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ABSTRACT OF THE THESIS

Two-patch model for transport properties of optimally

and overdoped cuprates

by Michael Sindel

Thesis Director: Professor Gabriel B. Kotliar

We compute transport properties of the normal state of BSCCO cuprates using a model

that divides the first Brillouin-zone into hot and cold regions. Within this framework

a collision operator is constructed. A phenomenological temperature dependence is as-

signed to each possible scattering mechanism of the model. This allows us to study the

temperature dependence of transport quantities.

The starting point of our analysis is a Boltzmann equation which is valid in the nor-

mal state of cuprates. DC-conductivity, Hall-angle, magnetoresistance, thermoelectric

power and thermal Hall-conductivity are calculated within our approach and compared

with experimental data. The model is able to give a reasonable fit of experimental data

of the mentioned quantities.
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Chapter 1

Introduction

The explanation of the physics of high temperature superconductors (HTSC), discov-

ered by Bednorz and Mueller in 1986, is one of the biggest challenge of the current

physics. It seems that the mechanism that leads to superconductivity takes place in

CuO2 planes.1 A good understanding of the 2D-system of the CuO2-planes seems to

be enough to discover the mechanism that finally leads to superconductivity. But still

a microscopic theory of this materials is missing.

We are concentrating on transport properties, i.e. on the temperature dependence of

different transport quantities (in the normal state), of cuprates in this work. It seems

fundamental to have a good knowledge of the normal state of the HTSC-materials to

be able to explain the superconducting state of this materials.

A phenomenological two-patch model is introduced that is able to describe experimen-

tal results of the temperature dependence of the DC-resistivity, the Hall-angle, the

magnetoresistance, the thermal Hall-conductivity and the thermoelectric power. The

influence of the different regions of the model on the transport properties is studied.

We start our analysis with a reasoning that the Boltzmann-equation (BE) can be

used to describe the transport process in the normal state of cuprates (chapter 2). Once

we established the validity of the BE we introduce it. Chapter 3 introduces the BE for

free and for interacting particles (Fermi liquid theory). Finally we derive a BE which

is valid for an electromagnetic field.

Our interest in a comparison with experimental values forces us to compare our results

with experimental ones. Experimental results are summarized in chapter 4.

1As this HTSC have Cu++ atoms in common this materials are called cuprates.
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The two-patch model (TPM) is introduced in chapter 5. A reasonable construction of

the collision operator which governs the BE is the main idea of the TPM. Within the

framework of this model the transport properties of our interest are calculated. We

study the temperature dependence of the mentioned transport properties by a numeri-

cal program that is described in chapter 6. Using this program we discuss the influence

of the different parameters of our model on the quantities of our interest. Furthermore

a give a set of parameters that is able to fit all(!) considered quantities in a reasonable

way. The effect of the different regions of our model on the different transport quanti-

ties is also studied there.

In the appendix we show analytical calculations that were used in the program men-

tioned in chapter 6. Furthermore we introduce the tetrahedron-method which is able

to calculate the transport quantities in the low-temperature limit.

The most fascinating thing about the described model is that it is able to describe

different transport experiments of cuprates within a quite easy, vivid and reasonable

way. It doesn’t use fancy constructions to get a good agreement with experiment. So the

model is somehow ideal to study the transport behavior in the normal state of cuprates

on a macroscopic level. Some insight what we expect to happen on a microscopic level

can be obtained from the TPM.
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Chapter 2

Reasoning for the use of a Boltzmann-equation to

describe transport properties of cuprates

It is not obvious that we can use a Boltzmann-equation (BE) to describe the transport

properties of cuprates in the normal state (NS). Pines & Nozieres [35] argue that it is

necessary to have a Fermi-Surface (FS) inside a compound to describe transport within

the framework of this equation. The reason is that a BE-treatment requires quasipar-

ticles with a finite lifetime (bigger than the average scattering time) in (or around) the

neighborhood of the FS. A description of the transport-process within the framework

of the BE is applicable when this conditions are accomplished.

The NS of cuprates is the space in the phase diagram, where the compound is neither

superconducting nor in the pseudogap-region. Figure 2.1 [37] shows a (possible) phase-

diagram of cuprates. In the diagram temperature is plotted vs. hole-doping. Varma [37]

divides the NS into a marginal Fermi-liquid (MFL) and a Fermi-liquid (FL) state. The

lifetime τMFL in the MFL-state is ∝ T−1, where τFL ∝ T−2. The reason for the

phenomenological introduction of the MFL- and the FL-state is due to discrepancies

with transport data.

In this report our main interest is the NS of Bi2Sr2CaCu2O8 (Bi2212) compounds.

Thus our first question is whether this material has a FS or not. The reason why we

choose Bi2212 for our studies is that this materials have no chains so we have an almost

2D-system. When we look at other cuprates, like Y BCO, we also have to consider the

hopping between the CuO2-planes. The geometry of the CuO2-planes is shown in figure

2.2.

Quijada [15] measured a slightly anisotropy in the in-plane-resistivity of cuprates. But
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Figure 2.1: [37] The phase diagram, T vs. hole-doping, of cuprates can be splitted into
several pieces. The NS is divided into marginal Fermi-liquid and a Fermi-liquid.

this effect is very small so we are dealing with the CuO2-planes assuming that they

have fourfold symmetry as shown in figure 2.2.

Cu Cu Cu

CuCuCu

O

O

O

O

O

O

O

Figure 2.2: The figure shows the geometry of the CuO2-planes that govern the transport
properties of high Tc-superconductors. Note that the planes have fourfold symmetry.

Angle resolved photo-emission spectroscopy (ARPES) [9] provides a possibility to

figure out whether the compound of our interest has a FS. ARPES-experiments can

even tell us something about the lifetime of the quasiparticles around the FS. It is

possible to measure the spectral-function A(ω,k) of a material by this technique. The
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spectral-function is obtained from the imaginary part of the Greens-function G(ω,k) =

1
ω−εk−Σ(ω,k) , where Σ(ω,k) is the self energy of the system.1

A(ω,k) = − 1

π
=[G(ω,k)] (2.1)

Thus the width of the peak of the spectral-function is connected to the lifetime of quasi-

particles (that means that the imaginary part of the self-energy governs the lifetime of

quasiparticle).

ARPES-experiments scan the reciprocal space and measure the energy distribution

curves (EDC) for different polarization of the incoming wavevector k. Figure 2.3 shows

the different directions of the scan of the reciprocal space of the CuO2-planes of Bi2212.

Our interest in the NS transport-properties of Bi2212 forces us to make this experi-

ment above the critical temperature (Tc = 87K) for optimally doped materials. The

experiments in [9] were done at T = 95K.

The points inside the first BZ, shown in figure 2.3, are named in the following way:

Γ = (0, 0), M̄ = (π, 0), X = (π,−π), Y = (π, π).

The upper part of figure 2.3 explains the direction of the scan, where the lower part gives

the results of the ARPES-experiment, which is equivalent with the spectral-function of

the CuO2-planes.

Depending on the measured direction the peaks in the spectral-function appear at

different momenta. It can also been recognized in figure 2.3 that the width of the peak

(in the spectral-function), which describes the lifetime of the quasiparticles, is smaller

in (π, π)-direction. The lifetime in this regions is bigger. This observation suggests

that we don’t have a single lifetime in the CuO2-planes. The lifetime τ of a reasonable

model should change around the FS.

The experiments [9] allow us to construct a FS with the shape given in figure 2.4. The

electronic structure suggested by Ding et al. was recently reexaminated by Chuang [25].

1To get the imaginary part of the Greens-function we make use of the equation: 1
x±iδ

= P (1/x) ∓

iπδ(x) which is valid in the limit δ → 0 (P denotes the principal value).
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Figure 2.3: The FS is scanned over the k-space. Dependent on the polarization of
the wavevector we get peaks in the Binding energy that contain information about the
lifetime [9].

With reasons given above we can start to describe the transport properties of cuprates

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

k_
y

k_x

Fermi-surface of cuprates

Figure 2.4: The FS of the NS of BSCCO showed above was constructed by a fit that
contains hopping up to the fifth nearest neighbor given in [16], obtained from band-
structure calculations. Figure 2.3 justifies a FS like it is shown in this figure.

(in the NS) with a BE-treatment that will be explained in the next chapter.
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Chapter 3

The description of the transport process using the BE

Transport properties of systems with (quasi)particles (with long lifetime) around the

FS can be described with a BE as showed in chapter 2. An external force, given by

an electric field E or a temperature gradient ∇rT , is able to excite particles inside

the Fermi-sea to generate some free, unbounded particles. A weak external field can

only excite particles around the FS and make them to free particles due to the Pauli

principle.

When we apply a weak force on free particles we can treat the free-particle-regime

within the framework of the theory of linear response. This is equivalent with the idea

to linearize the BE, which is a partial differential equation.

In section 3.1 we introduce the BE for noninteracting (free) particles. A linearized form

of the BE is derived. We have to consider interactions between particles1 when we deal

with excitations of several particles. This proceeding is shown in section 3.2. The last

section, section 3.3, of this chapter deals with transport in electromagnetic fields. A

linearized transport equation, valid in electromagnetic fields, is derived there.

We follow the derivation of the BE given in [35].

3.1 The BE of free (noninteracting) particles

A kinetic equation describes the space and time dependence of the distribution func-

tion nk(r, t) of a system of (in this case noninteracting) particles. For a system without

collisions the kinetic equation has the form of the continuity equation, ∇rj + ∂ρ
∂t = 0

with the current j and the particle density ρ. The continuity equation conserves the

particle number as the flow inwards and the flow outwards of a certain volume element

1They are called quasiparticles in the case where interaction between them is considered.
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is the same.

The question why particles are moving is due to forces that are acting on the

particles. External fields, E, B and thermal gradients ∇rT are the reasons why free

particles start moving or change their direction (neglecting motion due to Brownian

motion). These moving particles contribute to transport. Scattering between particles

is especially important in the process of transport as this models the obstacles in the

transport process. Combining the idea of scattering between particles with the conti-

nuity equation, mentioned before, forces us to generalize this equation.

The distribution function nk(r, t) of particles represents the number of particles at

position r at time t with momentum k. The current is defined as j =
∑

k nk(r, t)vk(r, t),

so it follows from the continuity equation (neglecting collisions)2

∂nk(r, t)

∂t
+ [vk(r, t)∇rnk(r, t)] + [−∇rεk(r, t)∇knk(r, t)] = 0 (3.1)

where the last term on the l.h.s. was obtained using integration by parts and the fact

that nk(r, t) vanishes at the boundaries. Note that we can replace −∇rεk(r, t) by the

external force F(r, t).

Equation (3.1) can easily be derived from Liouville’s theorem. We only calculate the

total differential of nk(r, t) and obtain the same result, namely dnk(r,t)
dt = ∂nk(r,t)

∂t +

∂nk(r,t)
∂r

dr
dt + ∂nk(r,t)

∂k
dk
dt = 0, with F(r, t) = dk

dt .

The first term on the l.h.s. of equation (3.1) is important in the case of a dynamic

distribution, the second term represents diffusion and the third is due to an applied

external field. The force due to an applied electromagnetic field is given by F = h̄ d
dtk =

e
(

E + 1
h̄cvk ×B

)

.

Note that we can express the group velocity of free particles just by∇kεk(r, t). When we

have no more free particles we get the group velocity of ”quasiparticles” by replacing ε

with ε̃, which is explained in section 3.2 (also the force has to be replaced by an effective

force in the interacting case!). In a non-equilibrium system the gradient of the chemical

2Note that the density at point r is given by ρ(r) =
∑

k
nk(r, t).
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potential acts as an effective force on the system.

So far we neglected collisions between particles, which plays the dissipative (irreversible)

role in the BE. In case of collisions between particles we have to add an operator, the

collision operator Ck, to the right hand side of (3.1). Ck takes the scattering ”in” the

state k and ”out” of the state k into consideration. The modeling of the collision-

operator is of special importance to describe the transport process well. It is common

to use a transition probability from a state k to a state k′, given by a matrix Ckk′ , to

model the collision operator Ck.

Physical interesting phenomena happen in the neighborhood of the FS, as only in this

region particles can be excited easily. The distribution function nk(r, t) is expanded

around the Fermi energy (linear response theory)

nk(r, t) = f 0
k + gk(r, t) (3.2)

with the equilibrium distribution, the Fermi distribution f 0
k and the deviation from

equilibrium gk(r, t), which labels the free particles. As we stop the Taylor expansion of

nk(r, t) at first order (3.2) is only a good description in the vicinity of the FS for small

external fields. Inserting (3.2) into (3.1) gives us the linearized form of the BE.

∂

∂t
gk(r, t) + vk∇r

(

f0
k + gk(r, t)

)

+ vkFk

[

∂f0
k

∂εk
+

∂gk(r, t)

∂εk

]

= Ck (3.3)

with the equilibrium distribution f 0
k that is independent of time. Note that we only

take first order terms in (3.3), which means that we have to look carefully which term

inside the brackets contributes in the lowest order.

Equation (3.3) allows us to calculate the number of ”free” particles gk(r, t) that con-

tribute to the current j, j =
∑

k gk(r, t)vk.3

We conclude this section with writing down the explicit form of the BE including the

scattering operator when also a temperature gradient is applied. One driving term is

due to an electromagnetic field, F = eE+ e
h̄cv×B and the other is due to a temperature

3In the case of bare particles we don’t have a backflow current. This will become important in 5.2!
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gradient, ∝ ∇rT/T . The linearized BE gets the form

∂

∂t
gk +

∼∇rT
︷ ︸︸ ︷
(

−∂f0
k

∂εk

)

εkvk ·
∇rT

T
+

∼F
︷ ︸︸ ︷

eEvk

(

∂f0
k

∂εk

)

+
e

h̄c
vk ×B

∂gk

∂k
= Ck (3.4)

as given e.g. in [11] (without the temperature gradient). Note that the leading order

contribution to the term that contains the magnetic field comes from ∂gk
∂k

.

The scattering operator Ck has the usual form

Ck =
∑

k′

[
Ck,k′gk′ − Ck,k′gk

]
(3.5)

with the first term describing scattering ”in” to the state k and the second term de-

scribing scattering ”out” of the state k. The relaxation time τk for state k is defined

as 1/τk ≡
∑

k′ Ck,k′ .

Our goal is to solve (3.4) for gk as this quantity can tell us what particles can contribute

to transport. Starting with this transport equation we will derive different transport

properties of cuprates (in the NS). It is the starting point of the computation of the

transport properties of our interest.

3.2 Considering interactions between quasiparticles - Landau’s Fermi-

liquid theory (FLT)

In the previous section we considered particles that contribute to transport as ”free”,

that means noninteracting, particles. We are going to take interactions between them

into consideration in this section. It will turn out that the deviation from equilibrium gk

in the noninteracting case has not the same meaning as the deviation in the interacting

case g̃k. To be precise quantities referring to interaction among particles are denoted

by a tilde in this section.

We are concentrating on the l.h.s. of the BE in the following two sections as this is the

more interesting one. The collision operator Ck (3.5) changes only with the replacement

gk → g̃k when we are dealing with quasiparticle interaction.
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The key step for dealing with interaction among particles is to expand the energy of

the system around the Fermi-level. We can write the energy of the system as a functional

of the departure from equilibrium gk, E[gk]. A Taylor-expansion up to second order

gives

E[gk] = E0 +
∑

kσ

εkσgkσ +
1

2

∑

kk′σσ′

fσσ′

kk′ gkσgk′σ′ (3.6)

where a summation over all spins σ and momenta k is done. The function f σσ′

kk′
takes

the interaction between the particles into consideration. Interacting particles are called,

due to Landau, quasiparticles.

An expression that connects the change in energy δEkσ of the system with a change in

the number of particles gk can be achieved by the derivative δE
δgk

. Thus the energy of

one excited (interacting) particle, ε̃kσ, can be obtained from equation (3.6) by a partial

derivative of the energy.

ε̃kσ =
δE

δgkσ
= εkσ +

∑

k′σ′

fσσ′

kk′ gk′σ′ (3.7)

Contrary to the noninteracting case we have an extra term due to the interaction among

particles in (3.7). The energy of the excited quasiparticles, ε̃kσ, is proportional to gk.

The idea to describe these interacting particles is due to Landau and is called Landau’s

theory of Fermi liquids (FLT). Due to the interaction between the particles different

quantities like mass, susceptibility etc. are renormalized.

In general we should consider the free energy F instead of E and perform the

functional derivative δF
δgk

on this magnitude. In this case we would get only a slightly

different expression because we take the chemical potential µ into account: ε̃kσ = δF
δgkσ

=

(εk − µ) +
∑

k′σ′ f
σσ′

kk′
gkσ. But if we consider the chemical potential µ to be constant in

the area around the FS we get exactly the same result as given in (3.7).

Let’s look first at the consequences of the interaction on the current. In the absence

of interactions between particles we can write the ”bare” current j0 in the way: j0 =

e
∑

kσ vkgkσ , as already done before. When we are dealing with quasiparticles the

function fσσ′

kk′
becomes important, as can be seen in (3.6). Analogous to the bare
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current j0 we define the dressed current j by

j = e
∑

kσ

vqpg̃kσ (3.8)

with the quasiparticle velocity vqp, vqp = ∂ε̃kσ
∂k

.

A fundamental question is the relation between gkσ and g̃kσ as this explains the connec-

tion between the ”noninteracting” j0 and the ”interacting” current j. The equilibrium-

distribution depends in the case of gkσ on εk − µ whereas in the case of g̃kσ it depends

on ε̃k − µ.

gkσ = nkσ − n0
k(εk − µ) (3.9)

g̃kσ = nkσ − n0
k(ε̃k − µ) (3.10)

We label the equilibrium and the actual distribution with n instead of f in order to

avoid confusion with fσσ′

kk′
.

A connection between gkσ and g̃kσ can be found when we expand the term n0
k(εk−µ+

ε̃k − εk), given above, to first order in the following manner

g̃kσ = nkσ − n0
k(ε̃k − µ) = nkσ − n0

k(εk − µ + ε̃k − εk)

= nkσ − n0
k(εk − µ)

︸ ︷︷ ︸

gkσ

−(ε̃k − εk)
dn0

k(εk − µ)

dεk

which shows that the magnitudes gkσ and g̃kσ are not identical! This has important

consequences on transport properties. Note that − dn0
k
(εk−µ)

dεk
→ δ(εk − µ) for T → 0.4

From equation (3.7) can followed that ε̃k − εk =
∑

k′σ′ f
σσ′

kk′
gk′σ′ . So we finally obtain

the connection between noninteracting and interacting deviation from equilibrium as

g̃kσ = gkσ +

(

−dn0
k(εk − µ)

dεk

)
∑

k′σ′

fσσ′

kk′ gk′σ′ (3.11)

Dealing with interaction the total current is described by equation (3.8), where the

quantity g̃kσ can be expressed in terms of gkσ like it is shown in (3.11). As particles are

interacting there is a backflow of quasiparticles in a interacting system. This backflow

has to be added to the current as it is done in equation (3.8).

4n0
k = 1

eβ(ε
k
−µ)+1

as usual.
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It is important to know that in the FLT the current is not necessary parallel to the

velocity of the quasiparticles due to f σσ′

kk′
. This fact forces us to think which quantity, j

or v, has to be used in a transport equation in an electromagnetic field for an interacting

system. Remember that the Lorenz force depends on the velocity of a particle which is

proportional to the current in a noninteracting system.

3.3 The transport equation of interacting particles in an electromag-

netic field

It is know from electrodynamics that the electric and the magnetic field, E and H, can

be derived from a vector-potential A and a scalar potential Φ. We are choosing the

Coulomb gauge, so the electric and magnetic field are given by:

E = −1

c

∂A

∂t

H = ∇×A

In the absence of a electromagnetic field (A(r, t) = 0) the momentum of the particle is

k. Turning on a electromagnetic field changes the situation. The canonically conjugated

to the position r is no longer the momentum k. Instead of this we get the momentum

in an electromagnetic field K, with

K = k +
eA

c
(3.12)

A particle moving in a vector potential A(r, t) can therefore be described by inserting

an extra term due to the vector potential A(r, t) in the Hamiltonian.

H =
1

2m

∑

i

[

Ki −
eA(r, t)

c

]2

+ V (3.13)

where we are considering a system of particles and an interaction V between the parti-

cles due to a Coulomb interaction. Note that k, determined from (3.12) is inserted in

(3.13).

The equations of motion of a particle in an electromagnetic field can be derived from

the Hamiltonian given in (3.13).

ṙi =
∂H

∂Ki
=

1

m

[

Ki −
eAi(r, t)

c

]

(3.14)
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K̇i = −∂H

∂ri
= − e

mc

∂Aj

∂ri

[

Kj −
eAj(r, t)

c

]

(3.15)

From the gauge we have chosen it can be immediately seen from (3.14) that the force

on a particle in an electromagnetic field is given by5

mr̈ =

[
dK
dt

+ eE

]

= eE +
e

c
v×H (3.16)

So the well-known result was rederived, namely that the momentum k has to be re-

placed by
[

K − eA
c

]

in an electromagnetic field.

A vector potential A shifts the origin in momentum space by an amount eA(r,t)
c away

from the origin without an electromagnetic field.

As we are interested in a derivation of the transport equation of an interacting

system in presence of an electromagnetic field we have to study the Hamiltonian given

in (3.13) and consider interaction between the particles.

The relation for momenta of particles in an electromagnetic field dKi and momenta of

particles without electromagnetic field dki is the following dki = dKi −
∑

j
e
c

∂Ai
∂rj

drj ,

with i, j = x, y, z, because of the condition k = K − eA
c already pointed out before.

When we turn on an electromagnetic field in an interacting system we have to make this

replacement in the local energy ε̃k. So we generalize the formula for the local energy

shown in (3.7) to

dε̃k =
∑

i

[

vidki +
∑

k′

fkk′ [∇rink′ ]dri

]

=
∑

i,j

{

vi

[

dKi −
e

c

∂Ai

∂rj
drj

]

+
∑

k′

fkk′ [∇rink′ ]dri

}

(3.17)

where i, j = x, y, z as usual. Note that we replaced gk by
∑

i[∇rink]dri in this equation.

The equations of motion for this Hamiltonian change with respect to the equations given

in (3.14) by considering the interaction, denoted by the local energy ε̃.

˙̃ri =

(
∂ε̃k

∂Ki

)

r
= vi (3.18)

− ˙̃Ki =

(
∂ε̃k

∂ri

)

K
=
∑

k′

fkk′

(
∂nk′

∂ri

)

k′
−
∑

j

e

c

∂Aj

∂ri
vj (3.19)

5The velocity of a particle in an electro-magnetic field is given by v = 1
m

[
K − eA

c

]
which can be

seen from equation (3.14).
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These equations describe the motion of interacting particles, considered by f σσ′

kk′
in an

electromagnetic field.

Our goal, to derive a transport equation of quasiparticles, can be achieved when we

study the flow of quasiparticles in phase space. Because of the connection between k

and K the two distributions nk and nK are identical in real space, but shifted with e
cA

in reciprocal space. The following transport equation can be followed from Liouville’s

equation ( dn
dt = 0!) neglecting collisions.

(
∂nK
∂t

)

K,r
+

(
∂nK
∂ri

)

K

˙̃ri
︷ ︸︸ ︷
(

∂ε̃k

∂Ki

)

r
−
(

∂nK
∂Ki

)

r

− ˙̃Ki
︷ ︸︸ ︷
(

∂ε̃k

∂ri

)

K
= 0 (3.20)

where the third term takes interaction and the external field into account (compare to

(3.18)).

As the momentum K depends on the vector potential A equation (3.20) is not easy to

handle. It is convenient to express the given transport equation (without collisions) in

terms of the momentum k. Therefore it is useful to figure out a connection between

derivatives of the partition function nk and nK, given by equation 3.12.

(
∂nK
∂t

)

K,r
=

(
∂nk

∂t

)

k,r
+
∑

i

e

c

∂nk

∂ki

∂Ai

∂t
(3.21)

(
∂nK
∂ri

)

K
=

(
∂nk

∂ri

)

k

+
∑

j

e

c

∂nk

∂kj

∂Aj

∂ri
(3.22)

(
∂nK
∂Ki

)

r

=

(
∂nk

∂ki

)

r

(3.23)

When we insert these three properties in the transport equation in K-space, equation

(3.20), we get a transport equation in k-space, with the local energy ε̃ given in (3.17).6

So we can write a transport equation with interaction between particles in the presence

of an electromagnetic field in terms of momenta k by using (3.20).7

∂nk

∂t
+ eE · ∇knk + vk · ∇rnk +

e

c
[vr ×H] · ∇knk −

∑

k′

∇knk · ∇rnk′fkk′ = 0 (3.24)

where the last term on the l.h.s. contains the particle-particle interaction. The third

and the last term on the l.h.s. can be put together to vk ·∇rg̃k which can be seen from

6Note − e
c

∂nk

∂kj

∂Aj

∂ri
vi + ∂nk

∂ki

e
c
vj

∂Ai
∂rj

= e
c
[vp ×H]j · ∇knk which turns out to be important when we

insert (3.21) and (3.18) in (3.20).

