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ABSTRACT OF THE THESIS

Two-patch model for transport properties of optimally

and overdoped cuprates

by Michael Sindel
Thesis Director: Professor Gabriel B. Kotliar

We compute transport properties of the normal state of BSC'CO cuprates using a model
that divides the first Brillouin-zone into hot and cold regions. Within this framework
a collision operator is constructed. A phenomenological temperature dependence is as-
signed to each possible scattering mechanism of the model. This allows us to study the
temperature dependence of transport quantities.

The starting point of our analysis is a Boltzmann equation which is valid in the nor-
mal state of cuprates. DC-conductivity, Hall-angle, magnetoresistance, thermoelectric
power and thermal Hall-conductivity are calculated within our approach and compared
with experimental data. The model is able to give a reasonable fit of experimental data

of the mentioned quantities.
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Chapter 1

Introduction

The explanation of the physics of high temperature superconductors (HTSC), discov-
ered by Bednorz and Mueller in 1986, is one of the biggest challenge of the current
physics. It seems that the mechanism that leads to superconductivity takes place in
CuOs planes.! A good understanding of the 2D-system of the CuOs-planes seems to
be enough to discover the mechanism that finally leads to superconductivity. But still
a microscopic theory of this materials is missing.

We are concentrating on transport properties, i.e. on the temperature dependence of
different transport quantities (in the normal state), of cuprates in this work. It seems
fundamental to have a good knowledge of the normal state of the HTSC-materials to
be able to explain the superconducting state of this materials.

A phenomenological two-patch model is introduced that is able to describe experimen-
tal results of the temperature dependence of the DC-resistivity, the Hall-angle, the
magnetoresistance, the thermal Hall-conductivity and the thermoelectric power. The

influence of the different regions of the model on the transport properties is studied.

We start our analysis with a reasoning that the Boltzmann-equation (BE) can be
used to describe the transport process in the normal state of cuprates (chapter 2). Once
we established the validity of the BE we introduce it. Chapter 3 introduces the BE for
free and for interacting particles (Fermi liquid theory). Finally we derive a BE which
is valid for an electromagnetic field.

Our interest in a comparison with experimental values forces us to compare our results

with experimental ones. Experimental results are summarized in chapter 4.

1 As this HTSC have Cut™ atoms in common this materials are called cuprates.



The two-patch model (TPM) is introduced in chapter 5. A reasonable construction of
the collision operator which governs the BE is the main idea of the TPM. Within the
framework of this model the transport properties of our interest are calculated. We
study the temperature dependence of the mentioned transport properties by a numeri-
cal program that is described in chapter 6. Using this program we discuss the influence
of the different parameters of our model on the quantities of our interest. Furthermore
a give a set of parameters that is able to fit all(!) considered quantities in a reasonable
way. The effect of the different regions of our model on the different transport quanti-
ties is also studied there.

In the appendix we show analytical calculations that were used in the program men-
tioned in chapter 6. Furthermore we introduce the tetrahedron-method which is able

to calculate the transport quantities in the low-temperature limit.

The most fascinating thing about the described model is that it is able to describe
different transport experiments of cuprates within a quite easy, vivid and reasonable
way. It doesn’t use fancy constructions to get a good agreement with experiment. So the
model is somehow ideal to study the transport behavior in the normal state of cuprates
on a macroscopic level. Some insight what we expect to happen on a microscopic level

can be obtained from the TPM.



Chapter 2

Reasoning for the use of a Boltzmann-equation to

describe transport properties of cuprates

It is not obvious that we can use a Boltzmann-equation (BE) to describe the transport
properties of cuprates in the normal state (NS). Pines & Nozieres [35] argue that it is
necessary to have a Fermi-Surface (FS) inside a compound to describe transport within
the framework of this equation. The reason is that a BE-treatment requires quasipar-
ticles with a finite lifetime (bigger than the average scattering time) in (or around) the
neighborhood of the FS. A description of the transport-process within the framework

of the BE is applicable when this conditions are accomplished.

The NS of cuprates is the space in the phase diagram, where the compound is neither
superconducting nor in the pseudogap-region. Figure 2.1 [37] shows a (possible) phase-
diagram of cuprates. In the diagram temperature is plotted vs. hole-doping. Varma [37]
divides the NS into a marginal Fermi-liquid (MFL) and a Fermi-liquid (FL) state. The
lifetime 7y/p7, in the MFL-state is o T~', where 77, o« T—2. The reason for the
phenomenological introduction of the MFL- and the FL-state is due to discrepancies
with transport data.

In this report our main interest is the NS of BisSroCaCus0Og (Bi2212) compounds.
Thus our first question is whether this material has a FS or not. The reason why we
choose Bi2212 for our studies is that this materials have no chains so we have an almost
2D-system. When we look at other cuprates, like Y BC'O, we also have to consider the
hopping between the CuOz-planes. The geometry of the CuOs-planes is shown in figure
2.2.

Quijada [15] measured a slightly anisotropy in the in-plane-resistivity of cuprates. But
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Figure 2.1: [37] The phase diagram, T vs. hole-doping, of cuprates can be splitted into
several pieces. The NS is divided into marginal Fermi-liquid and o Fermi-liquid.

this effect is very small so we are dealing with the CuOs-planes assuming that they

have fourfold symmetry as shown in figure 2.2.

Figure 2.2: The figure shows the geometry of the CuOs-planes that govern the transport
properties of high T.-superconductors. Note that the planes have fourfold symmetry.

Angle resolved photo-emission spectroscopy (ARPES) [9] provides a possibility to
figure out whether the compound of our interest has a F'S. ARPES-experiments can
even tell us something about the lifetime of the quasiparticles around the FS. It is

possible to measure the spectral-function A(w, k) of a material by this technique. The



spectral-function is obtained from the imaginary part of the Greens-function G(w, k) =

m, where ¥(w, k) is the self energy of the system.!

Alw, k) = —23G(w, k)] (2.1)

Thus the width of the peak of the spectral-function is connected to the lifetime of quasi-
particles (that means that the imaginary part of the self-energy governs the lifetime of

quasiparticle).

ARPES-experiments scan the reciprocal space and measure the energy distribution
curves (EDC) for different polarization of the incoming wavevector k. Figure 2.3 shows
the different directions of the scan of the reciprocal space of the CuQOs-planes of Bi2212.
Our interest in the NS transport-properties of Bi2212 forces us to make this experi-
ment above the critical temperature (7, = 87K) for optimally doped materials. The
experiments in [9] were done at T = 95K.

The points inside the first BZ, shown in figure 2.3, are named in the following way:
I'=(0,0), M = (m,0), X = (m,—7), Y = (7, 7).
The upper part of figure 2.3 explains the direction of the scan, where the lower part gives

the results of the ARPES-experiment, which is equivalent with the spectral-function of

the CuOs-planes.

Depending on the measured direction the peaks in the spectral-function appear at
different momenta. It can also been recognized in figure 2.3 that the width of the peak
(in the spectral-function), which describes the lifetime of the quasiparticles, is smaller
in (m,m)-direction. The lifetime in this regions is bigger. This observation suggests
that we don’t have a single lifetime in the CuQOs-planes. The lifetime 7 of a reasonable
model should change around the FS.

The experiments [9] allow us to construct a FS with the shape given in figure 2.4. The

electronic structure suggested by Ding et al. was recently reexaminated by Chuang [25].

'To get the imaginary part of the Greens-function we make use of the equation: ﬁ =P1/z)F
imd(z) which is valid in the limit 6 — O (P denotes the principal value).
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Figure 2.3: The FS is scanned over the k-space. Dependent on the polarization of
the wavevector we get peaks in the Binding energy that contain information about the
lifetime [9].

With reasons given above we can start to describe the transport properties of cuprates

Fermi-surface of cuprates
T 8 1 T

= N w
— T T

k_y
o

Figure 2.4: The FS of the NS of BSCCO showed above was constructed by a fit that
contains hopping up to the fifth nearest neighbor given in [16], obtained from band-
structure calculations. Figure 2.3 justifies a FS like it is shown in this figure.

(in the NS) with a BE-treatment that will be explained in the next chapter.



Chapter 3

The description of the transport process using the BE

Transport properties of systems with (quasi)particles (with long lifetime) around the
FS can be described with a BE as showed in chapter 2. An external force, given by
an electric field E or a temperature gradient V.71, is able to excite particles inside
the Fermi-sea to generate some free, unbounded particles. A weak external field can
only excite particles around the FS and make them to free particles due to the Pauli
principle.

When we apply a weak force on free particles we can treat the free-particle-regime
within the framework of the theory of linear response. This is equivalent with the idea
to linearize the BE, which is a partial differential equation.

In section 3.1 we introduce the BE for noninteracting (free) particles. A linearized form
of the BE is derived. We have to consider interactions between particles! when we deal
with excitations of several particles. This proceeding is shown in section 3.2. The last
section, section 3.3, of this chapter deals with transport in electromagnetic fields. A
linearized transport equation, valid in electromagnetic fields, is derived there.

We follow the derivation of the BE given in [35].

3.1 The BE of free (noninteracting) particles

A kinetic equation describes the space and time dependence of the distribution func-
tion ny(r,t) of a system of (in this case noninteracting) particles. For a system without
collisions the kinetic equation has the form of the continuity equation, V.j + % =0
with the current j and the particle density p. The continuity equation conserves the

particle number as the flow inwards and the flow outwards of a certain volume element

!They are called quasiparticles in the case where interaction between them is considered.



is the same.

The question why particles are moving is due to forces that are acting on the
particles. External fields, E, B and thermal gradients VT are the reasons why free
particles start moving or change their direction (neglecting motion due to Brownian
motion). These moving particles contribute to transport. Scattering between particles
is especially important in the process of transport as this models the obstacles in the
transport process. Combining the idea of scattering between particles with the conti-

nuity equation, mentioned before, forces us to generalize this equation.

The distribution function ny(r,t) of particles represents the number of particles at

position r at time ¢ with momentum k. The current is defined as j = >, nk(r, t)vk(r,t),

so it follows from the continuity equation (neglecting collisions)?
0 St
O | o (e, ) i, )] + (Ve ) Vame 0] =0 (3.1

where the last term on the L.h.s. was obtained using integration by parts and the fact
that ny(r,t) vanishes at the boundaries. Note that we can replace —V ek (r,t) by the
external force F(r, ).

Equation (3.1) can easily be derived from Liouville’s theorem. We only calculate the

total differential of ny(r,¢) and obtain the same result, namely d"kd(tr’t) = 6"‘5(;@ +

Ony(r,t) d ong(r,t) dk : — dk
g T s g = 0, with F(r,t) = T

The first term on the Lh.s. of equation (3.1) is important in the case of a dynamic
distribution, the second term represents diffusion and the third is due to an applied
external field. The force due to an applied electromagnetic field is given by F = h%k =
e (E + %Vk X B).

Note that we can express the group velocity of free particles just by Ve (r,t). When we
have no more free particles we get the group velocity of ”quasiparticles” by replacing e
with €, which is explained in section 3.2 (also the force has to be replaced by an effective

force in the interacting case!). In a non-equilibrium system the gradient of the chemical

ZNote that the density at point r is given by p(r) = Do nu(r,t).



potential acts as an effective force on the system.

So far we neglected collisions between particles, which plays the dissipative (irreversible)
role in the BE. In case of collisions between particles we have to add an operator, the
collision operator C, to the right hand side of (3.1). Cx takes the scattering ”in” the
state k and "out” of the state k into consideration. The modeling of the collision-
operator is of special importance to describe the transport process well. It is common
to use a transition probability from a state k to a state k’, given by a matrix Cyy, to
model the collision operator Cy.

Physical interesting phenomena happen in the neighborhood of the FS, as only in this
region particles can be excited easily. The distribution function ny(r,t) is expanded

around the Fermi energy (linear response theory)

ni(r,t) = fii + g (r, 1) (3.2)

with the equilibrium distribution, the Fermi distribution f_ and the deviation from
equilibrium gy (r, t), which labels the free particles. As we stop the Taylor expansion of
nk(r,t) at first order (3.2) is only a good description in the vicinity of the F'S for small

external fields. Inserting (3.2) into (3.1) gives us the linearized form of the BE.

0

8fl? 8gk(r7 t)
579k —k g 2o

0
(r,t) + ViV, (fk + gi(r, t)) T ViE [aek Dex

] — 0 (33)

with the equilibrium distribution flg that is independent of time. Note that we only
take first order terms in (3.3), which means that we have to look carefully which term
inside the brackets contributes in the lowest order.

Equation (3.3) allows us to calculate the number of ”free” particles gx(r,¢) that con-
tribute to the current j, j = 3, gk (r, t)vy.3

We conclude this section with writing down the explicit form of the BE including the
scattering operator when also a temperature gradient is applied. One driving term is

due to an electromagnetic field, F = eE+ - v X B and the other is due to a temperature

3In the case of bare particles we don’t have a backflow current. This will become important in 5.2!
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gradient, o< V,T/T. The linearized BE gets the form

~V,T ~F

o of v, T af2 e e
519k + <_5—€k> kVk " +eEvy <8—ek + 7o Vk X Bﬁ =Ck (3.4)

as given e.g. in [11] (without the temperature gradient). Note that the leading order
contribution to the term that contains the magnetic field comes from %Llf.
The scattering operator C has the usual form

Cx = Z [Cx w9k — Ck x 9k (3.5)

kl

with the first term describing scattering ”in” to the state k and the second term de-
scribing scattering "out” of the state k. The relaxation time 7y for state k is defined
as 1/7‘k = Zk’ Ck,k"
Our goal is to solve (3.4) for gk as this quantity can tell us what particles can contribute
to transport. Starting with this transport equation we will derive different transport

properties of cuprates (in the NS). It is the starting point of the computation of the

transport properties of our interest.

3.2 Considering interactions between quasiparticles - Landau’s Fermi-

liquid theory (FLT)

In the previous section we considered particles that contribute to transport as ”free”,
that means noninteracting, particles. We are going to take interactions between them
into consideration in this section. It will turn out that the deviation from equilibrium gy
in the noninteracting case has not the same meaning as the deviation in the interacting
case Jik. 1o be precise quantities referring to interaction among particles are denoted
by a tilde in this section.

We are concentrating on the L.h.s. of the BE in the following two sections as this is the
more interesting one. The collision operator Cx (3.5) changes only with the replacement

gk — gk when we are dealing with quasiparticle interaction.
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The key step for dealing with interaction among particles is to expand the energy of
the system around the Fermi-level. We can write the energy of the system as a functional
of the departure from equilibrium gy, E[gk]. A Taylor-expansion up to second order
gives

1 o
Elgd = Eo+ ) ékodko + 3 > R koo (3.6)
ko kk'oo’

where a summation over all spins ¢ and momenta k is done. The function flfl‘(’,/ takes
the interaction between the particles into consideration. Interacting particles are called,
due to Landau, quasiparticles.

An expression that connects the change in energy d Fy, of the system with a change in
the number of particles gx can be achieved by the derivative g—i. Thus the energy of

one excited (interacting) particle, €, can be obtained from equation (3.6) by a partial

derivative of the energy.

_ oF /
€ko = T = €k T+ Z f}?ﬁ’ Jk’'c’ (37)
5gka Ko
Contrary to the noninteracting case we have an extra term due to the interaction among
particles in (3.7). The energy of the excited quasiparticles, €y, is proportional to gy.
The idea to describe these interacting particles is due to Landau and is called Landau’s

theory of Fermi liquids (FLT). Due to the interaction between the particles different

quantities like mass, susceptibility etc. are renormalized.

In general we should consider the free energy F' instead of F and perform the

functional derivative %—i on this magnitude. In this case we would get only a slightly
different expression because we take the chemical potential i into account: €y, = ({;—f =

(ex — 1) + Do flfl‘(’,/ Jko- But if we consider the chemical potential i to be constant in
the area around the F'S we get exactly the same result as given in (3.7).

Let’s look first at the consequences of the interaction on the current. In the absence
of interactions between particles we can write the ”bare” current jo in the way: jo =
€Y ko VkOko, as already done before. When we are dealing with quasiparticles the

function f{’f{’,/ becomes important, as can be seen in (3.6). Analogous to the bare
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current jo we define the dressed current j by

j=e) Vepixo (3.8)
ko

with the quasiparticle velocity vg,, vqp = 8511‘(".
A fundamental question is the relation between gy, and gk, as this explains the connec-
tion between the "noninteracting” jo and the ”interacting” current j. The equilibrium-

distribution depends in the case of gy, on €, — p whereas in the case of gy, it depends
on €y — U.
9kec = MNko — ?’Lﬁ(Ek - /j’) (39)
Jko = Mo — np(Ec— p) (3.10)
We label the equilibrium and the actual distribution with n instead of f in order to
avoid confusion with flflf’,'

A connection between gy, and g, can be found when we expand the term nﬁ(ek -+

€k — €k ), given above, to first order in the following manner

Jko = ko — T0(Ec — 1) = ko — N6k — 0+ & — €x)
_ dnj(ex — p
= Nk — nﬁ(ek — 1) —(Ek - Gk)%

Iko
which shows that the magnitudes gy, and gy, are not identical! This has important
consequences on transport properties. Note that —%’:m — (e — p) for T — 0.4
From equation (3.7) can followed that €x — ex = Y v ff(’lf,’ g0’ So we finally obtain
the connection between noninteracting and interacting deviation from equilibrium as

- dn €
Jko = Jko + < k k ) Z fkk/gk’ / (311)

k//

Dealing with interaction the total current is described by equation (3.8), where the
quantity gk, can be expressed in terms of gy, like it is shown in (3.11). As particles are
interacting there is a backflow of quasiparticles in a interacting system. This backflow

has to be added to the current as it is done in equation (3.8).

4.0 _ 1
ng = F e as usual.
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It is important to know that in the FLT the current is not necessary parallel to the

velocity of the quasiparticles due to £ . This fact forces us to think which quantity, j

kk
or v, has to be used in a transport equation in an electromagnetic field for an interacting
system. Remember that the Lorenz force depends on the velocity of a particle which is

proportional to the current in a noninteracting system.

3.3 The transport equation of interacting particles in an electromag-

netic field

It is know from electrodynamics that the electric and the magnetic field, E and H, can
be derived from a vector-potential A and a scalar potential ®. We are choosing the
Coulomb gauge, so the electric and magnetic field are given by:

10A

c Ot
H = VxA

In the absence of a electromagnetic field (A(r,¢) = 0) the momentum of the particle is
k. Turning on a electromagnetic field changes the situation. The canonically conjugated
to the position r is no longer the momentum k. Instead of this we get the momentum
in an electromagnetic field IC, with

A
;c:kaT (3.12)

A particle moving in a vector potential A(r,t) can therefore be described by inserting
an extra term due to the vector potential A(r,t) in the Hamiltonian.

2
-1 [’Ci _ M} e (3.13)
2m - c

where we are considering a system of particles and an interaction V' between the parti-
cles due to a Coulomb interaction. Note that k, determined from (3.12) is inserted in
(3.13).

The equations of motion of a particle in an electromagnetic field can be derived from
the Hamiltonian given in (3.13).

. OH
7’2- = =

1

(3.14)
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. OH e 0A; eA;(r,t
K: = O = e 8”9 [/Cj - L} (3.15)

From the gauge we have chosen it can be immediately seen from (3.14) that the force

on a particle in an electromagnetic field is given by®

d
mit = [d—ltc—i—eE} :eE—i—vaH (3.16)
So the well-known result was rederived, namely that the momentum k has to be re-
placed by {IC — %} in an electromagnetic field.

eA(r,t)
(&

A vector potential A shifts the origin in momentum space by an amount away

from the origin without an electromagnetic field.

As we are interested in a derivation of the transport equation of an interacting
system in presence of an electromagnetic field we have to study the Hamiltonian given
in (3.13) and consider interaction between the particles.

The relation for momenta of particles in an electromagnetic field d/C; and momenta of

J ¢ orj

particles without electromagnetic field dk; is the following dk; = dIC; — > drj,

with 4,5 = x,y, z, because of the condition k = I — % already pointed out before.
When we turn on an electromagnetic field in an interacting system we have to make this
replacement in the local energy €. So we generalize the formula for the local energy
shown in (3.7) to
~ (& OAZ
dep = |vidks + > frae [Vealdr | = > S [diC; — 5,
% J

i 1,J

+ > fae [Vrink/]dri}
) (3.17)

where 4, j = z,y, z as usual. Note that we replaced gx by >_,[V,,nk|dr; in this equation.

The equations of motion for this Hamiltonian change with respect to the equations given

in (3.14) by considering the interaction, denoted by the local energy €.

Fo= (ag’“> = v (3.18)

),
- 0¢€ k 8nk/ e 0A;
—]C = ( ) = ’ ( ) — — J UV 3 19
‘ or; )« ; Jiae or; )y Z cor; ’ (3.19)
5The velocity of a particle in an electro-magnetic field is given by v = # [IC — %} which can be

seen from equation (3.14).
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These equations describe the motion of interacting particles, considered by flfl‘(’,/ in an
electromagnetic field.

Our goal, to derive a transport equation of quasiparticles, can be achieved when we
study the flow of quasiparticles in phase space. Because of the connection between k
and K the two distributions ny and ny are identical in real space, but shifted with £A

in reciprocal space. The following transport equation can be followed from Liouville’s

equation (Ccll—? = 0!) neglecting collisions.
K
on ong o€ ong 0€
K k k
Ink _ _ 2
(% ),c,r+<ari>,<<a/ci>T (aici)r<ari>,< 0 (3.20)

where the third term takes interaction and the external field into account (compare to
(3.18)).

