the 5f electron
do not form bands and the magnetic effects will be the same as the heavy rare
earths and not the 3d transition metals or light actinides.

The deepest investigation of the magnetic properties of curium metal is re-
ported by P. G. Huray et al. in [15]. Huray used a SQUID-based micromagnetic
susceptometer to determine the magnetic susceptibility of ?**Cm metal in the
temperature range 4.2 — 340K and in the applied magnetic field range of 0.45-
1400 G. In the investigation they used samples of two types: with dhcp and fee
structures.

Huray et al. report that dhcp samples exhibit an antiferromagnetic transition
at ~ 65K. A small second transition in the neighborhood of 200 K is observed

and influences the high-temperature Curie-Weiss fit to the data.



124

150} ‘\ =
Pu

Resislivity (pQ em)

Temperature (K

Figure 6.2: Electrical resistivity of pure actinides. Cm data of Schenkel [14].

They showed that the fcec phase exhibits a ferrimagnetic transition in the
neighborhood of 200 K and at low temperature has a saturated magnetic moment
per atom of 0.4 Bohr magnetons in applied fields above 1200 G. In Figure 6.3 the
effective magnetic moment per atom is plotted. Huray et al. emphasize that the
saturation moment is seen to be field dependent in this region but the changes
are becoming smaller at high fields.

In the high temperature regime the susceptibility showed little field depen-

dence, as is seen in Figure 6.4. Here 1/y is plotted vs. T for several applied fields.
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Figure 6.3: Effective magnetic moment per atom vs. temperature for an fcc
sample.

Huray et al. notice that the curvature of shown data prevents a Curie-Weiss in-

terpretation for all temperatures, so they examined two regions differently:

w==62ug, =-202K for 200K <T < 300K, (6.1.1)
w="T7ug, 0=—138K for 300K <T < 340K.

™

Since the low-temperature data suggest ferrimagnetism, authors also fit the
high-temperature variation of 1/x vs. T with the function of the form:

(G 4+ Co)T — 20C1 G,

with C; = Np?/6k and pu; constrained = p £ 0.4up (for fitting they used results

of molecular field model, see Appendix A for details). Here C; are separate Curie
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Figure 6.4: The inverse magnetic susceptibility vs. temperature for several ap-
plied fields (plot is taken from [15]).

constants for two spin lattices. A is defined through H; = H — AM,, where H
is the applied field and M, is the magnetization of the second sublattice. Ty is
the ferrimagnetic Néel temperature. It should be mentioned that two sites are
assumed to have moments different by 0.8up in order that the average moment
per atom is 0.4up at 4.2K. The fit to the data here has the smallest sum of

squares and yields:

A=231£49, pn=6.13£02up, Tn =205+ 0.6K. (6.1.3)

6.2 Exchange constants for fcc Curium.

The method we will use for calculation of exchange parameters was reported
by J. Kunes et al. [123]. Our objective is to determine the nearest neighbors
coupling parameter .J; and next nearest neighbors coupling parameter J, (see
Figure [6.5 for the schematic presentation). The idea is to calculate total energies

for different magnetic arrangements and map them to the energies corresponding
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to the Heisenberg model:
H=-Y 7SS (6.2.4)
'7j

with nearest-neighbor J; and next-nearest-neighbor J, interactions.

Z[001]

J2

~— 7 Y[010]

Figure 6.5: The sheme shows that we denoted by J; exchange constant between
nearest neighbors and by J, the exchange constant between next nearest neigh-
bors.

To obtain a system of two equations for unknowns J; and J, one needs to
use at least three different magnetic arrangements, since these are only total
energy differences which can enter, not total energies by themselves. We consider

following magnetic arrangements:
. . . . 2
1. antiferromagnetic with propagation vector (0,0,7”),

2. type II antiferromagnetic.
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Figure 6.6: Different magnetic arrangements for fcc crystal structure used in
calculations: (A) ferromagnetic; (B) antiferromagnetic; (C) type II antiferromag-
netic.
3. ferromagnetic corresponding to antiferromagnetic with propagation vector
2
(07075)7

4. ferromagnetic corresponding to type II antiferromagnetic

Here a is lattice parameter. The corresponding magnetic arrangements for fcc
crystal structure are shown in Figure 6.6. The classical ground state energies of
these magnetic configurations mapped on Heisenberg Hamiltonian corresponding

to spin configurations (1)-(4) are:
1. Exp = (4], — 6J5)S?,
2. B = 6,52,

3. Epprr = —(12J; + 6.J5)52,
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where classical spin S = 5/2h.

Let us introduce

A = Ear — Ergre,

11 _ Il 11
AT = EAF - EFERR'

Linear system of equations for unknowns Ji, Js are:

A =16J,5%,
A =12(J, + Jy)S%. (6.2.5)
The solution of this system is:
1 A 1 A AU
J1 = —, Jo= -+ — . 6.2.6
SRNCTIE NG (25)2( 4*3) (6.2.6)

For S we use classical vale of spin S = 5/2h.