7Remember the gauge we have!
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(3.11).

The quasiparticles are moving as they felt the presence of a Lorenz force, determined

by their velocity, acting on them, which was not clear from the beginning as the current

and the velocity of quasiparticles are not necessarily parallel.

The final result for the transport equation dealing with FLT is obtained when lineariz-

ing, nk = n0
k + gk, the transport equation (3.24). The relation found in (3.11) is used

to get short expressions.

1. In the case of a DC magnetic field H0 we obtain the following transport equa-

tion for the system. We obtain the first contribution to the Lorenz-force by

[vk×H0] ·∇kgk, as [vk×H0] ·∇kn0
k = 0.8 But as we have interaction among the

particles we have another first order term that comes from the partial derivative

of the local energy ε̃ with respect to k. Thus we obtain two terms contributing

to the Lorenz-force that are of first order.

e

c
[vk ×H0] · ∇kgk +

e

c

[

∇k

(
∑

k′

fkk′gk′

)

×H0

]

· ∇kn0
k

When we insert this contribution in equation (3.24) we get the transport equation

in the presence of an DC-magnetic field.

∂gk

∂t
+ vk · ∇rg̃k +

e

c
(vk ×H0)∇kg̃k + eE · ∇kn0

k = 0 (3.25)

Note that the time derivative of gk vanishes in the DC-case.

The DC field H0 acts on the departure g̃k from local equilibrium, instead of gk

when FL-corrections are considered. This equation is the start of the study of

electrical quantities like the DC-conductivity, the Hall-conductivity, magnetore-

sistance etc..

2. Applying a AC magnetic field on a sample has different consequences. The ap-

plication of a time-dependent magnetic field H is associated with the propagating

electromagnetic wave in the sample. As E and H are first order perturbations of

8Remember ∇kn0
k =

∂n0
k

∂εk
vk. And therefore we obtain zero in the 0-th order.
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the system, the same order as gk, the transport equation can be written as

∂gk

∂t
+ vk · ∇rg̃k + e

[

E +
vk

c
×H

]

· ∇kn0
k = 0 (3.26)

because∇kn0
k is no more parallel to vk, thus it gives the leading order contribution

to the Lorenz-force. When we are dealing with a fast varying electromagnetic field

we can consider nk ≈ n0
k (which is true in most cases). The term given by the

AC-magnetic field can be neglected and equation (3.26) simplifies to:

∂gk

∂t
+ vk · ∇rg̃k + eE · ∇kn0

k = 0 (3.27)

Introducing the scattering operator given in equation (3.5) (of course in terms of g̃k)

allows us to obtain the full BE in the interacting case. Note that in the steady state

case, ∂gk
∂t = 0, everything in the BE is expressed in terms of g̃k. So we can solve the BE,

taking interaction into account, without a knowledge of f σσ′

kk′
! The steady state case

will be considered in the following chapters. In this chapters we make the replacement

gk → g̃k. Note that this is not more valid in the case of AC-transport.

One last comment on the effect of charged quasiparticles will finish this chapter.

When we consider screening between quasiparticles, due to a Coulomb-interaction be-

tween them, the external electric field has to be modified. So the electric field E used

in the transport equation (3.24) has to be replaced by a sum of the external field and

a internal field due to screening, E = Eext + Esc. This is done in the Landau-Silin-

equations.
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Chapter 4

Experimental results for BSCCO

Variation of τ over the FS

In this chapter we will provide the experimental results that will be compared with the

model we are going to construct. Experimental data for the quantities we compare our

model with are given. At least the shape, the magnitude and the temperature behavior

of the computed transport properties are a first test of the model we are proposing.

Several experimental results can be found in [39].

Furthermore we discuss the consequences of a single relation-time for cuprates.

Drude’s theory of metals [2], suggested in 1900, is able to describe electric and thermal

conductivity using the kinetic theory of gases. The characteristic quantity in his ap-

proach is an average relaxation-time τD, τD ≈ 10−14s − 10−15s at room temperature,

which is an average relaxation time for every electron in the sample.

In the language of the BE we can write the linearized BE, given in (3.4), in the case of

one single scattering time as

∂

∂t
gk + eEvk

∂f0

∂εk
+

e

h̄c
(vk ×B) ·

[
∂

∂k
gk

]

= − gk

τD
(4.1)

where the r.h.s. simplifies to just one term. Note that the relaxation time for every

state k in the reciprocal space τk is the same, τk = τD ∀k in the Drude approach.

Equation (4.1) allows us to write the current, which is produced by the ”free” particles,

as e
∑

k vkgk.Combing this result with Ohm’s law we get the electrical conductivities

σµν .

j = σ̄E = e
∑

k

vkgk (4.2)
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Equation (4.2) allows us to compute different conductivities as a function of the tem-

perature T . When we compare this with experimental results we can find out whether

we can describe cuprates with a simple Drude-model.

4.1 DC-conductivity σxx

We start our analysis with the easiest quantity, the DC-conductivity. Every term in

(4.1) has no time-dependence in this case. Furthermore no magnetic field is turned on.

Thus the first and the third term on the l.h.s. of (4.1) vanish. The transport-equation

simplifies to the expression for the ”free” particles:

gk = −eEvkτk

(

∂f0

∂εk

)

(4.3)

Equation (4.2) allows us, using this knowledge, to compute the DC-conductivity σxx.

We just insert (4.3) into (4.2) and obtain:

σxx = e2
∑

k

(vx
k)2τk

(

−∂f0

∂εk

)

(4.4)

Which means that σxx ∝ τk. Thus we expect σxx to have the same temperature

dependence as τk. At this stage it is not clear that the other factors in (4.4) are

independent of T .

In the zero temperature case we can identify
(

−∂f0

∂εk

)

with a δ-function (remember that

the equilibrium distribution f 0 is the Fermi-Dirac-distribution which is a step function

in the zero temperature case). So
(

−∂f0

∂εk

)

gives only a contribution when ε = µ, thus
(

−∂f0

∂εk

)

= δ(ε− µ).1

Our next goal is to bring (4.4) in the form that is known from the Drude-model. First

we have to write the sum in (4.4) as an integral.

dk = dAε · dk⊥ = dAε
dε

|∇kε| = dAε
dε

h̄|vk|

1The minus-sign in front of the derivative of f 0 with respect to ε takes care of the right sign in the
δ-function.
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Now we can use the well-known formula that transforms a sum into an integral2 and

obtain

σxx =
2 · e2

(2π)3h̄

∫
(vx

k)2

|vk|
τkδ(ε− µ)dAεdε =

e2

4π3h̄

∫

ε=µ

(vx
k)2

|vk|
· τkdAε

The δ-function in (4.4) restricts us on the FS. Averaging the product
(vx

k
)2

|vk|
· τk has the

result <
(vx

k
)2

|vk|
· τk >=< v·τD

3 >FS. So we are left with an integral
∫

dAε = 4πk2
f , thus3

σxx =
e2

4π3h̄

v(εf ) · τD

3
4πk2

f =
e2k3

f τD

3m∗π2

From this equation we get the final result:

σxx =
e2n

m∗
τD (4.5)

The proportionality between σxx and τD, that was already pointed out above, is shown

explicitly in equation (4.5).

It is worth to mention that the derivation above was done in the 3D-case. As we

are interested in cuprates we are interested in the 2D case, as argued in chapter 2.

However it is worth to consider the consequences of a treatment within the Drude

approach (independent of the dimension).

4.1.1 Experimental results: Resistivity ρxx in BSCCO

The material of our interest, BSCCO, has a fairly easy geometry. As this material

has no chains BSCCO-data should be understood by just looking at the CuO2-planes

shown in figure 2.2. We are dealing with a 2D-system in these materials. As a conse-

quence of the fourfold symmetry of the lattice the FS, that is connected to the lattice

symmetry, has the same fourfold symmetry, which can be seen in figure 2.4.

Experiments measure the DC-resistivity, measured in µΩcm, vs. the temperature,

which is measured in Kelvin.

Our model tries to fit the data given by [14] and [15] which show good agreement with

2
∑

k
→ 1

(2π)D

∫
dDk.

3Remember v(εf ) =
h̄kf

m∗ and kf = (3π2n)
1
3
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each other.

Measurements by [14] showed that single crystals of Bi2212 have a transition tem-

perature between 82K-84K. Down to 150K a linear temperature dependence of the

resistivity ρxx is obtained in their experiment. They detected the rounding of ρ at

temperatures < 110K.

Quijadas group presents experimental results [15] where a modest normal state anisotropy

in the in-plane resistivity, that means in the resistivity in the CuO2-planes, is observed.

The material his group measured was Bi2Sr2CaCu2O8, Bi2212, with a Tc of ≈ 80K.

Introducing Ca-atoms in the BSCCO-sample separates the planes strongly from each

other. The experiments by Sunshine [21] measure the DC-resistivity of BSCCO ( ma-

terial: Bi2.2Sr2Ca0.8Cu2O8+δ) and show a big sensitivity of these samples dependent

on doping. These experiments provide useful data to study the effect of doping on the

resistivity.

The doping dependence of another interesting sample, Bi2Sr2−zLazCuO6−δ, that has

a very similar structure, was also studied by Ando et al. [23]. This group measured

the doping dependence of the in plane-resistivity of Bi2201 samples in a temperature

range between 10K to 300K. These samples have a Tc ≈ 35K, thus a smaller one

than Bi2212-materials have. The same temperature dependence of this sample as a

function of the doping can also be seen in [1], [26]. The results of Andos group are in

relatively good agreement with Wang [17] who measured the in-plane resistivity in the

same range.

Rullier-Albenque [10] reports the effects of electron irradiation on Bi2212-samples

(Bi2Sr2CaCu2O8). The effect of the radiation raises the DC-resistivity but not in such

a strong manner as doping does. Therefore the curve, measured after irradiation is still

in the same resistivity range as before.

Further experimental data on the resistivity on Bi-based cuprates are given by Mar-

tin et al. [20] (experiments on Bi2(Sr,Ca)3Cu2Ox-samples) and Jin [19] (material:

Bi1.95Sr1.65La0.4CuO6+δ, Tc ≈ 15K). Jins group reports a slope for Bi2201 samples

that has approximately the same magnitude as the slope for the samples of the Bi2212

type.
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All experiments have a linear T -dependence in ρxx for T > Tc in common. The

critical temperature for Bi2212 is measured to Tc ≈ 84K. The slope of the linear part

of the DC-resistivity ∆ρ/∆T is given by ∆ρ/∆T ≈ 0.5(µΩcm)/K. The doping depen-

dences of the resistivity-curves can also be obtained from given experiments. Figure

4.1 shows the DC-resistivity σxx for Bi2201 for different doping rates. Experimental

results for Bi2212 differ only slightly from them. Doping of the sample changes the

offset and the slope of the curve as can be seen in this figure. The model we are going

to propose is able to model the effect of doping by changing one parameter (θ - which

describes the size of the cold region).

Figure 4.1: The DC-resistivity ρxx of a Bi2201-sample is measured vs. T reported in [1].
The doping dependence of ρxx can be studied.

4.2 Hall-conductivity σxy

The Hall-conductivity σxy can be derived from equation (4.5) in an easy way, when we

remember the formula for the Hall-resistivity RH , given by RH = 1
nec = σxy

H·σxxσyy . In

the case of an isotropic sample, which is the case for BSCCO, σxx = σyy and we obtain

RH = σxy

H·(σxx)2 .

It was pointed out by Anderson that the physical quantity we should look at, dealing

with the Hall-effect, is not the Hall-resistivity but the Hall-angle, that is given by:

tan(θH) =
σxy

σxx
(4.6)
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because it shows an easy temperature-dependence. The formula for RH allows us to

get an expression for σxy, σxy = H·(σxx)2

nec . So the final formula for the Hall-angle has

the form (in the Drude approach):

tan(θH) =
H

nec
σxx =

eH

m∗c
τD (4.7)

As tan(θH) ∝ τD (compare to (4.7)) we expect the same temperature dependence for

the Hall-angle (tan(θH) ∝ τD) as for the DC-conductivity (σxx ∝ τD). Experiments

show a different temperature dependence of these quantities.

We are reporting some experimental results for cot θH , the inverse Hall-angle now.

4.2.1 Experimental results: Hall-angle tan(θH) in cuprates

We are referring to recent experiments, carried out by Konstantinovic [27] and Ando [1].

In both experiments cot θH is measured vs. T 2 for Bi2212 or Bi2201-samples. Inde-

pendently the groups figured out that the temperature dependence of cot θH changes

from cot θH ∝ T 2 for underdoped to cot θH ∝ T 1.65 for overdoped materials. Their

conclusion is that doping decreases the slope of the inverse Hall-angle. Note that the

experiments by Ando were done by a magnetic field of 10T , Konstantinovic experiments

however with a magnetic field of 1T . This information is important as the magnetic

field is a parameter in the numerical program that computes the Hall-angle using the

model we propose.

Figure 4.2, taken from [1], shows the measured inverse Hall-angle cot θH vs. T α,

α = 1.70 (optimally doped) and α = 1.60 (overdoped) for different doping of the

Bi2201-sample. It shows that no T 2-behavior for overdoped materials is observed.

Note that x labels the percentage of La atoms in figure 4.2, thus increasing x decreases

the number of holes (i.e. underdoping) and vice versa.

Note that the Hall-angle has no units as it is a ratio of two conductivities.

Experiments observe that ρxx and cot(θH) show a different temperature dependence.

This can not explained by a simple Drude-model, used in the derivation of (4.5) and

(4.7). Cuprates don’t behave like a metal and furthermore they have to have more than

one relaxation time.
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Figure 4.2: Experiments by Ando [1] show that the slope of cot θH decreases with in-
creasing doping (left: optimally doped; right: overdoped). Measurements are done with
a magnetic field of 10T .

The conclusion that was derived from the ARPES data, see figure 2.3, is also confirmed

by the experimental data, namely that a single relaxation time is not able to describe

the physics happening in cuprates.

4.3 Thermoelectric power (TEP) of BSCCO

The TEP is defined as the ratio between the thermopower Sxx and the DC-conductivity

σxx times the temperature. Note the difference between the thermopower Sµν and the

TEP.

TEP =
Sxx

Tσxx
(4.8)

Obertelli et al., [33], measured the TEP of Bi2Sr2CaCu2O8+δ (Bi2212) as a function

of the temperature with varying doping. As our model is only valid in the NS of

BSCCO the data from this group are only of interest in the optimally doped and in

the overdoped regime. When we go to the underdoped region the pseudogap opens and

a treatment with the BE is no more valid.

The doping dependence of Bi2201 can be studied in the experiment of McIntosh and

Kaiser [31]. They report measurements of the TEP of La-doped Bi2Sr2−xLaxCuO6+y

samples in a temperature range between 0 and 300K. Also Choi’s group, [4], measured

the TEP of Bi2Sr2−xLaxCuO6+z. In their experiment the La-doping varied between
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0.1 and 0.9. The experiments [31] and [4] can be compared as they measure the same

materials.

A typical experimental result for the TEP is shown in figure 4.3. A strong variation

of the TEP with varying doping can be seen in the figure. It turns out that the TEP

depends mostly on the shape of the FS which determines the density of states.

Experiments measure the TEP in µV/K.

Figure 4.3: TEP experiment taken from [4]. The TEP of Bi2201 is measured for
different doping as a function of T .

4.4 Magnetoresistance MR in BSCCO

The MR is defined as

MR =
∆σxx(B)

σxx
(4.9)

so it measures the ratio between the change in the DC-conductivity due to an magnetic

field and the DC-conductivity without an magnetic field.

The same group mentioned above, Ando [1], measured the transversal and the longitu-

dinal MR of Bi2201-samples as a function of doping. The result is shown in figure 4.4.

It shows the dimensionless MR vs. the temperature T in a temperature-range between

0K and 300K for different doping. Ando’s results allow us to get an impression how

doping changes the MR. They found out that increasing doping decreases the MR.
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Note that we are only interested in the transversal MR, as our model computes only

this MR. Figure 4.4 shows the transverse (solid circles) and the longitudinal MR (open

circles) for overdoped (left figure) and optimally doped (right figure) Bi-based samples.

Doping decreases the MR as can be seen in this figure. The two plots at the bottom

represent the underdoped case!

Figure 4.4: The experiment from Ando, [1], shows the MR dependent on temperature
for optimally doping (right top) (b), overdoped (left) (a) and underdoped samples ((c)
and (d)). Note that this group measured transversal (solid cicles) and longitudinal (open
circles) MR.

A Kohler-plot, where the ratio ∆ρxx/[ρxxtan(θH)2] is plotted vs. T , is done in some

papers, e.g. [6]. The cited group claims that this dimensionless ratio saturates to a

value of about 6. When we test our model we are going to check this result as well.

4.5 Thermal Hall-conductivity κxy

κxy measures the effect of a magnetic field on particles that transport heat. It is defined

in the same manner as σxy, where the charge e is replaced by the energy of a particle

εk, which means we have to sum over all energies εk to get κxy. Chapter 5 will explain
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this in much more detail.

Unfortunately we didn’t find any data on the thermal Hall-conductivity of BSCCO-

materials. As Y BCO has also the layered structure we can get an impression of the

magnitude and the shape of κxy from the Y BCO data. These data are plotted in

figure 4.5. Zhang’s group [24] found the temperature dependence of κxy ∝ T−1.19 (for

Y BCO). Experiments measure κxy in W/m ·K for given magnetic field B. Of course

this quantity varies with the magnetic field.

Figure 4.5 contains also a plot of the Lorenz-number, which compares the thermal

conductivity with the electrical conductivity. The group of Zhang used thermal and

electrical Hall-conductivities to make sure that there is no contribution due to phonons

in the ratio. The value they observe attains the value π2/3 near 500K which is predicted

by the Wiedemann-Franz law. For small T cuprates don’t behave metal-like. This was

already pointed out when we looked at the different temperature dependences of ρxx

and cot(θH) which can not be explained within the framework of Drude.

Figure 4.5: The Lorenz-number (solid circles) and κxy can be extracted from this figure
taken from [24]. Their experiment uses a magnetic field to get rid of contributions from
phonons to κxy and the Lorenz number.
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Chapter 5

Two patch model for the collision operator

We are going to introduce a phenomenological model, whose goal it is to describe ex-

perimental data of transport properties of BSCCO, given in chapter 4, now. It was

argued in chapter 2 that it is reasonable to describe BSCCO in terms of a BE. But

as transport data can’t be explained with a single relaxation time we suggest a model

with two relaxation times. Our interest in DC-properties simplifies our analysis a lot,

as we don’t have to take FL-corrections explicitly into consideration.

It can be seen from the linearized BE, ∂
∂tgk + eEvk

∂f0
k

∂εk
+ e

h̄cvk ×B
∂gk
∂k

= Ck, given

in (3.25), that it is essential to model the collision-operator Ck in it. Note that we

are dealing with the steady-state case. So the first term ∂
∂tgk vanishes. The material

is assumed to be isotropic, which means that also the factor ∇rgk in (3.25) doesn’t

contribute. As we have only terms in the expression that are of the kind g̃k we can

make the replacement g̃k → gk and obtain the equation above.

Because of the term
∂f0

k

∂εk
in the BE the transport process happens at and around the

FS.1

Following the ARPES data shown in figure 2.3 we want to construct a model with

alternating big and small scattering around the FS, which is done by introducing two

patches in every quadrant of the first BZ. The regions with a big lifetime have low scat-

tering and are called cold regions (they are along the zone-diagonals in the first BZ).

In the hot regions (at the nodes) we have big scattering and therefore a small lifetime.

1In the 0K case we get only a contribution to transport from the FS. In this case we get singular
integrals at the FS because of the step in the distribution-function. A more sophisticated method has
to be used in the low-temperature limit to compute transport properties. A powerful method is the
tetrahedron method, described in the Appendix.
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The idea of cold and hot-patches in mind we model the scattering operator Ck with

two different scattering rates in different regions of the FS (shown in figure (5.1)).

Our phenomenological two-patch-model (TPM) tries to improve the coldspot-model

by Millis and Ioffe [29], who argued to obtain the correct temperature dependence of

magnetotransport quantities using only special regions of the FS, namely the ”cold

spots” that are on the diagonals of the first BZ. They gave four general reasons why

the FS should be governed by two different lifetimes, dependent on the position on the

FS. Hlubina and Rice [28] suggested a hot spot model to describe the resistivity. The

cold spot and the hot spot model were compared with their different scattering matrices

in [36].

We are considering both regions in our model to give a better fit of experimental data.

The mentioned models show that both can describe single data well, but not a set of

different transport properties. Furthermore we consider heat transport that seems to

be influenced by the hot regions. That’s why we consider both region in our approach.

Zheleznyak et al. [5] claimed to get good agreement with experimental results by con-

sidering two regions (a cold and a hot one) with different lifetimes τ1 and τ2. This

group suggested a ratio between the relaxation rates in the cold and the hot regions of

τ1
τ2
≈ 3.9. With this ratio of the lifetimes they were able to fit experimental data for the

AC Hall-effect well. Our goal is slightly different as we want to introduce a model that

fits experimental DC-data of different transport quantities, which are given in chapter

4, for the NS of BSCCO. Anyway the ratio they claim for τ1
τ2

is important as it gives

us a hint whether our model is reasonable or not.

As scattering in the cold regions is smaller than in the hot regions, (quasi)particles in the

two regions have different average velocities. The knowledge of the energy-dispersion

(→ FS) allows us to compute the velocities vc and vh in the regions of our interest. We

are using a dispersion relation that was proposed in [16].

In this chapter we will follow the ideas given above. Our first task is to find a

possibility to describe the two different regions (cold and hot regions) of the FS in a



30

mathematical way. This is done in section 5.1.

As we are interested in the temperature dependence of transport quantities we have

to consider every possible scattering around the FS and apply a temperature dependence

to it. We split the first BZ symmetrically into cold and hot regions in order to get a

symmetrical scattering matrix.

As a first approximation we use step-functions (θ-functions) to describe the cold and

the hot regions of the FS. Later we will switch to functions that change in a smooth

way between the cold region and the hot region. Of course the smooth change between

the two regions is more sensible from a physical point of view. However it complicates

the calculations.

In section 5.2 the FS of BSCCO is reproduced by a tight binding fit. Velocities and

densities of states are derived for the different regions. We conclude the chapter with

analytical calculations of transport quantities whose experimental values are given in

chapter 4.

5.1 How to describe the idea of hot and cold regions?

As a first try to describe the two regions we introduce a very easy but discontinuous

model. We are starting with the case T = 0K, which means we are completely restricted

on the FS.

In this (discontinuous) model two step-functions, defined on the FS, are used to describe

the cold and the hot region in every quadrant of the first BZ. The model is generalized

to temperatures T > 0K afterwards. After this we will improve this model and will

introduce a model that describes a smooth change between the cold and the hot region.

5.1.1 Description with step-function

Starting with the zero-temperature case we define two step-functions Φ and Ψ on the

FS in the following way:

Φk =







1 in cold region

0 otherwise
(5.1)



31

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
��������������� k

k

x

y

θ

θ
COLDCOLD

COLD COLD

Figure 5.1: The cold region of the first BZ is symmetrically divided into cold and hot
regions. We can model the cold region by a product of four θ-functions. Note that the
angle θ parameterizes the size of the cold region.

Ψk =







1 in hot region

0 otherwise
(5.2)

Note that these functions are only defined on the FS!

We normalize the length of the arc to 1, i.e. we normalize the length of the FS in the

first quadrant to 1. Now we can write that the length of the cold region of the Fermi

surface has the length α.2 Figure 5.2 shows the geometry which we introduced above.

The two step functions Φ and Ψ allow us to write down the scattering matrix Ck,k′

used in the collision operator Ck =
∑

k′ Ck,k′ [gk′ − gk] in the following way

Ck,k′ = aΦkΦk′ + bΨkΨk′ + c[ΦkΨk′ + Ψk′Φk′ ] (5.3)

2The arc is normalized to one using 1
Nk

∑

k
[Φk + Ψk] = 1. So the length of the cold region, α, can

be easily obtained from α = 1
Nk

∑

k
Φk.
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Y

M

M

Γ

Ψ

Ψ

Φ
α

(1−
α)

π /a

π /a

Figure 5.2: The figure shows the FS with the cold and the hot regions for the T = 0K-
case. The functions Ψ and Φ are defined in the way described in the text. Normalizing
the length of the arc of the FS to 1 allows us to write the length of the cold region as α.

where the constant a represents the scattering inside the cold region, constant b rep-

resents the scattering in the hot region and the constant c represents the inter-patch

scattering.3

Note that the scattering matrix is constructed in a symmetrical way (especially the last

term in (5.3) was symmetrized!). That means it is symmetric around the Γ-Y-direction

like shown in figure 5.2. The symmetric construction of this operator will become of

great help later.