As the momentum K depends on the vector potential A equation (3.20) is not easy to
handle. It is convenient to express the given transport equation (without collisions) in
terms of the momentum k. Therefore it is useful to figure out a connection between

derivatives of the partition function ny and ni, given by equation 3.12.

ong B % e ony 04;
< ot >;c,r B ( ot >k,r " Z c Ok; Ot (3:21)
ong B 8nk> f% 0A;
( 87“2' >IC N ( 87“2' k + ; & 8]6‘] 87“2' (3.22)
an]c . 8’1’Lk
<5’Ci >r B ( ok; >r (3.23)

When we insert these three properties in the transport equation in K-space, equation
(3.20), we get a transport equation in k-space, with the local energy € given in (3.17).6
So we can write a transport equation with interaction between particles in the presence
of an electromagnetic field in terms of momenta k by using (3.20).7

0
% + eE - Vink + vk - Vink + Z[Vr < H] - Vi = 3 Vi - Vemue fae = 0 (3.24)
k/

where the last term on the Lh.s. contains the particle-particle interaction. The third

and the last term on the L.h.s. can be put together to vi - V. gk which can be seen from

6 edny 0A; | Onge, OA; _ e . i i
Note — ok or, Vi + ST ar; = £[vp x H]; - Vkny which turns out to be important when we

insert (3.21) and (3.18) in (3.20).

"Remember the gauge we have!
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(3.11).

The quasiparticles are moving as they felt the presence of a Lorenz force, determined
by their velocity, acting on them, which was not clear from the beginning as the current
and the velocity of quasiparticles are not necessarily parallel.

The final result for the transport equation dealing with FLT is obtained when lineariz-
ing, nx = nY + gk, the transport equation (3.24). The relation found in (3.11) is used

to get short expressions.

1. In the case of a DC magnetic field Hy we obtain the following transport equa-
tion for the system. We obtain the first contribution to the Lorenz-force by
[Vic X Ho| - Vkgk, as [vk x Hy] -anﬁ = 0.% But as we have interaction among the
particles we have another first order term that comes from the partial derivative
of the local energy é with respect to k. Thus we obtain two terms contributing
to the Lorenz-force that are of first order.

Vi (Z fkk/gkf> X HO] - Ving,

e e
—[vik x Ho] - Viegk + -
c c o

When we insert this contribution in equation (3.24) we get the transport equation

in the presence of an DC-magnetic field.

B ) )
% Vi Vidi + S(Vk * Ho)Vicdi + ¢E - Viend = 0 (3.25)

Note that the time derivative of gx vanishes in the DC-case.

The DC field Hy acts on the departure gy, from local equilibrium, instead of gy
when FL-corrections are considered. This equation is the start of the study of
electrical quantities like the DC-conductivity, the Hall-conductivity, magnetore-

sistance etc..

2. Applying a AC magnetic field on a sample has different consequences. The ap-
plication of a time-dependent magnetic field H is associated with the propagating

electromagnetic wave in the sample. As E and H are first order perturbations of

on

0
8Remember anﬁ = ?Ll‘:vk. And therefore we obtain zero in the 0-th order.
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the system, the same order as gy, the transport equation can be written as

99k

o —l—vk-Ver—ke[E—l—v—:xH}-an?{:O (3.26)

because an?( is no more parallel to vy, thus it gives the leading order contribution
to the Lorenz-force. When we are dealing with a fast varying electromagnetic field
we can consider ny &~ n{ (which is true in most cases). The term given by the

AC-magnetic field can be neglected and equation (3.26) simplifies to:

P
% + Vi - Vi + €E - Vienl = 0 (3.27)

Introducing the scattering operator given in equation (3.5) (of course in terms of gy)
allows us to obtain the full BE in the interacting case. Note that in the steady state
case, % = 0, everything in the BE is expressed in terms of gix. So we can solve the BE,
taking interaction into account, without a knowledge of fl‘:l‘{’,/! The steady state case

will be considered in the following chapters. In this chapters we make the replacement

gk — gk. Note that this is not more valid in the case of AC-transport.

One last comment on the effect of charged quasiparticles will finish this chapter.
When we consider screening between quasiparticles, due to a Coulomb-interaction be-
tween them, the external electric field has to be modified. So the electric field E used
in the transport equation (3.24) has to be replaced by a sum of the external field and
a internal field due to screening, E = E.;; + Es.. This is done in the Landau-Silin-

equations.
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Chapter 4

Experimental results for BSCCO

Variation of 7 over the FS

In this chapter we will provide the experimental results that will be compared with the
model we are going to construct. Experimental data for the quantities we compare our
model with are given. At least the shape, the magnitude and the temperature behavior
of the computed transport properties are a first test of the model we are proposing.

Several experimental results can be found in [39].

Furthermore we discuss the consequences of a single relation-time for cuprates.
Drude’s theory of metals [2], suggested in 1900, is able to describe electric and thermal
conductivity using the kinetic theory of gases. The characteristic quantity in his ap-
proach is an average relaxation-time 7p, 7p ~ 107145 — 1075 at room temperature,
which is an average relaxation time for every electron in the sample.

In the language of the BE we can write the linearized BE, given in (3.4), in the case of

one single scattering time as

0 of°
— 0k —i—eEvki + i(vk x B) - {

0 ] Ik
ot Jdex  he

ﬁgk = —% (4.1)
where the r.h.s. simplifies to just one term. Note that the relaxation time for every
state k in the reciprocal space 7y is the same, 7, = 7p Vk in the Drude approach.

Equation (4.1) allows us to write the current, which is produced by the ”free” particles,
as ey Vkgk-Combing this result with Ohm’s law we get the electrical conductivities

ot

j=o0E= ekagk (4.2)
K



19

Equation (4.2) allows us to compute different conductivities as a function of the tem-
perature T'. When we compare this with experimental results we can find out whether

we can describe cuprates with a simple Drude-model.

4.1 DC-conductivity o**

We start our analysis with the easiest quantity, the DC-conductivity. Every term in
(4.1) has no time-dependence in this case. Furthermore no magnetic field is turned on.
Thus the first and the third term on the Lh.s. of (4.1) vanish. The transport-equation

simplifies to the expression for the ”free” particles:

o 0
gk = —eBEvyTy (8—‘:k> (4.3)

Equation (4.2) allows us, using this knowledge, to compute the DC-conductivity o**.

We just insert (4.3) into (4.2) and obtain:

0" = ¢? Z(vfﬁ)%‘k (_8_f0> (4.4)
” Oex
Which means that ¢ o« 7. Thus we expect ¢ to have the same temperature
dependence as 7. At this stage it is not clear that the other factors in (4.4) are
independent of T'.
In the zero temperature case we can identify (—ngE) with a é-function (remember that
the equilibrium distribution f° is the Fermi-Dirac-distribution which is a step function

in the zero temperature case). So (—g—fo) gives only a contribution when ¢ = p, thus

€k
o 0
(—55) = o=
Our next goal is to bring (4.4) in the form that is known from the Drude-model. First

we have to write the sum in (4.4) as an integral.

de de

dk = dA. - dk| = dA, = e
* Viel hlvid]

The minus-sign in front of the derivative of f® with respect to e takes care of the right sign in the
o-function.
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Now we can use the well-known formula that transforms a sum into an integral? and

obtain
2. 62 (U:c)2 62 (U:c)2
TT _ k Ole — w)dA. de = K ndA
O = Gn ) w0l T wddede = g | R e
x )2
The §-function in (4.4) restricts us on the FS. Averaging the product (\%L)I - Tk has the
)2
result < (&‘k)| T >=< 732 >pg. So we are left with an integral [dA. = A7k?, thus®
2.3
g € VM) Ty KD
4m3h 3 3m*m2
From this equation we get the final result:
2
o7t = & ZTD (4.5)
m

The proportionality between ¢®* and 7p, that was already pointed out above, is shown
explicitly in equation (4.5).

It is worth to mention that the derivation above was done in the 3D-case. As we
are interested in cuprates we are interested in the 2D case, as argued in chapter 2.
However it is worth to consider the consequences of a treatment within the Drude

approach (independent of the dimension).

4.1.1 Experimental results: Resistivity p™ in BSCCO

The material of our interest, BSCCO, has a fairly easy geometry. As this material
has no chains BSCCO-data should be understood by just looking at the CuQOs-planes
shown in figure 2.2. We are dealing with a 2D-system in these materials. As a conse-
quence of the fourfold symmetry of the lattice the F'S, that is connected to the lattice

symmetry, has the same fourfold symmetry, which can be seen in figure 2.4.

Experiments measure the DC-resistivity, measured in p{2cm, vs. the temperature,
which is measured in Kelvin.

Our model tries to fit the data given by [14] and [15] which show good agreement with

ZZk - (zwl)D dek'

SRemember v(ey) = i’f*f and ky = (3n2n)3
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each other.

Measurements by [14] showed that single crystals of Bi2212 have a transition tem-
perature between 82K-84K. Down to 150K a linear temperature dependence of the
resistivity p** is obtained in their experiment. They detected the rounding of p at
temperatures < 110K.

Quijadas group presents experimental results [15] where a modest normal state anisotropy
in the in-plane resistivity, that means in the resistivity in the CuQOs-planes, is observed.
The material his group measured was BigoSroCaCusOg, Bi2212, with a T, of ~ 80K.
Introducing Ca-atoms in the BSCCO-sample separates the planes strongly from each
other. The experiments by Sunshine [21] measure the DC-resistivity of BSCCO ( ma-
terial: Big 2Sr2CagsCus0sy5) and show a big sensitivity of these samples dependent
on doping. These experiments provide useful data to study the effect of doping on the
resistivity.

The doping dependence of another interesting sample, BiySro_,La,CuOg_gs, that has
a very similar structure, was also studied by Ando et al. [23]. This group measured
the doping dependence of the in plane-resistivity of Bi2201 samples in a temperature
range between 10K to 300K. These samples have a T, ~ 35K, thus a smaller one
than Bi2212-materials have. The same temperature dependence of this sample as a
function of the doping can also be seen in [1], [26]. The results of Andos group are in
relatively good agreement with Wang [17] who measured the in-plane resistivity in the
same range.

Rullier-Albenque [10] reports the effects of electron irradiation on Bi2212-samples
(BiaSroCaCus0g). The effect of the radiation raises the DC-resistivity but not in such
a strong manner as doping does. Therefore the curve, measured after irradiation is still
in the same resistivity range as before.

Further experimental data on the resistivity on Bi-based cuprates are given by Mar-
tin et al. [20] (experiments on Big(ST, Ca)3Cu0,-samples) and Jin [19] (material:
Bi1.95571 65La0.4CuOgy5, T, =~ 15K). Jins group reports a slope for Bi2201 samples

that has approximately the same magnitude as the slope for the samples of the Bi2212

type.
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All experiments have a linear T-dependence in p** for T" > T, in common. The
critical temperature for Bi2212 is measured to T, ~ 84K . The slope of the linear part
of the DC-resistivity Ap/AT is given by Ap/AT =~ 0.5(uf2em)/K. The doping depen-
dences of the resistivity-curves can also be obtained from given experiments. Figure
4.1 shows the DC-resistivity o™ for Bi2201 for different doping rates. Experimental
results for Bi2212 differ only slightly from them. Doping of the sample changes the
offset and the slope of the curve as can be seen in this figure. The model we are going
to propose is able to model the effect of doping by changing one parameter (6 - which

describes the size of the cold region).

1040| A=t
i

Bi &r  LaCGul
T
Single Cryetake
“D &2 100 150 EB‘CI 25'0 SDI
Temperatura [K]

Figure 4.1: The DC-resistivity p™® of a Bi2201-sample is measured vs. T reported in [1].
The doping dependence of p™ can be studied.

4.2 Hall-conductivity o*¥

The Hall-conductivity ¢®¥ can be derived from equation (4.5) in an easy way, when we

remember the formula for the Hall-resistivity Ry, given by Ry = % = % In

the case of an isotropic sample, which is the case for BSCCO, %" = ¢% and we obtain
RH - %.
It was pointed out by Anderson that the physical quantity we should look at, dealing

with the Hall-effect, is not the Hall-resistivity but the Hall-angle, that is given by:

oY

tan(fpy) = — (4.6)

O—Z‘Z‘
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because it shows an easy temperature-dependence. The formula for Ry allows us to

H'(o_zz)Z
nec

get an expression for o, g™ = . So the final formula for the Hall-angle has

the form (in the Drude approach):

H . eH
tan(@H) = EO’ = e

™ (4.7

As tan(fg) « 7p (compare to (4.7)) we expect the same temperature dependence for

Tx

the Hall-angle (tan(fp) o 7p) as for the DC-conductivity (¢ o< 7p). Experiments
show a different temperature dependence of these quantities.

We are reporting some experimental results for cot 87, the inverse Hall-angle now.

4.2.1 Experimental results: Hall-angle tan(6y) in cuprates

We are referring to recent experiments, carried out by Konstantinovic [27] and Ando [1].
In both experiments cot §p is measured vs. T2 for Bi2212 or Bi2201-samples. Inde-
pendently the groups figured out that the temperature dependence of cot 8 changes
from cot @y o< T? for underdoped to cot @y oc T15° for overdoped materials. Their
conclusion is that doping decreases the slope of the inverse Hall-angle. Note that the
experiments by Ando were done by a magnetic field of 107", Konstantinovic experiments
however with a magnetic field of 17". This information is important as the magnetic
field is a parameter in the numerical program that computes the Hall-angle using the
model we propose.
Figure 4.2, taken from [1], shows the measured inverse Hall-angle cotf0py vs. T%,
a = 1.70 (optimally doped) and o = 1.60 (overdoped) for different doping of the
Bi2201-sample. It shows that no 7T2-behavior for overdoped materials is observed.
Note that = labels the percentage of La atoms in figure 4.2, thus increasing = decreases
the number of holes (i.e. underdoping) and vice versa.
Note that the Hall-angle has no units as it is a ratio of two conductivities.
Experiments observe that p™ and cot(6) show a different temperature dependence.
This can not explained by a simple Drude-model, used in the derivation of (4.5) and
(4.7). Cuprates don’t behave like a metal and furthermore they have to have more than

one relaxation time.
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Figure 4.2: Experiments by Ando [1] show that the slope of cot 0 decreases with in-
creasing doping (left: optimally doped; right: overdoped). Measurements are done with
a magnetic field of 10T

The conclusion that was derived from the ARPES data, see figure 2.3, is also confirmed
by the experimental data, namely that a single relaxation time is not able to describe

the physics happening in cuprates.

4.3 Thermoelectric power (TEP) of BSCCO

The TEP is defined as the ratio between the thermopower S** and the DC-conductivity
o times the temperature. Note the difference between the thermopower S#” and the
TEP.

SZBZB

TEP = o

(4.8)

Obertelli et al., [33], measured the TEP of BiaSroCaCus0s15 (Bi2212) as a function
of the temperature with varying doping. As our model is only valid in the NS of
BSCCO the data from this group are only of interest in the optimally doped and in
the overdoped regime. When we go to the underdoped region the pseudogap opens and
a treatment with the BE is no more valid.

The doping dependence of Bi2201 can be studied in the experiment of McIntosh and
Kaiser [31]. They report measurements of the TEP of La-doped BiyST9_5La;CuOgyy
samples in a temperature range between 0 and 300K. Also Choi’s group, [4], measured

the TEP of BiySry_;La,CuOgy,. In their experiment the La-doping varied between
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0.1 and 0.9. The experiments [31] and [4] can be compared as they measure the same
materials.

A typical experimental result for the TEP is shown in figure 4.3. A strong variation
of the TEP with varying doping can be seen in the figure. It turns out that the TEP
depends mostly on the shape of the FS which determines the density of states.

Experiments measure the TEP in uV/K.

2 [pViK)

Figure 4.3: TEP experiment taken from [}]. The TEP of Bi2201 is measured for
different doping as a function of T.

4.4 Magnetoresistance MR in BSCCO

The MR is defined as
B Ac™®(B)

O.:p:v

MR (4.9)

S0 it measures the ratio between the change in the DC-conductivity due to an magnetic
field and the DC-conductivity without an magnetic field.

The same group mentioned above, Ando [1], measured the transversal and the longitu-
dinal MR of Bi2201-samples as a function of doping. The result is shown in figure 4.4.
It shows the dimensionless MR vs. the temperature T in a temperature-range between
0K and 300K for different doping. Ando’s results allow us to get an impression how

doping changes the MR. They found out that increasing doping decreases the MR.
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Note that we are only interested in the transversal MR, as our model computes only
this MR. Figure 4.4 shows the transverse (solid circles) and the longitudinal MR (open
circles) for overdoped (left figure) and optimally doped (right figure) Bi-based samples.
Doping decreases the MR, as can be seen in this figure. The two plots at the bottom

represent the underdoped case!
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Figure 4.4: The experiment from Ando, [1], shows the MR dependent on temperature
for optimally doping (right top) (b), overdoped (left) (a) and underdoped samples ((c)
and (d)). Note that this group measured transversal (solid cicles) and longitudinal (open
circles) MR.

A Kohler-plot, where the ratio Ap®™ /[p®tan(0g)?] is plotted vs. T, is done in some
papers, e.g. [6]. The cited group claims that this dimensionless ratio saturates to a

value of about 6. When we test our model we are going to check this result as well.

4.5 Thermal Hall-conductivity ™Y

k™ measures the effect of a magnetic field on particles that transport heat. It is defined
in the same manner as c*¥, where the charge e is replaced by the energy of a particle

€k, which means we have to sum over all energies €y to get kY. Chapter 5 will explain
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this in much more detail.

Unfortunately we didn’t find any data on the thermal Hall-conductivity of BSCCO-
materials. As Y BCO has also the layered structure we can get an impression of the
magnitude and the shape of k™ from the Y BCO data. These data are plotted in
figure 4.5. Zhang’s group [24] found the temperature dependence of k*¥ oc T~119 (for
Y BCO). Experiments measure k™ in W/m - K for given magnetic field B. Of course
this quantity varies with the magnetic field.

Figure 4.5 contains also a plot of the Lorenz-number, which compares the thermal
conductivity with the electrical conductivity. The group of Zhang used thermal and
electrical Hall-conductivities to make sure that there is no contribution due to phonons
in the ratio. The value they observe attains the value 72 /3 near 500K which is predicted
by the Wiedemann-Franz law. For small T" cuprates don’t behave metal-like. This was
already pointed out when we looked at the different temperature dependences of p**

and cot (@) which can not be explained within the framework of Drude.
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Figure 4.5: The Lorenz-number (solid circles) and k™ can be extracted from this figure
taken from [24]. Their experiment uses a magnetic field to get rid of contributions from
phonons to k™Y and the Lorenz number.
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Chapter 5

Two patch model for the collision operator

We are going to introduce a phenomenological model, whose goal it is to describe ex-
perimental data of transport properties of BSCCO, given in chapter 4, now. It was
argued in chapter 2 that it is reasonable to describe BSCCO in terms of a BE. But
as transport data can’t be explained with a single relaxation time we suggest a model
with two relaxation times. Our interest in DC-properties simplifies our analysis a lot,
as we don’t have to take FL-corrections explicitly into consideration.

It can be seen from the linearized BE, % gk + eEng—{‘E + 7= VK X B%Llf = (Y, given
in (3.25), that it is essential to model the collision-operator C in it. Note that we
are dealing with the steady-state case. So the first term % gk vanishes. The material
is assumed to be isotropic, which means that also the factor V,gx in (3.25) doesn’t
contribute. As we have only terms in the expression that are of the kind g, we can
make the replacement g, — gx and obtain the equation above.

0
Because of the term % in the BE the transport process happens at and around the

Fs.t

Following the ARPES data shown in figure 2.3 we want to construct a model with
alternating big and small scattering around the FS, which is done by introducing two
patches in every quadrant of the first BZ. The regions with a big lifetime have low scat-
tering and are called cold regions (they are along the zone-diagonals in the first BZ).

In the hot regions (at the nodes) we have big scattering and therefore a small lifetime.

In the 0K case we get only a contribution to transport from the FS. In this case we get singular
integrals at the F'S because of the step in the distribution-function. A more sophisticated method has
to be used in the low-temperature limit to compute transport properties. A powerful method is the
tetrahedron method, described in the Appendix.



29

The idea of cold and hot-patches in mind we model the scattering operator Cy with

two different scattering rates in different regions of the FS (shown in figure (5.1)).

Our phenomenological two-patch-model (TPM) tries to improve the coldspot-model
by Millis and Ioffe [29], who argued to obtain the correct temperature dependence of
magnetotransport quantities using only special regions of the FS, namely the ”cold
spots” that are on the diagonals of the first BZ. They gave four general reasons why
the FS should be governed by two different lifetimes, dependent on the position on the
FS. Hlubina and Rice [28] suggested a hot spot model to describe the resistivity. The
cold spot and the hot spot model were compared with their different scattering matrices
in [36].

We are considering both regions in our model to give a better fit of experimental data.
The mentioned models show that both can describe single data well, but not a set of
different transport properties. Furthermore we consider heat transport that seems to
be influenced by the hot regions. That’s why we consider both region in our approach.
Zheleznyak et al. [5] claimed to get good agreement with experimental results by con-
sidering two regions (a cold and a hot one) with different lifetimes 79 and 79. This
group suggested a ratio between the relaxation rates in the cold and the hot regions of
:—; ~ 3.9. With this ratio of the lifetimes they were able to fit experimental data for the
AC Hall-effect well. Our goal is slightly different as we want to introduce a model that
fits experimental DC-data of different transport quantities, which are given in chapter
4, for the NS of BSCCO. Anyway the ratio they claim for :—; is important as it gives
us a hint whether our model is reasonable or not.

As scattering in the cold regions is smaller than in the hot regions, (quasi)particles in the
two regions have different average velocities. The knowledge of the energy-dispersion
(— FS) allows us to compute the velocities v, and v, in the regions of our interest. We

are using a dispersion relation that was proposed in [16].

In this chapter we will follow the ideas given above. Our first task is to find a

possibility to describe the two different regions (cold and hot regions) of the FS in a
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mathematical way. This is done in section 5.1.

As we are interested in the temperature dependence of transport quantities we have
to consider every possible scattering around the F'S and apply a temperature dependence
to it. We split the first BZ symmetrically into cold and hot regions in order to get a
symmetrical scattering matrix.

