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ABSTRACT OF THE DISSERTATION

Dynamical Mean Field theories and the

Anderson Localization

by Sergey Pankov

Dissertation Director: Professor Gabriel Kotliar

We investigate extended dynamical mean field theory (EDMFT) of the interacting

Bose-Fermi system using quasiclassical approxiamtion on the impurity solver. We

compare semiclassical results to the exact Quantum Monte Carlo (QMC) solution

and find a good agreement in a range of parameters. Taking the classical limit we

prove that the transition to the ordered phase is of the first order in any dimension

below four. Using the functional formulation of EDMFT we derive a criterion for

the instability of the disordered phase.

We explain how DMFT and extended DMFT approximations can be formu-

lated in the parquet equation language. A natural extension, based on the parquet

formalism, is proposed to incorporate nonlocal particle particle and particle hole

fluctuations.

We also revisited Anderson localization problem and clarified few unclear as-

pects.
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Chapter 1

Introduction

Rarely problems, arising in our quest for understanding the nature of the physi-

cal world, can be solved with complete mathematical rigour. The need arises for

using some approximations, either in the choice of the physical models mimicing

the real world, or in the methods of solving them, or both. It may be diffi-

cult to assess if a particular approximation (theory) not only makes the problem

formally solvable, but also preserves the essence of the considered phenomenon,

unless there is a paramenter in the theory which becomes small (or large) in some

limit. Such approximations are called controlled and are most appriciated in the-

oretical physics. The dynamical mean field theory (DMFT) is an example of a

controlled theory, it becomes exact in the limit of large coordination number or

dimensionality d. Different approximations are often complimentary, where one

fails, another may be of great help. Therefore it is of paramount impotance to

learn the strengths and limitations of each approach, and to know when each

method can be applied. In this work we attempt to widen our understanding of

the class of mean field theories, which are generecally referred to as dynamical

mean field theories.

The development of the DMFT started with the pioneering work of Metzner

and Vollhard, [1] who showed that in the limit of d→ ∞ the physics of correlated

fermions remains nontrivial provided the hopping matrix elements are properly

scaled. They also showed that diagramatic calculations are greatly simplified and

the self energy of the Hubbard model becomes local.
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The next significant advancement was made when it was realized that the

Hubbard model could be mapped exactly onto the Anderson impurity model [2]

in the limit d = ∞, and that this method could be extended to a large number of

other models. For the first time the Hubbard model could be studied in the whole

range of the interaction strength, something the perturbation theory could not

do. The perturbation theory was useful only in the weak or strong coupling limit

and was breaking down at the intermediate coupling, where the Mott transition

was taking place. The nontrivial picture of the transition was revealed, showing

the formation of the resonans in the density of states at Fermi level and its

destruction in the transition. The transition was found to be the first order at

zero temperature.

Mapping to an impurity also permitted the use of many methods, available for

treating Anderson impurity, in solving correlated systems on a lattice. Comput-

ing the Green’s function from the local DMFT action exactly requires application

of the Quantum Monte Carlo algorithms, which become exponentially costly at

small temperature. Instead one can use an approximate scheme, like iterated per-

turbation theory (ITP) [2] or exact diagonalization method, as well as a number

of analytic methods.

In the following, whenever we refer to DMFT, we imply the approximation

which is exact in the limit d→ ∞, be it the impurity formulation, or a functional

integral formulation, unless specified otherwise.

It was quickly understood that DMFT can be applied to many other models,

like: periodic Anderson model [3], Kondo lattice [3], quantum spin glasses [4],

Falikov Kimball model [5–7], Holstein model [8,9], etc. Later DMFT was extended

to include longer range interactions [10, 11], for example in extended Hubbard

model, hence the name of extended DMFT, or simply EDMFT. In its spirit

EDMFT is quite similar to DMFT.

The DMFT is a controlled approximation, which is exact in the infinite d



3

limit. However the systems we study in practice are at most three dimensional,

therefore it is desirable to build an extension near the exact infinite d limit. The

extension should be accounting for 1/d corrections. Other than improving the

quantitative results obtained with DMFT, this would be crucial for capturing

some effects which are absent in a single site formulation, like d-wave supercon-

ductivity. The EDMFT attempts to include nonlocal collective excitations, but

they are treated in the DMFT fashion and must be built into the Hamiltonian to

begin with. It does not capture nonlocal particle hole or particle particle excita-

tions. The alternative route is to consider a cluster embedded in a selfconsistent

bath. Several cluster DMFT formulation has been proposed [12, 13] and there

properties investigated [14–16]. Extension to just a 2×2 cluster already captures

d-wave superconductivity features of the 2D Hubbard model [17, 18].

Among recent sucesses of DMFT we can name a succeful combination of the

DMFT with the local density approximation theory [19,20] (LDA) - realistic band

structure calculation method, which was significuntly improved by brining in the

many body physics.