We give the constants a,b and c inside the collision-operator (5.3) of our model the

following phenomenological temperature-dependences:

a = ā · T 2 (5.4)

b = b̄ (5.5)

c = c̄ · T (5.6)

where ā, b̄ and c̄ are temperature independent. In other words scattering inside the

cold region is ∝ T 2, scattering inside the hot region is independent of temperature and

scattering between the two regions is ∝ T . This choice is reasonable as the lifetime

inside the cold region is FL-like, thus ∝ T 2, as (quasi)particles in this region have a

3In the cold-spot model of Millis and Ioffe [29] the scattering matrix is constructed with terms ∝ sin2

and cos2 obeying the lattice symmetry. So they can generate a model that has big scattering in the
hot region and small scattering in the cold region.
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quite big lifetime. We know from experiments that the resistivity perpendicular to

the CuO2-planes, ρc, which is governed by the hot regions as the inter-plane hopping is

maximal for momenta parallel to (π, 0), is almost independent of temperature [18]. Thus

the temperature dependence of a and b is reasonable. For c we choose a temperature

dependence that is between T 2 and T 0. So we apply a temperature dependence ∝ T .

We know from chapter 3 that summing over the scattering matrix
∑

k′ Ck,k′ gives us the

inverse relaxation time τ−1
k . Thus this calculation will tell us the (different) relaxation

times in the cold and in the hot regions.

1

τk
=

∑

k′

Ck,k′ = aΦk

∑

k′

Φk′ + bΨk

∑

k′

Ψk′ + cΦk

∑

k′

Ψk′ + cΨk

∑

k′

Φk′

=
∑

k′

Φk′ [aΦk + cΨk] +
∑

k′

Ψk′ [cΦk + bΨk]

= α[aΦk + cΨk] + (1− α)[cΦk + bΨk]

with the area of the cold region α =
∑

k Φk and the area of the hot region 1−α =
∑

k Ψk.

A general expression for the relaxation time has the form:

τk =
1

ΦkCΦ + ΨkCΨ
(5.7)

with the constants CΦ = αa+(1−α)c and CΨ = αc+(1−α)b. When we generalize to

the case of functions that change smoothly between the patches we have to remember

this.

Using this result we find an expression for the relaxation times in our model (in the

case of step functions): 4

τk =







1
αa+(1−α)c in cold region, τc

1
αc+(1−α)b in hot region, τh

(5.8)

with the relaxation time in the cold region τc and in the hot region τh respectively.

Zheleznyak et al. [5] pointed out that the ratio between the two scattering times τc

4When we insert the temperature dependence for a,b and c given in equations (5.4) (to get a
dimensionless result) we obtain: τc = h̄

α h̄ā

k2
B

(kBT )2+(1−α) h̄c̄
kB

(kBT )
and τh = h̄

(1−α)h̄b̄+α h̄c̄
kB

(kBT )
, where we

have multiplied by h̄ to define everything in terms of energies. The dimension of the relaxation time is
[τ ] = 1s.

We obtain the following dimensions:
[

h̄ā
k2

B

]

= 1
eV

,
[
h̄b̄
]

= eV and
[

h̄c̄
kB

]
= 1. These should be the

quantities we are searching for. As we are searching for these quantities (given in terms of energies) we
have to give the temperature in eV and multiply by a factor (because of h̄!) in our program.
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and τh is of interest to fit experimental results for the Hall-conductivity. If we look

at the low and at the high-temperature limit of this ratio we get a linear temperature

dependence for this ratio, which means the ratio between the two lifetimes τc and τh is

not independent of temperature:

τh(T )

τc(T )
=

αa + (1− α)c

αc + (1− α)b
=

αāT 2 + (1− α)c̄T

αc̄T + (1− α)b̄
= T

αāT + (1− α)c̄

αc̄T + (1− α)b̄

lim
T→0

τh(T )

τc(T )
=

c̄

b̄
· T =

τh

τc
[T, α = 0]

lim
T→∞

τh(T )

τc(T )
=

ā

c̄
· T =

τh

τc
[T, α = 1]

In the low-temperature-limit we get a result that represents the case where we don’t

have a cold region. The whole first BZ is hot for T → 0K. The opposite limit represents

the case of no hot region, thus the whole BZ is cold for T →∞.

The step-functions we are using in this subsection allow us to write arbitrary veloc-

ities v in terms of a ”cold” and a ”hot” velocity:

v = vcΦk + vhΨk (5.9)

The underlying assumption is that there is only one velocity in every patch. Later we

are generalizing the idea of two different velocities in each patch and will compute the

velocity at every point and decide what the character of the point is (cold or hot?).

It is of peculiar interest how the scattering matrix Ck,k′ acts on an arbitrary velocity

vk. This problem is also pointed out in the article of Abrahams and Varma [38] that

constructed a different model to describe transport for cuprates.5 The symmetrical

construction of the scattering matrix Ck,k′ and the fact that every velocity (at the FS)

has its negative velocity on the opposite side of the FS tells us that the sum
∑

k′ Ck,k′vk′

over the FS (later over the whole BZ) vanishes in our model,

∑

k′

Ck,k′vk′ = 0 (5.10)

5In their small angle forward scattering model they model the scattering operator Ck,k′ such that
it contains a large angle scattering part and a small angle forward scattering part.
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Due to the factor
∂f0

k

∂εk
in the BE the equation allows only wave-vectors on the FS to be a

solution of it in the case of zero temperature. However our interest in the temperature

dependence of transport quantities forces us to raise the temperature.

When we raise the temperature from 0K to some finite temperature the term
∂f0

k

∂εk
given

in the BE, is no more a δ-function. It’s like a Gaussian with some width which is ≈ kBT .

This fact makes it necessary to split the complete first BZ into a cold and a hot part, as

shown in figure 5.1. In order to conserve the symmetry of Ck,k′ , the symmetry around

the diagonals should be conserved. This fact forces us to parameterize the cold and hot

regions in a way similar to the suggestion of Hlubina and Rice [28].

At finite temperature we describe the cold area of our model in the first quadrant of

the BZ as a product of four step functions (compare to figure 5.3). An angle dependent

parameterization of this region seems obvious, as this allows us to vary the size of the

cold (thus also of the hot) region. Constants that only depend on an angle θ (which

parameterizes the size of the cold region) are introduced. The θ-dependence of the

constants is given by:

a = cot(θ) > 0 (5.11)

b = tan(θ) > 0, a > b (5.12)

c = π(1− tan(θ)) > 0 (5.13)

d = π(1− cot(θ)) < 0 (5.14)

These constants allow us to write down four lines that separate the cold and the hot

regions. Figure 5.3 shows how we split the first BZ into these two regions. It also tells

us how to write down the cold regions using step-functions.

As there are four separated cold regions we obtain four cold areas in the first BZ. Only

one of them is described in figure 5.3.

As we started to write the cold region with the function Φk in the T = 0K-case, will

continue with this notation. The whole cold region is given by:

Φ(k) =
4∑

i=1

Φi(k) (5.15)
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Figure 5.3: The cold region of the first quadrant of the BZ is described as a product of
four θ-functions, which are determined by the angle-dependent constants a, b, c and d.

where the Φi(k) are given by

Φ1(k) = Θ(akx − ky)Θ(ky − bkx)Θ(bkx + c− ky)Θ(ky − akx − d)

Φ2(k) = Θ

(

−1

b
kx − ky

)

Θ

(

ky +
1

a
kx

)

Θ

(

−1

a
kx + c− ky

)

Θ

(

ky +
1

b
kx − d

)

Φ3(k) = Θ(bkx − ky)Θ(ky − akx)Θ(akx − d− ky)Θ(ky − bkx + c)

Φ4(k) = Θ

(

−1

a
kx − ky

)

Θ

(

ky +
1

b
kx

)

Θ

(

−1

b
kx − d− ky

)

Θ

(

ky +
1

a
kx + c

)

with the indices i referring to the cold region in the four quadrants. As everything that

is not cold is hot (in the case of the step-function) the cold regions describe the hot

region indirectly, using Ψk = 1− Φk.

The case of the description of the cold/hot region with step-functions is very useful, as

it teaches us how to describe the regions when dealing with a smooth change between

them.

5.1.2 Description with a smooth function

In the previous subsection we described the cold and hot regions with a discontinuous

function, a θ-function. Due to this discontinuous change between this regions the

lifetime around the FS also changes discontinuously (compare to (5.8)) which is very

unlikely in nature. We try to get rid of this discontinuity by introducing a function

that changes rapidly but smoothly between the cold and the hot region. Another
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reason for an introduction of a smooth change between the cold and the hot region

is the divergence of the magnetoresistance in the case of the step function (described

below).

Zheleznyak et al. suggested a smooth transition function [6] that has the properties we

Ψ Φ

HOT COLD

2w

Figure 5.4: The figure shows the case where cold and hot regions have an overlap in
common. The transition width w is a parameter what allows to study the effects of this
region on transport properties. Note that the functions Φ and Ψ don’t vanish completely
outside the transition region.

are interested in. In this section we will replace the θ-function by a smooth functions,

making the substitution6

θ(x) → lim
w→0

1 + tanh x
w

2
(5.16)

with the transition width w explained in figure 5.4. Note that the functions Φ and

Ψ don’t vanish completely outside the transition region! So we have some finite (very

small) contribution of one function in the other patch next to the transition region

(compare to figure 5.4). In the case of the smooth change between the cold and the hot

region we have to use equation (5.7) for the calculation of τk.

As we choose a function with a variable width w the θ-function used before can be

obtained from the limit θ(x) = limw→0
1+tanh x

w
2 .7

The variable width w allows us to study the effect of a change in w on the transport

properties of cuprates. We’ll see what transport quantity is sensitive to the width w

and which is not.

Similar to the case of the step function we can write the cold region, this time only

6One can easily show that the relation
1+tanh x

w
2

= 1−f
(

x
w/2

)

is valid, where f is the Fermi-function,

f(x) = 1
eβx+1

.

7Note that this smooth function decays exponentially for |x| > 2w!
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in the first quadrant, as a product of four tanh-functions. The cold region of the first

quadrant is now given by:

Φk =
4∏

i=1

Φi(k) (5.17)

with

Φ1(k) =
1

2

[

1− tanh

(
ky − akx

w

)]

Φ2(k) =
1

2

[

tanh

(
ky − bkx

w

)

+ 1

]

Φ3(k) =
1

2

[

1− tanh

(
ky − bkx − c

w

)]

Φ4(k) =
1

2

[

tanh

(
ky − akx − d

w

)

+ 1

]

where the coefficients a, b, c, d (given in equation (5.11) etc.) are determined by the

angle θ that determines the size of the cold region. Note that we insert the factor 1
16 ,

because every function Φ1(k) - Φ4(k) makes a jump of the height 2. Thus each function

Φ1(k) - Φ4(k) has to be divided by 2.

Note that equation (5.7) simplifies to (5.8) in the limit w → 0.

Finally we plot the difference between the discontinuous and the continuous change

between the regions in figure (5.5). The ”3D-plot” illustrates the TPM.

We conclude this section with a final remark on the functions that describe the cold

and the hot regions.

By construction the functions Ψ and Φ have the same symmetry as the FS which will

be introduced in the next section. Thus the introduced functions Φk,Ψk are even

functions. They are symmetric to the kx and ky-axis (they have fourfold-symmetry!).

It is shown in the Appendix that the derivatives of these functions, ∂Φk

∂kx/y
, ∂Ψk

∂kx/y
, are

odd functions. Also the useful relation ∂Φk

∂kx
= −∂Ψk

∂kx
(the same is of course valid for

derivatives with respect to ky) is shown there.
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Figure 5.5: The upper picture shows the case of the step functions. So the cold and the
hot regions are strictly separated. The lower picture shows the case of a smooth change
between the two regions with w = 0.1. The angle of both cases is θ = π/6.



40

i ci/eV ηi

1 0.1305 1

2 -0.5951 1
2 [cos(kx) + cos(ky)]

3 0.1636 cos(kx) · cos(ky)

4 -0.0519 1
2 [cos(2kx) + cos(2ky)]

5 -0.1117 1
2 [cos(2kx) cos(ky) + cos(2ky) cos(kx)]

6 0.0510 cos(2kx) · cos(2ky)

Table 5.1: The table shows the parameter suggested by [16] to fit the FS of BSCCO.

5.2 Constructing the Fermi-surface

Our main goal is to calculate the temperature dependence of transport properties of

cuprates within the TPM-framework. A good knowledge of the FS is of peculiar interest

for the computation of magnitudes like velocities, densities of states etc.. The detailed

shape of the FS is very important to derive transport-quantities like DC-conductivity,

Hall-conductivity etc., from the model in a numerical way.

To model the FS of BSCCO we follow the tight-binding fit given by Norman [16].

The tight binding fit contains hopping up to the fifth nearest neighbor! Note that we

used this fit to generate the FS showed in figure 2.4.

From the FS we can derive the velocity at every point inside the first BZ and the density

of states N(ε). Quantities we will need for further calculations.

The FS of Bi2212 is reproduced by ξ(kx, ky) = 0, where ξ(kx, ky) is given by:

ξ(kx, ky) =
6∑

i=1

ci · ηi(kx, ky) (5.18)

with the values ci, ηi given in the table below: Obviously we didn’t write down explicitly

the lattice-spacing a in every function given in the table above. The lattice constant a

for BSCCO is given by

a = 3.76 · 10−10m = 3.76A◦ (5.19)
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The FS of BSCCO has, as the lattice, fourfold symmetry like it is shown in figure 2.4.

5.2.1 Velocities in the cold and in the hot regions

It was pointed out by Zheleznyak [5] that the velocity and the relaxation time varies

in the two regions. His group considered only two values, a cold and a hot one, for

these quantities to describe the transport process, whereas we are going to compute the

velocity (from the energy-dispersion-relation given in (5.18)) and the relaxation time

(compare to (5.8)) for each (discretized) point inside the first BZ.

In order to get a feeling for the magnitude of the velocity in the cold and hot region of

optimally doped Bi2212 we need to figure out the energy gap in the dispersion-relation

in the directions (π, π) and (0, π). Experimental data for optimally doped Bi2212, given

in [13], show that the energy difference ∆ε in M − Y -direction is ∆εMY = 0.087eV . In

the diagonal direction, Γ− Y -direction, the difference is given by ∆εΓY = 0.6eV .

The absolute values of the two different velocities vc and vh
8 can be computed from the

values of ∆ε given above. Figure (5.6) describes which k-points we have to determine

to estimate the absolute value of the velocities vc and vh.

We obtain the velocities vMY
f and vΓY

f (the cold and the hot velocities) from the

equation, v = 1
h̄

∆ε
∆kf

with the energy-differences ∆ε given in [13]. When we solve the

equations9 ξ(π, kMY
f ) = 0 (⇒ kMY

f = 0.565272· 1
a , a: lattice spacing) and ξ(kΓY

f , kΓY
f ) =

0 (⇒ kΓY
f = 1.23258 · 1

a) we obtain the wave-vectors of interest, described in figure 5.6.

A numerical solution gives us the velocities vMY
f and vΓY

f as

vMY
f = 0.154

eV · a
h̄

(5.20)

vΓY
f = 0.487

eV · a
h̄

(5.21)

and therefore their ratio as:10

vΓY
f

vMY
f

=
vc

vh
= 3.16 (5.22)

8In the program we are computing the velocity at every point of the lattice. A simplification of this
deals with only two different velocities - a cold and a hot velocity.

9Compare to figure 5.6.

10It is interesting that vΓY
f is almost independent on doping. On the other hand vMY

f depends on it.
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Figure 5.6: We introduce the two wave-vectors kMY
f and kΓY

f in this figure. These
wave-vectors allow us (together with the values of ∆ε) to compute the absolute value of
the velocities vc and vh.

Which means particles moving in the cold region move much faster than particles in

the hot region.

Obviously transport properties are connected to the number of available (quasi)particles

as well. Thus our next important step is to compute the density of states in the cold

and in the hot region or better the angle dependent density of energy states N(ε, θ).

5.2.2 Density of energy states in cold and hot region

We want to compute the density of states in the cold and in the hot region of Bi2212

numerically in this subsection. Thus we have to divide the first BZ such that it differs

between cold and hot regions, as shown before. The possibility of changing the size of

the cold region by changing θ has to be included into the density of energy states N(ε).

Inside one patch the densities Nc(ε) or Nh(ε) are only dependent on the energy ε.

The energy-dependent density of states N(ε) is defined in the following way:

N(ε) =
1

Nk

∑

k

δ(εk − ε) (5.23)

where Nk is the number of considered energy-values.

Figure (5.1) shows the two regions on the FS, which are determined by θ. The tight

binding fit given in equation (5.18) allows us to compute the density of states in the
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cold and in the hot regions (for variable θ), Nc(ε) = 1
Nk

∑

k δ(εk − ε)Φk and Nh(ε)

analogously.

Figure (5.7) shows the energy densities Nc and Nh for different sizes (different θ) of the

cold region. The figure was obtained by a mash of nk = 1024. The energy was splitted

in 500 equal values. Note that the figure represents the case w = 0, thus the case of

step functions.
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Figure 5.7: The two plots show the density of states around the Fermi level, εF =
−0.1305eV . The left picture shows the density of states in the neighborhood of the
Fermi surface in the hot region for different angles θ. The maximum in Nh (van-Hove
singularity) is about 35meV away from the Fermi-level. The density of states in the
cold region, shown in the right picture, changes much more with varying θ than Nh.
The derivative of the density of states changes its sign at the FS at θ ≈ 10◦. For θ ≈ 10◦

the maximum in Nc is on the Fermi surface.

It is remarkable that the distribution in the hot region is quite symmetric around

the van Hove singularity (VHS), which is about 35meV away from the Fermi-energy.

The shape of the density remains the same for different angles θ. Only the absolute

value increases with increasing angle. The first derivative of this density of states at

the Fermi level, which is at εf ≈ −0.13eV , is always negative.

The cold density of states is not as symmetric around the van Hove singularity as it

is the hot one. As can be seen from the graphs Nc decreases with increasing angle θ.

Also N ′
c(εf ) changes its sign, dependent on θ, N ′

c(εf ) = 0 for θ ≈ 10◦. These properties

of N will become important for the calculation of the thermopower.

The change in the sign of N ′
c(εf ) can be understood, as we have two different types of

FS’s dependent on the angle θ. When θ > θcritic we have a closed FS (left figure in
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θ/◦ 2.6 6.5 12.9 19.0 24.6 34.6

α (cold) 0.942 0.856 0.713 0.578 0.453 0.231

1− α (hot) 0.058 0.144 0.287 0.422 0.547 0.769

Nc(θ)|εF
/a3eV 1.72 1.46 0.98 0.51 0.33 0.15

N ′
c(θ)|εF

/a3(eV )2 -15 -9.45 13.7 1.87 0.74 0.29

N ′
c

Nc
|εF

/eV -8.72 -6.47 13.98 3.67 2.24 1.93

Table 5.2: Dependent on the angle θ the density of states and its derivative is computed.

figure 5.8). Therefore the particles are electron-like. For angles θ < θcritic we have an

open FS (right figure). These particles behave like holes.11

θ
criticθ

Γ M

M Y

Γ M

M Y
θcritic θ

Figure 5.8: It can be seen that the FS changes from an open one to a closed FS (de-
pending on the angle θ). Thus the character of the particles changes from electron-like
to hole-like with increasing θ. The left figure shows a closed FS (electrons), whereas the
right figure shows a open FS (holes).

In the table below shows the size of the cold/hot region, the density of states of both

regions at the FS and its first derivatives can be found dependent on θ. The derivatives

of Nc were obtained graphically.

11The critical angle θcritic is given by θcritic ≈ 9.5◦.
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5.2.3 Van-Hove singularities (VHS)

In general we can obtain a singularity or a singular point when the condition ∇· εk = 0

is satisfied.12 In the case of the nearest neighbor hopping we obtain the condition for

singular points

∇ · εk = 2t







sin(kx)

sin(ky)







= 0

that has to satisfied to obtain an extremum in the energy. The condition mentioned

above doesn’t tell us about the character of the extremum.

We obtain nine possible critical points in the first BZ






kx = 0,±π

ky = 0,±π




. The possible

singular points and their character in the case of nearest-neighbor-hopping is shown in

figure (5.9).

Max

Max
Max

Max

Min
Saddle

Saddle

Saddle

Saddle

Figure 5.9: The picture shows the minima/maxima and the saddle points in the energy
obtained from a nearest neighbor hopping model.

As shown in figure (5.9) we obtain VHS, singularities in the density of states, in the

12In the nearest neighbor-hopping case the energy-dispersion has the form known from the Hubbard
model: εk = −2t[cos(kx) + cos(ky)].
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four points: (0, π), (π, 0), (−π, 0) ,(−π,−π).

To compute the energy difference between the Fermi energy and the VHS we have to

use (5.18) which models the FS of Bi2212. In (0, π) we obtain the difference between

the Fermi-energy and the VHS from (5.18) as:

(0.1305eV ) − (0.1636eV ) + (−0.0519eV ) + (0.0510eV ) ≈ −35meV . The (logarithmic)

divergence in the density of states is ≈ 35meV away from the Fermi-energy, which is

in agreement with figure 5.7.

5.3 The different types of transport

It was already pointed out in chapter 3 that the BE includes only two forcing terms,

namely an external electric field E or an external temperature-gradient ∇T .

We are introducing all possible currents j that occur due to one (or both) of the external

fields described above. A electrical current is named je, whereas a heat current jQ has

the label Q. In matrix notation all possible currents are given by:






je

jQ




 =






σ̄ S̄

S̄ κ̄











E

−∇T
T




 (5.24)

with the electrical conductivity tensor σ̄, the thermal conductivity tensor κ̄ and the

thermopower S̄ that connects a temperature gradient with e electric current or vice

versa. The definition given in (5.24) is symmetric as we use the term ∇T/T to describe

the temperature gradient.

Castellani et al. [8] used a slightly different notation as used in (5.24) as they define

the transport equation without dividing by T . Our formulas agree with their results

besides this difference.

Typical sums we have to compute when we are estimating the tensors given in (5.24) are

of the form e2−α∑

kk′ ε
α
kvµ

kÂ−1
kk′

(k)vν
k′

(

− ∂f0
k

∂εk′

)

(compare to [2]), where Â−1 is a matrix

that follows directly from the BE given in chapter 3 and will be introduced in the next

section. Electrical conductivities, σxx, σxy and ∆σxx(B), are obtained for α = 0. In

the case α = 2 we obtain thermal conductivities, like κxy. For α = 1 we obtain e.g.

Sxx. The three different cases will be the object of the following three sections.



47

5.4 Electrical Conductivity σµν

This section deals with electrical, thus charge transport.13 Every moving ”free” particle

carries the charge e.

We are going to compute the DC-conductivity σxx, the Hall-conductivity σxy and the

change in the longitudinal DC-conductivity due to a magnetic field ∆σxx(B) in this

section using the TPM. The results can be compared with the experimental values given

in chapter 4.

Our proceding is exactly the same as in [11] and [38]. We start with a linearized

BE, introduce an operator Â, solve the BE in terms of free particles and finally obtain

a general formula for the conductivity tensor σµν . The choice of the scattering matrix

Ck,k′ is of course different from [38].

In a general approach the current is given by j = e
∑

k vk · gk, with the number of free

particles gk.14 that has to be determined from the BE (3.25) for a DC magnetic field.

Considering the steady-state, isotropic case we can rewrite the BE given in (3.25)

in the following linearized way:

eEvk

(

∂f0
k

∂εk

)

+
e

h̄c
(vk ×B)

∂gk

∂k
= Ck (5.25)

with the external electric field and magnetic field E and B.

The scattering operator Ck has the usual form Ck =
∑

k′
[
Ck,k′gk′ − Ck,k′gk

]
given

in equation (3.5) and the relaxation time of state k is defined as 1/τk ≡
∑

k′ Ck,k′ as

already mentioned in chapter 3. We can solve equation (5.25) by rewriting it as:

[
e

h̄c
(vk ×B) · ∇k +

1

τk

]

gk −
∑

k′

Ck,k′gk′ = (5.26)

= [evkE] ·
(

−∂f0
k

∂εk

)

13Which is equivalent with the case α = 0.