As a first approximation we use step-functions (f-functions) to describe the cold and
the hot regions of the FS. Later we will switch to functions that change in a smooth
way between the cold region and the hot region. Of course the smooth change between
the two regions is more sensible from a physical point of view. However it complicates
the calculations.

In section 5.2 the FS of BSCCO is reproduced by a tight binding fit. Velocities and
densities of states are derived for the different regions. We conclude the chapter with
analytical calculations of transport quantities whose experimental values are given in

chapter 4.

5.1 How to describe the idea of hot and cold regions?

As a first try to describe the two regions we introduce a very easy but discontinuous
model. We are starting with the case T' = 0K, which means we are completely restricted
on the FS.

In this (discontinuous) model two step-functions, defined on the F'S, are used to describe
the cold and the hot region in every quadrant of the first BZ. The model is generalized
to temperatures T° > 0K afterwards. After this we will improve this model and will

introduce a model that describes a smooth change between the cold and the hot region.

5.1.1 Description with step-function

Starting with the zero-temperature case we define two step-functions ® and ¥ on the

FS in the following way:

1 in cold region
Py = (5.1)
0 otherwise
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Figure 5.1: The cold region of the first BZ is symmetrically divided into cold and hot
regions. We can model the cold region by a product of four 0-functions. Note that the
angle 8 parameterizes the size of the cold region.

1 in hot region
Uy = (5.2)
0 otherwise
Note that these functions are only defined on the FS!
We normalize the length of the arc to 1, i.e. we normalize the length of the FS in the
first quadrant to 1. Now we can write that the length of the cold region of the Fermi

surface has the length o.? Figure 5.2 shows the geometry which we introduced above.

The two step functions ® and ¥ allow us to write down the scattering matrix C y/

used in the collision operator Cx = >y Cx k(g — gk in the following way

O = a® Py + bV Vi + [Py Vi + Vi Oy ] (5.3)

2The arc is normalized to one using N%( Zk [Pk + Px] = 1. So the length of the cold region, «, can

be easily obtained from o = Nik > P
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Figure 5.2: The figure shows the FS with the cold and the hot regions for the T = 0K -
case. The functions ¥ and ® are defined in the way described in the text. Normalizing
the length of the arc of the F'S to 1 allows us to write the length of the cold region as .

where the constant a represents the scattering inside the cold region, constant b rep-
resents the scattering in the hot region and the constant c¢ represents the inter-patch
scattering.?

Note that the scattering matrix is constructed in a symmetrical way (especially the last
term in (5.3) was symmetrized!). That means it is symmetric around the I-Y-direction
like shown in figure 5.2. The symmetric construction of this operator will become of
great help later.

We give the constants a,b and c inside the collision-operator (5.3) of our model the

following phenomenological temperature-dependences:

a = a-T? (5.4)
b = b (5.5)
c = ¢-T (5.6)

where @, b and ¢ are temperature independent. In other words scattering inside the
cold region is o< T2, scattering inside the hot region is independent of temperature and
scattering between the two regions is o< 1. This choice is reasonable as the lifetime

inside the cold region is FL-like, thus oc T2, as (quasi)particles in this region have a

3In the cold-spot model of Millis and Toffe [29] the scattering matrix is constructed with terms o sin?
and cos? obeying the lattice symmetry. So they can generate a model that has big scattering in the
hot region and small scattering in the cold region.
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quite big lifetime. We know from experiments that the resistivity perpendicular to
the CuOs-planes, p¢, which is governed by the hot regions as the inter-plane hopping is
maximal for momenta parallel to (7, 0), is almost independent of temperature [18]. Thus
the temperature dependence of a and b is reasonable. For ¢ we choose a temperature
dependence that is between T2 and T°. So we apply a temperature dependence o T

We know from chapter 3 that summing over the scattering matrix » ,, Cx x’ gives us the
inverse relaxation time 7, 1. Thus this calculation will tell us the (different) relaxation

times in the cold and in the hot regions.

i = Z Ok,k’ = aPy Z Dy 4+ bWy Z Uy 4 cPy Z Uy 4 ey Z Dy
Tk k/ k/ k/ k/ k/
= Z D/ [a®y + Py + Z Uy [e®@y + by ]
k’ k’

= afa®k + cPy] + (1 — a)[cPk + bP]

with the area of the cold region o = )", Pk and the area of the hot region 1—a = ) Uy.
A general expression for the relaxation time has the form:

1

Tk = O Cp + Vi Cy (5.7)

with the constants Co = aa+ (1 —a)c and Cy = ac+ (1 —a)b. When we generalize to
the case of functions that change smoothly between the patches we have to remember
this.

Using this result we find an expression for the relaxation times in our model (in the

case of step functions):

1 . .
——=—— in cold region, 7
T = aa+(1—a)c g (58)

m in hot region, 7y
with the relaxation time in the cold region 7. and in the hot region 7, respectively.

Zheleznyak et al. [5] pointed out that the ratio between the two scattering times 7.

4“When we insert the temperature dependence for ab and c given in equations (5.4) (to get a
A

dimensionless result) we obtain: 7. = h and 7, = Ty’ where we
°B

aZE (hpT)?+(1-a) = (k5 T)
B

(17a)h5+a£‘—§
have multiplied by % to define everything in terms of energies. The dimension of the relaxation time is
[r] = 1s.

We obtain the following dimensions: [Z—ZZ} = %, [hE] = eV and [g—;] = 1. These should be the

quantities we are searching for. As we are searching for these quantities (given in terms of energies) we
have to give the temperature in eV and multiply by a factor (because of Ai!) in our program.



34

and 7, is of interest to fit experimental results for the Hall-conductivity. If we look
at the low and at the high-temperature limit of this ratio we get a linear temperature
dependence for this ratio, which means the ratio between the two lifetimes 7. and 73, is

not independent of temperature:

B l-a)c  aal?*+(1—a)el oal +(1-a)c
7(T)  ac+(1—a)bp  oaeT+(A—-a)b ~ ol +(1-a)
() Thyn
fm o — 5 T lhe=0
fm ) @ Thp
T—o0 TC(T) c Te

In the low-temperature-limit we get a result that represents the case where we don’t
have a cold region. The whole first BZ is hot for T' — 0K. The opposite limit represents

the case of no hot region, thus the whole BZ is cold for T" — oo.

The step-functions we are using in this subsection allow us to write arbitrary veloc-

ities v in terms of a ”cold” and a "hot” velocity:
v = vy + v, Uy (59)

The underlying assumption is that there is only one velocity in every patch. Later we
are generalizing the idea of two different velocities in each patch and will compute the
velocity at every point and decide what the character of the point is (cold or hot?).

It is of peculiar interest how the scattering matrix Cy x acts on an arbitrary velocity
vk. This problem is also pointed out in the article of Abrahams and Varma [38] that
constructed a different model to describe transport for cuprates.” The symmetrical
construction of the scattering matrix Cy i and the fact that every velocity (at the FS)
has its negative velocity on the opposite side of the F'S tells us that the sum » ., Cy kv
over the FS (later over the whole BZ) vanishes in our model,

Z Cxxvie =0 (5.10)
k/

°In their small angle forward scattering model they model the scattering operator Cx x such that
it contains a large angle scattering part and a small angle forward scattering part.
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Due to the factor g—ﬁ(‘) in the BE the equation allows only wave-vectors on the F'S to be a
solution of it in the case of zero temperature. However our interest in the temperature
dependence of transport quantities forces us to raise the temperature.

When we raise the temperature from 0K to some finite temperature the term g—ﬁ(‘) given
in the BE, is no more a §-function. It’s like a Gaussian with some width which is ~ kpT.
This fact makes it necessary to split the complete first BZ into a cold and a hot part, as
shown in figure 5.1. In order to conserve the symmetry of Cy y/, the symmetry around

the diagonals should be conserved. This fact forces us to parameterize the cold and hot

regions in a way similar to the suggestion of Hlubina and Rice [28].

At finite temperature we describe the cold area of our model in the first quadrant of
the BZ as a product of four step functions (compare to figure 5.3). An angle dependent
parameterization of this region seems obvious, as this allows us to vary the size of the
cold (thus also of the hot) region. Constants that only depend on an angle # (which
parameterizes the size of the cold region) are introduced. The 6-dependence of the

constants is given by:

a = cot(f) >0 (5.11)
b = tan(d) >0,a>0b (5.12)
¢ = m(1l—tan(d)) >0 (5.13)
d = 7(1—cot(d)) <0 (5.14)

These constants allow us to write down four lines that separate the cold and the hot
regions. Figure 5.3 shows how we split the first BZ into these two regions. It also tells
us how to write down the cold regions using step-functions.

As there are four separated cold regions we obtain four cold areas in the first BZ. Only
one of them is described in figure 5.3.
As we started to write the cold region with the function ®y in the 7' = 0K-case, will
continue with this notation. The whole cold region is given by:

B(k) = 24: o, (k) (5.15)

1=1
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Figure 5.3: The cold region of the first quadrant of the BZ is described as a product of
four 0-functions, which are determined by the angle-dependent constants a, b, ¢ and d.

where the ®;(k) are given by

Oy(k) = O(aky — ky)O(ky — bkz)O(bky + ¢ — ky)O(ky — aky — d)
1 1 1 1
Dyk) = © <—gkw - /-cy) 0 (k:y + 5“) o (—akx te— k:y) 0 (k:y + ke = d)

Dy(k) = O(bky — ky)O(ky — aky)O(aky — d — k,)O(ky — by + c)
1

Pyuk) = © (—%kx — ky> S) (k‘y + Ekx> S) (—%kx —d— ky) ) (ky + %km + c)
with the indices 7 referring to the cold region in the four quadrants. As everything that
is not cold is hot (in the case of the step-function) the cold regions describe the hot
region indirectly, using Uy = 1 — Py,.

The case of the description of the cold/hot region with step-functions is very useful, as
it teaches us how to describe the regions when dealing with a smooth change between

them.

5.1.2 Description with a smooth function

In the previous subsection we described the cold and hot regions with a discontinuous
function, a #-function. Due to this discontinuous change between this regions the
lifetime around the F'S also changes discontinuously (compare to (5.8)) which is very
unlikely in nature. We try to get rid of this discontinuity by introducing a function

that changes rapidly but smoothly between the cold and the hot region. Another
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reason for an introduction of a smooth change between the cold and the hot region
is the divergence of the magnetoresistance in the case of the step function (described
below).

Zheleznyak et al. suggested a smooth transition function [6] that has the properties we

Figure 5.4: The figure shows the case where cold and hot regions have an overlap in
common. The transition width w is a parameter what allows to study the effects of this
region on transport properties. Note that the functions ® and ¥ don’t vanish completely
outside the transition region.

are interested in. In this section we will replace the #-function by a smooth functions,
making the substitution®

f(z) —» lim ——* (5.16)

with the transition width w explained in figure 5.4. Note that the functions ® and
U don’t vanish completely outside the transition region! So we have some finite (very
small) contribution of one function in the other patch next to the transition region
(compare to figure 5.4). In the case of the smooth change between the cold and the hot
region we have to use equation (5.7) for the calculation of 7y.

As we choose a function with a variable width w the f-function used before can be
obtained from the limit §(z) = lim,—o %.7

The variable width w allows us to study the effect of a change in w on the transport
properties of cuprates. We’ll see what transport quantity is sensitive to the width w

and which is not.

Similar to the case of the step function we can write the cold region, this time only

1+tanh % _
2

5One can easily show that the relation 1-f (wiﬂ) is valid, where f is the Fermi-function,
f(z) = ﬁ

"Note that this smooth function decays exponentially for |z| > 2w!
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in the first quadrant, as a product of four tanh-functions. The cold region of the first

quadrant is now given by:

Py = ﬁ ®,(k) (5.17)
=1
with
o,(k) = % :1 — tanh (ky;wakmﬂ
By(k) — % :tanh <w> +1}
By(k) = % :1 ~ tanh (W)]
Pyk) = % :tanh (W) + 1}

where the coefficients a,b,c,d (given in equation (5.11) etc.) are determined by the

1

angle 0 that determines the size of the cold region. Note that we insert the factor 1,

because every function @1 (k) - ®4(k) makes a jump of the height 2. Thus each function
@4 (k) - ®4(k) has to be divided by 2.

Note that equation (5.7) simplifies to (5.8) in the limit w — 0.

Finally we plot the difference between the discontinuous and the continuous change

between the regions in figure (5.5). The ”3D-plot” illustrates the TPM.

We conclude this section with a final remark on the functions that describe the cold
and the hot regions.
By construction the functions ¥ and ¢ have the same symmetry as the FS which will
be introduced in the next section. Thus the introduced functions ®y, Vi are even

functions. They are symmetric to the k, and k,-axis (they have fourfold-symmetry!).

It is shown in the Appendix that the derivatives of these functions, aaki;‘, ;k‘p;‘ , are
z/y z/y
odd functions. Also the useful relation g%‘ = —%—‘,1;‘ (the same is of course valid for

derivatives with respect to k) is shown there.
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Figure 5.5: The upper picture shows the case of the step functions. So the cold and the
hot regions are strictly separated. The lower picture shows the case of a smooth change
between the two regions with w = 0.1. The angle of both cases is 0 = /6.
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i ci/eV ni

1 0.1305 1

2 -0.5951 L[cos(ky) + cos(ky)]

3 0.1636 cos(ky) - cos(ky)

4 -0.0519 Llcos(2k,) + cos(2k,)]

5 -0.1117 3 [cos(2k,) cos(ky) + cos(2ky) cos(ky)]
6 0.0510 cos(2k,) - cos(2k,)

Table 5.1: The table shows the parameter suggested by [16] to fit the FS of BSCCO.

5.2 Constructing the Fermi-surface

Our main goal is to calculate the temperature dependence of transport properties of
cuprates within the TPM-framework. A good knowledge of the FS is of peculiar interest
for the computation of magnitudes like velocities, densities of states etc.. The detailed
shape of the FS is very important to derive transport-quantities like DC-conductivity,

Hall-conductivity etc., from the model in a numerical way.

To model the FS of BSCCO we follow the tight-binding fit given by Norman [16].
The tight binding fit contains hopping up to the fifth nearest neighbor! Note that we
used this fit to generate the FS showed in figure 2.4.

From the F'S we can derive the velocity at every point inside the first BZ and the density

of states N(e). Quantities we will need for further calculations.

The FS of Bi2212 is reproduced by {(kz, ky) = 0, where {(kz, ky) is given by:

E(ky, ky) ch i (K, ky) (5.18)

with the values ¢;, 1; given in the table below: Obviously we didn’t write down explicitly
the lattice-spacing a in every function given in the table above. The lattice constant a
for BSCCO is given by

a=3.76-10"""m = 3.76 A° (5.19)
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The FS of BSCCO has, as the lattice, fourfold symmetry like it is shown in figure 2.4.

5.2.1 Velocities in the cold and in the hot regions

It was pointed out by Zheleznyak [5] that the velocity and the relaxation time varies
in the two regions. His group considered only two values, a cold and a hot one, for
these quantities to describe the transport process, whereas we are going to compute the
velocity (from the energy-dispersion-relation given in (5.18)) and the relaxation time
(compare to (5.8)) for each (discretized) point inside the first BZ.
In order to get a feeling for the magnitude of the velocity in the cold and hot region of
optimally doped Bi2212 we need to figure out the energy gap in the dispersion-relation
in the directions (7, 7) and (0, 7). Experimental data for optimally doped Bi2212, given
in [13], show that the energy difference Ae in M — Y-direction is AeMY = 0.087¢V. In
the diagonal direction, I — Y-direction, the difference is given by Ae'Y = 0.6eV .
The absolute values of the two different velocities v, and v;,® can be computed from the
values of Ae given above. Figure (5.6) describes which k-points we have to determine
to estimate the absolute value of the velocities v. and vy,

We obtain the velocities v}w and ’U}:Y (the cold and the hot velocities) from the

equation, v = % AA,:f with the energy-differences Ae given in [13]. When we solve the

equations” &(, kj‘f/jy) =0(= kf‘rﬂ/ = 0.565272- %, a: lattice spacing) and E(kz?y, k;?y) =
0 (= k}:y = 1.23258 - %) we obtain the wave-vectors of interest, described in figure 5.6.

A numerical solution gives us the velocities U}V[ Y and U};Y as

V.
oMY = 0.154° - ¢ (5.20)
V.
obY = 0.487% - ¢ (5.21)
and therefore their ratio as:1?
’U]Ic‘Y Ve
T =y = 316 (5.22)
f

8In the program we are computing the velocity at every point of the lattice. A simplification of this
deals with only two different velocities - a cold and a hot velocity.

9Compare to figure 5.6.

107t is interesting that ’U?Y is almost independent on doping. On the other hand v}VIY depends on it.
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Figure 5.6: We introduce the two wave-vectors k}w and k}:y in this figure. These
wave-vectors allow us (together with the values of Ae) to compute the absolute value of
the velocities v. and vy,.

Which means particles moving in the cold region move much faster than particles in

the hot region.

Obviously transport properties are connected to the number of available (quasi)particles
as well. Thus our next important step is to compute the density of states in the cold

and in the hot region or better the angle dependent density of energy states N (e, 6).

5.2.2 Density of energy states in cold and hot region

We want to compute the density of states in the cold and in the hot region of Bi2212
numerically in this subsection. Thus we have to divide the first BZ such that it differs
between cold and hot regions, as shown before. The possibility of changing the size of
the cold region by changing 6 has to be included into the density of energy states N (e).
Inside one patch the densities N.(€) or Ny (e) are only dependent on the energy e.

The energy-dependent density of states N(e) is defined in the following way:
N(e)=—) 0(ex —€) (5.23)

where Ny is the number of considered energy-values.
Figure (5.1) shows the two regions on the F'S, which are determined by 6. The tight

binding fit given in equation (5.18) allows us to compute the density of states in the
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cold and in the hot regions (for variable 6), N.(e¢) = NLk Yk o(ex — €)@k and Np(e)
analogously.

Figure (5.7) shows the energy densities N, and N}, for different sizes (different #) of the
cold region. The figure was obtained by a mash of nj = 1024. The energy was splitted
in 500 equal values. Note that the figure represents the case w = 0, thus the case of

step functions.

DOS hot (1/eV)
DOS cold (1/eV)

-0.25 -0.2 -0.15 -0.1 -0.05 -0.25 -0.2 -0.15 -0.1 -0.05
Energy (ev) Energy (ev)

Figure 5.7: The two plots show the density of states around the Fermi level, ep =
—0.1305¢V. The left picture shows the density of states in the neighborhood of the
Fermi surface in the hot region for different angles . The maximum in N}, (van-Hove
singularity) is about 35meV away from the Fermi-level. The density of states in the
cold region, shown in the right picture, changes much more with varying 6 than INy.
The derivative of the density of states changes its sign at the F'S at § ~ 10°. For 6 ~ 10°
the maximum in N, is on the Fermi surface.

It is remarkable that the distribution in the hot region is quite symmetric around
the van Hove singularity (VHS), which is about 35meV away from the Fermi-energy.
The shape of the density remains the same for different angles 6. Only the absolute
value increases with increasing angle. The first derivative of this density of states at
the Fermi level, which is at ey ~ —0.13eV/, is always negative.

The cold density of states is not as symmetric around the van Hove singularity as it
is the hot one. As can be seen from the graphs N, decreases with increasing angle 6.
Also N/(ef) changes its sign, dependent on 6, N/(ef) = 0 for § ~ 10°. These properties
of N will become important for the calculation of the thermopower.

The change in the sign of N/(ef) can be understood, as we have two different types of

FS’s dependent on the angle . When 6 > 0., we have a closed FS (left figure in
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0/° 2.6 6.5 12.9 19.0 24.6 34.6
a (cold) 0.942 | 0.856 | 0.713 | 0.578 | 0.453 | 0.231
1 — a (hot) 0.058 | 0.144 | 0.287 | 0.422 | 0.547 | 0.769
Ne(0)|e, JaieV 1.72 | 146 | 0.98 0.51 0.33 0.15
NUO)|ep Ja3(eV)? | -15 | -9.45 | 13.7 1.87 0.74 0.29
Nelep JeV 872 | -647 | 1398 | 367 | 224 | 1.93

Table 5.2: Dependent on the angle 6 the density of states and its derivative is computed.

figure 5.8). Therefore the particles are electron-like. For angles 6 < 0..;t;c we have an

open FS (right figure). These particles behave like holes.!!

rk

critic

I

rk

M

Figure 5.8: It can be seen that the FS changes from an open one to a closed FS (de-
pending on the angle 0). Thus the character of the particles changes from electron-like
to hole-like with increasing . The left figure shows a closed FS (electrons), whereas the
right figure shows a open FS (holes).

In the table below shows the size of the cold /hot region, the density of states of both

regions at the F'S and its first derivatives can be found dependent on 6. The derivatives

of N, were obtained graphically.

U The critical angle Ocritic is given by Ocritic = 9.5°.
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5.2.3 Van-Hove singularities (VHS)

In general we can obtain a singularity or a singular point when the condition V-ex =0
is satisfied.!? In the case of the nearest neighbor hopping we obtain the condition for

singular points

sin(k,)
V. e =2t =0
sin(ky)

that has to satisfied to obtain an extremum in the energy. The condition mentioned

above doesn’t tell us about the character of the extremum.

=0,£m
We obtain nine possible critical points in the first BZ ’ . The possible
ky =0,%£m

singular points and their character in the case of nearest-neighbor-hopping is shown in

figure (5.9).

M Saddle

PN

@ Saddle @ Saddle

a

Max Saddle Max

@ Max

Figure 5.9: The picture shows the minima/mazxima and the saddle points in the energy
obtained from a mearest neighbor hopping model.

As shown in figure (5.9) we obtain VHS, singularities in the density of states, in the

12T the nearest neighbor-hopping case the energy-dispersion has the form known from the Hubbard
model: ex = —2t[cos(kz) + cos(ky)].
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four points: (0, ), (m,0), (—m,0) ,(—7,—7).