6.3 Total Energy GGA calculations for fcc Curium

The results of total energy calculations within generalized-gradient approximation
(GGA) employing ASA scheme are shown in Figure6.7. We used 6 x 6 x 6- mesh in
the first Brillouin zone. There are in total 12 curves in this figure. We consider 4
different magnetic arrangements, enumerated above, and we perform calculations
using 3 different LMTO basis: with 6p electrons treated as valent, 7p electrons
treated as valent, and both 6p and 7p included in the basis. The other orbitals
in LMTO basis are 7s, 6d and 5f.

In Figure 6.7/ we see that with each LMTO basis the first type antiferromag-
netic solution has the lowest total energy. The z-axis corresponds to the ratio of
unit cell volume used in calculations to the experimentally measured one. The

best predictions for equilibrium volume are done when one treats 7p electrons as
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Figure 6.7: Total energy vs ratio of unit cell volume to experimentally measured
one for fcc structure of curium. The calculations are performed within GGA
scheme using ASA approximation.

valent. However, as will be discussed below, one will fail to predict the experi-
mentally measured value of the Néel temperature. The basis with both 6p and
7p electrons surprisingly give s a worse predictions (= 25% off). The basis with
6p only gives slightly better predictions (=~ 20% off).

In Figure 6.8 the dependence of J; and .J; parameters on the relative volume
is shown obtained from calculated total energy vs relative volume curves and
formulas 6.2.6. There are in total 6 curves in this plot again because we used

three different LMTO base. In each base J; was determined to be negative and

-16.2 p AF —=—
7p FERR

7p AF_ll e len-

7p FERR_II T
-16.3 6&7p AF
6&7p FERR

6&7p AF_[| - e~
g g g g 6&7p FERR_II e
164 e i e . 6p AF -
i i i i 6p FERR ——

clen e

EERERY TN



131

Coupling parameters for Cm fcc using 3 different LMTO base
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Figure 6.8: Dependence of coupling parameters J; and Jy on relative volume.
The same type of calculations performed with 3 different LMTO base: with 6p
treated as valent, 7p treated as valent, and both 6p and 7p are included.
Jo to be positive that reinforce the antiferromagnetism. Also J; and J, have
tendency to increase in magnitude as lattice parameter becomes smaller, what
also makes perfect sense. The exception is the J; parameter calculated within
the 7p basis.

It is instructive to compare the calculated values of J; and J; by the order of

magnitude to RKKY constants. Indeed, in RKKY model
Jrxry =V /ep. (6.3.7)

The value of hybridization for fcc Cm can be taken from Table 4.6/ and V =~
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0.192eV. Fermi energy within LDA calculations er ~ 7.045 eV. Thus, Jrxxy ~
0.0052eV which is of the same order of magnitude as our result for J; and J, for

equilibrium volume.

6.4 Molecular Field Theory

6.4.1 Antiferromagnetism

The strong interaction which tends to align the atomic dipoles parallel or anti-
parallel in magnetic materials may be considerate as equivalent to some internal
magnetic field H,, [124]. Weiss in his phenomenological theory of ferromagnetism
assumed that:

H,, = NwM, (6.4.8)

here Ny is a constant called the molecular field constant. Now, we consider an
antiferromagnet with two sublattices A and B and assume that an atom at an A
site has nearest neighbors that all lie on B sites and next nearest neighbors that
all lie on A sites. Then, analogically, the molecular field H,,,4 acting on an atom
at an A site:

Hya = —=NaaMy — NapMg, (6.4.9)

where M4 and Mp are the magnetizations of the A and B sublattices, respec-
tively, Nap is a molecular field constant for the nearest neighbor interaction,
and Ny4 is a molecular field constant for the next nearest neighbor interaction.