14Actually we have to use g̃k in this formula. As we are interested in the steady state case everything
is expressed in g̃k. So we make the replacement g̃k → gk for the rest of this work. Note that this is not
valid for ∂

∂t
gk 6= 0!
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Defining an operator Âk,k′ , with

Âk,k′ ≡
[

1

τk
+

e

h̄c
(vk ×B) · ∇k

]

δk,k′ − Ck,k′ (5.27)

allows us to write the l.h.s. of (5.26) in the form
∑

k′ Âk,k′gk′ . Therefore we have to

invert Âk,k′ in order to solve equation (5.26). As the magnetic field is treated as a small

perturbation of the transport process we split Âk,k′ into two parts, Âk,k′ = K̂k,k′+M̂B
k,k′

with a magnetic field independent part Kk,k′ , K̂k,k′ = 1
τk

δk,k′ − Ck,k′ , and a part that

contains the magnetic field M̂B
k,k′ , M̂B

k,k′ =
[ e

h̄c(vk ×B) · ∇k

]
δk,k′ . A perturbation-

expansion of Âk,k′ allows us to get the inverse of this operator as

Â−1
k,k′ = K̂−1

k,k′ − K̂−1
k,kiM̂

B
ki,kjK̂

−1
kj ,k′

(5.28)

+ K̂−1
k,kiM̂

B
ki,kjK̂

−1
kj ,kkM̂B

kk,klK̂
−1
kl,k′

+O(B3)

with a summation over repeated indexes. Dependent on the quantity of interest we get

a contribution from the different terms in this expansion. The first term contributes to

the DC-conductivity, the second term to the Hall-conductivity and the third term to

the magnetoresistance.

It follows from the BE (5.26) that the number of ”free” particles contributing to trans-

port is given by

gk = 2
∑

k′

Â−1
k,k′ [evk′E] ·

(

− ∂f0
k

∂εk′

)

(5.29)

with Â−1 given in (5.28). The factor of 2 is due the spin degeneracy.

Using Ohm’s law, jµ = σµνEν we can derive a formula for the electrical conductivity-

tensor σµν by inserting (5.29) in the equation for the current given above, similar like

it was done in (4.2). We obtain the formula for the electrical conductivity in the most

general form:

σµν = 2e2
∑

k,k′

vµ
kÂ−1

k,k′v
ν
k′

(

− ∂f0
k

∂εk′

)

(5.30)

with the inverse of the operator Âk,k′ defined in (5.27) and the factor of 2 due to the

spin.15

15We see at this equation that we are mostly interested how the operator Â−1 acts on an arbitrary
velocity vν .
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It can be seen in (5.28) that our basic task is to figure out how the operator K̂−1 acts

on an arbitrary velocity. It follows immediately from (5.10):

∑

k′

K̂k,k′v
ν
k′ =

1

τk

∑

k′

vν
k′δk,k′ −

∑

k′

Ck,k′v
ν
k′

(5.10)
=

vν
k

τk
⇒

∑

k′

K̂−1
k,k′v

ν
k′ = τkvν

k (5.31)

Note that the second equation follows directly from the first, when we multiply it with

K̂−1.

We are going to use the result, given in (5.31), to get the different conductivities of our

interest.16

5.4.1 DC-conductivity σxx

We obtain the leading term to σxx from the first term in (5.28). When we plug this

term into (5.30) we only get one extra τk in the final answer due to (5.31):17

σxx = 2e2
∑

k

(

− ∂f

∂εk

)

(vx
k)2τk (5.32)

with the functions Φk and Ψk introduced in section 5.1. Equation (5.7) allows us to

compute the T -dependence of σxx. Note that it is impossible to get an offset to the

resistivity at a temperature T = 0K (residual resistivity) when we are dealing with a

finite width w, because the term ΦkCΦ +ΨkCΨ 6= 0 for every point that contributes to

transport. If the transition width w is big enough Ψk vanishes nowhere around the FS.

So we get a temperature independent contribution to the resistivity that is ∝ b̄(1−α).

The fact that we have to choose proper values for the scattering-parameters a, b and

c forces us to try to find out which parameters rule the DC-conductivity. Thus we go on

with an analytical calculation of the DC-conductivity in the case of the step-functions

(w = 0). In the limit w → 0 we can write the scattering time τk as τk = τcΦk + τhΨk.

Our task is to find the contribution from each region to the conductivity, σxx
c and σxx

h .

16Note that K̂−1 conserves the energy. Thus the term
(

−
∂f0

k

∂ε
k′

)

can be put in front of this operator.

17This equation is the starting point for the numerical computation of the DC-conductivity in our
program.
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We are going to use the following formula

lim
w→0

σxx = 2e2
∑

k

(

− ∂f

∂εk

)

(vx
k)2 · (τcΦk + τhΨk) (5.33)

to obtain the DC-conductivity. Because of the fourfold symmetry of the FS it is enough

to compute σxx in the first quadrant (with a proper normalization).18

The dimension of of the conductivity [σxx] = 1
Ωm thus the resistivity for that experi-

mental results are given in chapter 4 has the dimension [ρxx] = Ωm.19 (5.33) shows that

the total resistivity is given by a parallel wiring between the cold and the hot region.20

As the total DC-conductivity is just a sum of a ”cold” and ”hot” part, we concentrate

on the contribution σxx
c from the cold region for the moment.21

lim
w→0

σxx
c = 2 · e2

2
v2
c · τc

1

Nk

∑

k

δ(εk − εf )Φk = e2v2
cNc(εf )

with the density of states inside the cold region Nc(εf ) = 1
Nk

∑

k δ(εk − εf )Φk.

Indeed this equation is a simplification, as the velocity is taken to be constant22 inside

the cold region. Anyway it will give us an idea which parameter is of special importance

for σxx.

The total DC-conductivity is σxx = σxx
c + σxx

h ,

lim
w→0

σxx = e2
[

v2
c τcNc(εf ) + v2

hτhNh(εf )
]

(5.34)

The table, given in the section 5.2 allows us to figure out which term of the two in the

brackets in equation (5.34) is the bigger one. By looking at this table it turns out that

the conductivity is dominated by the cold regions, because the velocity vc (compare

(5.22)!) and the relaxation-time τc is much bigger there.

18The whole function in (5.33) is symmetric around the kx and ky-axis!

19Experimental data are given in [ρxx] = µΩ · cm.

20A dimensional analysis gives us: [σxx] = e2(eV )2a2

h̄2a3 · s · 1
eV

= 1
Ωm

.
Because of the converting of h̄ and e into SI-units we have to insert a factor of 3.698 ·106 , which we call
cfactor, in our program. The numerical value of the conductivity becomes σxx = 3.698 · 106 × RES ×
τ̄
āl

1
Ωm

, where RES is a numerical value obtained by the program. The quantities τ̄ and āl are given in

the following units: [āl] = 1A◦, [τ̄ ] = 10−15s.

21(vx
k)2 =

v2
c
2

22In the program we compute the velocity at every point of the lattice. Thus the assumption of a
constant velocity inside the cold spot is not used!
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Our interest in the temperature dependence of the resistivity forces us to insert the

temperature-dependence of the coupling constants, a, b and c, given in (5.4) into (5.34):

lim
w→0

ρxx =
1

e2

1

v2
c τcNc(εf ) + v2

hτhNh(εf )

=
1

e2

bc(1− α)2 + α(ab + c2) + α2(ac− ab− c2)

v2
cNc(εf )[cα + (1− α)b] + v2

hNh(εf )[aα + (1− α)c]

=
1

e2

b̄c̄(1− α)2 + (αāb̄ + c̄2α− α2āb̄− α2c̄2)T + α2āc̄T 2

v2
cNc(εf )[c̄Tα + (1− α)b̄] + v2

hNh(εf )[āT 2α + (1− α)c̄T ]
T

T→0≈ 1

e2
· (1− α)c̄

v2
cNc(εf )

·







b̄(1− α) + α
(

āb̄+c̄2

c̄

)

· T

(1− α)b̄ + c̄

[

α +
(

vh
vc

)2 Nh(εf )
Nc(εf ) (1− α)

]

· T






· T

=
1

e2

(1− α)c̄

v2
cNc(εf )

·







1 + α
1−α

[
ā
c̄ + c̄

b̄

]

· T

1 + c̄
b̄

[

α
1−α +

(
vh
vc

)2 Nh(εf )
Nc(εf )

]

T







︸ ︷︷ ︸

Taylor−expansion

·T

A Taylor expansion of the marked term to first order gives us an easy result for the

DC-resistivity in the low temperature limit:

lim
w→0

ρxx =
1

e2
· (1− α)c̄

v2
cNc(εf )

·
[

T +

(

α

1− α

ā

c̄
− c̄

b̄

(
vh

vc

)2 Nh(εf )

Nc(εf )

)

· T 2

]

(5.35)

Experimental data (compare to chapter 4) show that the DC-resistivity is propor-

tional to T in a large temperature range (up to temperatures ≈ 1000K!). In the limit

of low temperatures and w = 0 we can write the resistivity ρxx in a linear form,

ρxx = ρ0 +
∆ρxx

∆T
· T (5.36)

with the zero-temperature offset ρ0 and the slope ∆ρxx

∆T . Note that we are able to obtain

an offset in the resistivity (from the hot-scattering b) within the framework of our model

by inserting a finite transition width w into the model.

We obtain the linear temperature dependence of the resistivity, because the correction

in (5.35) is quite small as it contains a factor ∝ T 2, also in our TPM.

lim
T,w→0

ρxx(T ) =
1

e2
· (1− α)c̄

v2
cNc(εf )

· T (5.37)

As we know the velocity in the cold region from equation (5.20) and Nc(εf ) from

the table given in section 5.2, we can use equation (5.37) to estimate the value of the
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parameter c̄. In a first guess we set α = 0.5, which is the case when the first BZ is

equally divided into a cold and a hot area.

It can be seen in equation (5.37) that the slope is governed by c̄.

As we are interested in the description of Bi2212, we have to choose c̄ in such a way

that it matches the slope that is experimentally measured. Just to get an impression

of the magnitude of c̄ we insert the experimental value for the slope of Bi2212 which is

roughly given (compare to chapter 4) by

∆ρxx

∆T
|Bi2212 ≈ 0.5

µΩcm

K
(5.38)

A comparison of this quantity with (5.37) allows us to obtain a first guess for c̄.

We find out that c̄ ≈ 0.5 · 1012 1
sK for Bi2212.

Our interest in dimensionless quantities forces us to multiply this value with h̄
kB

. We

obtain as a first guess for h̄c̄
kB

: h̄c̄
kB
≈ 5. This result will be the starting value for the

fitting procedure. For sure we will have to change it slightly especially when we insert

a finite w but this gives us a quite good starting point for h̄c̄
kB

.

Another important quantity, the Hall-angle, shows a proportionality ∝ T 2 (compare

to section 4.2).

It is necessary to compute the Hall-conductivity σxy to obtain the Hall-angle cot θH(T ).

Once we figured out σxy we will concentrate on the temperature dependence of the Hall-

angle in the framework of the TPM and compare it to experimental results.

5.4.2 Hall-conductivity σxy

Figure 5.10 sketches the geometry of the applied external fields in the Hall-experiment.

The electric field yields to the x-direction and the magnetic field in z-direction.

We obtain σxy also from (5.30), but the leading contribution to it is obtained from

the second term (5.28), thus we replace Â−1
k,k′ → −K̂−1

k,k′M̂k′,k′′K̂
−1
k′′,k′′′ in (5.30). 23

Again we make use of the relation given in (5.31): K̂−1v = τkv. Inserting this formulas

23It is clear that we can’t get a Hall-conductivity without an magnetic field! Thus the second term
in (5.28) gives the first contribution.
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Figure 5.10: The geometry of the Hall-experiment.

into (5.30) gives us σxy. The important term inside the the operator Â−1 is (vk×B)·∇k,

given by the magnetic field. It can be written as

(vk ×B) · ∇k = B(vy
k · ∂kx − vx

k · ∂ky) (5.39)

We obtain σxy with a minus sign in front of the expression due to (5.28).24

σxy = −2 · e2
∑

k,k′,k′′,k′′′

vx
kK̂−1

k,k′M̂k′,k′′K̂
−1
k′′,k′′′v

y
k′′′

(

− ∂fk

∂εk′′′

)

(5.39)
= −2 · e3B

h̄c

∑

k′,k′′

τk′v
x
k′

[

vy
k′ · ∂k′x − vx

k′ · ∂k′y

]

δk′,k′′τk′′v
y
k′′

(

− ∂fk

∂εk′′

)

= −2 · e3B

h̄c

∑

k′

τk′v
x
k′

[

vy
k′ · ∂k′x − vx

k′ · ∂k′y

]

τk′v
y
k′

(

− ∂fk

∂εk′

)

which can be simplified to the final formula for the Hall-conductivity σxy: 25

σxy = −2
e3B

h̄c

∑

k

τkvx
k

[

vy
k · ∂kx − vx

k · ∂ky

]

τkvy
k

(

−∂fk

∂εk

)

(5.40)

that contains derivatives of the velocity and of the scattering time τk with respect to kx

and ky. Exactly the same formula is given in [34]. This equation is the starting point

of the computation of σxy used in our program.

24The factor of 2 is inserted because of the spin.

25Note that the magnetic field B, used in this equation, has not the dimension T . Here [B] = V
m

, thus
[

B
c

]
= V ·s

m·m
= T . A dimensional analysis of this formula gives us (in SI-units): [σxy] = e3B·c

h̄c·c
1

m3
1

eV
·

sm
s

m
s
· m · s · m

s
= e2·V ·s

m2·eV ·s
m
s

1
V

= 1
Ω·m

. Remember that h̄ = 6.5822 · 10−16eV · s. It is convenient to
write all the constants in terms of atomic quantities.
In our program we have the numerical equation: σxy = 85.356 · ã ·B̄ · τ̄ 2×RES 1

Ωm
, where the quantities

are given in same terms as introduced before and RES is the numerical result given by our program.
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We can write the scattering time τk, (given in equation (5.7)) in the way τk =

1
Φk[αa+(1−α)c]+Ψk [cα+(1−α)b] , what allows us to compute the derivative of τk with respect

to kx or ky using the quotient-rule.26

∂τk
∂kx

= −τ2
k

[

CΦ
∂Φk

∂kx
+ CΨ

∂Ψk

∂kx

]

= −τ2
k

∂Φk

∂kx
[CΦ − CΨ] (5.41)

∂τk
∂ky

= −τ2
k

[

CΦ
∂Φk

∂ky
+ CΨ

∂Ψk

∂ky

]

= −τ2
k

∂Φk

∂ky
[CΦ − CΨ] (5.42)

with the temperature dependent constants CΦ = αa+(1−α)c and CΨ = αc+(1−α)b.

Finally we write down the total Hall-conductivity combining the result given in (5.41)

with (5.40).

σxy =

σxy
1 ∝τ2

︷ ︸︸ ︷

−2
e3B

h̄c

∑

k

(

−∂fk

∂εk

)

τ2
kvx

k

[

vy
k ·

∂vy
k

∂kx
− vx

k ·
∂vy

k

∂ky

]

(5.43)

+ 2
e3B

h̄c

∑

k

(

−∂fk

∂εk

)

τ3
kvx

k(vy
k)2 [CΦ −CΨ]

∂Φk

∂kx
︸ ︷︷ ︸

σxy
2 ∝τ3

− 2
e3B

h̄c

∑

k

(

−∂fk

∂εk

)

τ3
k(vx

k)2vy
k [CΦ −CΨ]

∂Φk

∂ky
︸ ︷︷ ︸

σxy
3 ∝τ3

This means we get three terms that give a contributions to the Hall-conductivity. The

same reasoning as in the case of the resistivity states that we obtain also an offset to

the Hall-conductivity when inserting a finite width w into our model.

The first term, σxy
1 , which contains the derivatives of the velocity, and the terms σxy

2

and σxy
3 that contain derivatives of the relaxation time τk with respect to kx and to ky.

It turns out in the numerical analysis of (5.43) that we get the main contribution to

σxy from the first term σxy
1 in the low temperature limit (up to 400K) for sufficient big

w. However for small w it becomes more and more important. So we can recover the

T 3-dependence of σxy from (5.43).

26Remember the property ∂Φk

∂kx
= − ∂Ψk

∂kx
and ∂Φk

∂ky
= − ∂Ψk

∂ky
shown in the Appendix.



55

Hall-angle tan θH(T )

The ratio between the two conductivities σxy and σxx is called Hall-angle and is defined

in the manner:

tan θH(T ) =
σxy

σxx
(5.44)

It was shown in chapter 4 that we would expect the same temperature dependence of

cot θH as σxx has in a simple Drude model. But the experiments described in chapter

4 showed that cot θH ∝ T 2. Thus σxy should be proportional to T−3.

When we insert the equations given in (5.32) and (5.43) we arrive at this formula for

the inverse Hall-angle:

cot θH(T ) =
2e2∑

k

(

− ∂f
∂εk

)

(vx
k)2τk

σxy
(5.45)

with the denominator given in (5.43). So we can compute the Hall-angle numerically.

This allows us to check the temperature-dependence of the Hall-angle that is experi-

mentally measured.

The next quantity of interest that can be achieved from the electrical conductivity is

the magnetoresistance.

5.4.3 Magnetoresistance MR

The divergence in the MR in the case w = 0 was pointed out by Zheleznyak et al. [6].

This divergence forced us to introduce a smooth change between the cold and hot re-

gions in section 5.1.

When we apply a electric field and a magnetic field in the manner shown in figure (5.10)

we obtain a higher resistivity, as there are electrons bended from their straight move-

ment (‖E) due to an additional force (Lorenz-force!). Thus we expect the resistivity to

grow. The MR tells us how the resistivity changes when we turn on a magnetic field.

It is defined by:

MR =
∆ρxx(B)

ρxx(0)
(5.46)

with the longitudinal resistivity ρxx(B) with and ρxx(0) without an external magnetic

field B.
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As we know the solution for the conductivity σµν , equation (5.30), we would like to

write equation (5.46) in a more convenient form.

∆ρxx(B)

ρxx(0)
=

ρxx(B)− ρxx(0)

ρxx(0)
=

ρxx(B)

ρxx(0)
− 1

=
σxx(0)

σxx(B)
− 1 =

σxx(0)

∆σxx(B) + σxx(0)
− 1 = − ∆σxx(B)

∆σxx(B) + σxx(0)

≈ −∆σxx(B)

σxx(0)

A more sophisticated approximation gives us ∆ρxx(B)
ρxx(0) = −∆σxx(B)

σxx(0) − tan2 θH [6], which

we are going to use for the MR.

MR = −∆σxx(B)

σxx(0)
− tan2 θH (5.47)

with the Hall-angle tan θH defined in (5.44) and σxx(0) known from (5.32). ∆σxx(B)

is the only unknown quantity in (5.47).

Again we only take the leading order contribution to the MR, to be accurate to

∆σxx(B), given by the third term in (5.28). Note that the first order term in (5.28)

doesn’t give a contribution to σxx(B), because σxx(B) ∼∑k vx · (M̂B × vx) = 0, which

means that we get the first contribution to σxx(B) from the third term in (5.28), which

is K̂−1M̂BK̂−1M̂BK̂−1.

Therefore ∆σxx(B) is obtained from27

∆σxx(B) = 2e2
∑

k,k′,k′′,k′′′,k′′′′,k′′′′′

vx
kK̂−1

k,k′M̂k′,k′′K̂
−1
k′′,k′′′M̂k′′′,k′′′′K̂

−1
k′′′′,k′′′′′v

x
k′′′′′

(

− ∂f0

∂εk′′′′′

)

We know that as well the scattering operator K̂−1 as the operator due to the magnetic

field M̂B conserve the energy.28 Therefore we can put the partial derivative of the

Fermi-function in front.

Again we use (5.31) and simplify the equation above to:

∆σxx(B) = 2e2
∑

k′,k′′,k′′′

(

− ∂f

∂εk′

)

τk′v
x
k′M̂k′,k′′K̂

−1
k′′,k′′′ ·

∑

k′′′′

M̂k′′′,k′′′′τk′′′′v
x
k′′′′

27Again we insert the factor of 2 due to the spin.

28Remember that M̂B just rotates the direction of the velocity. It doesn’t change its magnitude!
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Our next task is to simplify the last sum on the r.h.s,
∑

k′′′′ M̂k′′′,k′′′′τk′′′′v
x
k′′′′ .

∑

k′′′′

M̂k′′′,k′′′′τk′′′′v
x
k′′′′ =

eB

h̄c

∑

k′′′′

[

vy
k′′′∂k′′′x

− vx
k′′′∂k′′′y

]

δk′′′.k′′′′τk′′′′v
x
k′′′′

=
eB

h̄c

[

vy
k′′′∂k′′′x

− vx
k′′′∂k′′′y

]

τk′′′v
x
k′′′

=
eB

h̄c
τk′′′

[

vy
k′′′∂k′′′x

vx
k′′′ − vx

k′′′∂k′′′y
vx
k′′′

]

+

+
eB

h̄c
vx
k′′′

[

vy
k′′′∂k′′′x

τk′′′ − vx
k′′′∂k′′′y

τk′′′
]

We already calculated the derivative ∂kxτk in (5.41). So we simplify this equation by

using this result:

∑

k′′′′

M̂k′′′,k′′′′τk′′′′v
x
k′′′′ =

eB

h̄c

{

τk′′′
[

vy
k′′′∂k′′′x

vx
k′′′ − vx

k′′′∂k′′′y
vx
k′′′

]

+ τ2
k′′′ (CΦ −CΨ)

[

vx
k′′′v

x
k′′′

∂Φk

∂ky
− vx

k′′′v
y
k′′′

∂Φk

∂kx

]}

with the temperature dependent constants CΦ and CΨ defined before. So we get a

contribution that is ∝ τ and another part ∝ τ 2 from this part.

When we insert this result in the equation above, the initial equation becomes:

∆σxx(B) = 2e2
∑

k′,k′′,k′′′

(

− ∂f

∂εk′

)

τk′v
x
k′M̂k′,k′′K̂

−1
k′′,k′′′

·
[
eB

h̄c

{

τk′′′
[

vy
k′′′∂k′′′x

vx
k′′′ − vx

k′′′∂k′′′y
vx
k′′′

]

+

+τ2
k′′′ (CΦ − CΨ) ·

[

vx
k′′′v

x
k′′′

∂Φk

∂ky
− vx

k′′′v
y
k′′′

∂Φk

∂kx

]}]

Now we have to analyze how the operator K̂−1 acts on the term on its right. As usual

the operator K̂−1 just puts another scattering time τk in front of the term.29 So we get

rid of another sum and obtain:

∆σxx(B) = 2
e3B

h̄c

∑

k′,k′′

(

− ∂f

∂εk′

)

τk′v
x
k′M̂k′,k′′

·
{

τ2
k′′

[

vy
k′′∂k′′x vx

k′′ − vx
k′′∂k′′y vx

k′′

]

+

+τ3
k′′ (CΦ − CΨ)

[

(vx
k′′)

2 ∂Φk′′

∂k′′y
− vx

k′′v
y
k′′

∂Φk′′

∂k′′x

]}

29The term in the big bracket on the left side is antisymmetric as τk and ∂kxvx
k etc is symmetric and

v and ∂Φk/∂kx etc. is antisymmetric. Thus summing the symmetric scattering-matrix Ckk′ over the
first BZ gives us a zero-contribution!
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Now we apply the second magnetic term M̂B on its right side. Summing over k′′ gives

us:

∆σxx(B) = 2
e4B2

(h̄c)2

∑

k′

(

− ∂f

∂εk′

)

τk′v
x
k′

[

vy
k′∂k′x − vx

k′∂k′y

]

· (5.48)

·







τ2
k′

[

vy
k′∂k′xvx

k′ − vx
k′∂k′yvx

k′

]

︸ ︷︷ ︸

τ2−term

+ τ3
k′ (CΦ − CΨ)

[

(vx
k′)

2 ∂Φk′

∂k′y
− vx

k′v
y
k′

∂Φk′

∂k′x

]

︸ ︷︷ ︸

τ3−term







The τ2-term gives two contributions, which are obtained by doing a derivative of the

square bracket and of τ 2
k. The derivative of the square bracket is easy to be done. As

regard the derivative of
∂τ2

k

∂kx
and

∂τ2
k

∂ky
using the relation between Φ and Ψ we obtain:

∂τ2
k

∂kx
= −2τ3

k

∂Φk

∂kx
[CΦ −CΨ] (5.49)

∂τ2
k

∂ky
= −2τ3

k

∂Φk

∂ky
[CΦ − CΨ] (5.50)

Inserting (5.49) and (5.50) into the expression of the τ 2-term we obtain:

τk′v
x
k′
[

vy
k′∂k′x − vx

k′∂k′y

]

· τ2
k′

[

vy
k′∂k′xvx

k′ − vx
k′∂k′yvx

k′

]

= τ3
k′v

x
k′

[

vy
k′

∂vy
k′

∂k′x

∂vx
k′

∂k′x
+ (vy

k′)
2 ∂2vx

k′

∂(k′x)2
− vy

k′
∂vx

k′

∂k′x

∂vx
k′

∂k′y
− vy

k′v
x
k′

∂2vx
k′

∂k′x∂k′y

− vx
k′

∂vy
k′

∂k′y

∂vx
k′

∂k′x
− vx

k′v
y
k′

∂2vx
k′

∂k′y∂k′x
+ vx

k′

(

∂vx
k′

∂k′y

)2

+ (vx
k′)

2 ∂2vx
k′

∂(k′y)
2





+ 2τ4
k′(CΦ − CΨ)vx

k′

{

∂Φk

∂ky

[

vx
k′v

y
k′

∂vx
k′

∂k′x
− (vx

k′)
2 ∂vx

k′

∂k′y

]