To compute the energy difference between the Fermi energy and the VHS we have to
use (5.18) which models the FS of Bi2212. In (0,7) we obtain the difference between
the Fermi-energy and the VHS from (5.18) as:

(0.1305eV) — (0.1636eV) + (—0.0519eV") + (0.0510eV') ~ —35meV. The (logarithmic)
divergence in the density of states is &~ 35meV away from the Fermi-energy, which is

in agreement with figure 5.7.

5.3 The different types of transport

It was already pointed out in chapter 3 that the BE includes only two forcing terms,
namely an external electric field E or an external temperature-gradient V7.

We are introducing all possible currents j that occur due to one (or both) of the external
fields described above. A electrical current is named j., whereas a heat current jg has

the label . In matrix notation all possible currents are given by:

Je g S E
- (5.24)
16) S R —F

with the electrical conductivity tensor &, the thermal conductivity tensor K and the
thermopower S that connects a temperature gradient with e electric current or vice
versa. The definition given in (5.24) is symmetric as we use the term V71'/T to describe
the temperature gradient.

Castellani et al. [8] used a slightly different notation as used in (5.24) as they define
the transport equation without dividing by 7. Our formulas agree with their results
besides this difference.

Typical sums we have to compute when we are estimating the tensors given in (5.24) are

of the form €27 3",/ eﬁvﬁflﬁ,(k)vl’:, (— gff,) (compare to [2]), where A~! is a matrix
that follows directly from the BE given in chapter 3 and will be introduced in the next
section. Electrical conductivities, 0**, 0¥ and Ac**(B), are obtained for & = 0. In
the case a = 2 we obtain thermal conductivities, like k*¥. For a = 1 we obtain e.g.

S%®. The three different cases will be the object of the following three sections.



47

5.4 Electrical Conductivity "

This section deals with electrical, thus charge transport.'® Every moving ”free” particle
carries the charge e.

We are going to compute the DC-conductivity ¢**, the Hall-conductivity ¢®¥ and the
change in the longitudinal DC-conductivity due to a magnetic field Ac®(B) in this
section using the TPM. The results can be compared with the experimental values given

in chapter 4.

Our proceding is exactly the same as in [11] and [38]. We start with a linearized
BE, introduce an operator fl, solve the BE in terms of free particles and finally obtain
a general formula for the conductivity tensor o#¥. The choice of the scattering matrix
Cy x is of course different from [38].

In a general approach the current is given by j = e >y Vk - gk, with the number of free

particles gi.'* that has to be determined from the BE (3.25) for a DC magnetic field.

Considering the steady-state, isotropic case we can rewrite the BE given in (3.25)

in the following linearized way:

dfg e Oge

with the external electric field and magnetic field E and B.
The scattering operator Cy has the usual form Cx = Y1 [Ck kg — Ckxgx] given
in equation (3.5) and the relaxation time of state k is defined as 1/7x = 3 ), Cx i as

already mentioned in chapter 3. We can solve equation (5.25) by rewriting it as:

e 1

—(vikxB) -V + T_k gk — chk/gk/ = (5.26)
kl

he
0
= [evkE]- <—g—'2:>

13Which is equivalent with the case a = 0.

14 Actually we have to use gy in this formula. As we are interested in the steady state case everything
is expressed in Jk. So we make the replacement g, — gk for the rest of this work. Note that this is not
valid for %gk # 0!
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Defining an operator flk7k/, with

A 1 e
A = | — + = (vik x B) - Vi | ki — Crew (5.27)
Tk he

allows us to write the Lh.s. of (5.26) in the form ), Akk/gk/. Therefore we have to
invert /Alk7k/ in order to solve equation (5.26). As the magnetic field is treated as a small
perturbation of the transport process we split flkk/ into two parts, flkk/ = Kkk/ —i—lefk,
with a magnetic field independent part Ky y, IA(k7k/ = %(51(,1{/ — Cg xr, and a part that
contains the magnetic field lek,, lek, = [%(Vk x B) - Vi| 0k . A perturbation-

expansion of flk,kr allows us to get the inverse of this operator as

i-1 -1 =1 ) 1
Age = R — K M3 GK G (5.28)

Ko Mo Ko Mg ju K

- 3
k.k kI kk k! Kk’ + O(B )

with a summation over repeated indexes. Dependent on the quantity of interest we get
a contribution from the different terms in this expansion. The first term contributes to
the DC-conductivity, the second term to the Hall-conductivity and the third term to
the magnetoresistance.

It follows from the BE (5.26) that the number of ”free” particles contributing to trans-

port is given by

a ofo
gk = 2 Z Ak,{d [eviE] - <—a?];k/> (5.29)
k/

with A~! given in (5.28). The factor of 2 is due the spin degeneracy.

Using Ohm’s law, j# = ¢"” E¥ we can derive a formula for the electrical conductivity-
tensor o#” by inserting (5.29) in the equation for the current given above, similar like
it was done in (4.2). We obtain the formula for the electrical conductivity in the most

general form:

N 8f0
_ 92 ~1 k
O'/“/ = 2e kaI,U{{LAk,k’,UII:/ <_¥k/> (530)
with the inverse of the operator flk,kr defined in (5.27) and the factor of 2 due to the
spin.'®

15We see at this equation that we are mostly interested how the operator A~" acts on an arbitrary
velocity v”.
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It can be seen in (5.28) that our basic task is to figure out how the operator K~ acts

on an arbitrary velocity. It follows immediately from (5.10):

. 1 5.10) vy
Z Kk’k/’uﬁ/ = — Z Uﬁlék,k’ — Z Ck7k/?]1':/ ( =k =
k/ Tk k/ k/ Tk
Y Ktk = mk (5.31)
k/

Note that the second equation follows directly from the first, when we multiply it with
KL
We are going to use the result, given in (5.31), to get the different conductivities of our

interest. 16

5.4.1 DC-conductivity o

We obtain the leading term to o** from the first term in (5.28). When we plug this

term into (5.30) we only get one extra 7y in the final answer due to (5.31):17

o™ = 2¢? Z <_8—ek> (V)27 (5.32)

with the functions ®y and Wy introduced in section 5.1. Equation (5.7) allows us to
compute the T-dependence of ¢**. Note that it is impossible to get an offset to the
resistivity at a temperature 7' = 0K (residual resistivity) when we are dealing with a
finite width w, because the term ®Cg + V1 C'y # 0 for every point that contributes to
transport. If the transition width w is big enough Wy vanishes nowhere around the F'S.

So we get a temperature independent contribution to the resistivity that is oc b(1 — ).

The fact that we have to choose proper values for the scattering-parameters a, b and
¢ forces us to try to find out which parameters rule the DC-conductivity. Thus we go on
with an analytical calculation of the DC-conductivity in the case of the step-functions
(w = 0). In the limit w — 0 we can write the scattering time 7y as 1 = 7.9y + 75 V.

Our task is to find the contribution from each region to the conductivity, o?* and o7*.

afy
Oeyr

16Note that K~ conserves the energy. Thus the term (— ) can be put in front of this operator.

1"This equation is the starting point for the numerical computation of the DC-conductivity in our
program.
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We are going to use the following formula

11rn o = 2¢? Z ( ) 2 (1P + TPy ) (5.33)

UJ—)

to obtain the DC-conductivity. Because of the fourfold symmetry of the FS it is enough
to compute o in the first quadrant (with a proper normalization).'®

The dimension of of the conductivity [0%*] = ﬁ thus the resistivity for that experi-
mental results are given in chapter 4 has the dimension [p®*] = Qm.'Y (5.33) shows that
the total resistivity is given by a parallel wiring between the cold and the hot region.?°
As the total DC-conductivity is just a sum of a ”cold” and ”hot” part, we concentrate

on the contribution o** from the cold region for the moment.?!

e?

1
lim 0% =2 EU? . Tcm Z S(ex — €7) @i = 202 Ne(ey)
k

w—0

with the density of states inside the cold region N.(ey) = NL,C Yok O0(ex — €5) P

Indeed this equation is a simplification, as the velocity is taken to be constant?? inside
the cold region. Anyway it will give us an idea which parameter is of special importance
for ¢**

The total DC-conductivity is o™ = o%* 4 o7%,

lim 0%% = ¢? [U?TCNC(EJI) + U%ThNh(Ef)} (5.34)

w—0

The table, given in the section 5.2 allows us to figure out which term of the two in the
brackets in equation (5.34) is the bigger one. By looking at this table it turns out that
the conductivity is dominated by the cold regions, because the velocity v. (compare

(5.22)!) and the relaxation-time 7. is much bigger there.

8 The whole function in (5.33) is symmetric around the k, and k,-axis!

9Experimental data are given in [p®*] = uf - cm.

2 2
20A dimensional analysis gives us: [0%"] = e(g% s =L

Because of the converting of & and e into SI-units we have to msert a factor of 3.698-10°, which we call
cfactor, in our program. The numerical value of the conductivity becomes 0% = 3.698 - 10° x RES x

T 1 where RES is a numerical value obtained by the program. The quantities 7 and a; are given in

@ am
the following units: [@;] = 14°, [7] = 10~ .

Mop)t = %

22In the program we compute the velocity at every point of the lattice. Thus the assumption of a
constant velocity inside the cold spot is not used!
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Our interest in the temperature dependence of the resistivity forces us to insert the

temperature-dependence of the coupling constants, a, b and ¢, given in (5.4) into (5.34):

1 1
li = =
wlin()p 62 ’U%TCNC(GJC) + U%ThNh(ef)

1 be(l—a)®*+a(ab+c*) + a*(ac —ab =)

e2 V2N,(ef)ca + (1 — a)b] + viNp(ef)[ac + (1 — @)c]

1 be(1 — a)? + (aab + a — a?ab — o?c)T + o’acT?
€2 v2N.(ef)[eTa + (1 — a)b] + v2 Np(ep)[aT?a + (1 — a)eT]

7—0 1

1 (1—a) 13(1—a)+a(65;52) T

(
2 .2 ’ _
e* veNel(ey) (1—a)b+c{a+(z—ﬁ)2%;f))(l—a)} T

1 (1-a)e L+ [2+¢]-T
T 202N.(es) : [ vn )2 Naey)
€ | eg e+ () 2]

Taylor—expansion
A Taylor expansion of the marked term to first order gives us an easy result for the

DC-resistivity in the low temperature limit:

1i S Yi
w0 & T e V2N, (ef)

<@>2 M) -TQ] (5.35)

Experimental data (compare to chapter 4) show that the DC-resistivity is propor-
tional to 7" in a large temperature range (up to temperatures ~ 1000K!). In the limit

of low temperatures and w = 0 we can write the resistivity p® in a linear form,

Ap:v:v
AT

p*r = po + T (5.36)

with the zero-temperature offset pg and the slope —L. Note that we are able to obtain
an offset in the resistivity (from the hot-scattering b) within the framework of our model
by inserting a finite transition width w into the model.

We obtain the linear temperature dependence of the resistivity, because the correction

in (5.35) is quite small as it contains a factor oc T2, also in our TPM.

lim p* (T):i (-aje

c
-T .
T,w—0 €2 vIN.(ef) (5:37)

As we know the velocity in the cold region from equation (5.20) and N,(ef) from

the table given in section 5.2, we can use equation (5.37) to estimate the value of the
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parameter ¢. In a first guess we set @ = 0.5, which is the case when the first BZ is
equally divided into a cold and a hot area.

It can be seen in equation (5.37) that the slope is governed by ¢.

As we are interested in the description of Bi2212, we have to choose ¢ in such a way
that it matches the slope that is experimentally measured. Just to get an impression
of the magnitude of ¢ we insert the experimental value for the slope of Bi2212 which is

roughly given (compare to chapter 4) by

Ap™® uem
AT |Biz212 ~ 0.5 % (5.38)

A comparison of this quantity with (5.37) allows us to obtain a first guess for ¢.

We find out that &~ 0.5 - 10'2 L for Bi2212.

Our interest in dimensionless quantities forces us to multiply this value with %. We
obtain as a first guess for /?_;: ]Z‘—; ~ 5. This result will be the starting value for the
fitting procedure. For sure we will have to change it slightly especially when we insert

a finite w but this gives us a quite good starting point for ]Z‘—g.

Another important quantity, the Hall-angle, shows a proportionality oc 72 (compare
to section 4.2).
It is necessary to compute the Hall-conductivity o®¥ to obtain the Hall-angle cot 05 (7).
Once we figured out o™ we will concentrate on the temperature dependence of the Hall-

angle in the framework of the TPM and compare it to experimental results.

5.4.2 Hall-conductivity o™

Figure 5.10 sketches the geometry of the applied external fields in the Hall-experiment.
The electric field yields to the x-direction and the magnetic field in z-direction.

We obtain ¢*¥ also from (5.30), but the leading contribution to it is obtained from
the second term (5.28), thus we replace flﬁ(, — —Kl;i,Mk/,k//K_,,{k,,, in (5.30).

Again we make use of the relation given in (5.31): K~'v = nv. Inserting this formulas

231t is clear that we can’t get a Hall-conductivity without an magnetic field! Thus the second term
in (5.28) gives the first contribution.
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Figure 5.10: The geometry of the Hall-experiment.

into (5.30) gives us 0*¥. The important term inside the the operator A~! is (vix B)- Vi,
given by the magnetic field. It can be written as

(Vk X B) . Vk = B(’Ulzi . 81% — ’Uﬁ . 8ky) (539)

We obtain ¢®¥ with a minus sign in front of the expression due to (5.28).24

_ 2 b1 ) b1y Ofx
o= =200 Y Ky Mo Kyt (_861«//
k,k/7kll’k///
3
5.39 e°B 0fx
( = ) -2 — kavlm{/ [Uly{, . 8]4 — ?)lm{/ . 8]4} 5k’,k”7'k”vlzi// (— f
hC k' Kk * Y 861(”
3
e’B 0 fx
= 2. =) 7ol {fuy - Opr — Vi - 81«} Tievg, | —
he K |V Ok — Uit Ok, K\ " e

which can be simplified to the final formula for the Hall-conductivity o®¥: 2

e’b %> (5.40)

Ty T Yy T Y
g =—-2— TV [’U . 81% — Uy 8k } TV —
he Zk: Lk TR TR 9

that contains derivatives of the velocity and of the scattering time 7 with respect to k
and k,. Exactly the same formula is given in [34]. This equation is the starting point

of the computation of ¢*¥ used in our program.

24The factor of 2 is inserted because of the spin.

2’Note that the magnetic field B, used in this equation, has not the dimension 7. Here [B] = %, thus

[—B } = Y= — 7. A dimensional analysis of this formula gives us (in SI-units): [0®Y] = —ezB c 1L
c m-m 2 c-c m €
s om-s- = e Vs m1l — L1 Remember that i = 6.5822 - 107 %V - s. It is convenient to

s s m2.eV.s s V Q-m

write all the constants in terms of atomic quantities.
In our program we have the numerical equation: o*¥ = 85.356-a-B-72 x RES#7 where the quantities
are given in same terms as introduced before and RES is the numerical result given by our program.
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We can write the scattering time 7y, (given in equation (5.7)) in the way 7 =

what allows us to compute the derivative of 7 with respect

1
Py [aat+(1—a)c]+ Py [ca+(1—a)d]’

to kg or ky using the quotient-rule.?

one O®) OWi] 0%
o —Tie [(3@ i + Cy ok } Ty [Co — Cy] (5.41)
8—ky = _Tk [Ccp ak’y C\I} 8k ] = Tk 77— ak’ [Ccp — C\I}] (542)

with the temperature dependent constants Cgy = aa+ (1 — a)c and Cy = ac+ (1 —a)b.

Finally we write down the total Hall-conductivity combining the result given in (5.41)

with (540)
oY o2
1
e3B 0fx vy vy
ry _ _9- 2 _IkY 2y Tk 2 Tk
o 2 — zk:< (‘kk)ﬁ‘vk vy, Ok, Up ok, (5.43)

+2§ ; (—a—Ek) Tkvk(vk) [Cq:. — qu] akx

13
63B afk 3 8¢k
- 2—0 Zk: <_8—ek) e(vie) v, [Co — Cu] ok,

oXYoxr3

This means we get three terms that give a contributions to the Hall-conductivity. The
same reasoning as in the case of the resistivity states that we obtain also an offset to
the Hall-conductivity when inserting a finite width w into our model.
The first term, o7¥, which contains the derivatives of the velocity, and the terms o3”
and agy that contain derivatives of the relaxation time 7 with respect to k, and to k.
It turns out in the numerical analysis of (5.43) that we get the main contribution to
o™ from the first term o7” in the low temperature limit (up to 400K) for sufficient big
w. However for small w it becomes more and more important. So we can recover the

T3-dependence of 0¥ from (5.43).

26Remember the property Eg% = —% and g(}% = —% shown in the Appendix.
x x Yy
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Hall-angle tan (7))

The ratio between the two conductivities c*¥ and o** is called Hall-angle and is defined
in the manner:

oY

tan 0y (T) = — (5.44)

e
It was shown in chapter 4 that we would expect the same temperature dependence of
cot 0y as o™ has in a simple Drude model. But the experiments described in chapter
4 showed that cot @ o T2. Thus ¢ should be proportional to 773.

When we insert the equations given in (5.32) and (5.43) we arrive at this formula for

the inverse Hall-angle:

(5.45)

with the denominator given in (5.43). So we can compute the Hall-angle numerically.
This allows us to check the temperature-dependence of the Hall-angle that is experi-
mentally measured.

The next quantity of interest that can be achieved from the electrical conductivity is

the magnetoresistance.

5.4.3 Magnetoresistance MR

The divergence in the MR in the case w = 0 was pointed out by Zheleznyak et al. [6].
This divergence forced us to introduce a smooth change between the cold and hot re-
gions in section 5.1.

When we apply a electric field and a magnetic field in the manner shown in figure (5.10)
we obtain a higher resistivity, as there are electrons bended from their straight move-
ment (||E) due to an additional force (Lorenz-force!). Thus we expect the resistivity to
grow. The MR tells us how the resistivity changes when we turn on a magnetic field.

It is defined by:
Ap™(B)
MR =——F"-+-
p*(0)

with the longitudinal resistivity p**(B) with and p®™*(0) without an external magnetic

(5.46)

field B.



56

As we know the solution for the conductivity o#”, equation (5.30), we would like to

write equation (5.46) in a more convenient form.

ATB)  p(B) () p(B)
p*(0) P (0 p™*(0)
i () a®®(0) L Aoc®*(B)
~ 0%%(B) Ao (B) + 0%2(0)  Ac®z(B) + 07%(0)
B Aoc®*(B)
O—mm(o)
A more sophisticated approximation gives us Ap’f;((o]?) = —A;z;((o]?) — tan? 0y [6], which
we are going to use for the MR.
__Ac™(B) 2
MR = — 7(0) — tan” O (5.47)

with the Hall-angle tan 6y defined in (5.44) and o®*(0) known from (5.32). Ac™*(B)
is the only unknown quantity in (5.47).

Again we only take the leading order contribution to the MR, to be accurate to
Aoc™(B), given by the third term in (5.28). Note that the first order term in (5.28)
doesn’t give a contribution to o**(B), because 6%*(B) ~ Y, v* - (Mp x v*) = 0, which
means that we get the first contribution to o**(B) from the third term in (5.28), which
is K'"MpK—'MpK~'.

Therefore Ac®®(B) is obtained from?7

L . . afo
Aaww(B) = 262 Z Ulw(Kk %(’Mk’,k”Kk//l k" Mk”’,k””Kk//l// | 'Ulw(///// —
k.k' k" k" k" k! ’ ’ ’ 86k”/”

We know that as well the scattering operator K1 as the operator due to the magnetic
field Mp conserve the energy.2® Therefore we can put the partial derivative of the
Fermi-function in front.

Again we use (5.31) and simplify the equation above to:

P . . .
AO.Z‘Z‘(B) — 262 Z (_ f Tklvlci/Mkl7kllKkl} K Z Mk///7k////’7'k//ll’U1€////
k’.k” k" aEk’ ’ K/

27 Again we insert the factor of 2 due to the spin.

22Remember that Mz just rotates the direction of the velocity. It doesn’t change its magnitude!
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Our next task is to simplify the last sum on the r.h.s, Yy My g Tymvgm.

~ eB
Z Mk’”,k”” Tk//// 'Ul:z//// = - {Ui///@kg/ — 'Uli///akly//} 5k”’.k”” Tk/m Ul:z””
/" he /"
eB
= h_ [Uly(m akg/ - Uiﬁm akg/} T k”’Ulgz"'
C
eB
- h_TkW [Uﬁrrrakglviim — 'Ulw(/// ak?/J//’UiB{///] +
C
eB
+ h—'Uﬁ/// |:’U1y(,,, ak;” Tk!" — Uﬁ///akg/ Tk///:|
C

We already calculated the derivative Oy, 7 in (5.41). So we simplify this equation by

using this result:

~ eB
Z Mk’”,k””Tk""’Uiz”” = h_ {Tk/// |:’Uly{,,, akglvﬁ/// - ’le(/// ak?/!//’le(///:|
C
kl///
2 e o 0Pk sy 0%k
+ Tk/// (C<I> — C\I/) Uk///Uk///— — Uk"’vk’”—
ok, Ok,

with the temperature dependent constants Cp and Cy defined before. So we get a

contribution that is o< 7 and another part o< 72 from this part.

When we insert this result in the equation above, the initial equation becomes:

of . .
AO’MC(B) = 262 Z (_861(/ Tk/Uﬁ/Mk/7k//Kk//17k///
K k' k"
eB
. [% {Tk/// [’Ulzi///akgl?]ﬁ/// — ’Uﬁ///ak?/;/’l)ﬁ/// +

0%, , 0Dy

2 r T
Ty Ccp — C\I} | Oyt Oyernr ——— — OVyen U
i ( ) KK Ok, KR Ok,

Now we have to analyze how the operator K1 acts on the term on its right. As usual

the operator K ! just puts another scattering time 7y in front of the term.2? So we get

rid of another sum and obtain:

3

e°B 0 ~

AO‘MU(B) = 9 E <__f) Tk’Uﬁ/Mk',k”
hic K k" aEk/

. {7'1%// [Uly(,,akgvﬁu — 'Uiiuakgvii//} +

20, OB

+'TIZ’// (Cq; — C\I/) (’Uﬁ//) —_— — ’Uk//'Uk//
okl k!