Similarly, the molecular field H,,,5 acting on an atom at a B site:
H,, 5 = —NgsM,y — NggMp. (6.4.10)

Since the same type of atoms occupy the A and B lattice sites, Nagy = Npg =
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N;; and Ny = Npa. Then, if a field H is also applied, the fields:

H, =H — N;M, — NogMp, (6.4.11)

Hp =H — NapMy — N;Mp.

At thermal equilibrium the magnetizations of the sublattices are given by:

1

MA,B = §Ng,uBSBS(xA’B), (6412)

where

Sgup
TAB = Hap (6.4.13)
and

B = th — — coth =—=. 4.14
s(wap) = —5a— coth—oa—wap — 55 coth 5 (6.4.14)

Here N is a total number of atoms with a permanent dipole moment per unit

volume.

6.4.2 Behavior above the Néel temperature

Although there is no antiferromagnetic ordering above the Néel temperature, a
small magnetization is induced by the applied field. For the usual values of applied
field, saturation effects are negligible and Brillouin function Bg(x) can be replaced

by the first term of the series expansion in z in (6.4.14):
Bg(xz) =[(S+1)/35]x. (6.4.15)

Then equation (6.4.12) becomes:

_ Ng*upS(S+1)
N 6kT

Map Hap. (6.4.16)

Now

Hy=|H—- N;yMy — NapMp| =H — NyMy — NapMsp,
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since H, M4, and Mp are parallel in the paramagnetic region. Similarly

Hy=H— NypMy — NyMp.

Then

Ng?u%S(S +

M=My+ Mg = 97155 )[QH_(Nii+NAB)M]'
6kT
Hence, the susceptibility
C
=M/H=— 6.4.17
where
Ng?u%S(S +1)

¢= 3k

and

1

Since, generally, N g > N;;, 0 is positive.

Neel temperature will be given by:

Ty = %C(NAB _ N, (6.4.18)
where
Ng? 1
c="9" ;{fs +b (6.4.19)

6.5 Results: Calculation of Néel temperature

Figure 6.9/ shows Neel temperatures calculated from J; and J; parameters in
frameworks of molecular field theory, using rewritten in different notations for-

mula [6.4.18:
19°S(S+1)

Ty —
N9 3kg

(Jy— Jb). (6.5.20)

The experimental value equals Ty = 205 £ 0.6K. In Figure 6.9 again three
curves correspond to three different LMTO base. Neel temperature calculated
with 7p basis never reach experimental value, however two other curves reach the

experimental values approximately around experimental volume.
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Neel Temperature for Cm fcc using 3 different LMTO base
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Figure 6.9: Néel temperature vs relative volume, calculated from coupling pa-
rameters J; and Jo, within frameworks of Molecular Field Theory.

The conclusion can be made that even if the 7p basis provides the best es-
timate for the equilibrium volume, it cannot be used to describe the magnetic
properties of Cm. The other two bases (6p and where both 6p and 7p are in-
cluded) predict an equilibrium volume approximately 20-25 % off, but provide an

excellent description of the magnetic characteristics.
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6.6 Outlook: dhcp structure

The attempt has been done to perform analogical calculations of exchange con-
stants and Néel temperature for dhcp structure. Taking into account that most
of described in Section 6.1 experimental data were reported for dhcp structure.

The dhcp crystal structure is close-packed, with stacking A-B-A-C-A-B-A-C...
[125], as opposed to A-B-A-B... [126] for the hep (A3) lattice and A-B-C-A-B-C...
for the fcc (A1) lattice. The (2a) crystallographic sites (the A’s) form a simple
hexagonal lattice. The (2c) sites (the B’s and C’s) form an hep structure. The
corresponding space group number is 194(P63/mmc).

Reported lattice parameters at atmospheric pressure are a =0.3502(2) nm
(6.61887 a.u.) and ¢ =1.132(2) nm (21.395899 a.u.) from [127], and a =0.3500(3)
nm ( 6.61467a.u.) and ¢ =1.134(1) nm ( 21.43159 a.u.) from [128].

Primitive Vectors:

Al-= LaX — Ly/BaY
A2 = %aX + %\/gaY
A3 = cZ

Basis Vectors:

Bl = 0 (2a)
B2 = tA3 = 1cZ (2a)
B3 — JAL+3A2+ A3 = faX+jaY +icZ ()
B4 — A1+ 2A2+3A3 = %aX—%%aY—i—%cZ (2¢)

The dhep crystal structure has a feature that nearest neighbors and next near-
est neighbors located almost at the same distances. Thus, the nearest neighbors
for atom located at the origin would be sited on next z-plane at distance ~ 0.95a,
where a is a lattice parameter. The next nearest neighbors would be located in
the same xy-plane as original atom at distance a.