− ∂Φk

∂kx

[

(

vy
k′

)2 ∂vx
k′

∂k′x
− vx

k′v
y
k′

∂vx
k′

∂k′y

]}

= τ3
k′v

x
k′

[

(vy
k′)

2 ∂2vx
k′

∂(k′x)2
+ (vx

k′)
2 ∂2vx

k′

∂(k′y)
2
− vx

k′
∂vy

k′

∂k′y

∂vx
k′

∂k′x

− 2vy
k′v

x
k′

∂2vx
k′

∂k′x∂k′y
+ vx

k′

(

∂vx
k′

∂k′y

)2




+ 2τ4
k′(CΦ − CΨ)vx

k′

{

∂Φk

∂ky

[

vx
k′v

y
k′

∂vx
k′

∂k′x
− (vx

k′)
2 ∂vx

k′

∂k′y

]

− ∂Φk

∂kx

[

(

vy
k′

)2 ∂vx
k′

∂k′x
− vx

k′v
y
k′

∂vx
k′

∂k′y

]}
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This equation gives us the terms obtained from the τ 2-term. Still the τ 3 term is

missing! The partial derivatives of τ 3 are:

∂τ3
k

∂kx
= −3τ4

k

∂Φk

∂kx
[CΦ −CΨ] (5.51)

∂τ3
k

∂ky
= −3τ4

k

∂Φk

∂ky
[CΦ − CΨ] (5.52)

Thus the τ 3-term gives the contribution:

τk′v
x
k′ ·

[

vy
k′∂k′x − vx

k′∂k′y

]

· τ3
k′ (CΦ − CΨ)

[

vx
k′v

x
k′

∂Φk′

∂k′y
− vx

k′v
y
k′

∂Φk′

∂k′x

]

=

= (CΦ − CΨ)τ4
k′v

x
k

{

vy
k′

[

2
∂vx

k′

∂k′x
vx
k′

∂Φk′

∂k′y
+ (vx

k′)
2 ∂2Φk′

∂k′x∂k′y
− ∂vx

k′

∂k′x
vy
k′

∂Φk′

∂k′x

− vx
k′

∂vy
k′

∂k′x

∂Φk′

∂k′x
− vx

k′v
y
k′

∂2Φk′

∂(k′x)2

]

− vx
k′

[

2
∂vx

k′

∂k′y
vx
k′

∂Φk′

∂k′y
+ (vx

k′)
2 ∂2Φk′

∂(k′y)
2
− ∂vx

k′

∂k′y
vy
k′

∂Φk′

∂k′x

− vx
k′

∂vy
k′

∂k′y

∂Φk′

∂k′x
− vx

k′v
y
k′

∂2Φk′

∂k′y∂k′x

]}

+3(CΦ − CΨ)2τ5
k′v

x
k′

{

∂Φk′

∂k′y
vx
k′

[

(vx
k′)

2 ∂Φk′

∂k′y
− vx

k′v
y
k′

∂Φk′

∂k′x

]

− ∂Φk′

∂k′x
vy
k′

[

(vx
k′)

2 ∂Φk′

∂k′y
− vx

k′v
y
k′

∂Φk′

∂k′x

]}

= (CΦ − CΨ)τ4
k′v

x
k′

{

2vx
k′v

y
k′

∂vx
k′

∂k′x

∂Φk′

∂k′y
+ 2(vx

k′)
2vy

k′
∂2Φk′

∂k′x∂k′y
+ (vx

k′)
2 ∂vy

k′

∂k′y

∂Φk′

∂k′x

− (vy
k′)

2 ∂vx
k′

∂k′x

∂Φk′

∂k′x
− vx

k′(v
y
k′)

2 ∂2Φk′

∂(k′x)2
− 2(vx

k′)
2 ∂vx

k′

∂k′y

∂Φk′

∂k′y
− (vx

k′)
3 ∂2Φk′

∂(k′y)
2

}

+3(CΦ − CΨ)2τ5
k′v

x
k′

{

∂Φk′

∂k′y
vx
k′

[

(vx
k′)

2 ∂Φk′

∂k′y
− vx

k′v
y
k′

∂Φk′

∂k′x

]

− ∂Φk′

∂k′x
vy
k′

[

(vx
k′)

2 ∂Φk′

∂k′y
− vx

k′v
y
k′

∂Φk′

∂k′x

]}

Now we put all the terms together and the expression for ∆σxx(B) becomes:

∆σxx(B) = 2
e4B2

(h̄c)2

∑

k

(

− ∂f

∂εk

)

· (5.53)

·
{

τ3
kvx

k

[

(vy
k)2

∂2vx
k

∂(kx)2
+ (vx

k)2
∂2vx

k

∂(ky)2
− vx

k

∂vy
k

∂ky

∂vx
k

∂kx

− 2vy
kvx

k

∂2vx
k

∂kx∂ky
+ vx

k

(

∂vx
k

∂ky

)2



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+ (CΦ − CΨ) τ4
kvx

k

(

2 ·
[

∂Φk

∂ky
vx
k −

∂Φk

∂kx
vy
k

]

·
[

vy
k

∂vx
k

∂kx
− vx

k

∂vx
k

∂ky

]

+2vx
kvy

k

∂vx
k

∂kx

∂Φk

∂ky
+ 2(vx

k)2vy
k

∂2Φk

∂kx∂ky
+ (vx

k)2
∂vy

k

∂ky

∂Φk

∂kx

− (vy
k)2

∂vx
k

∂kx

∂Φk

∂kx
− vx

k(vy
k)2

∂2Φk

∂(kx)2
− 2(vx

k)2
∂vx

k

∂ky

∂Φk

∂ky
− (vx

k)3
∂2Φk

∂(ky)2

)

+ 3 (CΦ −CΨ)2 τ5
k(vx

k)2 ·
[

vx
k

∂Φk

∂ky
− vy

k

∂Φk

∂kx

]2






which is our final expression for ∆σxx(B). This result has to be inserted into (5.47) in

order to figure out the temperature dependence of the MR.

Kohler-Plot

Zheleznyak et al. [6] argued in their theoretical paper that a plot of the ratio

∆ρxx/(ρxx tan2 θH) saturates to a value that is about 5.5 for T > 350K. So the ratio

of MR and inverse Hall-angle squared is expected to be independent of temperature for

sufficient big temperatures.

We are plotting the Kohler-plot to test our TPM and to derive some properties or

dependencies from the result. As this plot is a ratio of two quantities the interpretation

is difficult.

Anyway we obtain a saturation for temperatures of this range for very similar numbers.

This plot will be shown in chapter 7.

5.5 Thermal transport - conductivity tensor κµν

Equation (5.24) in section 5.3 describes every type of transport in a sample due to an

applied electric field E or a temperature gradient ∇rT . Section 5.4 dealt with the case

of an applied electric field without a temperature gradient. Different conductivities σµν

were derived in this section. Now we are going to apply a temperature gradient ∇rT

to the sample, but no electric field. The goal of this section is to compute the thermal

conductivity tensor κµν obtained from the TPM.

In contrast to the previous chapter the driving force of the kinetic equation is now
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no more due to an electric field. The cause of the (quasi)particle movement is now a

temperature gradient.

To obtain the thermal conductivity we have to solve the integrals introduced in section

5.3 for α = 2.

As the distribution function is now r-dependent we have to linearize the BE using

f(k, r, T, t) = f 0
k(εk, T (r)) + gk(r, t) now. The departure from equilibrium gk(r, t) now

has a spatial and a temperature dependence! Again we are interested in the steady-

state case, thus the term ∂
∂t doesn’t appear in our kinetic equation, equation (3.25).

Considering the case of no external magnetic field first we can derive a formula when

there is only a thermal gradient in the sample. From the total differential of f(k, r, T, t)

we obtain in leading order 30

df(k, r, T, t)

dt
= ∇rf(k, r, T ) · ∇kεk −∇kf(k, r, T ) · ∇rεk

=
∂f0

k

∂εk

dεk
dr

· ∇kεk +
∂f0

k

∂T

dT

dr
· ∇kεk −

∂f0
k

∂εk
∇kεk · ∇rεk =

∂f0
k

∂T
∇rT · vk

which represents the driving term in our kinetic equation.31 As f0
k is the usual Fermi-

distribution we are able to reexpress
∂f0

k

∂T in terms of
∂f0

k

∂εk
,32

∂f0
k

∂T
=

(

−∂f0
k

∂εk

)

εk
T

(5.54)

The r.h.s. of the kinetic equation doesn’t change at all. So we still have the collision-

operator Ck defined in (5.3) there. Without an electric and magnetic field the transport

gets the form:
(

−∂f0
k

∂εk

)

εk
T

vk · ∇rT = Ck (5.55)

The comparison with (3.25) tells us that we replace eE
∂f0

k

∂εk
→
(

−∂f0
k

∂εk

)

εk∇rT
T to obtain

the tensor κ̄. This replacement was also pointed out in [36]. So we have an extra factor

30As we are dealing with the steady state case we drop the term ∂f
∂t

.

31Note that there is no magnetic field in the equation so far!

32In the case T = 0 the formula
(

− ∂f
∂εk

)

= δ(εk − εk′ ) is valid. When we do the derivative of the

Fermi function we get:
(

−
∂f0

k

∂εk

)

= 1
kBT

eε
k

/kBT

(eε
k

/kBT +1)2
. Thus we can write

∂f0
k

∂T
=
(

εk
kBT2

eε
k

/kBT

(eε
k

/kBT +1)2

)

=

εk
T

(

−
∂f0

k

∂εk

)
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of εk, the driving term due to the temperature gradient ∇rT
T and an extra ”minus” in

the equation! Finally we derive from (5.55):

−
∑

k′

[
1

τk
δk,k′ − Ck,k′

]

gk′ =

(

−∂f0
k

∂εk

)

εk
T

vk · ∇rT

where the additional term due to the magnetic field is still missing.

In analogy to the previous section we define an operator Â, Âk,k′ ≡ K̂ + M̂B . This

operator is exactly the operator given in (5.27). We can compute the number of ”free”

(quasi)particles from equation (5.55) when we invert Â, which is done in (5.28). Note

that gk represents here the (quasi)particles that can carry heat (respectively energy).

gk = 2
∑

k′

Â−1
k,k′

[(

∂f0
k

∂εk

)

εk′

T
vk′ · ∇rT

]

(5.56)

with Â−1
k,k′ given in (5.28) and the spin degeneracy.

Equation (5.56) is the starting point of the computation of thermal conductivities.

In analogy to Ohm’s law we define the thermal current as

jQ = −κ̄
∇rT

T
(5.57)

with the heat current jQ and the thermal conductivity tensor κ̄.

A comparison with Ohms law, equation (4.2), shows that E → ∇rT
T and there is an

extra ”-” in equation (5.57). The minus-sign appears because (quasi)particles move

from lower to higher temperatures. Whereas particles move with the electric field.

A dimensional analysis of the thermal conductivity κ gives us: [κ] = W
m , and the heat

current jQ has the dimension [jQ] = W
m2 .

Considering the noninteracting regime (non Fermi-liquid-regime)33, we can obtain

the heat current in terms of ”free” (quasi)particles gk,

jQ =
∑

k

vkεkgk (5.58)

33which is not important in the DC-case!
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that is very similar to the formula for the electric current, equation (4.2). The difference

to the equations before is that the derivative of the Fermi-distribution

(

− ∂f0
k

∂εk′

)

doesn’t

simplify to a δ-function which is clear as we can only have a temperature gradient when

the temperature T is not zero, T 6= 0.

In the case of the charge transfer each particle transported the same charge e, whereas in

the case of heat current each contributing (quasi)particle carries some energy εk whose

magnitude is very similar to the Fermi-energy εf , εk ≈ εf , because only (quasi)particles

around the FS can become free (quasi)particles. The chemical potential is set to be

constant in this case.

From the equations (5.57), and (5.58) we can derive the formula for the thermal

conductivity-tensor.

κµν = 2
∑

k,k′

vµ
kεkÂ−1

k,k′εk′v
ν
k′

(

− ∂f0
k

∂εk′

)

(5.59)

Now our main interest is how the operator Â−1 acts on the term vkεk. As Â−1 is a

product of K̂−1 and of M̂B which are energy conserving operators 34, we derive imme-

diately that the operator Â−1 conserves the energy. Thus the action of this operator

on its right side in (5.59) is given by Â−1
k,k′εk′vk′ = εkÂ−1

k,k′vk′ .

So the problem from the previous section remains. We have to know how the operator

Â−1 acts on arbitrary velocities, which is known from equation (5.31).

5.5.1 Longitudinal thermal conductivity κxx

It follows from (5.59) that the longitudinal thermal (DC)-conductivity κxx is given by

κxx = 2
∑

k

vx
kε2

kτkvx
k

(

−∂f0
k

∂εk

)

(5.60)

The Sommerfeld expansion expansion allows us to compute the value of this sum or this

integral respectively in an approximative way. This expansion works for integrals of

the form above. The idea is to Taylor expand the integral in terms of the temperature

34The scattering operator conserves energy like it was constructed and the operator M̂B conserves
energy as it is a magnetic term that rotates the velocity but doesn’t change it.



64

as

(

−∂f0
k

∂εk

)

has a width of kBT .35

From this expansion we get the first term that gives contribution in the following form

κxx = a1τkv2T 2N(εf ) ∝ T 2 (5.61)

with a1 that is defined in terms of the Riemann Zeta-function, as usual in the Som-

merfeld expansion. The factor of 1/2 that cancels the spin degeneracy, results from the

fact that v2
x = v2

y = 1
2v2 in the isotropic case.

In a numerical analysis it is more useful to write down κxx in the way it is done in

(5.60). It is interesting that we have only to replace e2 by ε2
k when we want to switch

from the computation of σxx to the computation of κxx. We can use the same loop to

estimate κxx as we used for the computation of σxx.

5.5.2 Thermal Hall-conductivity κxy

We studied the effect of an applied temperature gradient on a sample that forces the

(quasi)particles to transport heat. As also phonons can carry heat we have to think of

a way how to figure out the contribution to the heat current from (quasi)particles.

The magnitude we want to analyze now, κxy, is of particular interest, as only charged

particles are bended in a magnetic field. Thus the κxy allows us to study the heat

transport of the (quasi)particles in the NS screening out phononic contributions. The

geometry of this experiment is very similar to the Hall experiment, B = (0, 0, B)T , and

the temperature gradient in x-direction, shown in figure (5.11).

In the case of an applied magnetic field we have to take the Lorenz force, included in

(3.25), and a force due to a temperature gradient, given in (5.55), into account. So there

is a force that acts on the moving charged particles and distorts them perpendicular to

the temperature gradient.

35In this case we have to expand the function N(ε)ε2 in a Taylor series. This helps us get an expression

for the integral
∫

N(εk)ε2k

(

−
∂f0

k

∂εk

)

dεk =
∑∞

n=1
anT 2n d2n

dε2n (N(εk)ε2k)|ε=0. Compare to Ashcroft [2],

Appendix C.
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Figure 5.11: The geometry of the measurement for the thermal Hall-conductivity. The
temperature gradient is realized by different temperatures at both sides of the sample,
T0 6= T1.

In this case we obtain the transport equation

εk

(

−∂f0
k

∂εk

)

vk ·
∇rT

T
+

e

h̄c
vk ×B

∂gk

∂k
= Ck (5.62)

Again we compute gk by solving (5.62) which is done by inverting Â defined before. The

number of ”free” (quasi)particles can be obtained from (5.59) considering the second

term in (5.28) for Â−1.

Inserting Â−1
k,k′ = −K̂−1M̂BK̂−1 in (5.59) gives us the thermal Hall-conductivity κxy:

κxy (5.59),(5.28)
= −2

∑

k,k′,k′′,k′′′

vx
kεkK̂−1

k,k′M̂B(k′,k′′)K̂−1
k′′,k′′′v

y
k′′′εk′′′

(

− ∂f0
k

∂εk′′′

)

= −2
eB

h̄c

∑

k

ε2
k

(

−∂f0
k

∂εk

)

τ2
kvx

k

[

vy
k ·

∂vy
k

∂kx
− vx

k ·
∂vy

k

∂ky

]

+2
eB

h̄c

∑

k

ε2
k

(

−∂f0
k

∂εk

)

τ3
kvx

k(vy
k)2

[

CΦ
∂Φk

∂kx
+ CΨ

∂Ψk

∂kx

]

−2
eB

h̄c

∑

k

ε2
k

(

−∂f0
k

∂εk

)

τ3
k(vx

k)2vy
k

[

CΦ
∂Φk

∂ky
+ CΨ

∂Ψk

∂ky

]

(5.63)

Note that κxy is identical with the electrical hall-conductivity when we replace e2 → ε2
k.

So only an extra factor ε2
k as to be included in our program.

As we compute the energies in eV we can use the same number for the thermal Hall-

conductivity as for the electrical Hall-conductivity. The only thing that changes are

the units we obtain, [σxy] = 1
Ωm , whereas [κxy] = W

m .

The thermoelectric power, TEP, is the last transport quantity that we are going to

compute. It is the only quantity that connects electrical and thermal transport.
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5.6 Thermoelectric power TEP

The last missing tensors in (5.24) are going to be computed in this chapter.

We start defining the thermopower Sµν which combines somehow the electrical and the

thermal transport.

Sµν = −2e
∑

kk′

εkvµ
kÂ−1

k,k′v
ν
k′

(

− ∂f0
k

∂εk′

)

(5.64)

So this case is equivalent to the case α = 1, discussed before.

Note that the function

(

−∂f0
k

∂εk

)

is an even function around the chemical potential

µ36 which means that the integral
∫

dεε

(

−∂f0
k

∂εk

)

= 0 for every temperature.

Therefore it is necessary to expand the energy density N(ε) also in a series to obtain the

leading contribution to Sµν defined in (5.64). We get a contribution to the thermopower

Sµν from the antisymmetric distribution of N(ε) around µ. A Taylor-expansion of N(ε)

leads to

N(ε) = Nµ + N ′(µ) · ε +O(ε2)

The sign of the thermopower tells us what particles generate transport (particles or

holes). If N ′(µ) is negative we have a positive thermopower (compare to (5.64)) which

means we have holes moving. It turns out that the cold region dominates Sµν , so the

sign of the thermopower can change like it is shown in figure 5.7.

When we solve (5.64) for Sxx we have to consider the first term in (5.28). This allows

us to figure out the T -dependence of Sxx. It turned out in our analysis that the

thermopower isn’t sensitive to the transition width w. So we look at the limit w → 0.

We get two contributions to the thermopower, limw→0 Sxx = Sxx
c + Sxx

h , as we divided

the first BZ into hot and cold regions.

Equation (5.31) allows us to obtain Sxx as:

Sxx = −e
2

Nk

∑

kk′

(εk − µ)vx
kÂ−1

kk′
vx
k′

(

− ∂f

∂εk′

)

= e
2

Nk

∑

k

(εk − µ)

(
∂f

∂εk

)

(vx
k)2τk (5.65)

36f(ε) = 1
eβε+1

= 1/2
(
1 − tanh βε

2

)
. Thus

(
∂f0

k

∂εk

)

= −β/4
[

1

cosh
βε
2

]

, which is an even function.
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When we have only two lifetimes τc and τh and two velocities vc and vh in the two

patches (in the w → 0-limit) we can simplify this easily (we only consider the cold

contribution here; the hot contribution is obtained in the same way).

Sxx
c = −ev2

c τc
1

Nk

∑

k

(εk − µ)

(

− ∂f

∂εk

)

Φk

= −ev2
c τc

1

Nk

∑

k

Φk

∫

dεδ(ε − (εk − µ)) · ε
(

− ∂f

∂εk

)

= −ev2
c τc

∫

dε
1

Nk

∑

k

Φkδ(ε− (εk − µ)) · ε
(

− ∂f

∂εk

)

= −ev2
c τc

∫

dεNc(ε− µ) · ε
(

− ∂f

∂εk

)

= −ev2
c τc

∫

dεNc(ε) · (ε− µ)

(

− ∂f

∂εk

)

Som.Exp.
= −ev2

c τc

∫

[(ε− µ)2]N ′
c(εf )

(

− ∂f

∂εk

)

dε

= −ev2
c τc · 2N ′

c(εf ) ·
∫

(ε− µ)2

2

(

− ∂f

∂εk

)

dε

x=E−µ/kBT
= −ev2

c τc · 2N ′
c(εf ) · (kB · T )2

∫
x2

2

(

− d

dx

1

ex + 1

)

dx

= −ev2
c τc · 2N ′

c(εf ) · (kB · T )2
π2

6

Thus we can write the thermopower Sxx as a sum of the cold and the hot contribution:

lim
w→0

Sxx = −e
π2

3
(kB · T )2

[

v2
c · τcN

′
c(εf ) + v2

h · τhN ′
h(εf )

]

(5.66)

So we get in a thermopower Sxx
c that is proportional T 2.

A dimensional analysis of Sxx gives us [Sxx] = A
m .

Now we are able to move on and to compute the thermoelectric power TEP which

is defined by:

TEP =
Sxx

Tσxx
(5.67)

McIntosh et al. [31] pointed out that it is necessary to have a VHS in the electronic

density to observe the behavior of the TEP measured experimentally. Indeed we have

such VHS in our model, ≈ 35meV away from the Fermi level (section 5.2).

With the knowledge gained above we can start computing an analytical formula for the
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TEP in the case of constant lifetime τ and velocity v inside each patch, namely:

lim
w→0

TEP = −π2

3e
k2

BT
v2
c τcN

′
c(εf ) + v2

hτhN ′
h(εf )

v2
c τcNc(εf ) + v2

hτhNh(εf )
(5.68)

In a more convenient form we obtain:

lim
w→0

TEP = −π2

3e
k2

BT
N ′

c(εf ) + vh
vc

2 τh
τc

N ′
h(εf )

Nc(εf ) + vh
vc

2 τh
τc

Nh(εf )
≈ −π2

3e
k2

BT
N ′

c(εf )

Nc(εf )
(5.69)

because we know from section 5.2 that vh << vc and τh << τc.
37 The small factor

Rv,τ ≡
(

vh

vc

)2

· τh

τc
≈ 1

36

allows us to write the TEP in a more convenient form. A Taylor-expansion of the

equation (5.68) to first order gives us:

lim
w→0

TEP = −π2

3e
k2

BT
N ′

c(εf )

Nc(εf )

[

1 + Rv.τ

(
N ′

h

N ′
c

− Nh

Nc

)]

. (5.70)

We found out in our analysis that the TEP doesn’t change with varying w thus the

behavior of the TEP is given in this limit.

The linear temperature dependence of the TEP is in agreement with the results of

Castellani et al. [8].

We know from experimental results (chapter 4), that the TEP ∝ T in the range

T < 300K. In this region we can linearize it TEP = ∆TEP
∆T · T + TEP0.

Inserting the physical constants in (5.70) gives us the leading, angle dependent con-

tribution to the TEP as TEP (θ) =
[

−2.4 · 10−8 N ′
c(θ)

Nc(θ)

]

T . So the angle θ determines

mostly the TEP, as N ′
c(θ) varies strongly with θ.

Table 5.3 shows the obtained slopes of the TEP’s for different angles θ (obtained by

inserting the physical constants and the values from table 5.2 into equation (5.70)).

The experimental result for the TEP, which is given in [TEP ] = V
K , for Bi2212 is

∆TEP
∆T ≈ −0.05µV

K2 . So we get a fairly good agreement with experiment for θ ≈ 20◦.

Kubo [30] noted that the negative TEP brings up that the transport mass perpendicular

to the FS is electron like. On the other hand the Hall-angle is positive which is equivalent

37In the case of Y Ba2Cu3O7 the ratio τc
τh
≈ 3.9 [5].We obtain a similar ratio for our model τc

τh
≈ 3.2
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θ/ ◦ 2.6 6.5 12.9 19.0 24.6 34.6

∆TEP
∆T / µV

K2 0.21 0.155 -0.335 -0.088 -0.053 -0.046

Table 5.3: The table shows the obtained slope of the TEP for different angles θ. The
data are taken from table 5.2.

to the fact that the mass parallel to the FS is hole-like.

As we receive our best fit for θ ≈ 20◦ we obtain exactly his observations, namely

negative TEP and positive Hall-angle. We are going to discuss this in more detail in

chapter 7.
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Chapter 6

The used Program

Our interest in the temperature dependence of transport properties of BSCCO forced

us to write a Fortran77 program that is called ”transport.f”. This program allows us

to get numerical values from the equations described in (5.33), (5.43), (5.53), (5.60),

(5.63) and (5.65). These equations allow us to plot all quantities described in chapter

4 as a function of T .1

In this chapter we want to explain and introduce the used variables and the syntax of

the program. We use ”gnuplot” to generate plots where the temperature dependence

of the considered quantities can be extracted, as our program generates files of points

that can be read by gnuplot.

The proceeding how to choose the values of our five parameters properly will be de-

scribed in chapter 7.