29The term in the big bracket on the left side is antisymmetric as 7y and 9y, v etc is symmetric and
v and 0P /0k, etc. is antisymmetric. Thus summing the symmetric scattering-matrix Cyys over the

first BZ gives us a zero-contribution!
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Now we apply the second magnetic term Mp on its right side. Summing over k” gives

us:

e - €4B2
Ac™(B) — QW;<—

7 [0l Oy vt — v Oy v | + 7Y (Co = C) l(vk,)

af X X
?k/) %% {Ui/ak; - Uklakg/} . (548)

28q)k/ IE aq)k/
ok}, Uk Ui ok

T2 —term
T3—term

The 72-term gives two contributions, which are obtained by doing a derivative of the

square bracket and of 7'13. The derivative of the square bracket is easy to be done. As

2 2
regard the derivative of g%‘; and g%‘; using the relation between ® and ¥ we obtain:

o, —27; k. [Cop — Cy] (5.49)
oh = 2 [Co — Cy] (5.50)

Inserting (5.49) and (5.50) into the expression of the 72-term we obtain:

Tk/’Ui/ [Ulyd 8%

’Uiﬁ/ 8k?;:| . ’Tl%/ |:’Ulzi/ akl ’Uiﬁ/ — Uﬁ/ ak/y Uﬁ/:|

3 y Ovy, Qv (W,)? 82221”@ y Ovig Ovyr o T O*vg,
Tietie (Ve g apr T (U (k)2 U ok, ok, ¥ okt ok
2
8Uk’ a'Uk/ z Yy 821)12/ T 81112/ T \2 8211152/
e ok, W g T\ Gr ) TR e

e ) OPK | 4 o OV 22 OV
27—111’(0‘13 - C‘I’)Uk’ { akk [ Vg v k’ aklj B (Uk’)2 aklj‘|

a@k (vy )2 81)k/ CC avk/
Ok, |\ omy Y i ok,

- O*vg, oo 0ROV . Ovd, Ov,
7—lz’vk’ l(vk’)2a(kg§ + (Uk’)za(k532 - aklf aklf
. 0%, » [ Oviy ?
e o (28)]
z Yy Yy
. Ok | » 4 OVL 22 OV
2713’(C<I> - C\I/)vk’ { ak’k [ VgV lyc’ ak,lj - (Uk’)2 ak,lf]
Yy

aq)k (U )2 8Uk’ o (E, a'Uk/
Ok, |k Tgpr T KK ok},
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This equation gives us the terms obtained from the 72-term. Still the 73 term is

missing! The partial derivatives of 73 are:

o = g [Co — Cy] (5.52)

Thus the 73-term gives the contribution:

Tk! Uﬁ/ . ['Uk/ ak/ — ’Uk/ak/

0, , OBy

:| Ccp — C\Ij) [’Uk/vk/ a]{;, ’l)k/ k’ 8[{;/

ovy, 8‘131(/ . 82(131(/ ovy, E?(I)k/

= (C<I> _C\I/ Tk/vk {Uk/ [ aklf k/ ak, ( )28]47‘;8]{7; - 8[{:15 K’ ak),
8Uk/ aq)k/ . vm 'vy a2¢kl

e Ok Okl KK (k)2

T avk/ aq)k/ T 2a2¢k/ 8Uk/ 8@1(/
U lz ok, % Bk R g Gk e

8'Uk/ aq)k/ Tz Yy a2¢k/
ok ok, <% okt ok,

ok}, ok~ K k’ k.,

0Py 0Py y 0P/
(Cq> — C\p) Tk/’Uk/ { k ’le(/ [(’Ui/)2 k x k ]
DDy 200, O
T

ok, Y g

ovy, 0Py 0? Py Oy, 0Py
4 x k'’ k T \2 k z\2Y YKk k
= (C<I> — C\I/)Tklvk/ {2Uklvk/ a]{;, 8[{}Z/J + 2(7) /) Uly(/m + (’Uk/) 8[{}’ a]{;,
ovy, 0Py 0Py oy, 0Py 0?®y
(Y 2K k" T (Y 2 k" T 2Y Yk’ k" 3 k
Wil Bt ok, — ) gy — 20k G g~ ) e }
6<I>k/ z z 28(191(/ oF 6<I>k/
(C(I) —C\I/) Tk/'l)k/{ 8[{;/ Vs [(Uk/) 8k’ (%Y k’ 8[{;’
8(191(/ y z 28(191(/ oF 8(191(/
= T, Ve | W)~ e
Now we put all the terms together and the expression for Ac®*(B) becomes:
Ac™(B) = 22( aek)' (5.53)

. 0% g 02T - OvY Ov
I ——

. 0% + [ Ovi ?
— 2Uly<vk78kxal];y + (%% (8[{}2) :|
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o0 0P ove ove
. 4. x . k z kyl [,yY%% Y%
* (G = Cu) micvi <2 l@ky Yk Bk, ”4 l”k Oky <Ok,

| S|

ovg O 0*°® vy O
z,y Yk YFk x\2, Y k z\2 Y% Uk
T2, ok, T2 g o T G B,
ovy 0P 0?P ovi 0P 0?®
_ (27 % k _ x0,9)2 k 2\2YY% UFk N3 k
(vk) 8[%; akx Uk(vk) 8(]{?;(;)2 2(Uk) aky aky (vk) a(ky)2>

2
0Dk 0Py
+3(Cy — Cy)2 2 (v])? - lvx— — ¥ ]
k\Yk k 8ky k 8](@

which is our final expression for Ag®*(B). This result has to be inserted into (5.47) in

order to figure out the temperature dependence of the MR.

Kohler-Plot

Zheleznyak et al. [6] argued in their theoretical paper that a plot of the ratio

Ap*® /(p™ tan? O) saturates to a value that is about 5.5 for 7' > 350K. So the ratio
of MR and inverse Hall-angle squared is expected to be independent of temperature for
sufficient big temperatures.

We are plotting the Kohler-plot to test our TPM and to derive some properties or
dependencies from the result. As this plot is a ratio of two quantities the interpretation
is difficult.

Anyway we obtain a saturation for temperatures of this range for very similar numbers.

This plot will be shown in chapter 7.

5.5 Thermal transport - conductivity tensor x*”

Equation (5.24) in section 5.3 describes every type of transport in a sample due to an
applied electric field E or a temperature gradient V,T'. Section 5.4 dealt with the case
of an applied electric field without a temperature gradient. Different conductivities o
were derived in this section. Now we are going to apply a temperature gradient V,T
to the sample, but no electric field. The goal of this section is to compute the thermal

conductivity tensor x* obtained from the TPM.

In contrast to the previous chapter the driving force of the kinetic equation is now
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no more due to an electric field. The cause of the (quasi)particle movement is now a
temperature gradient.
To obtain the thermal conductivity we have to solve the integrals introduced in section

5.3 for o = 2.

As the distribution function is now r-dependent we have to linearize the BE using
fk,r,T,t) = f(ex, T(r)) + gi(r,t) now. The departure from equilibrium gy (r,t) now
has a spatial and a temperature dependence! Again we are interested in the steady-
state case, thus the term % doesn’t appear in our kinetic equation, equation (3.25).
Considering the case of no external magnetic field first we can derive a formula when
there is only a thermal gradient in the sample. From the total differential of f(k,r,T,t)

we obtain in leading order 39

df (k,r,T,t
% = Vrf(ka 1‘7 T) . Vkek _ ka(k’ r7 T) . Vrek
Of dex f9 dT O£ o
Oex dr Vet oT dr - Viek e Ve - Veek = T VT - vk

which represents the driving term in our kinetic equation.?! As flg is the usual Fermi-

0 0
distribution we are able to reexpress % in terms of %,32
Of _(_Of) & (5.54)
oT Oe | T ’

The r.h.s. of the kinetic equation doesn’t change at all. So we still have the collision-
operator C defined in (5.3) there. Without an electric and magnetic field the transport

gets the form:

3f12 €k B
<_a_6k> K- VT = G (5.55)

i i Oh (08 eVeT i
The comparison with (3.25) tells us that we replace eE By e, 7 to obtain

the tensor . This replacement was also pointed out in [36]. So we have an extra factor

30 As we are dealing with the steady state case we drop the term %.

31Note that there is no magnetic field in the equation so far!
321n the case 7 = 0 the formula (—%) = d(ex — €y ) is valid. When we do the derivative of the

_ORY 1 ew/kBT _ec _ ew/kBT
e ) kBT (ek/kBT1)2° kpT? (esx/kBT{1)2 ) —

Fermi function we get: ( T

ac (0K
T Oey

. Of
Thus we can write =% =
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and an extra "minus” in

of ey, the driving term due to the temperature gradient %

the equation! Finally we derive from (5.55):

1 OfY\ e
-2 [_5k,k/ - Ck,kl} I = 0k —vic- Vil
I Tk 86k T

where the additional term due to the magnetic field is still missing.

In analogy to the previous section we define an operator A, flkk/ = K + Mpg. This
operator is exactly the operator given in (5.27). We can compute the number of ”free”
(quasi)particles from equation (5.55) when we invert A, which is done in (5.28). Note

that gx represents here the (quasi)particles that can carry heat (respectively energy).

. £\ e
=2 Al [(5—2:> 6; Vi -VPT] (5.56)
kl

with fll: i, given in (5.28) and the spin degeneracy.

Equation (5.56) is the starting point of the computation of thermal conductivities.

In analogy to Ohm’s law we define the thermal current as

VT
T

jo=-k (5.57)
with the heat current jg and the thermal conductivity tensor k.

A comparison with Ohms law, equation (4.2), shows that E — V:;T and there is an

”

extra in equation (5.57). The minus-sign appears because (quasi)particles move
from lower to higher temperatures. Whereas particles move with the electric field.

A dimensional analysis of the thermal conductivity  gives us: [k] = %, and the heat
current jg has the dimension [jg] = Y%.

m2

Considering the noninteracting regime (non Fermi-liquid-regime)33, we can obtain

the heat current in terms of "free” (quasi)particles gy,

jo =D vkexgk (5.58)
K

33which is not important in the DC-case!
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that is very similar to the formula for the electric current, equation (4.2). The difference
to the equations before is that the derivative of the Fermi-distribution (—gﬁ—%) doesn’t
simplify to a d-function which is clear as we can only have a temperature gradient when
the temperature T is not zero, T' # 0.

In the case of the charge transfer each particle transported the same charge e, whereas in
the case of heat current each contributing (quasi)particle carries some energy ey whose
magnitude is very similar to the Fermi-energy €y, ex = €, because only (quasi)particles
around the FS can become free (quasi)particles. The chemical potential is set to be
constant in this case.

From the equations (5.57), and (5.58) we can derive the formula for the thermal

conductivity-tensor.

N ofo
K =2 Z vﬁekA;i,ek/vl’:, (—8fk> (5.59)
KK K’

Now our main interest is how the operator A~! acts on the term vigex. As A7!is a

34 we derive imme-

product of K1 and of Mp which are energy conserving operators
diately that the operator A1 conserves the energy. Thus the action of this operator
on its right side in (5.59) is given by fll:i,ek/ka = Ekz‘iﬁ(/Vk'-

So the problem from the previous section remains. We have to know how the operator

A~

A~ acts on arbitrary velocities, which is known from equation (5.31).

5.5.1 Longitudinal thermal conductivity ™"

It follows from (5.59) that the longitudinal thermal (DC)-conductivity ~** is given by

0
K7 =23 v edna <—g—§;> (5.60)

k
The Sommerfeld expansion expansion allows us to compute the value of this sum or this
integral respectively in an approximative way. This expansion works for integrals of

the form above. The idea is to Taylor expand the integral in terms of the temperature

31The scattering operator conserves energy like it was constructed and the operator Mp conserves
energy as it is a magnetic term that rotates the velocity but doesn’t change it.
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as (—%) has a width of kpT.3°

From this expansion we get the first term that gives contribution in the following form
K™ = aymv®T? N (ep) o< T? (5.61)

with a; that is defined in terms of the Riemann Zeta-function, as usual in the Som-
merfeld expansion. The factor of 1/2 that cancels the spin degeneracy, results from the
fact that v2 = vg = 102 in the isotropic case.

In a numerical analysis it is more useful to write down x** in the way it is done in
(5.60). It is interesting that we have only to replace e? by ei when we want to switch

from the computation of 0** to the computation of k**. We can use the same loop to

estimate k™ as we used for the computation of o**.

5.5.2 Thermal Hall-conductivity ™

We studied the effect of an applied temperature gradient on a sample that forces the
(quasi)particles to transport heat. As also phonons can carry heat we have to think of
a way how to figure out the contribution to the heat current from (quasi)particles.
The magnitude we want to analyze now, k™Y, is of particular interest, as only charged
particles are bended in a magnetic field. Thus the k*¥ allows us to study the heat
transport of the (quasi)particles in the NS screening out phononic contributions. The
geometry of this experiment is very similar to the Hall experiment, B = (0,0, B )T, and
the temperature gradient in z-direction, shown in figure (5.11).

In the case of an applied magnetic field we have to take the Lorenz force, included in
(3.25), and a force due to a temperature gradient, given in (5.55), into account. So there
is a force that acts on the moving charged particles and distorts them perpendicular to

the temperature gradient.

3%In this case we have to expand the function N(6)62 in a Taylor series. This helps us get an expression
d2n

0
for the integral [ N(ex)ep ( afk) dex = >0 anT?" 2 (N(ew)€qr)|e=0. Compare to Ashcroft [2],

T Dex

Appendix C.
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CuO, - plane ‘

Figure 5.11: The geometry of the measurement for the thermal Hall-conductivity. The

temperature gradient is realized by different temperatures at both sides of the sample,
Ty # T1.

In this case we obtain the transport equation

i < afk) v L % «BYE _ o (5.62)

Oex ok

Again we compute g by solving (5.62) which is done by inverting A defined before. The
number of ”free” (quasi)particles can be obtained from (5.59) considering the second
term in (5.28) for A1

Inserting A;{{, = K 'MgK~'in (5.59) gives us the thermal Hall-conductivity x*Y

oy (55962 S ek b N (K K Rt <_85€f18 )
K.k’ k' k" K
e
el B o o
_Q%Zk:e;{ <—g—§> 2 (v8)2v l() % (J@%\Zk] (5.63)

Note that x?¥ is identical with the electrical hall-conductivity when we replace e? — €.
So only an extra factor ei as to be included in our program.

As we compute the energies in eV we can use the same number for the thermal Hall-
conductivity as for the electrical Hall-conductivity. The only thing that changes are

1

G > Whereas [k™Y] = w

the units we obtain, [0%Y] = o

The thermoelectric power, TEP, is the last transport quantity that we are going to

compute. It is the only quantity that connects electrical and thermal transport.



66

5.6 Thermoelectric power TEP

The last missing tensors in (5.24) are going to be computed in this chapter.
We start defining the thermopower S#*” which combines somehow the electrical and the

thermal transport.

v mwaA—1 v aflg
SH :_QEZEkUkAKk/Uk’ - (5.64)

T Oeyr

So this case is equivalent to the case @ = 1, discussed before.

0
Note that the function (—g—f‘;) is an even function around the chemical potential

p3% which means that the integral [ dee < g{ k> = 0 for every temperature.

Therefore it is necessary to expand the energy density N () also in a series to obtain the
leading contribution to S*” defined in (5.64). We get a contribution to the thermopower
SH from the antisymmetric distribution of N (e) around p. A Taylor-expansion of N (e)

leads to
N(e) =N, +N'(u) - e+ O(e?)

The sign of the thermopower tells us what particles generate transport (particles or
holes). If N'(u) is negative we have a positive thermopower (compare to (5.64)) which
means we have holes moving. It turns out that the cold region dominates S*”, so the
sign of the thermopower can change like it is shown in figure 5.7.

When we solve (5.64) for S™ we have to consider the first term in (5.28). This allows
us to figure out the T-dependence of S**. It turned out in our analysis that the
thermopower isn’t sensitive to the transition width w. So we look at the limit w — 0.
We get two contributions to the thermopower, lim,,_ S** = SF* + Si*, as we divided
the first BZ into hot and cold regions.

Equation (5.31) allows us to obtain S** as

- 0 0
S = —eNi Z(ek - ,u)vﬁAlilvﬁf <_8 ! > g €k — <56J;) (v2)*7c (5.65)

Kk’ €k’

0
36 fe) = EB++1 =1/2 (1 — tanh %) Thus (gf‘;) =—-3/4 [co Y }, which is an even function.

€
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When we have only two lifetimes 7. and 7, and two velocities v, and vy in the two
patches (in the w — 0-limit) we can simplify this easily (we only consider the cold

contribution here; the hot contribution is obtained in the same way).

- 1 of
Sy = —ev?nm Z(ek — ) ( e ) Py

K
_ _SUSTCNL]C g <I>k/d65(6 —(ex —p)) € (—g—i)
_ —evac/dENik Z Dy d(e — (e — ) - € (—g—i)
K
_ . / deNe(e — p1) - e <—g—i>

Ry PR 1a
oM _ eyl / [(e = w)"IN(es) (—S—i) de

— enaNley) / (e _2“ )2( géi)

v=E—p/kpT —ev? 27e - 2N/( (€r) / ( ) dx
dre® +1
27
6

= —ev? T 2N’ (ef) (kB - )

Thus we can write the thermopower S** as a sum of the cold and the hot contribution:

2
lim §%% = —e%(/@B 1) [02 - 7eNUep) + 07 - T Np(ey)] (5.66)

w—0
So we get in a thermopower S** that is proportional 72

A

A dimensional analysis of S** gives us [S™*] = Z.

Now we are able to move on and to compute the thermoelectric power T'E P which

is defined by:
SZEZE

TO—ZBZB

TEP =

(5.67)

MclIntosh et al. [31] pointed out that it is necessary to have a VHS in the electronic
density to observe the behavior of the TEP measured experimentally. Indeed we have
such VHS in our model, ~ 35meV away from the Fermi level (section 5.2).

With the knowledge gained above we can start computing an analytical formula for the
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TEP in the case of constant lifetime 7 and velocity v inside each patch, namely:

72 o 0T Ni(er) + vpmn Ny (€f)

lim TEP = —k%T 5.68
ol 3¢ B v27.Ne(ey) +U%ThNh(6f) ( )
In a more convenient form we obtain:
2 N'(ef) + 22 N/ (¢ 2 N/
lim TEP = — ~ }2T e(¢s) ve e W) _m g pNeler) (5.69)
w=0 3¢ 7 Ne(ey) + 2" Np(ep)  3e 7 Neley)

Ve Tc

because we know from section 5.2 that v, << v, and 7, << 7..3” The small factor

RME(@)?T_h%i
’ Ve Te 36

allows us to write the TEP in a more convenient form. A Taylor-expansion of the
equation (5.68) to first order gives us:

72, N(es) N N,
lim TEP = —— k27—t {1 RUT<—"——)]. 5.70
w0 3¢ B Noep L T\ T, (5.70)

We found out in our analysis that the TEP doesn’t change with varying w thus the
behavior of the TEP is given in this limit.
The linear temperature dependence of the TEP is in agreement with the results of

Castellani et al. [8].

We know from experimental results (chapter 4), that the TEP T in the range

T < 300K. In this region we can linearize it TEP = AZ%P -T+TFEP,.

Inserting the physical constants in (5.70) gives us the leading, angle dependent con-
tribution to the TEP as TEP(0) = {—2.4 . 10_8%} T. So the angle 6 determines
mostly the TEP, as N/(6) varies strongly with 6.

Table 5.3 shows the obtained slopes of the TEP’s for different angles 6 (obtained by

inserting the physical constants and the values from table 5.2 into equation (5.70)).

The experimental result for the TEP, which is given in [TEP] = %, for Bi2212 is

Azgp ~ —0.05%. So we get a fairly good agreement with experiment for 6 ~ 20°.

Kubo [30] noted that the negative TEP brings up that the transport mass perpendicular

to the FS is electron like. On the other hand the Hall-angle is positive which is equivalent

3"In the case of Y BasCuszO7 the ratio :—}C ~ 3.9 [5].We obtain a similar ratio for our model :—;: ~ 3.2
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0/ ° 2.6 6.5 12.9 19.0 24.6 34.6

ATEP v
AT e 0.21 | 0.155 | -0.335 | -0.088 | -0.053 | -0.046

Table 5.3: The table shows the obtained slope of the TEP for different angles §. The
data are taken from table 5.2.

to the fact that the mass parallel to the FS is hole-like.
As we receive our best fit for § ~ 20° we obtain exactly his observations, namely
negative TEP and positive Hall-angle. We are going to discuss this in more detail in

chapter 7.
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Chapter 6

The used Program

Our interest in the temperature dependence of transport properties of BSCCO forced
us to write a Fortran77 program that is called ”transport.f”. This program allows us
to get numerical values from the equations described in (5.33), (5.43), (5.53), (5.60),
(5.63) and (5.65). These equations allow us to plot all quantities described in chapter
4 as a function of T.!

In this chapter we want to explain and introduce the used variables and the syntax of
the program. We use ”gnuplot” to generate plots where the temperature dependence
of the considered quantities can be extracted, as our program generates files of points
that can be read by gnuplot.

The proceeding how to choose the values of our five parameters properly will be de-

scribed in chapter 7.

6.1 The Input

Our interest in Bi2212 simplifies our studies because we don’t have to consider the
effect of chains in these materials. We are studying a purely 2D problem.