Much effort was put in combining DMFT and the disorder. A common ap-

proach in treating the disorder is to introduce n replicas and take the limit n→ 0

after integrating out the disorder. This proved to be useful for studying glassy

physics. This approach is applicable for interacting problem as well [21] including

DMFT formulation [22], but it proved to be of little help in capturing correctly

the physics of strong localization. This might be due to the lack of understanding

of the applicability of the replica trick [23]. An alternative to the replica trick is

the supersymmetry approach [24, 25], but it is applicable to noninteracting sys-

tems only. One therefore has to turn to uncontrolled but succesful methods like

statistical DMFT [26] or typical medium theory [27] (TMT) which do incorpo-

rate disorder and interaction in DMFT setting and allow the description of the

Anderson transition.
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In our work, in addition to exploring the EDMFT, we study different features

of the Anderson localization, understanding of which should be useful in any

attempt to combine the DMFT and disorder.

The outline of the dissertation is as follows. In chapter 2 we show how DMFT

and EDMFT equations can be derived for a number of models by resumming

nonlocal diagrams. In chapter 3 we consider a semiclassical approximation on

EDMFT (which can be considered as a choice of an impurity solver) to study

electron phonon problem. The results are compared to QMC approach of the

Ref. [28]. In chapter 4 we consider a functional approach to DMFT, which is

formulated as a local approximation on the Baym-Kadanoff functional [29]. We

compute the free energy functional in the classical limit and perform an instability

analysis of the symmetrical phase, clarifying the computation of susceptibilities in

a very general DMFT setting. In the following chapter 5 we present yet another

way of viewing the DMFT approximation, using the parquet equation formalism.

We attempt to extend the local approximation to account for nonlocal particle

particle and particle hole excitations. In chapter 6 we investigate the Anderson

localization problem, making an accent on undesrtanding the correlation between

the real and imaginary parts of the Green’s function in the vicinity of the transi-

tion.
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Chapter 2

Introduction to DMFT

2.1 Diagram resummation method

There exist many ways of deriving DMFT equations. In this section we present

one of them, where momentum dependent parts of diagrams are resummed and an

impurity action with self consistently determined parameters is used to compute

local correlation functions. This method is quite universal, we imply it to derive

both DMFT and EDMFT equations, in both symmetrical and ordered phases,

using both weak coupling expansion and cumulant expansion formalism.

We consider a graphical representation of a perturbation theory of a model

under consideration. The perturbation theory will be either built around the

Gaussian free theory which permits the use of the Wick’s theorem, or around the

atomic limit. In the first case we expand in the local interaction and call it the

weak coupling expansion, in the second case we expand in the nonlocal matrix

element and call it the cumulant expansion. Each graph representing a term in

the perturbative expansion is made of vertices and lines. There can be more than

one kind of vertices and lines. We assume that the graphical representation is

chosen in such a way, that each line represent a nonlocal object, like a propagator

or a long range interaction, while a vertex represent a local object, like local

interaction or bare cumulant in a cluster. In other words, a site index assigned to

each vertex, and those indices are independent in the exact perturbation theory.

The DMFT approximation imposes constraints on this indices, by requiring some

lines to be local. It can be formulated concisely: if a vertex in a diagram can
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n

mm

l kk

ji
Figure 2.1: An example of the DMFT approximation, restricting site indices,
applied to a two point diagram Cij. Indices k, l,m, n are summed independently.

be separated from the diagram by cutting one or two (necessarily so) lines, then

those lines are taken to be nonlocal. All other lines are taken to be local. An

example is given in Fig.(2.1).

To map a lattice model onto a local impurity model we resum nonlocal blocks

in diagrams according to the rules:

1) Every block which can be separated by a single cut is substituted with a

local bond Ga
1(i), (see Fig.(2.2)).

2) Every block which requires two cuts is substituted with a bond Gab
2 (ij),

(see Fig.(2.3)).

3) Steps 1) and 2) applied until no nonlocal insertions left.

Upper indices in Ga
1 and Gab

2 denote the types of the lines that are being cut

in the substitution. We also note that the result of a diagram reduction according

to steps (1-3) is unique. Moreover, if we consider a diagram representing a local
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(l)1G

l kk

ji
Figure 2.2: The diagram shown in Fig(2.1) is modified: one line reducible block
is substituted with G1(l).

correlation function Ci or Cij then the reduced graph includes only local G1 and

G2.

The next step is to construct a local impurity action. First we separate local

and nonlocal terms in the lattice action Slat = Sloc + Snonloc, then we write the

impurity action in the form Simp = Sloc + S̃, where S̃ has the same structure as

Snonloc. It is clear that the same procedure, namely resumming one-line and two-

line reducible blocks and substituting them with Ga
1imp and Gab

2imp can be done on

graphs generated in the perturbative expansion corresponding to the local action

Simp. If, by choosing appropriately parameters in S̃, we could insure that

G1(i) = G1imp

G2(ii) = G2imp (2.1)

then all local lattice quantities would be equal to corresponding impurity model

quantities. Below we illustrate the described approach on specific examples. In

the following sections we apply the resummation method to different models.
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G2(kk)

i j

k k

Figure 2.3: The diagram from Fig(2.2) is modified further, illustrating step 2)