6.1 The Input

Our interest in Bi2212 simplifies our studies because we don’t have to consider the

effect of chains in these materials. We are studying a purely 2D problem.

The FS of Bi2212 is shown in figure 2.4 which was generated by the tight binding fit

given in (5.18). Subsection 6.1.1 repeats this briefly. In subsection 6.1.2 we define the

geometry of our model by introducing some geometrical magnitudes. Finally we explain

the external data of the program (in subsection 6.1.3) and the parameters (subsection

6.1.4) that have to be fitted.

1The result obtained by the program is converted into units measured experimentally to be able to
compare the results of the TPM with experiments.
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6.1.1 The FS of Bi2212

The input of the program is the FS of Bi2212, given by a tight binding fit with up to

fifth nearest neighbor hopping from (5.18), section 5.2. The Band-structure of Bi2212

is reproduced by this fit.

To be consistent with units the energy is always given in eV in the program. The

numerical values of the parameters, ci, i = 1, .., 6, are called ef , et1 ... et5 in our

program. The functions given in the tight binding fit, ηi, i = 1, .., 6, are given by

ek1 .. ek5. As shown in (5.18) the FS is reproduced by this functions weighted with

parameters. Note that we can change the shape of the FS by changing the parameters

ci. So we can study the effect of the shape of the FS on the transport quantities.2

Of course the lattice constant a (which is called ”latt” in the program) is missing in

formula (5.18). Thus each wavevector ki, i = x, y has to be multiplied by a. The value

for a is a = 3.76 · 10−10m = 3.76A◦ in Bi2212 systems. Note that we write distances in

Angstrom in the program, thus latt = 3.76.

6.1.2 The geometry of the model

We parameterize the size of the cold area by the angle θ as usual. Figure (6.1) shows

that four lines restrict the cold region. In reciprocal space these lines are given by

ky = a · kx

ky = b · kx

ky = a · kx + d

ky = b · kx + c

with a = cot(θ) > 0, b = tan(θ) > 0, a > b, c = π(1 − tan(θ)) > 0 and d = π(1 −

cot(θ)) < 0 defined in section 5.1. A product of four functions describes the cold

region. In the case of the smooth change between the cold and hot regions the cold

region of the first BZ is described by:

Φk =
4∏

i=1

Φi(k) (6.1)

2The shape of the FS has the biggest influence on the TEP and tan θH .



72

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

Ψ

Φ

Ψ

ho
t

hot
θ

θ

Y

M

M

FS

k

k

k

Γ

co
ld

Figure 6.1: The size of the cold region is only parameterized by the angle θ.

with Φ1(k) = 1
2

[

1− tanh
(

ky−akx

w

)]

, Φ2(k) = 1
2

[

tanh
(

ky−bkx

w

)

+ 1
]

,

Φ3(k) = 1
2

[

1− tanh
(

ky−bkx−c
w

)]

and Φ4(k) = q 1
2

[

tanh
(

ky−akx−d
w

)

+ 1
]

with the width

of the transition region w introduced in section 5.1.

The parameters needed in the program are the angle θ, describing the size of the cold

region, (program: theta) and the width w (program: w). The function Φk is used in the

subroutine ”phipsi”. This subroutine allows us to compute the size of the cold region,

as it gives us the weight of Φ at every (discrete) point of the lattice. The functions

Φ1(k) etc. are called t1 etc. in this subroutine.

Summing over every point of the lattice with suitable weight Φ, which is done in the

variable sumphi gives us the size, normalized to one, of the cold region (which we call

α). The size of the hot region is given just by subtracting the cold region from 1.

6.1.3 External data

External data are data we insert in our program before we start computing the quanti-

ties of our interest. These data are the mash nk
3, the temperature-range (Tmin, Tmax in

3The reciprocal space in the first quadrant of the first BZ is discretized!
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eV ), an external magnetic field Bext and some converting-factors (like cfactor, sfactor,

bh, mfactor and lofactor) that guarantee that the result has the same dimension as

measured in experiments, which is important as we want to compare with experimental

data.

The mash nk is determined by the lowest temperature Tmin as we decided to sum over

the whole first quadrant of the first BZ and the function ∂f0

∂ε (it restricts transport pro-

cesses around the FS!), that has a width of ≈ kB · T , has to be modeled properly. We

decided to study the transport data for temperatures T ≥ 60K, thus a mash nk = 256

is sufficient.

The temperature range is splitted into nT equal temperature-slices. The studies were

carried out in a temperature range T with 60K ≤ T ≤ 1100K. We decided to chop

this temperature-interval into hundred equal pieces, nT = 100. This means we obtain

temperature values every Tmax−Tmin
nT

thus every ≈ 10K.

Another external data is the value of the Fermi-function f (called fermi in the pro-

gram). As f = f(ε) we have to compute f(ε) for every point of the lattice, i.e. for every

pair (ki, kj), i, j = 1, ..., 256 with the energy-dispersion given in (5.18).

When we want to get results for lower temperatures we might have to use more sophis-

ticated methods like the ”tetrahedron method” explained in the appendix.

6.1.4 Parameters of the model

The TPM was introduced in chapter 5. It included three parameters a, b and c that

described the strength of the possible scattering mechanisms. These three parameters

have to be chosen properly to give the correct results of the desired transport quantities.

Two other parameters, explained in chapter 5, are also special importance, namely the

angle θ that describes the size of the cold region and the width of the transition region

w.

θ has effects on every quantity of our interest (compare to chapter 5). So it has to be

chosen very carefully. Note that for θ ≈ 20◦ the area of the cold region is approximately

equal to the area of the hot region. The TEP suggests exactly this value for θ to be fitted

well. This fifth parameter, the width of the transition region, is basically determined by
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the magnetoresistance. Note that the MR contains factors with the second derivative

of Φk. In the case of an discontinuous change between cold and hot regions we would

get a divergence for the MR. That’s why we originally introduced w.

6.2 Programming

As already pointed out we are interested in the temperature-dependence of transport

properties of BSCCO. A temperature loop allows us to obtain transport properties

as a function of temperature. We compute all transport properties of our interest for

Loop, "it"

Temperature

"i
x"

 a
nd

 "
iy

"

k-
Lo

op
, 

lattice points

T-dependent
transport-
properties

INPUT OUTPUT

values at 

data

external 

a,b,c,w, θ
Parameters:

Figure 6.2: The picture shows the strategy of the program. A temperature loop computes
the different transport properties, like ρxx, for discrete temperatures.

a given set of parameters a, b, c, w and θ and compare the result with experimental

results. For a optimal set of parameters we can fit each data given in chapter 4 in a

reasonable way.

6.2.1 Temperature-Loop

As already told we vary the temperature between Tmin and Tmax in steps of Tmax−Tmin
nT

.

In a big temperature-loop (used variable ”it”) we are increasing T with steps of ∆T .

We reset all transport data the beginning of every loop. The temperature dependent

constants CΦ and CΨ are computed like shown in section 5.4, which allows us to get

transport properties of BSCCO for each (fixed) temperature in the considered range.

To get these values we are summing over the first BZ with a discrete set of k-points.
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For symmetry reasons (the FS of the CuO2-planes has fourfold symmetry!) it is enough

to sum only over the first quadrant of the first BZ.

As we are in a temperature range T > 60K a mash of nk = 256 is big enough. So we

have 256 × 256 contributions to transport in this quadrant. Because of the function

−∂f
∂ε we are almost completely restricted on the FS which means that only k-points

around the FS contribute to transport.

6.2.2 k-Loop

Inside the ”k-Loop” we start to figure out the values of the functions Φk and Ψk defined

in (5.17) at every point of the lattice. These values are needed to be able to write down

the relaxation time (5.8) that characterizes our model. Furthermore we compute the

first and the second derivative of the functions that describe the hot / cold regions Φk

as they are needed in the formula for the (thermal) Hall-angle and the MR. These three

jobs are done in the three subroutines ”phipsi”, ”dphi” and ”sdphi”.

The next step is to compute the relaxation time, τ(kx,ky) = 1
CΦΦ(kx,ky)+CΨΨ(kx,ky)

, for a

fixed k-point, as every transport quantity depends on this relaxation time.

From the energy-dispersion given in (5.18) we can derive velocities, e.g. vx = ∂ε
∂kx

,

masses, e.g. mxx = ∂2ε
∂k2

x
, and third derivatives of the dispersion relation that will be of

importance later (example for our notation: dyxy = ∂3ε
∂ky∂kx∂ky

). Note that we can use

some symmetry relations, like ∂2ε
∂kx∂ky

= ∂2ε
∂ky∂kx

, to determine the transport properties

of our model, as the FS of BSCCO has fourfold symmetry. From these analytical

formulas we obtain numerical values for the velocity v = (vx, vy), mass etc. of a fixed

k-point.

Each transport quantity has the factor ∂f
∂ε , with the Fermi distribution f , in common.

The energy dependence of f(ε) forces us to compute it at each lattice point (kx, ky)

again. Also the derivative ∂f
∂ε is computed for each point.

Now we can start computing transport properties just applying the formulas found

in (5.33), (5.43), (5.53), (5.60), (5.63) and (5.65). The conductivity has a cold, ”cc”,

and a hot, ”ch”, contribution in each point like it is shown in formula (5.33). The

same splitting is done for the thermopower, where the ”sc” labels the cold part of the
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thermopower and ”sh” the hot part of it. It can be seen in equation (5.43) that the

Hall-conductivity σxy has three contributions (in the program we combined σxy
2 and

σxy
3 to one contribution!). Note that we need the first derivative of Φk to obtain σxy.

This is why the subroutine ”dphi” is important for this quantity. The thermal Hall-

conductivity has the same constituents as σxy but an extra factor of ε2
(kx,ky) due to the

heat transport. The most complicated quantity is ∆σxx(B), which is called ”magn” in

the program. Like it is shown in section 5.4, equation (5.53) we get three contributions

(∝ τ3, ∝ τ4 and ∝ τ5) to this quantity.

After we completed the loop over all k-points we have calculated all quantities of our

interest we need to know to estimate the transport properties for a given temperature.

6.2.3 Converting in suitable quantities

One basic goal of our analysis is to compare the transport-results of our model with

experimental data to find out whether this phenomenology describes experiments well.

The quantities obtained from the k-Loop have to be converted into quantities measured

in experiments. This is the reason why we inserted several factors, already mentioned

above. Note that we are using units like eV and h̄. When we convert these units in

SI-units we have to multiply the obtained values by these factors. Another reason for

some extra factors is how quantities are measured in experiments. For instance the

resistivity is measured in µΩcm. Note that the relaxation time τ is given in units of

10−15s and the length is given in 10−10m in our program.

So we obtain the different quantities of our interest by multiplying them with the

suitable values.

The values of the different transport quantities and the belonging temperature are

written in different files. After this the same procedure starts with a temperature that

is Tmax−Tmin
nT

bigger.
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6.3 subroutines

We are using three subroutines to compute values of Φk and derivatives of this function.

The relation ∂Φk

∂kx
= −∂Ψk

∂kx
showed in the appendix allows us to consider only derivatives

of Φ. Obviously the relation above is also true for derivatives with respect to ky.

6.3.1 ”phipsi”

The smooth change between the cold and the hot region, like it is described in (5.17),

forces us to compute the value of Φ for every point of the lattice. Obviously we obtain

values that are ≈ 0 far away from the cold region and values ≈ 1 inside the cold region.

But anyway we need a knowledge of the values in the transition region. This subroutine

allows us to get a numerical value of Φ for every k-point inside the first quadrant of

the first BZ. Note that Ψ is achieved just by subtraction, Ψ = 1− Φ.

6.3.2 ”dphi”

The computation of the Hall-conductivity σxy makes a derivative of the function Φ

necessary. It follows from (5.17) that the derivatives ∂Φ
∂kx

and ∂Φ
∂ky

are not identical. The

property mentioned above, ∂Φk

∂kx
= −∂Ψk

∂kx
, allows us to consider only the two different

derivatives of Φ (with respect to kx and ky) and to neglect the derivatives of Ψ in this

subroutine.

A analytical derivative of Φk is done in the appendix. This formula is inserted in the

subroutine.

6.3.3 ”sdphi”

A second derivative of Φ becomes important when we want to compute ∆σxx(B). In

this subroutine we obtain three different values, namely ∂2Φ
∂k2

x
, ∂2Φ

∂kx∂ky
and ∂2Φ

∂k2
y
. Again

we computed these derivatives analytically and inserted the solution into our program.

The analytical derivatives are also shown in the appendix.
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Chapter 7

Results and Discussion

A numerical solution of the TPM using the program described in chapter 6 is given

in this chapter. The temperature dependence of the DC-resistivity ρxx, TEP, Hall-

angle, MR and thermal Hall-conductivity are computed and compared with experiments

(chapter 4). The influence of the fitting-parameters a, b, c, w and θ on the transport

properties is studied.

Section 7.1 describes the influence of the fitting-parameters on the studied transport

quantities. It shows in a numerical way the effect of the different fitting-parameters on

the different transport quantities.

As we have to fit five parameters we suggest a possibility to fix these parameters in

section 7.2. The problem is that we want to fit all considered transport quantities

introduced in chapter 4 as good as possible. Thus we have to think of a way how to

consider the effect of the five parameters on all quantities when fitting the data.

It turns out that the model has some problems in describing heat processes, like TEP

and thermal Hall-angle. A Lorenz-plot doesn’t show exactly the behavior we expect for

instance. Electronic transport is described very well within the framework of the TPM.

This is discussed in section 7.3.

The last section of this work, section 7.4, suggests some possibilities how to improve

the model, like choosing a temperature dependent transition width w(T ).

7.1 Parameters of the TPM

The size of the cold/hot region, so the angle θ, is the most important quantity in our

approach as it effects every transport quantity of our interest. In the TPM the essential

point is the construction of the scattering matrix Ckk′ which is determined by a, b and
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c.1 Due to a divergence in the MR (second derivative of step function diverges!) we had

to introduce a transition width w in the TPM. Finally we are up to fit five parameters

given above.

We are studying the effect of these parameters on the transport quantities given in

chapter 4 by keeping four parameters fixed and changing the fifth by ± ≈ 33% around

its ”best” value.2 The ”best” values are given here (compare to section 7.2) as:

a = 60, b = 1.8, c = 6.5, w = 0.25 and θ = 20◦.

7.1.1 DC-resistivity ρxx

The linearity of the resistivity up to ∼ 700K was found experimentally, e.g. [1]. Experi-

ments show a temperature dependence of the resistivity ρxx(T ) ∝ T α, where [1] and [7]

claim that α increases with doping (compare to figure 7.2). They observe a increasing

α with increasing doping, α > 1 for overdoped.

Figure 7.1 shows the effect on the resistivity of changing the different parameters. It

can be seen that changing the cold region, the angle θ, has the biggest effect on ρxx.

Figure 7.4 underlines this statement.

Note that the inter-patch scattering c changes the slope of ρxx, as predicted in (5.37).

Increasing c results in a bigger slope of the resistivity. As the inter-patch scattering

is important for ρxx a variation in w, which describes this transition region, has also

a quite big effect on it. Furthermore it can be seen in figure 7.1 that a change in the

scattering mechanism inside the cold a or the hot region b has only a minor effect on

ρxx.

The offset in the resistivity shown in figure 7.1 was already explained in chapter 5.

Remember that in the case of finite w τk given in (5.7) doesn’t diverge so we get some

zero-temperature offset to the resistivity. In agreement to the predictions given in

chapter 5 the offset increases with increasing b(1− α), so for increasing θ and b (figure

1Note that we are talking about h̄ā
k2

B

, h̄b̄ and h̄c̄
kB

when we write a, b or c in this chapter. This idea was

introduced in section 5.1. So the temperature dependence of a, b, c is eliminated from these parameters
in this chapter.

2The word ”best” doesn’t mean the absolutely best value here - there might be a slightly better
combination of the five parameters. As this set of parameters fits the data quite well we decided to
choose this parameter set.
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Figure 7.1: The plot shows the effect of changing the different parameters of the TPM
(keeping the other parameters fixed) on the DC-resistivity ρxx as a function of T . The
”optimal” parameter-values are set to: a = 60, b = 1.8, c = 6, 5 , w = 0.25 and θ = 20◦.
The varied parameters and their values are written in each figure.

7.1). So the finite width and the temperature independent scattering in the hot regions

might be thought as a contribution given by impurities. However the interpretation is

difficult.

Furthermore a change in θ changes the exponent α of the T -dependence as mentioned

in [1] and [7] (already pointed out above) (compare to figure 7.2).

Our TPM allows us to study the effect of doping by changing the area of the cold

region (vary θ). Doping the material is like bringing more carriers into the cold region
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(material is more FL-like!). So the cold region increases which is equivalent to decrease

the angle θ (compare to figure 6.1). The lowest plot in figure (7.1) shows the effect of

a change in θ thus the effect of doping on the TPM. The experimental result described

above [1] and [7], namely that the exponent α, ρxx(T ) ∝ T α increases with increasing

doping (decreasing θ!) can be seen in figure (7.2).

Note that the coefficient α can be estimated from figure 7.2.

A problem of the TPM is that it is difficult to make statements about the residual

resistivity with it, because the physical meaning of w and b is not very clear. It was

found [1] that the residual resistivity increases with increasing doping in the optimally

and overdoped regime.

For sure it is one problem of the TPM that it lacks this.
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Figure 7.2: This log-log plot shows that the slope of the curves increases with decreasing
θ (= increasing doping), as predicted in [1] and [7].

Furthermore we study the effect of a change in the FS on the resistivity. This is done

by changing the parameters c2 and c3 in (5.18). The effect of these two parameters

can be seen in figure 7.3. In this manner we can figure out which region of our model

governs the different transport properties of our interest.

It turns out that c2 has a big effect on the curvature of the FS, thus the change of the

FS is biggest in the (π, π)-direction (cold region). c3 is responsible to change the FS at

the nodes, in (0, π) and (π, 0)-direction (hot regions).

Figure 7.4 shows that a change in c2 has quite a big effect on ρxx. A change in c3

doesn’t affect ρxx. As the DC-resistivity is governed by the cold region this can be
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Figure 7.3: The effect of a change of c2 and c3 given in (5.18) can be seen in the two
figures. c2 affects the cold and c3 the hot region.

understood. Changing c3 only effects the hot regions that are not important for ρxx

(compare to section 5.3).

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400

R
es

is
tiv

ity
 (

m
ic

ro
O

hm
*c

m
)

T(K)

0.8*c2
0.9*c2
1.0*c2
1.1*c2
1.2*c2

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

R
es

is
tiv

ity
 (

m
ic

ro
O

hm
*c

m
)

T(K)

0.8*c3
0.9*c3
1.0*c3
1.1*c3
1.2*c3

Figure 7.4: The left figure is due to a change in c2 (cold region). The resistivity changes
drastically whereas changing c3 (hot region) doesn’t change ρxx. The resistivity is
governed by the cold region.

7.1.2 Thermoelectric power (TEP)

We know from (5.70) that the angle θ is the quantity that governs the TEP most [31].

So the ratio between the derivative in the density of states and the density of states in

the cold region is the main quantity that determines the TEP. It was argued in section

5.6 that an angle θ ≈ 20◦ gives the best fit for the TEP.

Figure (7.5) shows that the TEP (obtained from the TPM) only changes slightly by

changing a, b, c, w. We get the biggest effect on the TEP from the scattering in the hot

region b. Thus we don’t agree with Calyhold et al. [12] who argued that the TEP is
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governed by the same relaxation rates that govern the magnetotransport.

In the range we are changing our parameters no big change is observable. Especially

the offset (that is very sensitive to doping) doesn’t change at all. The only parameter

that really affects the TEP is the angle θ. The θ-dependent plot of the density of states

N(ε) shows that we get always a negative TEP for θ ≥ 10◦, figure 5.7. Note that we

don’t expect a big change in N ′
c(θ)

Nc(θ) in the range we consider (15◦ ≤ θ ≤ 25◦), as N ′
c(θ)

doesn’t change much in this range (compare to figure 5.7).

It has to be pointed out that the effect of CuO-chains affects the TEP strongly. We

neglect this effect here, as we are considering BSCCO-materials.

Similar to [31] we find that the TEP is very sensitive to a variation of the electronic

structure, reached by a change in c2 and c3 (figure 7.3). As McIntosh [31] already

pointed out a change in the curvature of the FS has a big effect on the TEP. This is

shown in the left figure in figure 7.6. A change of the curvature of the cold region (c2)

results in a big change in the TEP. Changing c3 has also a quite big effect on the TEP.

We remark finally that a change in the electronic structure has a much bigger effect

on the TEP than a change in the parameters of our model.

7.1.3 Hall-angle

We expect a temperature dependence of this quantity cot θH(T ) ∝ T α, where α ≤ 2 as

mentioned above. Experiments figured out that 1.65 ≤ α ≤ 2 [1] and [27]. A plot of
√

cot(θH) vs. T shows that the Hall-angel has almost a temperature dependence ∝ T 2.

As shown in figure (7.7) we observe an almost straight line. Our TPM shows that a

has a minor and especially b has almost no effect on the Hall-angle. It can also be seen

in figure 7.7 that the inter-patch scattering c has a big effect on the Hall-angle and it

changes the coefficient α slightly. As the inter-patch scattering c has a big effect on the

Hall-angle also w, describing the width of the transition region is important. Figure

7.9 shows that the transition region is important for the Hall-angle.

It is of interest, whether the slope α changes when we change the size of the cold region,

i.e. when we dope. Experiments were carried out in [7], [22] and [27] and showed that
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Figure 7.5: We can study the effect of the parameters on the TEP in this plots. It turns
out that only the angle θ (and maybe b) has an effect on the TEP. Parameter values
are: a = 60, b = 1.8, c = 6, 5 , w = 0.25 and θ = 20◦.

the slope α decreases when we increase doping. It is argued in these papers that the

relation cot θh ∝ T 2 is only valid in the strongly underdoped regime. The evolution of

the slope with changing the angle θ can be studied in figure 7.8.

It can be seen in figure 7.8 that the value α increases slightly with increasing doping

(decreasing θ) which is opposite to the experiments [27] and [1]. Anyway the change in

the slope is only a very light one.

Note that doping also effects the offset of the Hall-angle [1]. This fact is difficult
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Figure 7.6: The TEP is mostly governed by the cold region, described by changing c2.
However the influence of the hot region c3 is not neglectable as the right figure shows.

to understand as cot θH(T ) is a ratio of two quantities (compare to (5.44)) σxx and

σxy. Again, similar to before the offset is due to a finite transition width w and the

hot scattering b. Konstantinovic [27] claimed that no model is able to describe this

properties of the decreasing of α and the increasing of the offset with doping. Also

the TPM is not able to reproduce this experimental results. Maybe a temperature and

angle dependent width w(T, θ) could solve this problem.

Finally we study which region affects the Hall-angle most by changing the electronic

structure (c2 and c3) of the system. Ong claimed [34] that the electronic structure of

the system has a big effect on the Hall-angle. We agree with his conclusion, compare to

figure 7.9, but want to point out that the electronic structure has even a bigger effect

on the TEP (compare figure 7.6 and figure 7.9!).

The strong influence of the anisotropy of the electronic structure on the Hall-angle was

also pointed out by Konstantinovic [27].

It turns out that the Hall-angle is very sensitive to a change in the transition region,

whereas the TEP is sensitive to a change in the cold region. Thus the effect of changing

the parameters c2 and c3 has the same magnitude (figure 7.9), as the transition region

is changed slightly (compare to figure 7.3).

7.1.4 Magnetoresistance MR

Ando [1] reported measurements of the longitudinal and transverse MR of BSCCO-

samples (chapter 4). This group also measured the MR for varying doping. Figure
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Figure 7.7: The Hall-angle is determined by the transition region between the cold and
the hot region. So a change in c and w has quite big effects on this quantity. The plot
is generated with a = 60, b = 1.8, c = 6, 5 , w = 0.25 and θ = 20◦.

(7.10) shows the effect of the different parameters of our model on the MR. Obviously

a change in θ (i.e. doping) has a quite big effect on the MR in our model.Contrary to

experiments the MR increases when increasing doping in the TPM.

It turns out that c, w and θ are the parameters that govern the MR. So it seems that

also this quantity is governed by the transition region. However figure 7.12 shows that

the MR is mostly governed by the hot region.

The effect of the transition width w can be studied figure (7.10). It can be seen
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Figure 7.9: The effect of a change in c2 and c3 is of the same order for the Hall-angle,
which tells us that this quantity is governed by the transition region. Note that a change
of this parameters, especially c2, have a much bigger effect on the TEP (compare figure
7.6).

that this quantity becomes more and more important the smaller it becomes. A big

difference in the MR can be observed between w = 0.15 and w = 0.35. So it seems that

the MR diverges in the limit w → 0 as predicted in 5.4. One improvement of our model

would be to introduce a variable width w(θ, T ) dependent on θ and T which seems to

be a elementary idea as the MR is very sensitive to this quantities. One can expect

that increasing the temperature broadens the width of the transition region.