The FS of Bi2212 is shown in figure 2.4 which was generated by the tight binding fit
given in (5.18). Subsection 6.1.1 repeats this briefly. In subsection 6.1.2 we define the
geometry of our model by introducing some geometrical magnitudes. Finally we explain
the external data of the program (in subsection 6.1.3) and the parameters (subsection

6.1.4) that have to be fitted.

The result obtained by the program is converted into units measured experimentally to be able to
compare the results of the TPM with experiments.
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6.1.1 The FS of Bi2212

The input of the program is the FS of Bi2212, given by a tight binding fit with up to
fifth nearest neighbor hopping from (5.18), section 5.2. The Band-structure of Bi2212
is reproduced by this fit.

To be consistent with units the energy is always given in eV in the program. The
numerical values of the parameters, ¢;, i = 1,..,6, are called ef, etl ... eth in our
program. The functions given in the tight binding fit, n;, ¢ = 1,..,6, are given by
ekl .. ekb. As shown in (5.18) the FS is reproduced by this functions weighted with
parameters. Note that we can change the shape of the FS by changing the parameters
¢;. So we can study the effect of the shape of the FS on the transport quantities.?
Of course the lattice constant a (which is called ”latt” in the program) is missing in
formula (5.18). Thus each wavevector k;, i = x,y has to be multiplied by a. The value
for ais @ = 3.76 - 10719 = 3.76 A° in Bi2212 systems. Note that we write distances in

Angstrom in the program, thus latt = 3.76.

6.1.2 The geometry of the model

We parameterize the size of the cold area by the angle # as usual. Figure (6.1) shows

that four lines restrict the cold region. In reciprocal space these lines are given by

ky = a-k;

ky = b-k,

ky = a-ky,+d

ky = b-kz+c
with @ = cot(d) > 0, b = tan(f) > 0,a > b, ¢ = 7(1 —tan(d)) > 0 and d = 7(1 —
cot(f)) < 0 defined in section 5.1. A product of four functions describes the cold

region. In the case of the smooth change between the cold and hot regions the cold

region of the first BZ is described by:

Py = H ®;(k) (6.1)

2The shape of the FS has the biggest influence on the TEP and tan 0.
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A

Figure 6.1: The size of the cold region is only parameterized by the angle 0.

)1

ky—bk

)}, Dy (k) = % {tanh(
_cﬂ and ®4(k) = ¢1 [tanh (

ky—aky
w
of the transition region w introduced in section 5.1.

[1— tanh (

Dy(k) = % |1~ tanh (

—

with q)l(k) =

) + 1} with the width

w

key—ak.—d
point of the lattice. The functions

)

w

fey—bks

Summing over every point of the lattice with suitable weight ®, which is done in the
3The reciprocal space in the first quadrant of the first BZ is discretized!

The parameters needed in the program are the angle 8, describing the size of the cold
region, (program: theta) and the width w (program: w). The function ®y is used in the
subroutine ”phipsi”. This subroutine allows us to compute the size of the cold region,
variable sumphi gives us the size, normalized to one, of the cold region (which we call
a). The size of the hot region is given just by subtracting the cold region from 1.

External data are data we insert in our program before we start computing the quanti-
ties of our interest. These data are the mash nj>, the temperature-range (Trin, Tnas in

as it gives us the weight of ® at every (discrete
®, (k) etc. are called ¢1 etc. in this subroutine.

6.1.3 External data
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eV'), an external magnetic field B,y and some converting-factors (like cfactor, s factor,
bh, mfactor and lofactor) that guarantee that the result has the same dimension as
measured in experiments, which is important as we want to compare with experimental
data.

The mash ny, is determined by the lowest temperature T,,;, as we decided to sum over
the whole first quadrant of the first BZ and the function aa—J:) (it restricts transport pro-
cesses around the FS!), that has a width of ~ kp - T', has to be modeled properly. We
decided to study the transport data for temperatures 1" > 60K, thus a mash ny = 256
is sufficient.

The temperature range is splitted into ny equal temperature-slices. The studies were
carried out in a temperature range 17" with 60K < T < 1100K. We decided to chop
this temperature-interval into hundred equal pieces, n = 100. This means we obtain
temperature values every TW%TT"”" thus every ~ 10K.

Another external data is the value of the Fermi-function f (called fermi in the pro-
gram). As f = f(e) we have to compute f(€) for every point of the lattice, i.e. for every
pair (kj, kj), i,j = 1,...,256 with the energy-dispersion given in (5.18).

When we want to get results for lower temperatures we might have to use more sophis-

ticated methods like the ”tetrahedron method” explained in the appendix.

6.1.4 Parameters of the model

The TPM was introduced in chapter 5. It included three parameters a, b and c that
described the strength of the possible scattering mechanisms. These three parameters
have to be chosen properly to give the correct results of the desired transport quantities.
Two other parameters, explained in chapter 5, are also special importance, namely the
angle 6 that describes the size of the cold region and the width of the transition region
w.

6 has effects on every quantity of our interest (compare to chapter 5). So it has to be
chosen very carefully. Note that for § ~ 20° the area of the cold region is approximately
equal to the area of the hot region. The TEP suggests exactly this value for 0 to be fitted

well. This fifth parameter, the width of the transition region, is basically determined by
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the magnetoresistance. Note that the MR contains factors with the second derivative
of ®y. In the case of an discontinuous change between cold and hot regions we would

get a divergence for the MR. That’s why we originally introduced w.

6.2 Programming

As already pointed out we are interested in the temperature-dependence of transport
properties of BSCCO. A temperature loop allows us to obtain transport properties

as a function of temperature. We compute all transport properties of our interest for

INPUT OUTPUT
external T-dependent
’% transport-
data properties
Temperature

Loop, "it"

Parameters:

=
abcw, 8 gz
o ®
= x
values at i
lattice points

Figure 6.2: The picture shows the strategy of the program. A temperature loop computes
the different transport properties, like p™*, for discrete temperatures.

a given set of parameters a,b,c,w and 6 and compare the result with experimental
results. For a optimal set of parameters we can fit each data given in chapter 4 in a

reasonable way.

6.2.1 Temperature-Loop

f Traz _Tmin

As already told we vary the temperature between T},;, and T}, in steps o e

In a big temperature-loop (used variable ”it”) we are increasing T' with steps of AT

We reset all transport data the beginning of every loop. The temperature dependent
constants Cp and C'y are computed like shown in section 5.4, which allows us to get
transport properties of BSCCO for each (fixed) temperature in the considered range.

To get these values we are summing over the first BZ with a discrete set of k-points.
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For symmetry reasons (the F'S of the CuOs-planes has fourfold symmetry!) it is enough

to sum only over the first quadrant of the first BZ.

As we are in a temperature range T' > 60K a mash of nj = 256 is big enough. So we

have 256 x 256 contributions to transport in this quadrant. Because of the function
of

—5c we are almost completely restricted on the F'S which means that only k-points

around the F'S contribute to transport.

6.2.2 k-Loop

Inside the "k-Loop” we start to figure out the values of the functions ® and ¥y defined
in (5.17) at every point of the lattice. These values are needed to be able to write down
the relaxation time (5.8) that characterizes our model. Furthermore we compute the
first and the second derivative of the functions that describe the hot / cold regions ®y
as they are needed in the formula for the (thermal) Hall-angle and the MR. These three

jobs are done in the three subroutines ”phipsi”, "dphi” and ”sdphi”.

. . . o 1
The next step is to compute the relaxation time, 7, x,) = oL T eh T for a
fixed k-point, as every transport quantity depends on this relaxation time.

From the energy-dispersion given in (5.18) we can derive velocities, e.g. v, = 88—,;,

masses, €.g. My, = %&, and third derivatives of the dispersion relation that will be of

importance later (example for our notation: dyxy = al,%giz:@%). Note that we can use

some symmetry relations, like 8k22;9€ky = akii‘;kzv to determine the transport properties
of our model, as the FS of BSCCO has fourfold symmetry. From these analytical
formulas we obtain numerical values for the velocity v = (vs,v,), mass etc. of a fixed
k-point.

Each transport quantity has the factor %, with the Fermi distribution f, in common.
The energy dependence of f(e) forces us to compute it at each lattice point (K, ky)
again. Also the derivative % is computed for each point.

Now we can start computing transport properties just applying the formulas found
in (5.33), (5.43), (5.53), (5.60), (5.63) and (5.65). The conductivity has a cold, "cc”,

and a hot, ”ch”, contribution in each point like it is shown in formula (5.33). The

same splitting is done for the thermopower, where the ”sc” labels the cold part of the
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thermopower and ”sh” the hot part of it. It can be seen in equation (5.43) that the
Hall-conductivity o®¥ has three contributions (in the program we combined o3Y and
03" to one contribution!). Note that we need the first derivative of ®) to obtain o¥.
This is why the subroutine ”dphi” is important for this quantity. The thermal Hall-
conductivity has the same constituents as ¢*¥ but an extra factor of e%km ky) due to the
heat transport. The most complicated quantity is Ac®*(B), which is called "magn” in
the program. Like it is shown in section 5.4, equation (5.53) we get three contributions

3 oc 7 and o 7°) to this quantity.

(x T
After we completed the loop over all k-points we have calculated all quantities of our

interest we need to know to estimate the transport properties for a given temperature.

6.2.3 Converting in suitable quantities

One basic goal of our analysis is to compare the transport-results of our model with
experimental data to find out whether this phenomenology describes experiments well.
The quantities obtained from the k-Loop have to be converted into quantities measured
in experiments. This is the reason why we inserted several factors, already mentioned
above. Note that we are using units like eV and . When we convert these units in
SI-units we have to multiply the obtained values by these factors. Another reason for
some extra factors is how quantities are measured in experiments. For instance the
resistivity is measured in uflem. Note that the relaxation time 7 is given in units of
10~1%s and the length is given in 107'%n in our program.

So we obtain the different quantities of our interest by multiplying them with the
suitable values.

The values of the different transport quantities and the belonging temperature are
written in different files. After this the same procedure starts with a temperature that

‘e Tmax _T'rnin 3
is o bigger.



7

6.3 subroutines

We are using three subroutines to compute values of ® and derivatives of this function.
The relation %fk = %‘gk showed in the appendix allows us to consider only derivatives

of ®. Obviously the relation above is also true for derivatives with respect to k.

6.3.1 ”phipsi”

The smooth change between the cold and the hot region, like it is described in (5.17),
forces us to compute the value of ® for every point of the lattice. Obviously we obtain
values that are ~ 0 far away from the cold region and values ~ 1 inside the cold region.
But anyway we need a knowledge of the values in the transition region. This subroutine
allows us to get a numerical value of ® for every k-point inside the first quadrant of

the first BZ. Note that ¥ is achieved just by subtraction, ¥ =1 — ®.

6.3.2 7dphi”

The computation of the Hall-conductivity o*¥ makes a derivative of the function ®

necessary. It follows from (5.17) that the derivatives g,f and a,? are not identical. The
property mentioned above, g%‘ = —%%, allows us to consider only the two different

derivatives of ® (with respect to k; and k,) and to neglect the derivatives of ¥ in this
subroutine.
A analytical derivative of @y is done in the appendix. This formula is inserted in the

subroutine.

6.3.3 7sdphi”

A second derivative of ® becomes important when we want to compute Aam(B). In
this subroutine we obtain three different values, namely akf, 6,? g’k and 2 8k2 Again
we computed these derivatives analytically and inserted the solution into our program.

The analytical derivatives are also shown in the appendix.
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Chapter 7

Results and Discussion

A numerical solution of the TPM using the program described in chapter 6 is given
in this chapter. The temperature dependence of the DC-resistivity p**, TEP, Hall-
angle, MR and thermal Hall-conductivity are computed and compared with experiments
(chapter 4). The influence of the fitting-parameters a, b, c,w and € on the transport
properties is studied.

Section 7.1 describes the influence of the fitting-parameters on the studied transport
quantities. It shows in a numerical way the effect of the different fitting-parameters on
the different transport quantities.

As we have to fit five parameters we suggest a possibility to fix these parameters in
section 7.2. The problem is that we want to fit all considered transport quantities
introduced in chapter 4 as good as possible. Thus we have to think of a way how to
consider the effect of the five parameters on all quantities when fitting the data.

It turns out that the model has some problems in describing heat processes, like TEP
and thermal Hall-angle. A Lorenz-plot doesn’t show exactly the behavior we expect for
instance. Electronic transport is described very well within the framework of the TPM.
This is discussed in section 7.3.

The last section of this work, section 7.4, suggests some possibilities how to improve

the model, like choosing a temperature dependent transition width w(T).

7.1 Parameters of the TPM

The size of the cold/hot region, so the angle 6, is the most important quantity in our
approach as it effects every transport quantity of our interest. In the TPM the essential

point is the construction of the scattering matrix Cyys which is determined by a,b and
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c.! Due to a divergence in the MR (second derivative of step function diverges!) we had
to introduce a transition width w in the TPM. Finally we are up to fit five parameters
given above.

We are studying the effect of these parameters on the transport quantities given in
chapter 4 by keeping four parameters fixed and changing the fifth by + ~ 33% around
its "best” value.? The "best” values are given here (compare to section 7.2) as:

a=60,b=1.8,c=6.5 w=0.25 and 0§ = 20°.

7.1.1 DC-resistivity p™

The linearity of the resistivity up to ~ 700K was found experimentally, e.g. [1]. Experi-
ments show a temperature dependence of the resistivity p™(T') o< T%, where [1] and [7]
claim that « increases with doping (compare to figure 7.2). They observe a increasing
« with increasing doping, « > 1 for overdoped.

Figure 7.1 shows the effect on the resistivity of changing the different parameters. It
can be seen that changing the cold region, the angle 8, has the biggest effect on p™®.
Figure 7.4 underlines this statement.

Note that the inter-patch scattering ¢ changes the slope of p**, as predicted in (5.37).
Increasing ¢ results in a bigger slope of the resistivity. As the inter-patch scattering
is important for p*® a variation in w, which describes this transition region, has also
a quite big effect on it. Furthermore it can be seen in figure 7.1 that a change in the
scattering mechanism inside the cold a or the hot region b has only a minor effect on

T

P

The offset in the resistivity shown in figure 7.1 was already explained in chapter 5.
Remember that in the case of finite w 7y given in (5.7) doesn’t diverge so we get some
zero-temperature offset to the resistivity. In agreement to the predictions given in

chapter 5 the offset increases with increasing b(1 — «), so for increasing 6 and b (figure

h

'Note that we are talking about k—2a7 hb and If—; when we write a, b or ¢ in this chapter. This idea was

B
introduced in section 5.1. So the temperature dependence of a, b, ¢ is eliminated from these parameters
in this chapter.

2The word "best” doesn’t mean the absolutely best value here - there might be a slightly better
combination of the five parameters. As this set of parameters fits the data quite well we decided to
choose this parameter set.
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Figure 7.1: The plot shows the effect of changing the different parameters of the TPM
(keeping the other parameters fixed) on the DC-resistivity p*® as a function of 7. The
”optimal” parameter-values are set to: a = 60, b =1.8, ¢=6,5, w = 0.25 and 6 = 20°.
The varied parameters and their values are written in each figure.

7.1). So the finite width and the temperature independent scattering in the hot regions
might be thought as a contribution given by impurities. However the interpretation is
difficult.
Furthermore a change in 6 changes the exponent « of the T-dependence as mentioned
in [1] and [7] (already pointed out above) (compare to figure 7.2).

Our TPM allows us to study the effect of doping by changing the area of the cold

region (vary 6). Doping the material is like bringing more carriers into the cold region
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(material is more FL-like!). So the cold region increases which is equivalent to decrease
the angle 6 (compare to figure 6.1). The lowest plot in figure (7.1) shows the effect of
a change in 6 thus the effect of doping on the TPM. The experimental result described
above [1] and [7], namely that the exponent «, p™(T) ox T increases with increasing
doping (decreasing 0!) can be seen in figure (7.2).

Note that the coefficient o can be estimated from figure 7.2.

A problem of the TPM is that it is difficult to make statements about the residual
resistivity with it, because the physical meaning of w and b is not very clear. It was
found [1] that the residual resistivity increases with increasing doping in the optimally
and overdoped regime.

For sure it is one problem of the TPM that it lacks this.

1000

100 | e .

Resistivity (microOhm*cm)

10

100
T(K)

Figure 7.2: This log-log plot shows that the slope of the curves increases with decreasing
0 (= increasing doping), as predicted in [1] and [7].
Furthermore we study the effect of a change in the F'S on the resistivity. This is done
by changing the parameters ¢y and cg in (5.18). The effect of these two parameters
can be seen in figure 7.3. In this manner we can figure out which region of our model
governs the different transport properties of our interest.
It turns out that co has a big effect on the curvature of the FS, thus the change of the
F'S is biggest in the (7, 7)-direction (cold region). cs is responsible to change the FS at
the nodes, in (0,7) and (7, 0)-direction (hot regions).

Figure 7.4 shows that a change in co has quite a big effect on p™. A change in c3

doesn’t affect p™. As the DC-resistivity is governed by the cold region this can be
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Figure 7.3: The effect of a change of ¢y and c3 given in (5.18) can be seen in the two
figures. cy affects the cold and c3 the hot region.

understood. Changing c3 only effects the hot regions that are not important for p**

(compare to section 5.3).
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Figure 7.4: The left figure is due to a change in ¢z (cold region). The resistivity changes
drastically whereas changing c3 (hot region) doesn’t change p™. The resistivity is
governed by the cold region.

7.1.2 Thermoelectric power (TEP)

We know from (5.70) that the angle 6 is the quantity that governs the TEP most [31].
So the ratio between the derivative in the density of states and the density of states in
the cold region is the main quantity that determines the TEP. It was argued in section
5.6 that an angle 6 =~ 20° gives the best fit for the TEP.

Figure (7.5) shows that the TEP (obtained from the TPM) only changes slightly by
changing a, b, c, w. We get the biggest effect on the TEP from the scattering in the hot

region b. Thus we don’t agree with Calyhold et al. [12] who argued that the TEP is
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governed by the same relaxation rates that govern the magnetotransport.

In the range we are changing our parameters no big change is observable. Especially
the offset (that is very sensitive to doping) doesn’t change at all. The only parameter
that really affects the TEP is the angle 6. The 6-dependent plot of the density of states
N (e) shows that we get always a negative TEP for § > 10°, figure 5.7. Note that we

don’t expect a big change in %ﬁgzg in the range we consider (15° < 0 < 25°), as N/(0)

doesn’t change much in this range (compare to figure 5.7).
It has to be pointed out that the effect of C'uO-chains affects the TEP strongly. We

neglect this effect here, as we are considering BSCCO-materials.

Similar to [31] we find that the TEP is very sensitive to a variation of the electronic
structure, reached by a change in cp and c3 (figure 7.3). As Mclntosh [31] already
pointed out a change in the curvature of the FS has a big effect on the TEP. This is
shown in the left figure in figure 7.6. A change of the curvature of the cold region (c2)
results in a big change in the TEP. Changing c3 has also a quite big effect on the TEP.

We remark finally that a change in the electronic structure has a much bigger effect

on the TEP than a change in the parameters of our model.

7.1.3 Hall-angle

We expect a temperature dependence of this quantity cot 0 (7T) o T%, where o < 2 as
mentioned above. Experiments figured out that 1.65 < o < 2 [1] and [27]. A plot of
V/cot(0y) vs. T shows that the Hall-angel has almost a temperature dependence oc T'2.
As shown in figure (7.7) we observe an almost straight line. Our TPM shows that a
has a minor and especially b has almost no effect on the Hall-angle. It can also be seen
in figure 7.7 that the inter-patch scattering ¢ has a big effect on the Hall-angle and it
changes the coeflicient « slightly. As the inter-patch scattering ¢ has a big effect on the
Hall-angle also w, describing the width of the transition region is important. Figure
7.9 shows that the transition region is important for the Hall-angle.

It is of interest, whether the slope a changes when we change the size of the cold region,

i.e. when we dope. Experiments were carried out in [7], [22] and [27] and showed that
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Figure 7.5: We can study the effect of the parameters on the TEP in this plots. It turns
out that only the angle # (and maybe b) has an effect on the TEP. Parameter values
are: a =60, b=1.8,¢c=6,5, w=0.25 and 0 = 20°.

the slope a decreases when we increase doping. It is argued in these papers that the

relation cot @, o T? is only valid in the strongly underdoped regime. The evolution of

the slope with changing the angle 6 can be studied in figure 7.8.

It can be seen in figure 7.8 that the value « increases slightly with increasing doping

(decreasing 6) which is opposite to the experiments [27] and [1]. Anyway the change in

the slope is only a very light one.

Note that doping also effects the offset of the Hall-angle [1].

This fact is difficult
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Figure 7.6: The TEP is mostly governed by the cold region, described by changing cs.
However the influence of the hot region cs is not neglectable as the right figure shows.

T and

to understand as cot 0y (T) is a ratio of two quantities (compare to (5.44)) o®
o®. Again, similar to before the offset is due to a finite transition width w and the
hot scattering b. Konstantinovic [27] claimed that no model is able to describe this
properties of the decreasing of o and the increasing of the offset with doping. Also
the TPM is not able to reproduce this experimental results. Maybe a temperature and
angle dependent width w(T),6) could solve this problem.
Finally we study which region affects the Hall-angle most by changing the electronic
structure (c2 and c3) of the system. Ong claimed [34] that the electronic structure of
the system has a big effect on the Hall-angle. We agree with his conclusion, compare to
figure 7.9, but want to point out that the electronic structure has even a bigger effect
on the TEP (compare figure 7.6 and figure 7.9!).
The strong influence of the anisotropy of the electronic structure on the Hall-angle was
also pointed out by Konstantinovic [27].

It turns out that the Hall-angle is very sensitive to a change in the transition region,
whereas the TEP is sensitive to a change in the cold region. Thus the effect of changing
the parameters co and c3 has the same magnitude (figure 7.9), as the transition region

is changed slightly (compare to figure 7.3).