The different magnetic orderings could be figured out through tracking the

transition of magnetic planes from fcc to dhep structure.
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The fact that distances to nearest and next nearest neighbors differs by ap-
proximately 5% leads to conclusion that J; and J; should have the same order of

magnitude. Moreover, the mapping to the Heisenberg model will look like:
1. Eap = (6J5 —6J1)52,
2. Bl — 6,52,
3. Ergrp = —(6J1 +6J5)5?,
4. B np = —(6J; + 6J5)52,
Then we can form system of two decoupled equations for J; and J; :

Ear — Erprr = 1255,

Eup — Bl = —6J,5% (6.6.21)

The total energy curves for different magnetic orderings are shown in Fig-
ure [6.10. The results are too noisy to perform calculations for coupling param-
eters, especially taking into account the fact that J; and J; in dhcp structure
should have close values.

The alternative way to determine the exchange constants which may be adopted
for dhep curium is reported by X. Wan et al. in Ref. [129]. We leave the imple-
mentation of this approach for curium for the future work. The method is based
on a magnetic force theorem that evaluates linear response due to rotations of
magnetic moments. This technique uses a generalized spectral density functional
framework allowing one to explore several approximations ranging from local den-

sity functional to exact diagonalization based dynamical mean field theory.
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Curium, dhcp, GGA, 7p, Ndiv=4*2*2

Total Energy - Offset, [Ry/cell]

lattice parameter a, a.u

Figure 6.10: Total Energies vs lattice parameter for dhcp structure of Cm. The
calculations performed within GGA, using ASA approximation. The LMTO basis
with 7p electrons treated as valent has been used.

6.7 Conclusion

In this chapter we calculated exchange interactions for fcc curium by mapping
total energies of different magnetic arrangements onto the Heisenberg model. Fur-
ther, within framework of semiclassical molecular field theory we calculated Néel
temperature of fcc curium. Our result is in excellent agreement with experiment.
We showed that application of the same method to dhcp curium faces difficulties

due to noisy total energy curves. The fact that nearest and next nearest neighbors
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in dhcp structure located at very similar distances makes the described method

unprecise.
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Chapter 7

Summary and Conclusions

In this thesis by means of Ab Initio methods we studied electronic structure,
magnetic and transport properties of two strongly correlated electron systems,
chromium dioxide and actinide series. The fact that both systems are on the
edge of localization-delocalization transition brought us to the observation that
both might be discussed in the aspect of orbital selective Mott transition.

We shown that low-energy physics of CrO, is governed by ty, orbitals of Cr
atoms. We carried out detailed DMFT study with QMC as an impurity solver
of the electronic structure of CrO, in paramagnetic case and trace its evolution
in the space of two parameters: Coulomb interaction U applied to ty, orbitals
and relative position of narrow and broad t5, bands. Keeping the later parameter
fixed and increasing U we observed two subsequent localization transitions taking
place first for the narrow band and then for the broad band. On the other hand
the variation of relative position of narrow and broad bands at fixed value of U
indicated that CrO, was on the edge of some type of quantum transition, since
change of the relative position by as small as 0.5 eV result in completely different
electronic structure and though physics.

We also performed detailed analysis of the electronic structure, optical con-
ductivity, and magnetic anisotropy energy for the ordered phase of CrOy . Our
study revealed that in ordered phase this compound effectively can be described

as weakly correlated system due to big exchange splitting in ¢34 block.
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The second considered type of strongly correlated systems are actinide mate-
rials. First we discussed the importance of the basis for the DMFT calculations
for actinides. We showed that one has to choose either well localized basis or
otherwise subtract long-ranged tails of basis functions using projective orthogo-
nalization [31].

With established robust basis set we carried out detailed one-electron band
structure analysis of actinides in the example of uranium, plutonium and curium.
By turning on and off hybridization between 5 f and conducting s, p, d electrons we
have shown that there is a d band crossing the Fermi level in the band structure
of actinides. Hence, uncorrelated states are permanently present at the Fermi
energy and both Anderson- and Hubbard-like contributions must be considered
in delocalization-localization transition along 5f series. The outlook for future
work is to provide quantitative estimate for each type of contributions.

By means of real space analysis we demonstrated that the physics of actinides
is extremely local and governed by 5f nearest neighbor hoppings. Finally, we
calculated exchange magnetic interactions and Néel temperature for fcc phase of

curium metal.
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