We study the effect of doping on the slope α, MR ∝ T α, in figure 7.11. The figure

allows us to extract this slope from it and to compare it with the literature. Obviously

doping (a variation of θ) doesn’t change the slope α a lot.
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Figure 7.10: The parameter c has the biggest effect on the MR. a and b don’t change
the MR. Obviously the angle θ and transition width w are very important for the MR.

The region that determines the MR can be derived from figure 7.12. It turns out

that the cold region has the biggest effect on the MR as predicted in the cold spot

model [29].

7.1.5 Thermal Hall-conductivity

The last quantity we analyze is the thermal Hall conductivity κxy. For the thermal Hall-

conductivity there is only an experimental value for α for a Y BCO-sample available

(chapter 4). It was found out that α ≈ 1.19 for Y BCO. The influence of the different
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Figure 7.11: The slope changes only slightly.
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Figure 7.12: Changing the parameters c2 and c3 allows us to check the influence of the
electronic structure on the MR.

parameters can be studies in figure 7.13

Figure 7.14 changes the change in the slope with doping. The result of the TPM is

that α increases slightly with increasing doping.

We can extract from figure 7.15 that the thermal Hall-conductivity is governed by the

cold region. However the effect of the hot region is not to be neglected.
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Figure 7.13: The figures show that the parameter b has some minor effect on κxy for
small temperatures where a seems to become more important for big temperatures.
The biggest effect on this quantity id due to c, θ and w.
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Figure 7.14: The slope changes only slightly.
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Figure 7.15: Changing the parameters c2 and c3 allows us to check the influence of the
electronic structure on κxy.
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7.2 Fitting experimental data

To be able to have some effect of a and b by a minor change of these quantities we

are interested that the cold and the hot region have more or less of the same size. For

θ = 20◦ ≈ 46% of the BZ are cold. Thus a slight change in a or b has a quite big effect

on the transport quantities studied in section 7.1. Another reason why to choose this

angle is given by the TEP that is basically determined by the ration N ′
c(θ)

Nc(θ) . In section

5.6 we argued that an angle ≈ 20◦ reproduces the slope in the TEP very well. So the

angle θ = 20◦ seems to be a good starting point for the fitting process.

The strategy of the fitting of the data was the following. We introduce a temper-

ature scale T0 upon the T-linear term in the cold region dominates, compare to (5.8).

This guarantees us that the resistivity is linear up to this temperature T0 [1]. We can

choose a temperature T0 that has a typical value of ∼ 1000K ∼ 0.1eV . The relations

a = (1− α)c/(αT0) and b = αcT0/(1− α) derived from (5.8) allow us to obtain certain

values for a and b for given T0 and c and α, where α is determined by the angle θ, α(θ).

Note that the width of the transition region is basically given by the MR.

Starting with different angles θ, thus with different sizes of the cold region α, we try

to get a good fit of the Hall-angle data first. So we search for the optimal value of c,

the inter-patch-scattering, for each given angle θ. We try to fit the Hall-angle and the

slope of the resistivity for every given combination of θ and c well. It turns out that

the angle θ ≈ 20◦ and c ≈ 6.5 gives a pretty good fit of the Hall-angle and the slope

of the resistivity. This angle was already predicted from TEP data given above. Once

this is done we start changing the scattering in the hot region b by hand. Increasing

b (= increasing the scattering in the hot region) increases the resistivity, compare to

figure 7.1. The figures in section 7.1 allow us to predict the consequences of a change

in the parameters. So we use this plots to change the parameters slightly in the ”right

way”. The parameter b allows us to adjust the resistivity. Note that a has less effect

on ρxx than b has (figure 7.1!). In this manner we can fix the parameters w, θ, c, b. The

last parameter that is to be fixed is a. But the freedom for the parameter a is not so
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big, because we have to obey the linearity of the resistivity. Thus the initial condition

we have chosen for a, a = (1−α)c/(αT0 has to remain valid. We can change a slightly

in order to improve our fit.

After we have fixed the parameters of our model we start to compare the TPM with

experimental data.

Looking the transport quantities given in chapter 4 we recognize that each quantity of

the TPM fits experimental data quite well. The suggested TPM seems to be able to

describe transport data on a phenomenological basis. We obtain a consistent picture

of several transport quantities using the TPM starting with the linearized BE.

For the following parameter values we obtain the ”best” fits for the different quantities

shown below: w = 0.20, a = 60, b = 2.1, c = 7.0 and θ = 20◦.

Note that the FS suggested in (5.18) is not changed to improve our fit.

Figure 7.16 shows our fit for the resistivity and compares it to the experimental data

given in [14]. In agreement with experiments we obtain ρxx ∝ T .

The TEP, shown in figure 7.17, is basically determined by the angle θ (compare to
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Figure 7.16: In spite of the fact that the points do not absolutely agree with the values
obtained by the TPM, we get a pretty good fit of ρxx for the parameters given above.
The experimental data of Bi2212 are taken from [14].

figure 7.5). As already mentioned in chapter 5 the electronic structure forces us to

choose an angle θ ≈ 20◦. Note that the TEP is not exactly linear. But also the data

seem not to be completely linear in temperature in the considered range. Unfortunately

there were no data for Bi2212 available, so we fitted data of Bi2201.
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It was pointed out by Obertelli [33] that the TEP is very sensitive to doping. Especially

the offset of the TEP is changed very much by doping. On the other hand the slope

doesn’t change much when changing doping, Choi argued [4]. A change in θ doesn’t

affect the TEP very much. So it is very likely that a changing angle doesn’t model

doping very well. Again we have the problem to obtain an offset from our model.

As pointed out in chapter 4 the different T -dependence between the Hall-angle and
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Figure 7.17: Thermoelectric data for Bi2201 given by McIntosh [31] are fitted very
good in our model (with the given parameters). The TEP is not very sensitive to the
parameters of our model (compare to figure 7.5). The most important parameter is, as
already told, θ.

the resistivity can’t be explained in a Drude model. The TPM gives us a T -dependence

of the Hall-angle that is ≈ T 2. Actually the exponent of the T -dependence is slightly

smaller than 2. Note that
√

cot θH(T ) is plotted vs. T in figure 7.18.

As already pointed out the MR in very sensitive to the width of the transition region

w. Within small errors we can reproduce the experimental measured values of the MR

with our given parameter set. Similar to the case of the TEP we only found MR-data

for Bi2201. Figure 7.19 shows the obtained fit and the experimentally obtained values.

A plot of the thermal Hall-conductivity vs. temperature is shown in figure 7.20. As

we don’t have experimental values for κxy for Bi-based cuprates we only plot the result

obtained by the TPM. Experimental data for Y BCO show exactly the behavior showed

in the plot. So the magnitude and the shape of κxy seems to be described very good

by the TPM.
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Figure 7.18: We can also fit the experimental data for the Hall-angle using our param-
eters. We get good agreement with experimental data for Bi2212 [27]. It can be seen
from the plot that we get a temperature dependence

√
cot θH ∝ T α, with α < 2.
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Figure 7.19: The figure shows the magnetoresistance obtained from our model. The
points shown in the plot are taken from [1] for a Bi2201 sample with (optimally) doping
δ = 0.44.

In agreement with Kubo [30] the TPM gives us a Hall-mass parallel to the FS which

is holelike (Hall-angle > 0) and a transport mass perpendicular to the FS which is

electron-like (TEP < 0).

Another check of the TPM can be obtained when we generate a Kohler- and a

Lorenz-plot introduced in chapter 4.

These plots are a ratio of two transport quantities so it is difficult to interpret them.

But anyway these plots, shown in figure 7.21 and 7.22, can give us another hint whether
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Figure 7.20: We plot the thermal Hall conductivity κxy vs. temperature. The data
shown in the plot agree very good with Y BCO data [24]. The experimental data for
Bi2212 shouldn’t change much.

the TPM generates quantities of the right magnitude.

7.2.1 Lorenz-number and Kohler-plot

We generate this figures to have another check of our model.

Experiments show that the Kohler number varies between 1.6 (for Y BCO) and 13.6

(for LaSCO). Within the framework of the TPM we obtain a Kohler-number ≈ 8.5

which is in a very good range! Zheleznyak et al. [6] claim that the saturation should be

at a value ≈ 6. Figure 7.21 shows our result.

As already mentioned before the TPM has some difficulties to describe heat transport.

The Lorenz-number seems to be constant and ≈ 3.3 which is close to the theoretical

value for metals. The bigger the cold region is (small θ!) the better we obtain a straight

line. A saturation of the Lorenz number to this value is expected but it seems a problem

of the TPM that the Lorenz number has always the same value.

Anyway again the magnitude of the number (figure 7.22) agrees very good with exper-

imental results for cuprates. Note that the Lorenz number was obtained by the ratio

κxy/(Tσxy) thus has no phononic contributions. So the plot shows indeed only the

contributions from the electrons!
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Figure 7.21: Using the parameters we obtain a good result for the Kohler plot. A
Kohler-plot is obtained by multiplying the magnetoresistance with (cot θH)2. The result
is in good agreement with the experimentally obtained one. Unfortunately there are
no data for Bi2212 available.
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Figure 7.22: It can be seen that the value for a metal, π2/3 is achieved very fast.
The Lorenz-number describes the ratio between heat and electrical transport. The
temperature dependence of this number is very weak.

7.3 Problems of the model

The associated temperature dependences of the different scattering mechanisms (cold-

cold, cold-hot, hot-hot), seem to describe the considered transport quantities very well.

But a microscopic derivation of the assigned T -dependence is missing. Especially the

linearity in temperature of the interpatch-scattering should be derived from a more

microscopic theory.
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Furthermore the model is not able to describe transport processes at very low tempera-

tures as it doesn’t contain quantum mechanics. This semiclassical approach is for sure

reasonable in the temperature range we considered, but it will fail when lowering the

temperature. So it should be nice to combine the idea of different patches with a more

microscopic theory. In the limit of big temperatures this ”new theory” should come

back to the suggested TPM.

Almost every considered transport quantity is determined by the cold regions of our

model, as predicted by Ioffe and Millis [29]. However the hot regions are important to

get a complete picture of transport (e.g. they have a big effect on the TEP). The influ-

ence of the hot region can be recognized when we consider the fitting procedure. It was

important to choose b properly. Anyway the effect of the hot regions is not completely

clear. It seems that in the case of heat transport we can’t neglect this regions any

more. So a complete picture of transport in cuprates should include the effect of the

hot regions. So it seems that the hot regions have to be included in a microscopic theory.

Another problem arises from the effect of doping. The TPM is not able to describe

the effects of doping on the different quantities in a reliable manner. For instance the

TEP changes a lot with doping. It is quite difficult, even impossible, to obtain this

shift of the TEP in the TPM. So the idea of modeling doping by changing θ has to be

seen very critically.

Offsets, like the residual resistivity, of transport quantities are very difficult to realize

in the TPM. As our model lacks the existence of impurities completely we have to be

very careful with offsets obtained from the model.

7.4 How to go on?

The introduced TPM can be improved in various ways. We only mention some possible

improvements that might allow us some deeper insight into the transport process.
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A temperature and angle dependent transition width w(T, θ) could be introduced. For

sure the width w changes with increasing temperature. So it seems natural to introduce

a width that depends on the temperature. As the FS is very flat at the nodes and very

curved in (π, π)-direction the influence of the temperature on w should also depend on

the position on the FS, thus w(T, θ).

Furthermore one can try to expand this model to the case of AC transport. It was

already mentioned in chapter 3 that we have to consider FL-corrections in the AC-case.

So the interaction, described by f σσ′

kk′
, has to be introduced into the geometry of the

TPM. This could be done by introducing a interaction f σσ′

kk′
that changes in the different

patches. In this manner we would get some extra parameter.

It is not obvious whether we can put frequency dependence in the TPM by just sub-

stituting τ−1 → τ−1 − iω. But it seems to be the next step to find out what result

we would get with the TPM in the frequency dependent case. To test the temperature

dependence of the AC-case would be a good test whether the TPM is also able to de-

scribe this case.

The final step seems to be to try to translate this phenomenological model in a

microscopic one. A microscopic TPM can be realized by applying the idea of different

patches on dynamical mean field theory (cluster DMFT). The gained parameters and

the insight in the transport process might be a good starting point for the application

of this theory.
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Appendix A

Abbreviations

The following abbreviations are used in the text:

FS Fermi-surface

BE Boltzmann-equation

NS normal state

BZ Brillouin-zone

HTSC high temperature superconductor

FL Fermi-liquid

MFL marginal Fermi-liquid

ARPES angle resolved photoemission

TPM two patch model

TEP thermoelectric power

MR magnetoresistance

VHS van Hove-singularity
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Appendix B

Constants

The values we obtain for the Boltzmann-constant kB and for the Planck-constant h̄ are

given in atomic units [32]:

kB = 8.617 · 10−5 eV

K
(B.1)

h̄ = 6.5821 · 10−16eV · s (B.2)

Their ratio is given by h̄
kB

= 7.6315 · 10−12Ks which is a number that we use several

times (e.g. to multiply c̄ with).

Other physical constant like the elementary charge e were taken from [3].
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Appendix C

Properties of ∂Φk

∂kx

and ∂Ψk

∂kx

The connection between the derivatives of Φk and Ψk with respect to kx or ky can be

understood in the following way.

Let’s concentrate on the case where Φk and Ψk are step functions. The upper figure in

figure 5.5 represents the cold region in the first BZ.

A derivative with respect to kx has only contributions at points where we switch be-

tween the cold and hot regions, shown in figure C.1.

As the cold and the hot region are complementary, i.e. Φk + Ψk = 1, the relation

∂Φk

∂kx
= −∂Ψk

∂kx
is valid. When we enter the cold region we leave the hot region or vice

versa.

The same reasoning works for a derivative with respect to ky in the case of the step-

functions.

In the case of the smooth change between hot and cold regions, given in section

5.1, the things are a little bit more complicated. Figure C.2 shows the smooth change

between hot and cold regions.

The question is whether the derivative in the points A and B are the negative of

each other? As the change between the two patches is a tanh-function it is symmet-

rical around its center S. So the derivatives in A and D are the same. With the

same argument used above (entering one region = leaving the other region) we follow

that the derivatives in A and C are equal up to a ”minus”. Thus the derivatives in A

and B are its negative, which shows that the relation discovered for the case where we

have a discontinuous change is also valid for the smooth change between the two regions.
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Figure C.1: The points that contribute to ∂Φk

∂kx
are marked in the figure. The antisym-

metry of the derivative can be recognized in the figure.

C

D B

A
S

Figure C.2: In the case of the smooth change between the two regions the derivative in
point A has the negative value of the derivative in point B.
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Our conclusion is that all the functions ∂Ψk

∂ky
, ∂Ψk

∂kx
, ∂Φk

∂ky
and ∂Φk

∂kx
are antisymmetric

functions (compare to figure C.1) and furthermore the general formula

∂Φk

∂kx
= −∂Ψk

∂kx
(C.1)

∂Φk

∂ky
= −∂Ψk

∂ky
(C.2)

is valid.
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Appendix D

Derivatives of the smooth function Φk

Formulas for the derivatives of Φk are important for the computation of σxy and

∆σxx(B) as seen in chapter 5.

Note that it is not necessary to write down explicitly the hot region, as their derivatives

obey the condition given in (C.1). Thus one set of derivatives is enough!

The first derivatives of Φk become:

∂Φk

∂kx
=

1

16w






a
(

cosh
(

ky−akx

w

))2 · Φ2(k) · Φ3(k) · Φ4(k)

− b
(

cosh
(

ky−bkx

w

))2 · Φ1(k) · Φ3(k) · Φ4(k)

+
b

(

cosh
(

ky−bkx−c
w

))2 · Φ1(k) · Φ2(k) · Φ4(k)

− a
(

cosh
(

ky−akx−d
w

))2 · Φ1(k) · Φ2(k) · Φ3(k)






∂Φk

∂ky
=

1

16w




− 1

(

cosh
(

ky−akx

w

))2 · Φ2(k) · Φ3(k) · Φ4(k)

+
1

(

cosh
(

ky−bkx

w

))2 · Φ1(k) · Φ3(k) · Φ4(k)

− 1
(

cosh
(

ky−bkx−c
w

))2 · Φ1(k) · Φ2(k) · Φ4(k)

+
1

(

cosh
(

ky−akx−d
w

))2 · Φ1(k) · Φ2(k) · Φ3(k)





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The magneto-resistance is a quantity that is also sensible to the second derivative of

Φk. The three second derivatives are given by:

∂2Φk

∂k2
x

=
1

16w2







a
(

cosh
(

ky−akx

w

))2

·
[

2a tanh

(
ky − akx

w

)

· Φ2(k) · Φ3(k) · Φ4(k)

− b
(

cosh
(

ky−bkx

w

))2 · Φ3(k) · Φ4(k) +
b

(

cosh
(

ky−bkx−c
w

))2 · Φ2(k) · Φ4(k)

− a
(

cosh
(

ky−akx−d
w

))2 · Φ2(k) · Φ3(k)






− b
(

cosh
(

ky−bkx

w

))2

[

2b tanh

(
ky − bkx

w

)

· Φ1(k) · Φ3(k) · Φ4(k)

+
a

(

cosh
(

ky−akx

w

))2 · Φ3(k) · Φ4(k) +
b

(

cosh
(

ky−bkx−c
w

))2 · Φ1(k) · Φ4(k)

− a
(

cosh
(

ky−akx−d
w

))2 · Φ1(k) · Φ3(k)






+
b

(

cosh
(

ky−bkx−c
w

))2

[

2b tanh

(
ky − bkx − c

w

)

· Φ1(k) · Φ2(k) · Φ4(k)

+
a

(

cosh
(

ky−akx

w

))2 · Φ2(k) · Φ4(k)− b
(

cosh
(

ky−bkx

w

))2 · Φ1(k) · Φ4(k)

− a
(

cosh
(

ky−akx−d
w

))2 · Φ1(k) · Φ2(k)






− a
(

cosh
(

ky−akx−d
w

))2

[

2a tanh

(
ky − akx − d

w

)

· Φ1(k) · Φ2(k) · Φ3(k)

+
a

(

cosh
(

ky−akx

w

))2 · Φ2(k) · Φ3(k)− b
(

cosh
(

ky−bkx

w

))2 · Φ1(k) · Φ3(k)

+
b

(

cosh
(

ky−bkx−c
w

))2 · Φ1(k) · Φ2(k)












∂2Φk

∂k2
y

=
1

16w2







−1
(

cosh
(

ky−akx

w

))2

·
[

−2 tanh

(
ky − akx

w

)

· Φ2(k) · Φ3(k) · Φ4(k)
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+
1

(

cosh
(

ky−bkx

w

))2 · Φ3(k) · Φ4(k)− 1
(

cosh
(

ky−bkx−c
w

))2 · Φ2(k) · Φ4(k)

+
1

(

cosh
(

ky−akx−d
w

))2 · Φ2(k) · Φ3(k)






+
1

(

cosh
(

ky−bkx

w

))2

[

−2 tanh

(
ky − bkx

w

)

· Φ1(k) · Φ3(k) · Φ4(k)

− 1
(

cosh
(

ky−akx

w

))2 · Φ3(k) · Φ4(k)− 1
(

cosh
(

ky−bkx−c
w

))2 · Φ1(k) · Φ4(k)

+
1

(

cosh
(

ky−akx−d
w

))2 · Φ1(k) · Φ3(k)






− 1
(

cosh
(

ky−bkx−c
w

))2

[

−2 tanh

(
ky − bkx − c

w

)

· Φ1(k) · Φ2(k) · Φ4(k)

− 1
(

cosh
(

ky−akx

w

))2 · Φ2(k) · Φ4(k) +
1

(

cosh
(

ky−bkx

w

))2 · Φ1(k) · Φ4(k)

+
1

(

cosh
(

ky−akx−d
w

))2 · Φ1(k) · Φ2(k)






+
1

(

cosh
(

ky−akx−d
w

))2

[

−2 tanh

(
ky − akx − d

w

)

· Φ1(k) · Φ2(k) · Φ3(k)

− 1
(

cosh
(

ky−akx

w

))2 · Φ2(k) · Φ3(k) +
1

(

cosh
(

ky−bkx

w

))2 · Φ1(k) · Φ3(k)

− 1
(

cosh
(

ky−bkx−c
w

))2 · Φ1(k) · Φ2(k)












The last derivative we need is the mixed derivative ∂2Φk

∂kx∂ky
. It is very similar to the

other second derivatives. Only some factors change.

∂2Φk

∂kx∂ky
=

1

16w2







a
(

cosh
(

ky−akx

w

))2

·
[

−2 tanh

(
ky − akx

w

)

· Φ2(k) · Φ3(k) · Φ4(k)

+
1

(

cosh
(

ky−bkx

w

))2 · Φ3(k) · Φ4(k) − 1
(

cosh
(

ky−bkx−c
w

))2 · Φ2(k) · Φ4(k)

+
1

(

cosh
(

ky−akx−d
w

))2 · Φ2(k) · Φ3(k)





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− b
(

cosh
(

ky−bkx

w

))2

[

−2 tanh

(
ky − bkx

w

)

· Φ1(k) · Φ3(k) · Φ4(k)

− 1
(

cosh
(

ky−akx

w

))2 · Φ3(k) · Φ4(k)− 1
(

cosh
(

ky−bkx−c
w

))2 · Φ1(k) · Φ4(k)

+
1

(

cosh
(

ky−akx−d
w

))2 · Φ1(k) · Φ3(k)






+
b

(

cosh
(

ky−bkx−c
w

))2

[

−2 tanh

(
ky − bkx − c

w

)

· Φ1(k) · Φ2(k) · Φ4(k)

− 1
(

cosh
(

ky−akx

w

))2 · Φ2(k) · Φ4(k) +
1

(

cosh
(

ky−bkx

w

))2 · Φ1(k) · Φ4(k)

+
1

(

cosh
(

ky−akx−d
w

))2 · Φ1(k) · Φ2(k)






− a
(

cosh
(

ky−akx−d
w

))2

[

−2 tanh

(
ky − akx − d

w

)

· Φ1(k) · Φ2(k) · Φ3(k)

− 1
(

cosh
(

ky−akx

w

))2 · Φ2(k) · Φ3(k) +
1

(

cosh
(

ky−bkx

w

))2 · Φ1(k) · Φ3(k)

− 1
(

cosh
(

ky−bkx−c
w

))2 · Φ1(k) · Φ2(k)











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Appendix E

The tetrahedron method

Solving integral equations is in most cases a very difficult even unsolvable problem. The

Tetrahedron method provides a method that allows the computation of integrals that

are non-trivial to integrate, because of possible singularities.

Dealing with a function that doesn’t allow us to obtain an explicit function in an ana-

lytic way, we have to use numerical methods to compute the integral. Especially in solid

state physics, where a lot of properties of a system can be measured by experiment,

there is a big interest in computing some integral equations numerically to get values

for transport parameters of the system we are interested in.

We are most interested in transport properties of solids (especially HTSC) that can

be obtained from solving a transport equation. In all the formulas we get for those

properties we have to sum over an area next to the FS in order to obtain the value of

the special transport coefficient we want to find out. In a more sophisticated approach

(using techniques of Greens functions) we get for instance the longitudinal conductivity

from the equation1

σxx =
1

ω

∑

k

[
∂εk+1/2

∂kx

]2
[

f(εk+q,↑)− f(εk,↓)

εk+q,↑ − εk,↓ − ω + iδ

]

(E.1)

where the functions f represent the Fermi-function.

As it can be seen in equation (E.1) we only have to integrate over a small area next to

the Fermi surface. But we get only contributions to the integral from a small area next

to the FS, because of the Fermi-function f in the numerator of the considered integral

1The first term in the sum,
∂εk+1/2

∂kx

2
is given by the vertices, where the second part of this equation

comes from the bubble. We can get this result when we calculate the Greens-function for different
momenta (q+k and k) which are given in the bubble. We don’t consider corrections because of vertices
or higher order bubble-terms so far.
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(figure E.1).

The formula we use for changing summation and integration (continuum-limit) is, as

usual:
∑

k

→ V

∫ kf

0

d3k

(2π)3
(E.2)

But still the problem of solving an integral over an area at the FS remains.

To get a better understanding we look at an arbitrary FS, showed in figure E.1.

We divide this chapter into several pieces to show how the method works and to

Fermi Surface in
reciprocal space

Figure E.1: A possible FS in reciprocal space without a spherical symmetry. Only the
shaded area contributes to the integral given in (E.1). Our strategy is that we first check
whether a triangle is outside the first Fermi surface (FS1) then we check whether it is
inside the second (moved) Fermi surface (FS2)

explain how it can be computed.

E.1 Numerical integration in 2D

Our problem is to solve an integral (e.g. equation (E.1) over a certain area, which is

determined by f(εk+q) and f(εk). So let’s consider an area (first BZ), a square, in

which the original and the moved FS is completely inside.

We divide the square into small sub-squares. If the function we want to integrate (e.g.

equation (E.1)) is smooth enough, it doesn’t change rapidly in this smaller sub-squares.