7.1.4 Magnetoresistance MR

Ando [1] reported measurements of the longitudinal and transverse MR of BSCCO-

samples (chapter 4). This group also measured the MR for varying doping. Figure
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Figure 7.7: The Hall-angle is determined by the transition region between the cold and
the hot region. So a change in ¢ and w has quite big effects on this quantity. The plot
is generated with a =60, b=1.8, c=6,5, w = 0.25 and 6 = 20°.

(7.10) shows the effect of the different parameters of our model on the MR. Obviously

a change in 6 (i.e. doping) has a quite big effect on the MR in our model.Contrary to

experiments the MR increases when increasing doping in the TPM.

It turns out that c,w and 6 are the parameters that govern the MR. So it seems that

also this quantity is governed by the transition region. However figure 7.12 shows that

the MR is mostly governed by the hot region.

The effect of the transition width w can be studied figure (7.10). It can be seen
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Figure 7.8: This plot shows how the slope « (for the Hall-angle) changes by changing
0 (doping). « increases slightly with increasing doping (decreasing 6), opposite to [1]
and [27].
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Figure 7.9: The effect of a change in ¢y and c3 is of the same order for the Hall-angle,
which tells us that this quantity is governed by the transition region. Note that a change
of this parameters, especially ¢y, have a much bigger effect on the TEP (compare figure
7.6).

that this quantity becomes more and more important the smaller it becomes. A big
difference in the MR can be observed between w = 0.15 and w = 0.35. So it seems that
the MR diverges in the limit w — 0 as predicted in 5.4. One improvement of our model
would be to introduce a variable width w(#,T) dependent on # and T' which seems to
be a elementary idea as the MR is very sensitive to this quantities. One can expect
that increasing the temperature broadens the width of the transition region.

We study the effect of doping on the slope o, MR &« T, in figure 7.11. The figure
allows us to extract this slope from it and to compare it with the literature. Obviously

doping (a variation of §) doesn’t change the slope « a lot.
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Figure 7.10: The parameter ¢ has the biggest effect on the MR. a and b don’t change
the MR. Obviously the angle 8 and transition width w are very important for the MR.

The region that determines the MR can be derived from figure 7.12. It turns out
that the cold region has the biggest effect on the MR as predicted in the cold spot
model [29].

7.1.5 Thermal Hall-conductivity

The last quantity we analyze is the thermal Hall conductivity x*¥. For the thermal Hall-
conductivity there is only an experimental value for o for a Y BCO-sample available

(chapter 4). It was found out that a ~ 1.19 for Y BCO. The influence of the different
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Figure 7.12: Changing the parameters co and c3 allows us to check the influence of the

electronic structure on the MR.

parameters can be studies in figure 7.13

Figure 7.14 changes the change in the slope with doping. The result of the TPM is
that « increases slightly with increasing doping.

We can extract from figure 7.15 that the thermal Hall-conductivity is governed by the

cold region. However the effect of the hot region is not to be neglected.
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7.2 Fitting experimental data

To be able to have some effect of a and b by a minor change of these quantities we
are interested that the cold and the hot region have more or less of the same size. For
0 = 20° ~ 46% of the BZ are cold. Thus a slight change in a or b has a quite big effect
on the transport quantities studied in section 7.1. Another reason why to choose this

angle is given by the TEP that is basically determined by the ration %ﬁgzg In section

5.6 we argued that an angle ~ 20° reproduces the slope in the TEP very well. So the

angle # = 20° seems to be a good starting point for the fitting process.

The strategy of the fitting of the data was the following. We introduce a temper-
ature scale T upon the T-linear term in the cold region dominates, compare to (5.8).
This guarantees us that the resistivity is linear up to this temperature Ty [1]. We can
choose a temperature Ty that has a typical value of ~ 1000K ~ 0.1eV. The relations
a=(1—a)e/(aTp) and b= acly/(1 — a) derived from (5.8) allow us to obtain certain
values for a and b for given Ty and ¢ and «, where « is determined by the angle 6, a(f).
Note that the width of the transition region is basically given by the MR.

Starting with different angles 6, thus with different sizes of the cold region «, we try
to get a good fit of the Hall-angle data first. So we search for the optimal value of ¢,
the inter-patch-scattering, for each given angle #. We try to fit the Hall-angle and the
slope of the resistivity for every given combination of 8 and ¢ well. It turns out that
the angle 6 ~ 20° and ¢ ~ 6.5 gives a pretty good fit of the Hall-angle and the slope
of the resistivity. This angle was already predicted from TEP data given above. Once
this is done we start changing the scattering in the hot region b by hand. Increasing
b (= increasing the scattering in the hot region) increases the resistivity, compare to
figure 7.1. The figures in section 7.1 allow us to predict the consequences of a change
in the parameters. So we use this plots to change the parameters slightly in the "right
way”. The parameter b allows us to adjust the resistivity. Note that a has less effect
on p™ than b has (figure 7.1!). In this manner we can fix the parameters w, 6, c,b. The

last parameter that is to be fixed is a. But the freedom for the parameter a is not so
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big, because we have to obey the linearity of the resistivity. Thus the initial condition
we have chosen for a, a = (1 — a)c/(aT) has to remain valid. We can change a slightly
in order to improve our fit.

After we have fixed the parameters of our model we start to compare the TPM with
experimental data.

Looking the transport quantities given in chapter 4 we recognize that each quantity of
the TPM fits experimental data quite well. The suggested TPM seems to be able to
describe transport data on a phenomenological basis. We obtain a consistent picture
of several transport quantities using the TPM starting with the linearized BE.

For the following parameter values we obtain the "best” fits for the different quantities
shown below: w = 0.20, a = 60, b = 2.1, ¢ = 7.0 and 6 = 20°.

Note that the FS suggested in (5.18) is not changed to improve our fit.

Figure 7.16 shows our fit for the resistivity and compares it to the experimental data
given in [14]. In agreement with experiments we obtain p** o T

The TEP, shown in figure 7.17, is basically determined by the angle 6 (compare to
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Figure 7.16: In spite of the fact that the points do not absolutely agree with the values
obtained by the TPM, we get a pretty good fit of p™ for the parameters given above.
The experimental data of Bi2212 are taken from [14].

figure 7.5). As already mentioned in chapter 5 the electronic structure forces us to
choose an angle 6 =~ 20°. Note that the TEP is not exactly linear. But also the data
seem not to be completely linear in temperature in the considered range. Unfortunately

there were no data for Bi2212 available, so we fitted data of Bi2201.
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It was pointed out by Obertelli [33] that the TEP is very sensitive to doping. Especially
the offset of the TEP is changed very much by doping. On the other hand the slope
doesn’t change much when changing doping, Choi argued [4]. A change in 6 doesn’t
affect the TEP very much. So it is very likely that a changing angle doesn’t model
doping very well. Again we have the problem to obtain an offset from our model.

As pointed out in chapter 4 the different T-dependence between the Hall-angle and
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Figure 7.17: Thermoelectric data for Bi2201 given by McIntosh [31] are fitted very
good in our model (with the given parameters). The TEP is not very sensitive to the
parameters of our model (compare to figure 7.5). The most important parameter is, as
already told, 6.

the resistivity can’t be explained in a Drude model. The TPM gives us a T-dependence
of the Hall-angle that is ~ T2. Actually the exponent of the T-dependence is slightly
smaller than 2. Note that \/cot 0y (T) is plotted vs. T in figure 7.18.

As already pointed out the MR in very sensitive to the width of the transition region
w. Within small errors we can reproduce the experimental measured values of the MR
with our given parameter set. Similar to the case of the TEP we only found MR-data
for Bi2201. Figure 7.19 shows the obtained fit and the experimentally obtained values.

A plot of the thermal Hall-conductivity vs. temperature is shown in figure 7.20. As
we don’t have experimental values for k¥ for Bi-based cuprates we only plot the result
obtained by the TPM. Experimental data for Y BC'O show exactly the behavior showed
in the plot. So the magnitude and the shape of k*¥ seems to be described very good

by the TPM.



95

70

65 TPM
Konstantinovic +
60

55 |

)*+0.5

50 r

45 +

Theta_Hall

40 t
35t

Cotg(

30
25
20

0 50 100 150 200 250 300 350 400
T(K)

Figure 7.18: We can also fit the experimental data for the Hall-angle using our param-
eters. We get good agreement with experimental data for Bi2212 [27]. It can be seen
from the plot that we get a temperature dependence v/cot Oy oc T, with a < 2.
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Figure 7.19: The figure shows the magnetoresistance obtained from our model. The
points shown in the plot are taken from [1] for a Bi2201 sample with (optimally) doping
0 =0.44.
In agreement with Kubo [30] the TPM gives us a Hall-mass parallel to the FS which

is holelike (Hall-angle > 0) and a transport mass perpendicular to the FS which is

electron-like (TEP < 0).

Another check of the TPM can be obtained when we generate a Kohler- and a
Lorenz-plot introduced in chapter 4.
These plots are a ratio of two transport quantities so it is difficult to interpret them.

But anyway these plots, shown in figure 7.21 and 7.22, can give us another hint whether
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Figure 7.20: We plot the thermal Hall conductivity *¥ vs. temperature. The data
shown in the plot agree very good with YBCO data [24]. The experimental data for
Bi2212 shouldn’t change much.

the TPM generates quantities of the right magnitude.

7.2.1 Lorenz-number and Kohler-plot

We generate this figures to have another check of our model.

Experiments show that the Kohler number varies between 1.6 (for YBCO) and 13.6
(for LaSCO). Within the framework of the TPM we obtain a Kohler-number ~ 8.5
which is in a very good range! Zheleznyak et al. [6] claim that the saturation should be
at a value =~ 6. Figure 7.21 shows our result.

As already mentioned before the TPM has some difficulties to describe heat transport.
The Lorenz-number seems to be constant and ~ 3.3 which is close to the theoretical
value for metals. The bigger the cold region is (small #!) the better we obtain a straight
line. A saturation of the Lorenz number to this value is expected but it seems a problem
of the TPM that the Lorenz number has always the same value.

Anyway again the magnitude of the number (figure 7.22) agrees very good with exper-
imental results for cuprates. Note that the Lorenz number was obtained by the ratio
k™ /(T'o®™) thus has no phononic contributions. So the plot shows indeed only the

contributions from the electrons!



97

10

6 PM —— 1

Kohler-Plot

0 50 100 150 200 250 300 350 400
T(K)

Figure 7.21: Using the parameters we obtain a good result for the Kohler plot. A
Kohler-plot is obtained by multiplying the magnetoresistance with (cot 6 )2. The result
is in good agreement with the experimentally obtained one. Unfortunately there are
no data for Bi2212 available.
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Figure 7.22: It can be seen that the value for a metal, 72/3 is achieved very fast.
The Lorenz-number describes the ratio between heat and electrical transport. The
temperature dependence of this number is very weak.

7.3 Problems of the model

The associated temperature dependences of the different scattering mechanisms (cold-
cold, cold-hot, hot-hot), seem to describe the considered transport quantities very well.
But a microscopic derivation of the assigned T-dependence is missing. Especially the
linearity in temperature of the interpatch-scattering should be derived from a more

microscopic theory.
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Furthermore the model is not able to describe transport processes at very low tempera-
tures as it doesn’t contain quantum mechanics. This semiclassical approach is for sure
reasonable in the temperature range we considered, but it will fail when lowering the
temperature. So it should be nice to combine the idea of different patches with a more
microscopic theory. In the limit of big temperatures this "new theory” should come

back to the suggested TPM.

Almost every considered transport quantity is determined by the cold regions of our
model, as predicted by Toffe and Millis [29]. However the hot regions are important to
get a complete picture of transport (e.g. they have a big effect on the TEP). The influ-
ence of the hot region can be recognized when we consider the fitting procedure. It was
important to choose b properly. Anyway the effect of the hot regions is not completely
clear. It seems that in the case of heat transport we can’t neglect this regions any
more. So a complete picture of transport in cuprates should include the effect of the

hot regions. So it seems that the hot regions have to be included in a microscopic theory.

Another problem arises from the effect of doping. The TPM is not able to describe
the effects of doping on the different quantities in a reliable manner. For instance the
TEP changes a lot with doping. It is quite difficult, even impossible, to obtain this
shift of the TEP in the TPM. So the idea of modeling doping by changing 8 has to be

seen very critically.

Offsets, like the residual resistivity, of transport quantities are very difficult to realize
in the TPM. As our model lacks the existence of impurities completely we have to be

very careful with offsets obtained from the model.

7.4 How to go on?

The introduced TPM can be improved in various ways. We only mention some possible

improvements that might allow us some deeper insight into the transport process.
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A temperature and angle dependent transition width w(7T,8) could be introduced. For
sure the width w changes with increasing temperature. So it seems natural to introduce
a width that depends on the temperature. As the FS is very flat at the nodes and very
curved in (7, m)-direction the influence of the temperature on w should also depend on
the position on the FS, thus w(T, ).

Furthermore one can try to expand this model to the case of AC transport. It was
already mentioned in chapter 3 that we have to consider FL-corrections in the AC-case.
So the interaction, described by fﬁﬁ,/, has to be introduced into the geometry of the
TPM. This could be done by introducing a interaction flfl‘{’,l that changes in the different
patches. In this manner we would get some extra parameter.

It is not obvious whether we can put frequency dependence in the TPM by just sub-
stituting 77! — 77! — jw. But it seems to be the next step to find out what result
we would get with the TPM in the frequency dependent case. To test the temperature
dependence of the AC-case would be a good test whether the TPM is also able to de-

scribe this case.

The final step seems to be to try to translate this phenomenological model in a
microscopic one. A microscopic TPM can be realized by applying the idea of different
patches on dynamical mean field theory (cluster DMFT). The gained parameters and
the insight in the transport process might be a good starting point for the application

of this theory.
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Appendix A

Abbreviations

The following abbreviations are used in the text:

FS Fermi-surface
BE Boltzmann-equation
NS normal state
BZ Brillouin-zone
HTSC high temperature superconductor
FL Fermi-liquid
MFL marginal Fermi-liquid
ARPES angle resolved photoemission
TPM two patch model
TEP thermoelectric power
MR magnetoresistance

VHS van Hove-singularity



101

Appendix B

Constants

The values we obtain for the Boltzmann-constant kg and for the Planck-constant & are

given in atomic units [32]:
eV
kp = 8.617-107°— B.1
B % (B.1)
h = 6.5821-1071%V -5 (B.2)
Their ratio is given by % = 7.6315 - 1072 Ks which is a number that we use several

times (e.g. to multiply ¢ with).

Other physical constant like the elementary charge e were taken from [3].
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Appendix C

3 8<I>k 8\I/k
Properties of o and o

The connection between the derivatives of ®y and ¥y with respect to k, or k, can be
understood in the following way.

Let’s concentrate on the case where @) and Wy are step functions. The upper figure in
figure 5.5 represents the cold region in the first BZ.

A derivative with respect to k, has only contributions at points where we switch be-
tween the cold and hot regions, shown in figure C.1.

As the cold and the hot region are complementary, i.e. ®y + ¥ = 1, the relation

gik = —% is valid. When we enter the cold region we leave the hot region or vice
versa.

The same reasoning works for a derivative with respect to k, in the case of the step-

functions.

In the case of the smooth change between hot and cold regions, given in section
5.1, the things are a little bit more complicated. Figure C.2 shows the smooth change
between hot and cold regions.

The question is whether the derivative in the points A and B are the negative of
each other? As the change between the two patches is a tanh-function it is symmet-
rical around its center S. So the derivatives in A and D are the same. With the
same argument used above (entering one region = leaving the other region) we follow
that the derivatives in A and C are equal up to a "minus”. Thus the derivatives in A
and B are its negative, which shows that the relation discovered for the case where we

have a discontinuous change is also valid for the smooth change between the two regions.
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FS

FS

Figure C.1: The points that contribute to %% are marked in the figure. The antisym-

metry of the derivative can be recognized in the figure.

Figure C.2: In the case of the smooth change between the two regions the derivative in
point A has the negative value of the derivative in point B.
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. : . oV, 9V 0Py 0Py : :
Our conclusion is that all the functions Dhr Ok Oy and o are antisymmetric

functions (compare to figure C.1) and furthermore the general formula

0B O
T (C.1)
9 O

is valid.
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Appendix D

Derivatives of the smooth function &y

Formulas for the derivatives of ®y are important for the computation of o™ and

Ac*®(B) as seen in chapter 5.

Note that it is not necessary to write down explicitly the hot region, as their derivatives
obey the condition given in (C.1). Thus one set of derivatives is enough!

The first derivatives of ®y become:

0P 1 a
8k: 16w (Cosh (.ky—akw_'))2 - ®a(k) - P3(k) - y(k)
B b S By (k) - By(k) - Dy(k)

(ot (55

N b @y (k) - Bo(k) - Dy (k)

(cosh (_’fy—lifw —C) ) 2

0P 1 1
6—1@, = 16w - 2'¢2(k)‘¢3(k)‘¢4(k)
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The magneto-resistance is a quantity that is also sensible to the second derivative of

®y.. The three second derivatives are given by:

P _ 1 a
ok 16w? (cosh (%))2
. [2atanh (ky_wiakm) . (I)g(k) . (I)g(k) . <I>4(k)
b b

; 5 - P3(k) - Pu(k) +

(cosh (A2t))

5 - Pa(k) - Pa(k)

(cosh (Rumthe=e))

B - - ®y(k) - Py(k)
(cosh (W)f ]
b ky — bk,
) (cosh(ky_bkw))z [%tanh( ” ) - @1 (k) - B3(k) - Da(k)
¢ b

- @1(k) - Py(k)

! (cOsh (ky(iak —d))2 0y (k) - q)?»(k)]
’ (cosh (@))2 {thanh (ky - IZL];% - C) Py (k) - P2(k) - Pu(k)
+ (Cosh (]:: akz))2 -CI)Z(k) . (134(1{) — (COSh (/::_bk ))2 (I)l(k) . (1)4(1{)
; - Py (k) - Pa(k)
(cosh (ky—czi)c —d))2 ]
¢ 2 hky_akxdq)k([)kq)k
 (cosh (famti=t))? 20tanh (20 0 1) (k) - B4

PPy 1 1
6—1{7!2/ - 16w? (cosh(%))z
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_ (COSh (kt p ))2 P3(k) - Py(k) — (Cosh (kyl—bkw—c))z P (k) - Dy(k)
' (cOsh (kyl—ak —d))2 0y (k) - (I)?»(k)}
_ 1 —2tan k‘y bk, — ¢ ) (k).q) (k)-<I) (k)
cosh ky_l;’f*_ 2 { 2tanh < ) 1 2 4
(cosi 1 ) 1

1
- 5 - Pi(k) - Pa(k)
(cosh (ky_cff _d)) }
+ ; (kl e [—2tanh<ky bz d) D1 (k) - Ba(K) - @(k)
cosh ( === v
1 ‘ L

The last derivative we need is the mixed derivative %cg};y. It is very similar to the
other second derivatives. Only some factors change.
82(1)1( o 1 a
Ok,0k, 16w? ky—aks |\ 2
MY (cosh (—y m ))

. [—2 tanh (M> - ®a(k) - P3(k) - Py(k)

w

i ! By(k) - By (k) - !

(o (5 (ot ()
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Appendix E

The tetrahedron method

Solving integral equations is in most cases a very difficult even unsolvable problem. The
Tetrahedron method provides a method that allows the computation of integrals that
are non-trivial to integrate, because of possible singularities.

Dealing with a function that doesn’t allow us to obtain an explicit function in an ana-
lytic way, we have to use numerical methods to compute the integral. Especially in solid
state physics, where a lot of properties of a system can be measured by experiment,
there is a big interest in computing some integral equations numerically to get values

for transport parameters of the system we are interested in.

We are most interested in transport properties of solids (especially HTSC) that can
be obtained from solving a transport equation. In all the formulas we get for those
properties we have to sum over an area next to the FS in order to obtain the value of
the special transport coefficient we want to find out. In a more sophisticated approach
(using techniques of Greens functions) we get for instance the longitudinal conductivity
from the equation’

1

Ous = 5D

W

Oext1 /2
0k,

. E.1
€ktq,] — k| — W+ 10 (5

2

[ flexrar) — flex)
where the functions f represent the Fermi-function.
As it can be seen in equation (E.1) we only have to integrate over a small area next to

the Fermi surface. But we get only contributions to the integral from a small area next

to the F'S, because of the Fermi-function f in the numerator of the considered integral

. ) 2. . . .
The first term in the sum, 6152;;/ 2 is given by the vertices, where the second part of this equation

comes from the bubble. We can get this result when we calculate the Greens-function for different
momenta (¢+ k and k) which are given in the bubble. We don’t consider corrections because of vertices
or higher order bubble-terms so far.
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(figure E.1).
The formula we use for changing summation and integration (continuum-limit) is, as
usual:

ke @Bk
zk:_ﬂf/ofw (E.2)

But still the problem of solving an integral over an area at the F'S remains.
To get a better understanding we look at an arbitrary FS, showed in figure E.1.

We divide this chapter into several pieces to show how the method works and to

Fermi Surfacein
reciprocal space

Figure E.1: A possible FS in reciprocal space without a spherical symmetry. Only the
shaded area contributes to the integral given in (E.1). Our strategy is that we first check
whether a triangle is outside the first Fermi surface (FS1) then we check whether it is
inside the second (moved) Fermi surface (FS2)

explain how it can be computed.

E.1 Numerical integration in 2D

Our problem is to solve an integral (e.g. equation (E.1) over a certain area, which is
determined by f(ex+q) and f(ex). So let’s consider an area (first BZ), a square, in
which the original and the moved FS is completely inside.

We divide the square into small sub-squares. If the function we want to integrate (e.g.
equation (E.1)) is smooth enough, it doesn’t change rapidly in this smaller sub-squares.

Figure E.2 shows the first BZ containing the two FS that are given by f(ex (FS1) and

f(xtq) (FS2).
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Figure E.2: The lattice in the first BZ. The i-th square is taken out and divided into
two triangles. In this case this square is completely inside FS1 and FS2.