Figure E.2 shows the first BZ containing the two FS that are given by f(εk (FS1) and

f(εk+q) (FS2).
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FS1 FS2

0

0

Figure E.2: The lattice in the first BZ. The i-th square is taken out and divided into
two triangles. In this case this square is completely inside FS1 and FS2.

This new coordinate system (square-lattice) has its origin in the center of the initial

square and has an amount of discrete values (N × N). The advantage is that we can

compute the value of a function F (e.g.
(

∂εk+1/2

∂kx

)2
1

εk+q,↑−εk,↓−ω+iδ ) at each discrete

point. Finally we integrate over each small square to obtain the contribution to equation

(E.1). Dependent whether we are inside or outside FS1 and FS2 we get a contribution

(which is given by F ) to the integral or not.

It exists the possibility that the FS1 and FS2 divides one sub-square into a piece that

contributes to the integral and one that doesn’t, shown in figure E.3. The sub-squares

at the boundary of the region of interest have a part which is inside and a part that is

outside the important region showed in figure E.1.

The important trick, in order to get a good result, is, to divide each sub-square into

two triangles and compute that part of the triangle that is in the area of our interest.

Figure (E.3) shows this strategy.

E.1.1 Possible situations for the triangle

We can imagine four possibilities for each triangle. The easiest possibilities are if the

triangles are completely inside or outside the region of interest. In this case the integral

over the BZ gets just a contribution of the whole triangle or no contribution at all. So

in this two cases we don’t have to worry much.

But there is also the possibility that there is only a part of such a triangle inside the
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1

1’

3

2

2

1

Figure E.3: A sub-square at the boundary of the FS1 or FS2. The cases 1 and 2 are
different as described in the text.

interesting region and another part of the triangle is outside this region, which are the

cases where we have to be more careful and are shown in figure (E.3).

We have to identify that part of the triangle that is inside the region that contributes

to the integral in (E.1). We get the part inside this region either by taking one new

triangle (which is represented by case 1 in figure (E.3)) or by dividing the part that

is inside the region into two parts (case 2 in figure (E.3)). In this case we get two

triangles respectively.

After this we compute the contribution of each (new) triangle to (E.1). The problem

that arises is of course to find the positions where the energy is zero (thus the position

where we get from inside the region to its outside). This positions has to be found by

a root-finder.

So far we only approximated the area contributing to (E.1) by triangles.

E.1.2 An easy root-finder and an easy integration

The values of F , given in (E.1), at the corners of each triangles, shown in figure (E.3),

are known. Energy values ε at this points are as well positive as negative as we consider

triangles at the boundary of the contributing area here. The energy values at each

corner allows us to decide at which side we expect the energy to become zero at least

for one time. In the easiest case we assume the energy to be linear at the sides of each

triangle. This simple assumption gives us reasonable values for the intersection-points.
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Emin

Emax

Figure E.4: In the case of linear energy variation we obtain this geometry. The ration
between Emax and Emin estimates the intersection point.

The approximation of a linear behavior of the energy at each side allows us to get an

easy formula for the intersection point. Figure E.4 shows the geometry in this case.

But this version is only good if we deal with a dispersion relation that changes very

slow. More sophisticated methods to estimate the intersection-point are bisection etc..

Once we have found all triangles in the interesting area (or to be more clear: once we

have described the contributing region by triangles) we can integrate this by integrating

each triangle.

So far we is just took a square, the BZ, that contains the FS1 and FS2 completely,

divided it in a large number of sub-squares (N ×N), divide each sub-square into two

triangles and decided whether the triangle is inside outside or at the boundary of the

important region, shown in figure E.2 and E.3.

Now we have to integrate over each triangle that is in the contributing area. The easiest

way to integrate over a triangle is to take the three values of F at the three corners of

the triangle Fi, i = 1, 2, 3, average it F1+F2+F3
3 and to multiply this with the area of

the triangle:
∫

4
Fdx = A4

F1 + F2 + F3

3
(E.3)

This is surely a good method if F is smooth enough.

In our special case we have to be careful with this integration as we lose a lot of infor-

mation when we use this kind of integration. Thus more general way will be described

below.
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LOOP (over each square)

constructs lattice
points of corners
loop

splits each subsquare
into two triangles

checks whether tri.
outside FS1 

checks "new tri." is
inside FS2 

computes contribution
to integral (cases!)

INPUT

OUTPUT

D2INT

SELECT1 SELECT2

call

Result of Int.

call SRST

INTRES

constructs normal
order

Figure E.5: The different subroutines and what they do.

E.2 The algorithm

Equation (E.1) tells us that only an area around the original FS can contribute, between

FS1 and FS2. In the program we use different subroutines that can be seen in figure

E.5 to compute the integral (E.1).

Different subroutines interact via common blocks which allow to submit coordinates

of the considered triangles to other subroutines. Only those triangles that lie in the

important area are integrated!

The next section is going to explain the mathematical background of this method.

E.3 The mathematical background - formulas for the program

At first, of course, we have to decide what function we choose to describe the FS. One

possibility is the parameterization of the FS, like it is done in the Hubbard model,

ε(x, y) = cos x + cos y.2 To compute a integral of the type described in equation (E.1)

2Note that we are in reciprocal space. Thus we should use kx instead of x to avoid confusion.
The lattice parameter a has also to be inserted in the cos-terms. We neglect all this for convenience.
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we have also to know the energy value εq(x, y) which is given by

εq(x, y) = cos[x + x0] + cos[y + y0] (E.4)

with the vector q given by q = (x0, y0).

So typical integrals we have to integrate are, similar to (E.1), of the form:

Iij(q) =

∫

square
d2x

f(εk+q) [f(εk+q)− f(εk)]

εq(x, y)− ε(x, y)
(E.5)

with i, j = 1, ..., N , the Fermi-function f and the vector q that represents the pertur-

bation of the system.

Only triangles outside the ”first”, undisturbed, FS, FS1, and inside the ”second”, with

wave vector q moved FS, FS2, contribute to (E.5). We divide our proceeding into two

steps to solve this integration.

In the first step we want to estimate the region that contributes to the integral, thus

outside FS1 and inside FS2 and describe this region by small triangles.

In the second step we integrate a function, in our example 1
εq(x,y)−ε(x,y) , over each con-

tributing triangle. This is done by linearizing the energy for each triangle separately.

So we get a contribution to the integral from every triangle that is in the interesting

area. The difficult part of the second step is that we have to be very careful avoiding

singularities.

E.4 Estimating the contributing region

We split the search of the contributing area into two pieces. In a first subroutine

(SELECT1) we separate triangles that are outside FS1. Only these triangles are passed

to the second subroutine (SELECT2) which estimates what part of the passed triangle

is inside FS2 (compare to figure (E.5)).

E.4.1 Triangles outside FS1 - SELECT1

It is easy to estimate the triangles outside FS1 when we remember that all energy values

with ε < µ, where µ is the chemical potential, are occupied. Renormalizing the energy

ε(x, y) in the way ε(x, y)−µ → ε(x, y) shows us that we are only interested in triangles
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Figure E.6: One of the 2 N 2 triangles we get from dividing the first BZ. The normal
order in energies is already performed.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

(i+1,j+1)

(i+1,j)(i,j)

E E

E

1 2

3

Figure E.7: The triangle is completely inside the FS1. Therefore we get no contribution
to the Integral. Iij(q) = 0!

that have energies ε(x, y) with e(x, y) > 0.

Because of the discretization of the BZ in a lattice we know the energy values at the

corners of each triangle εi, i = 1, 2, 3.

First we arrange the energy values at the corners of a triangle to normal order what

means: ε1 ≤ ε2 ≤ ε3. This is shown in figure E.6.

When organized the normal order, what is done in the subroutine D2INT, it is easy

to find out what part of the considered triangle is outside FS1. Three different cases

are possible:

1. case ε1 ≤ ε2 ≤ ε3 ≤ µ

The triangle is complete inside the Fermi surface, given the energy dispersion is

not too curious (figure E.7). As we can raise the number of lattice points N it

should become reasonable for big enough N that the triangle is completely inside

the FS.

2. case ε1 ≤ ε2 ≤ µ ≤ ε3
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Figure E.8: The triangle is partly inside the FS1. We get only a contribution to the
Integral. Iij(q) from the triangle µ1ε3µ2.

In this case one corner is outside of FS1 (figure E.8). Only a small triangle around

this corner contributes to the integral. But still we don’t know the coordinates of

the corners (µ1 and µ2 and ε3) of the ”new” triangle that is outside FS1. Therefore

we have to think of a method that allows us to estimate the two unknown points

ν1 and ν2.

We linearize the energy around the corner ε3 and get for the linearized energy in

the form

ε(x, y) = ε3 + A(x− x3) + B(y − y3) (E.6)

with the coordinates of the corner with the energy value ε3 (x3, y3) and the con-

stants A and B.

Equation (E.6) allows us to describe the two sides of the triangle ε1ε2ε3 that

cross the FS. These two lines are described by the equation:

ε1(x, y)− ε3 = A(x1 − x3) + B(y1 − y3)

ε2(x, y)− ε3 = A(x2 − x3) + B(y2 − y3)

The constants A and B are determined by these equations. The constants are

needed to obtain the intersection points µ1 and µ2.

Applying Cramers-Rule we solve the equation-system above and obtain:

Det = (x1 − x3)(y2 − y3)− (y1 − y3)(x2 − x3)

DetA = (ε1 − ε3)(y2 − y3)− (y1 − y3)(ε2 − ε3)
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DetB = (x1 − x3)(ε2 − ε3)− (ε1 − ε3)(x2 − x3)

So we obtain the values for A and B, using A = DetA
Det and B = DetB

Det .

A =
(ε1 − ε3)(y2 − y3)− (y1 − y3)(ε2 − ε3)

(x1 − x3)(y2 − y3)− (y1 − y3)(x2 − x3)

B =
(x1 − x3)(ε2 − ε3)− (ε1 − ε3)(x2 − x3)

(x1 − x3)(y2 − y3)− (y1 − y3)(x2 − x3)

We can describe the lines that connects the two corners ε1 or ε2 with ε3 now. This

lines have the equation:

y − y3 =
y1 − y3

x1 − x3
(x− x3)

y − y3 =
y2 − y3

x2 − x3
(x− x3)

The crossing points µi, i = 1, 2, are obtained when we compute µi− ε3 = A(xµ −

x3) + B(yµ − y3), where µi is the energy this point. When we insert this in the

equation above we get µ− ε3 =
[

A + B y1−y3

x1−x3

]

(xµ − x3). We solve this equation

to get the coordinates of the intersection points assuming a linear energy. The

coordinates of µ1 are determined by the equations:

yµ1 − y3 =
(µ1 − ε3)(y1 − y3)

A(x1 − x3) + B(y1 − y3)

xµ1 − x3 =
(µ1 − ε3)(x1 − x3)

A(x1 − x3) + B(y1 − y3)

with the constants A,B and the coordinates of the corners xi, yi.

The coordinates of the other intersection point µ2 are obtained in the same way.






xµ2

yµ2




−






x3

y3




 =






(µ2−ε3)(x2−x3)
A(x2−x3)+B(y2−y3)

(µ2−ε3)(y2−y3)
A(x2−x3)+B(y2−y3)




 (E.7)

Finally we obtained a triangle µ1µ2ε3 that is completely outside FS1, like it is

shown in figure E.8.

We make small mistakes due to the approximation of linear energy dispersion.

But a dispersion-relation that is not too fancy and with the first BZ divided in a

big number of sub-squares N 2 the error remains small.
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Figure E.9: The two triangles ε2µ1µ2 and ε2ε3µ1 contribute to the integral. The inter-
section points are computed in the same way as in case 2.

3. case ε1 ≤ µ ≤ ε2 ≤ ε3

This case is very similar to case 2. But here we have to divide the area that

contributes to the integral into two triangles,as it can be seen in figure E.9. We

get the intersection points like we get them in case 2. The difference here is that

we linearize the energy around ε1 in this case.

We get the following values for A and B similar to case 2.

A =
(ε2 − ε3)(y3 − y1)− (y2 − y1)(ε3 − ε1)

(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)

B =
(x2 − x1)(ε3 − ε1)− (ε2 − ε1)(x3 − x1)

(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)

Thus we obtain the intersection points are:






xµi

yµi




−






x1

y1




 =






(µi−ε1)(xi+1−x1)
A(xi+1−x1)+B(yi+1−y1)

(µi−ε1)(yi+1−y1)
A(xi+1−x1)+B(yi+1−y1)




 (E.8)

with i = 1, 2.

4. case µ ≤ ε1 ≤ ε2 ≤ ε3

Figure E.10 shows the situation of this case. The triangle ε1ε2ε3 is completely

outside FS1. Therefore the whole triangle is passed to the next subroutine that

checks whether the triangle is inside FS2.

We estimated all triangles outside FS1 until now. We store the (new) coordinates

of the corners of each triangle outside FS1 and pass this ”new” triangle to a subroutine

that checks whether the new triangle lies inside the ”moved” Fermi surface, FS2.
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Figure E.10: The triangle is completely outside the FS1. We don’t have to change the
coordinates of the corners.

E.4.2 Triangles inside FS2

This step is very similar to the previous section, where we looked for triangles outside

FS1. Here we are only interested in those triangles that are outside FS1 and additional

inside FS2.

Because we moved the Fermi surface by some arbitrary vector q we can describe the

inner region of the ”moved” FS by the equation εq(x, y) ≤ µ, where the vector q with

εq(x, y) = ε(x + qx, y + qy). Because we know the energy dispersion relation we can

compute this energies easily. Again we have to consider four cases.

1. case µ ≤ εq1 ≤ εq2 ≤ εq3

The considered triangle is completely outside FS2. We get no contribution to the

integral, Iij(q) = 0, from this triangle. The picture we get is the same as in case

4 of the previous section (Of course the drawn Fermi surface in this case has to

be FS2!).

2. case εq1 ≤ µ ≤ εq2 ≤ εq3

Again we first arrange the three energy values to normal order. When this is

done this case is very similar to case 2 of the previous section. We compute

the intersection points µ1 and µ2. The only difference now is that we have to

linearize the new energy εq(x, y) (of course again around the lowest energy value

εq1 !), εq(x, y) − εq1 = Aq(x− x1) + Bq(y − y1) with the values for Aq and Bq:

Aq =
(εq2 − εq1 )(y3 − y1)− (y2 − y1)(ε

q
3 − εq1 )

(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)

Bq =
(x2 − x1)(ε

q
3 − εq1 )− (εq2 − εq1 )(x3 − x1)

(x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1)
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Thus the two intersection points are given (similar to previous section) by:





xµi

yµi




−






x1

y1




 =






(µi−εq1 )(xi+1−x1)
Aq(xi+1−x1)+Bq(yi+1−y1)

(µi−εq1 )(yi+1−y1)
Aq(xi+1−x1)+Bq(yi+1−y1)




 (E.9)

with i = 1, 2. Substituting A → Aq etc. gives us the same result as before.

The obtained triangle is a triangle that lies in the area that contributes to Iij(q).

It is passed to a subroutine that integrates over this triangle.

3. case εq1 ≤ εq2 ≤ µ ≤ εq3

In this case we linearize the energy εq around the corner that has the energy value

εq3 , εq(x, y) − εq3 = Aq(x − x3) + Bq(y − y3). The picture we obtain is similar

to the picture we got in case 3 of the previous section. Again using Cramers

rule we obtain the crossing points of the two sides. Aq and Bq are given as,

Aq =
(εq1−εq3 )(y2−y3)−(y1−y3)(ε

q
2−εq3 )

(x1−x3)(y2−y3)−(y1−y3)(x2−x3)
and Bq =

(x1−x3)(ε
q
2−εq3 )−(εq1−εq3 )(x2−x3)

(x1−x3)(y2−y3)−(y1−y3)(x2−x3)
. The

intersection points can be computed with this values as done before. Note that

we have to split this area into two triangles, like it is done in case 3 of the previous

section.

4. case εq1 ≤ εq2 ≤ εq3 ≤ µ

This is the case where the whole triangle considered is inside FS2. Thus we get a

contribution to the integral from the whole triangle. The picture that describes

this is similar to the picture we got in case 4 of the previous section. So the

coordinates of the triangle are not changed in this case.

Now we have approximated the area that contributes to Iij(q) by small triangles.

We have approximated the shaded area of figure E.1 by triangles using the subroutines

SELECT1 and SELECT2.

In the next step we integrate each of these remaining triangles over the function de-

scribed in (E.5).

E.4.3 Integration over a triangle

Only triangles that passed the two subroutines SELECT1 and SELECT2 are passed

to this subroutine (INTRES). So every remaining triangle contributes to this integral.
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(x  ,y  )

(x  ,y  )

(x  ,y  )

θ

3 3

2 2

1 1

y

x

Figure E.11: An arbitrary triangle with the corners already arranged to the order x1 ≤
x2 ≤ x3. Also the angle of the rotation θ is drawn.

We write down the integral for an arbitrary triangle.

Iij(q) =

∫

4

dxdy

εq(x, y)− ε(x, y)
(E.10)

To obtain a reasonable result we linearize the two energies εq and ε like it is done before.

Linearizing around the corner ε1 gives:

ε(x, y) = ε1 + A(x− x1) + B(y − y1)

εq(x, y) = εq1 + Aq(x− x1) + Bq(y − y1)

We are interested in the magnitude εq(x, y)− ε(x, y) what can be seen in (E.10), so

εq(x, y)− ε(x, y) = C1 + C2(x− x1) + C3(y − y1) (E.11)

where C1 = εq1 −E1, C2 = Aq −A and C3 = Bq −B.

It is convenient to arrange the coordinates of the corners so that we obtain for the

x-coordinates of the corners x1 ≤ x2 ≤ x3, like it is shown in figure E.11. We have to

rotate the triangle with by angle θ (compare to figure E.11) that is given by

tan θ =
y3 − y1

x3 − x1
(E.12)

The rotation around the horizontal axis is described by

x′ =






cos θ sin θ

− sin θ cos θ











x− x1

y − y1






Because of the angle we have chosen above we get the new coordinates of the rotated

and translated (by (−x1,−y1)) triangle as:

x′1 =






0

0





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x′2 =






x′2

y′2






x′3 =






x′3

0






with values x′2, x
′
3, y

′
2 determined by the rotation and translation. we can write the

integral introduced above just by using trigonometric functions sin θ and cos θ. So the

linearized energy has the form:

εq(x, y)− ε(x, y) = A + Bx + Cy (E.13)

because x1 and y1 are chosen to be 0. Of course we should write x′ and y′ in the

linearized energy above, because we are now integrating over the transformed triangle.

Again we can easily compute the energy values at the corners of the triangle. We name

the differences in the energy values vi, i = 1, 2, 3. Equation (E.13) allows us to write:

v1 = εq1 − ε1 = A

v2 = εq2 − ε2 = A + Bx2 + Cy2

v3 = εq3 − ε3 = A + Bx3

with the solution of this equation system:

A = v1

B =
v3 − v1

x3

C =
(v2 − v1)− x2

x3
(v3 − v1)

y2

The knowledge of these constants allows us to integrate each triangle. Figure E.12

shows the ”new” integral. Now the final integral has the form:

Iij(q) =

∫

4

dxdy

A + Bx + Cy
(E.14)

with the constants A,B,C as described above.

When we divide the triangle into two triangles (triangle 1 and 2 in figure E.12) we get

an easy expression for the integral:

Iij(q) =

∫ x2

0
dx

∫ y2
x2

x

0
dy

1

A + Bx + Cy
+

∫ x3

x2

dx

∫ y2
x2−x3

(x−x3)

0
dy

1

A + Bx + Cy
(E.15)
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21

(x  ,y  )

(x  ,0)3

2 2

(0,0) x

y

Figure E.12: The rotated and translated triangle. Of course it has the same area as
before. We can integrate this triangle easy by dividing it in two triangles, marked as 1
and 2 in the picture.

At this point we have to be careful, because we can obtain singularities when the

denominator is equal to zero. Therefore we have to consider different cases.

1. case v1 = v2 = v3 = v 6= 0

In this case we get in the denominator only v, because B = C = 0 what can be

seen in (E.15). The integral becomes:

Iij(q) =

∫ x2

0
dx

∫ y2
x2

x

0
dy

1

v
+

∫ x3

x2

dx

∫ y2
x2−x3

(x−x3)

0
dy

1

v
=

y2x2

2v
+

y2

2v(x3 − x2
(x3 − x2)

2 =
y2x3

2v

2. case v1 6= v2, v2 6= v3, v1 6= v3, v1 6= 0, v2 6= 0, v3 6= 0

We consider this case know, because we will use it to consider the next cases.

In this case we don’t have to fear any singularities in the integrand. Doing the

y-integration of (E.15) gives:

Iij(q) =

∫ x2

0
dx

1

C
ln

∣
∣
∣
∣
∣

A + Bx + C y2

x2
x

A + Bx

∣
∣
∣
∣
∣
+

∫ x3

x2

dx
1

C
ln

∣
∣
∣
∣
∣
∣

A + C y2y3

x3−x2
+
[

B − C y2

x3−x2

]

x

A + Bx

∣
∣
∣
∣
∣
∣

(E.16)

with A,B,C as showed before. We simplify some terms in the integral using the

value of these constants:

B+C y2
x2

= v2−v1
x2

, A+C y3x3
x3−x2

= x3v2−x2v3
x3−x2

and B−C y2
x3−x2

= v3−v2
x3−x2

what simplifies

(E.16). It is convenient to split (E.16) into three pieces:

I1(q) =

∫ x2

0
dx

1

C
ln

∣
∣
∣
∣A +

v2 − v1

x2
x

∣
∣
∣
∣

I2(q) =

∫ x3

x2

dx
1

C
ln

∣
∣
∣
∣

x3v2 − x2v3

x3 − x2
+

v3 − v2

x3 − x2

∣
∣
∣
∣

I3(q) =

∫ x3

0
dx

1

C
ln

∣
∣
∣
∣v1 +

v3 − v1

x3
x

∣
∣
∣
∣
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The total integral is thus given by:

Iij(q) = I1(q) + I2(q)− I3(q) (E.17)

Be aware of the minus-sign in this equation!

The solution of this integrals leads us to the expression:3

I1(q) =
x2

v2 − v1
(v2 ln |v2| − v1 ln |v1| − (v2 − v1))

I2(q) =
x3 − x2

v3 − v2
(v3 ln |v3| − v2 ln |v2| − (v3 − v2))

I3(q) =
x3

v3 − v1
(v3 ln |v3| − v1 ln |v1| − (v3 − v1))

Inserting these three integrals into (E.17) we obtain the final result. Some alge-

braic calculation gives us:

Iij(q) = x3y2

(
v1 ln |v1|

(v1 − v3)(v1 − v2)
+

v2 ln |v2|
(v2 − v1)(v2 − v3)

+
v3 ln |v3|

(v3 − v1)(v3 − v2)

)

(E.18)

The knowledge of the values of I1, I2, I3 allows us to discuss other cases now.

3. case v1 = v2 = v, v 6= 0, v 6= v3

The term εq − ε simplifies in the following manner when we insert the values for

A,B,C from above:

εq(x, y)− ε(x, y) = v +
v3 − v

x3
x− x2y2

x3
(v3 − v)y (E.19)

A integration of the term in (E.19) gives:

Iij(q) =

∫ x2

0
dx

∫ y2
x2

x

0

dy

v + v3−v
x3

x− x2y2

x3
(v3 − v)y

+

+

∫ x3

x2

dx

∫ y2
x2−x3

(x−x3)

0

dy

v + v3−v
x3

x− x2y2
x3

(v3 − v)y

Instead of doing this integrals we insert the values of the v’s in the integrals

I1, I2, I3 calculated above. Equation (E.17) gives us the value of Iij(q) in this

case:

Iij(q) =
y2x3

v3 − v

[
1

v3 − v
(v3 ln |v3| − v ln |v|)− ln |v| − 1

]

(E.20)

3The important integral is an integral of the type
∫

ln |A + Bx|dx. Making the substitution z =

A + Bx we obtain:
∫

ln |A + Bx|dx = 1
B

z ln z − z = 1
B

(A + Bx) ln(A + Bx)− (A + Bx)
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4. case v1 = v3 = v, v 6= 0, v 6= v2

We write the difference in energy in the same manner as before. Again we use the

three integrals I1, I2, I3 to obtain the correct result for this integral. We obtain

the integral:

Iij(q) =
y2x3

v2 − v

[
1

v2 − v
(v2 ln |v2| − v ln |v|)− ln |v| − 1

]

(E.21)

5. case v2 = v3 = v, v 6= 0, v 6= v1

The last case gives the following integral, written in a more compact way than

the integrals before:

Iij(q) =
y2x3

v1 − v

[
v1

v1 − v
ln

∣
∣
∣
∣

v1

v

∣
∣
∣
∣− 1

]

(E.22)

So we finally computed all integrals we need to get the result of the integral.
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