This new coordinate system (square-lattice) has its origin in the center of the initial

square and has an amount of discrete values (N x N). The advantage is that we can

. d 2
compute the value of a function F (e.g. ( Egzl/z) o T_Eii_w“rié
z q, 5

) at each discrete
point. Finally we integrate over each small square to obtain the contribution to equation
(E.1). Dependent whether we are inside or outside FS1 and FS2 we get a contribution
(which is given by F) to the integral or not.

It exists the possibility that the FS1 and FS2 divides one sub-square into a piece that
contributes to the integral and one that doesn’t, shown in figure E.3. The sub-squares
at the boundary of the region of interest have a part which is inside and a part that is
outside the important region showed in figure E.1.

The important trick, in order to get a good result, is, to divide each sub-square into
two triangles and compute that part of the triangle that is in the area of our interest.

Figure (E.3) shows this strategy.

E.1.1 Possible situations for the triangle

We can imagine four possibilities for each triangle. The easiest possibilities are if the
triangles are completely inside or outside the region of interest. In this case the integral
over the BZ gets just a contribution of the whole triangle or no contribution at all. So
in this two cases we don’t have to worry much.

But there is also the possibility that there is only a part of such a triangle inside the
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1~ 3

Figure E.3: A sub-square at the boundary of the FS1 or FS2. The cases 1 and 2 are
different as described in the text.

interesting region and another part of the triangle is outside this region, which are the
cases where we have to be more careful and are shown in figure (E.3).

We have to identify that part of the triangle that is inside the region that contributes
to the integral in (E.1). We get the part inside this region either by taking one new
triangle (which is represented by case 1 in figure (E.3)) or by dividing the part that
is inside the region into two parts (case 2 in figure (E.3)). In this case we get two
triangles respectively.

After this we compute the contribution of each (new) triangle to (E.1). The problem
that arises is of course to find the positions where the energy is zero (thus the position
where we get from inside the region to its outside). This positions has to be found by
a root-finder.

So far we only approximated the area contributing to (E.1) by triangles.

E.1.2 An easy root-finder and an easy integration

The values of F', given in (E.1), at the corners of each triangles, shown in figure (E.3),
are known. Energy values € at this points are as well positive as negative as we consider
triangles at the boundary of the contributing area here. The energy values at each
corner allows us to decide at which side we expect the energy to become zero at least
for one time. In the easiest case we assume the energy to be linear at the sides of each

triangle. This simple assumption gives us reasonable values for the intersection-points.
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Figure E.4: In the case of linear energy variation we obtain this geometry. The ration
between Ep,.. and E,.:, estimates the intersection point.

The approximation of a linear behavior of the energy at each side allows us to get an
easy formula for the intersection point. Figure E.4 shows the geometry in this case.
But this version is only good if we deal with a dispersion relation that changes very
slow. More sophisticated methods to estimate the intersection-point are bisection etc..
Once we have found all triangles in the interesting area (or to be more clear: once we
have described the contributing region by triangles) we can integrate this by integrating
each triangle.
So far we is just took a square, the BZ, that contains the FS1 and FS2 completely,
divided it in a large number of sub-squares (N x N), divide each sub-square into two
triangles and decided whether the triangle is inside outside or at the boundary of the
important region, shown in figure E.2 and E.3.
Now we have to integrate over each triangle that is in the contributing area. The easiest
way to integrate over a triangle is to take the three values of F' at the three corners of
the triangle F;, ¢ = 1,2, 3, average it W and to multiply this with the area of

the triangle:

F} F F
/Fd 1+32+ 3

(E.3)
This is surely a good method if F' is smooth enough.
In our special case we have to be careful with this integration as we lose a lot of infor-

mation when we use this kind of integration. Thus more general way will be described

below.
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Figure E.5: The different subroutines and what they do.

E.2 The algorithm

Equation (E.1) tells us that only an area around the original F'S can contribute, between
FS1 and FS2. In the program we use different subroutines that can be seen in figure
E.5 to compute the integral (E.1).

Different subroutines interact via common blocks which allow to submit coordinates
of the considered triangles to other subroutines. Only those triangles that lie in the
important area are integrated!

The next section is going to explain the mathematical background of this method.

E.3 The mathematical background - formulas for the program

At first, of course, we have to decide what function we choose to describe the FS. One
possibility is the parameterization of the FS, like it is done in the Hubbard model,

e(x,y) = cosx + cosy.2 To compute a integral of the type described in equation (E.1)

2Note that we are in reciprocal space. Thus we should use k, instead of = to avoid confusion.
The lattice parameter a has also to be inserted in the cos-terms. We neglect all this for convenience.
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we have also to know the energy value €%(x,y) which is given by
€d(z,y) = cos[x + xo] + cos[y + yo (E.4)

with the vector q given by q = (xg, yo).

So typical integrals we have to integrate are, similar to (E.1), of the form:

(e — 2xf(6k+q) [f (extq) — flew)]
I”(Q)‘/squared ci(z,y) — e(.y) (E:5)

with 4,7 = 1, ..., N, the Fermi-function f and the vector q that represents the pertur-
bation of the system.

Only triangles outside the "first”, undisturbed, FS, FS1, and inside the ”second”, with
wave vector ¢ moved FS, FS2, contribute to (E.5). We divide our proceeding into two
steps to solve this integration.

In the first step we want to estimate the region that contributes to the integral, thus

outside FS1 and inside FS2 and describe this region by small triangles.

1

m, over each con-

In the second step we integrate a function, in our example
tributing triangle. This is done by linearizing the energy for each triangle separately.
So we get a contribution to the integral from every triangle that is in the interesting

area. The difficult part of the second step is that we have to be very careful avoiding

singularities.

E.4 Estimating the contributing region

We split the search of the contributing area into two pieces. In a first subroutine
(SELECT1) we separate triangles that are outside FS1. Only these triangles are passed
to the second subroutine (SELECT2) which estimates what part of the passed triangle

is inside F'S2 (compare to figure (E.5)).

E.4.1 Triangles outside FS1 - SELECT1

It is easy to estimate the triangles outside FS1 when we remember that all energy values
with € < u, where p is the chemical potential, are occupied. Renormalizing the energy

e(x,y) in the way e(z,y) — p — €(x,y) shows us that we are only interested in triangles
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Figure E.6: One of the 2 N? triangles we get from dividing the first BZ. The normal
order in energies is already performed.

Figure E.7: The triangle is completely inside the FS1. Therefore we get no contribution
to the Integral. I;j(q) = 0/

that have energies e(x,y) with e(z,y) > 0.
Because of the discretization of the BZ in a lattice we know the energy values at the
corners of each triangle ¢;, i = 1,2, 3.
First we arrange the energy values at the corners of a triangle to normal order what
means: €1 < €g < €3. This is shown in figure E.6.

When organized the normal order, what is done in the subroutine D2INT), it is easy
to find out what part of the considered triangle is outside FS1. Three different cases

are possible:

1. case ¢ < ea<e3< 1
The triangle is complete inside the Fermi surface, given the energy dispersion is
not too curious (figure E.7). As we can raise the number of lattice points N it
should become reasonable for big enough N that the triangle is completely inside

the F'S.

2. case €1 < e < u<eg
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Figure E.8: The triangle is partly inside the FS1. We get only a contribution to the
Integral. I;;(q) from the triangle puiezps.

In this case one corner is outside of FS1 (figure E.8). Only a small triangle around
this corner contributes to the integral. But still we don’t know the coordinates of
the corners (p1 and pg and e3) of the "new” triangle that is outside FS1. Therefore
we have to think of a method that allows us to estimate the two unknown points
v1 and vs.

We linearize the energy around the corner €3 and get for the linearized energy in
the form

é(r,y) = e3 + Az — x3) + B(y — y3) (E.6)

with the coordinates of the corner with the energy value €3 (z3,y3) and the con-
stants A and B.
Equation (E.6) allows us to describe the two sides of the triangle €jeges that

cross the F'S. These two lines are described by the equation:

e1(z,y) —e3 = A(z1 — x3) + B(y1 — y3)

ea(z,y) — €3 = A(x2 — x3) + B(y2 — y3)

The constants A and B are determined by these equations. The constants are
needed to obtain the intersection points p; and ps.

Applying Cramers-Rule we solve the equation-system above and obtain:

Det = (x1 — x3)(y2 — y3) — (y1 — y3) (T2 — 23)

DetA = (e1 — €3)(y2 — y3) — (y1 — y3)(e2 — €3)
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DetB = (.CCl — 1‘3)(62 — 63) — (61 — 63)(1‘2 — ZC3)

So we obtain the values for A and B, using A = e and B = D[féf .

= (€1 —€3)(y2 —y3) — (y1 — y3)(e2 — €3)
(r1 —23)(y2 — y3) — (Y1 — y3) (22 — 23)
B (x1 — x3)(e2 — €3) — (€1 — €3) (22 — 3)
(w1 —23)(y2 — y3) — (Y1 — y3) (22 — 23)

— | — | —

We can describe the lines that connects the two corners €1 or €3 with €3 now. This

lines have the equation:

y—y3= (r — x3)
xr1 — I3
Y2 — Y3

y—y3= (r —x3)
To — I3

The crossing points 3, ¢ = 1,2, are obtained when we compute p; —e3 = A(x, —
x3) + B(yu — y3), where p; is the energy this point. When we insert this in the

equation above we get u — €3 = [A +BAE gz} (@, — x3). We solve this equation

to get the coordinates of the intersection points assuming a linear energy. The

coordinates of 1 are determined by the equations:

(u1 —e3)(y1 —y3)
Az —23) + B(y1 — y3)
(11 — e3)(@1 — x3)
Az —23) + B(y1 — y3)

Yuy — Y3 =

Ly — X3 =

with the constants A, B and the coordinates of the corners x;, y;.

The coordinates of the other intersection point ps are obtained in the same way.

(p2—e3) (w2 —x3)

Ty | ¥3 _ | Alwa—=3)+Bly2—y3) (E.7)
Yua Y3 A(iﬁiﬁ%@g 3—)y3)

Finally we obtained a triangle pqpuo€s that is completely outside FS1, like it is
shown in figure E.8.

We make small mistakes due to the approximation of linear energy dispersion.
But a dispersion-relation that is not too fancy and with the first BZ divided in a

big number of sub-squares N2 the error remains small.
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Figure E.9: The two triangles espq o and exezpy contribute to the integral. The inter-
section points are computed in the same way as in case 2.

3. case €] < < €3 < €3
This case is very similar to case 2. But here we have to divide the area that
contributes to the integral into two triangles,as it can be seen in figure E.9. We
get the intersection points like we get them in case 2. The difference here is that
we linearize the energy around e€; in this case.

We get the following values for A and B similar to case 2.
y2 — y1)(es —€1)
Y2 — y1)(z3 — 71)

€2 —€1)(w3 — 1)
Y2 — y1)(x3 — x1)

e (€2 —€3)(y3 — 1
(332 — I (y3 — U
(1‘2 — 1’1)(63 — €1

B =
(332 - 1‘1)(y3 — U

~— | — ~— | —

—(
—(
—(
—(

Thus we obtain the intersection points are:

(pi—e1)(zit1—x1)

Ty, B 1 _ A(zit1—z1)+BYi+1—Yy1) (E8)
(ri—e1)(Yit1—y1)
yui Y1 A(zit1—z1)+BYi+1—Yy1)

with i = 1,2.

4. case p<e; <er<e3
Figure E.10 shows the situation of this case. The triangle ejeseg is completely
outside FS1. Therefore the whole triangle is passed to the next subroutine that

checks whether the triangle is inside FS2.

We estimated all triangles outside FS1 until now. We store the (new) coordinates
of the corners of each triangle outside FS1 and pass this "new” triangle to a subroutine

that checks whether the new triangle lies inside the "moved” Fermi surface, FS2.
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Figure E.10: The triangle is completely outside the FS1. We don’t have to change the
coordinates of the corners.

E.4.2 Triangles inside FS2

This step is very similar to the previous section, where we looked for triangles outside
FS1. Here we are only interested in those triangles that are outside FS1 and additional
inside FS2.

Because we moved the Fermi surface by some arbitrary vector q we can describe the
inner region of the "moved” FS by the equation €9(z,y) < p, where the vector q with
€(z,y) = e(z + g2,y + qy). Because we know the energy dispersion relation we can

compute this energies easily. Again we have to consider four cases.

1. case p < el <€ <ef
The considered triangle is completely outside FS2. We get no contribution to the
integral, I;;(q) = 0, from this triangle. The picture we get is the same as in case
4 of the previous section (Of course the drawn Fermi surface in this case has to

be FS2!).

2. case €] < p<ef <ed
Again we first arrange the three energy values to normal order. When this is
done this case is very similar to case 2 of the previous section. We compute
the intersection points gy and po. The only difference now is that we have to
linearize the new energy €4(z,y) (of course again around the lowest energy value
e, €d(z,y) — e = A9x — x1) + BY(y — y1) with the values for A9 and B%:

a_ (2 =elys —y1) = (2 —y1)(e5 —

zo —21)(Ys — 1) — (y2 —y1)(x3 — 11

(€5 — i) — (€3 — €1)(

( )= ( )

Ys—Yy1) — Y2 — U1

)
( )

q (2 —m1)
B (w2 — 1) T3 — T1
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Thus the two intersection points are given (similar to previous section) by:

(pi—€P)(wip1—w1)

T

Tui | _ | Av@ip1—z1)+B(yiy1—v1) (E.9)
(pi—eD) (Wir1—v1)
Yui 1 Ad(zip1—21)+B(yiy1-v1)

with 4 = 1,2. Substituting A — A9 etc. gives us the same result as before.
The obtained triangle is a triangle that lies in the area that contributes to I;;(q).

It is passed to a subroutine that integrates over this triangle.

3. case e?gegg,ugeg
In this case we linearize the energy €9 around the corner that has the energy value
€3, €l(z,y) — e = A%z — x3) + BY(y — y3). The picture we obtain is similar
to the picture we got in case 3 of the previous section. Again using Cramers

rule we obtain the crossing points of the two sides. A9 and B9 are given as,

Ad = (E?_Eg)(yz—93)_(91_93)(5(2]_5?) and B4 = (xl_xB)(fg_Eq)_(E?_fg)(IZ_1’3) The

 (z1—=3)(y2—y3)—(y1—y3) (w2 —x3) (1—23)(y2—y3)—(y1—y3)(z2—=3) "

intersection points can be computed with this values as done before. Note that
we have to split this area into two triangles, like it is done in case 3 of the previous

section.

4. case e?geggeggu
This is the case where the whole triangle considered is inside FS2. Thus we get a
contribution to the integral from the whole triangle. The picture that describes
this is similar to the picture we got in case 4 of the previous section. So the

coordinates of the triangle are not changed in this case.

Now we have approximated the area that contributes to I;;(q) by small triangles.
We have approximated the shaded area of figure E.1 by triangles using the subroutines
SELECT1 and SELECT2.

In the next step we integrate each of these remaining triangles over the function de-

scribed in (E.5).

E.4.3 Integration over a triangle

Only triangles that passed the two subroutines SELECT1 and SELECT2 are passed

to this subroutine (INTRES). So every remaining triangle contributes to this integral.
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<

(5.Y3)

Figure E.11: An arbitrary triangle with the corners already arranged to the order x1 <
xo < x3. Also the angle of the rotation 0 is drawn.

We write down the integral for an arbitrary triangle.

o dxdy
L@‘Aamw%mw

To obtain a reasonable result we linearize the two energies €9 and e like it is done before.

(E.10)

Linearizing around the corner €; gives:

e(r,y) =e1 + Al —z1) + By — 1)

cU(z,y) = ef + A%z —21) + By —y1)
We are interested in the magnitude €%(x,y) — e(x,y) what can be seen in (E.10), so
eA(z,y) — e(z,y) = C1 + Co(x — 1) + C3(y — 1) (B.11)

where C; = ¢} — Fy, Co = A9— A and C5 = B1— B.

It is convenient to arrange the coordinates of the corners so that we obtain for the
x-coordinates of the corners 1 < xo < x3, like it is shown in figure E.11. We have to
rotate the triangle with by angle 6 (compare to figure E.11) that is given by

Ys — W1
xr3 — X1

tanf =

(E.12)

The rotation around the horizontal axis is described by

cosf sinf T — 2
—sinf cosf Y — Y1
Because of the angle we have chosen above we get the new coordinates of the rotated

and translated (by (—z1,—y1)) triangle as:

x); =
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/

/ T2
X2 =

/

Y2

/

/ T3
X3 ==

0

with values x4, 2%, y5 determined by the rotation and translation. we can write the
integral introduced above just by using trigonometric functions sin # and cosf. So the

linearized energy has the form:
ez,y) —e(x,y) = A+ Bx +Cy (E.13)

because z7 and y; are chosen to be 0. Of course we should write 2’ and ¢’ in the
linearized energy above, because we are now integrating over the transformed triangle.
Again we can easily compute the energy values at the corners of the triangle. We name

the differences in the energy values v;, i = 1,2,3. Equation (E.13) allows us to write:

v = 6(11—61214
vy = €3 —€2=A+ Bry+ Cys
v = €3 —€3=A+ Buxs

with the solution of this equation system:

A = (%
B = B~Y
a3
o - (wov) -Gl v

Y2

The knowledge of these constants allows us to integrate each triangle. Figure E.12
shows the "new” integral. Now the final integral has the form:

dxdy

Li(q) = [ -2
@ =) A+TBriy

(E.14)

with the constants A, B,C as described above.
When we divide the triangle into two triangles (triangle 1 and 2 in figure E.12) we get

an easy expression for the integral:

oy (w—w3)

2 24 1 T3 1
— 12 —_—
I”(q)_/o dx/o dyA+Bx+Cy+/gcg dx/o W Bt Oy (E.15)
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(%.Y5)

(%.0)
10,0 X

Figure E.12: The rotated and translated triangle. Of course it has the same area as
before. We can integrate this triangle easy by dividing it in two triangles, marked as 1
and 2 in the picture.

At this point we have to be careful, because we can obtain singularities when the

denominator is equal to zero. Therefore we have to consider different cases.

1. case v = v =v3=v #0
In this case we get in the denominator only v, because B = C = 0 what can be

seen in (E.15). The integral becomes:

x2 2y 1 z3 2 (p—z3) ]
Lij(q) :/ dw/ dy- +/ da:/ 277 SRR e B - M O C B
0 0 v x2 0

v 2v 2u(x3 — x9

2. case vy # Vg,V # U3,V1 # V3,01 # 0,02 # 0,03 # 0
We consider this case know, because we will use it to consider the next cases.
In this case we don’t have to fear any singularities in the integrand. Doing the

y-integration of (E.15) gives:

A+B$+Cg—zl‘
A+ Bx

T3—T2 T3—T2

Eln A+ Bz

s 1 |A+CRE 4 BoCZl o
+/ dx
2

) 1
I;i(q) :/0 d:caln

(E.16)
with A, B, C as showed before. We simplify some terms in the integral using the

value of these constants:

B+C% = 220 A+C 285 = 2200 and B-C 2~ = 2222 what simplifies

T3—T2 T3—T2 T3—T2 T3—T2

(E.16). It is convenient to split (E.16) into three pieces:

2 —
Li(q) = /0 dwaln A+ sz;lx‘
ez ] — —
I(q) = do— In | 2392~ 2203 + Vs — 12
O T3 — T2 T3 — T2
x3 —
Is(q) = dr—In|v; + U3 Ul:z:‘

0 c x3
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The total integral is thus given by:

Lij(a) = I1(q) + I2(q) — I3(q) (E.17)

Be aware of the minus-sign in this equation!

The solution of this integrals leads us to the expression:?
Z2
Li(q) = (vgIn|ve| — v1 In |v1| — (v2 — v1))
V2 — U1
T3 — &
Iy(q) = 32 (vsIn|vg| — vo In |vg| — (v3 — v2))
V3 — V2
x
Is5(q) = 3 (vsln |vg] — vy In|vq| — (v3 — v1))
V3 — U1

Inserting these three integrals into (E.17) we obtain the final result. Some alge-

braic calculation gives us:

vy In v vy In |vg| vz In |vs| )

vl — ’Ug)(vl — ?)2) (1)2 — ?)1)(1)2 — ?)3) (’Ug — ?)1)(1)3 — 1)2)
(E.18)

Lij(q) = x3y2 <(

The knowledge of the values of I, I, I3 allows us to discuss other cases now.

3. case v] = vy = v,v # 0,v # v
The term €9 — € simplifies in the following manner when we insert the values for

A, B, C from above:

v3 — U T2Y2
T — (

- E.1
73 73 v3 — V)Y (E.19)

el(a,y) —e(r,y) = v+

A integration of the term in (E.19) gives:

e dy
dl‘/ ? +
/ v+ ”3 Yy — “yz (v3 —v)y

/ dm/w 3 dy

(z—x3)
v+ Bty — 28 (vg —0)y
Instead of doing this integrals we insert the values of the v’s in the integrals

I, Iy, I3 calculated above. Equation (E.17) gives us the value of I;;(q) in this

case:

1
Liji(q) = v?fgv p— (vslnfvs] —vln|v|) —=Injv] — 1 (E.20)

3The important integral is an integral of the type fln |A + Bz|dz. Making the substitution z =
A 4+ Bz we obtain: fln |A+ Bz|dr = £zInz — 2 = £(A+ Bx)In(A + Bz) — (A + Bz)
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4. case v = w3 =v,v # 0,0 # v9
We write the difference in energy in the same manner as before. Again we use the
three integrals I, Io, Is to obtain the correct result for this integral. We obtain

the integral:

1
Liji(q) = % p— (valn |vg| —vIn|v]) = Injv] — 1 (E.21)

5. case vy =v3 =v,v # 0,0 # vy
The last case gives the following integral, written in a more compact way than

the integrals before:

Y223
Lij(q) = P {

U1 U1

v

In

. - 1] (E.22)

So we finally computed all integrals we need to get the result of the integral.
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