2.2 Hubbard model

The Hubbard model Hamiltonian reads:

H =
∑

ij

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ (2.2)

2.2.1 Weak coupling expansion

In this section we derive DMFT equations for the Hubbard model using usual

weak coupling expansion. Feynman diagrams rules assign U to each vertex and

G0(ij) to each line. To be able to compare G2 and G2imp we have to express them

in terms of an irreducible (and hence local) part. In this case it is self energy:

G2(ii) = G0(ii) +
∑

j

G0(ij)ΣG0(ji) + ... = [(G−1
0 − Σ)−1]ii (2.3)

The impurity action reads:

Simp = −
∑

σ

∫

dτdτ ′c†σ(τ)G
−1
0σ imp(τ − τ ′)cσ(τ) + U

∫

dτn↑(τ)n↓(τ) (2.4)

Similarly to Eq.(2.3) we obtain for the impurity model:

G2imp = G0imp +G0impΣG0imp + ... = (G−1
0imp − Σ)−1 (2.5)
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we do not make any difference between Σi and Σimp, since, as we mentioned

before, local parts must coincide if Eqs.(2.1) are satisfied. The last step is to

relate a local correlation function to G2. In this case it is trivial:

G2 = G (2.6)

Combining Eqs(2.1, 2.3, 2.5, 2.6) we derive the selfconsistency equation, which in

momentum space reads:

G =
∑

q

(G−1
0q −G−1

0imp +G−1)−1 (2.7)

In the next section we will derive same equation using cumulant expansion.

2.2.2 Cumulant expansion

In the cumulant expansion formalism each vertex with n legs represents a bare

cumulant M0
n(i) = 〈cic†i 〉Sloc

and each line represent the hopping matrix element

tij. G2 can be expressed in terms of tij and renormalized cumulant M2 :

G2(ii) = tii +
∑

j

tijM2tji + ... = [(t−1 −M2)
−1]ii (2.8)

The impurity action reads:

Simp =
∑

σ

∫

dτc†σ(τ)(
∂

∂τ
− µ)cσ(τ)

+ U

∫

dτn↑(τ)n↓(τ) +
∑

σ

∫

dτdτ ′c†σ(τ)∆(τ − τ ′)cσ(τ) (2.9)

We wrote the action in the form Simp = Sloc + S̃, where first two terms belongs

to Sloc and the third term belong to S̃. For G2imp we obtain:

G2imp = −∆ + ∆M2∆ + ... = −(∆−1 +M2)
−1 (2.10)

local correlation function G relates to G2 via:

G = −〈cc†〉 = −M2 −M2G2M2 (2.11)

Solving Eqs(2.1, 2.8, 2.10, 2.11) we arrive to Eq.(2.7) again, with G−1
0imp = iω +

µ− ∆(iω).
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2.3 Electron phonon interaction, broken symmetry included

In this section we derive EDMFT equations in the ordered phase, where the

phonon field acquires non zero expectation value. We could use with equal ease ei-

ther the cumulant or weak coupling expansion, and we choose the second method.

Interacting electron-phonon Hamiltonian reads:

H = −
∑

ij,σ

(tij − µ)c†iσcjσ +
∑

i

p2
i

2M
−
∑

ij

Jij

2
xixj +

∑

iσ

λxic
†
iσciσ (2.12)

The corresponding action reads:

S = −
∑

ijσωn

c†iσ(iωn)G−1
0 ij(iωn)cjσ(iωn) +

1

2

∑

ijΩn

xi(iΩn)D−1
0 ij(iΩn)xj(iΩn)

+λ
∑

iσΩn

xi(iΩn)niσ(iΩn) (2.13)

where

G−1
0 ij(iωn) = (iω + µ)δij + tij

D−1
0 ij(iΩn) = −Ω2

nMδij − Jij (2.14)

A line a Feynman diagram represents either a free electron propagator G0(iω)

(a solid line) or a free phonon propagator D0(iΩ) (a dashed line). The coupling

constant λ is assigned to a vertex. For Gph
1 we find:

Gph
1 = λ

∑

jσω

D0ij(0)Gjjσ(iω) (2.15)

For G2 we find similarly to the previous section:

Gel
2 (ii) = [(G−1

0 − Σel)
−1]ii

Gph
2 (ii) = [(D−1

0 − Σph)
−1]ii (2.16)

The impurity action reads:

Simp =
∑

σ

∫

dτdτ ′
{

−c†σ(τ)G−1
0σ imp(τ − τ ′)cσ(τ) + x(τ)D−1

0 (τ − τ ′)x(τ ′)
}

+λ
∑

σ

∫

x(τ)nσ(τ) − h

∫

dτx(τ) (2.17)
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We write G1 and G2 for the impurity model:

Gph
1imp = λD0imp(0)

[

∑

σω

Gσimp(iω) + h

]

Gel
2imp = [(G−1

0imp − Σel)
−1]

Gph
2imp = [(D−1

0imp − Σph)
−1] (2.18)

G1 and G2 are trivially related to the correlators:

Gph
1 = m = 〈x〉

Gel
2 = G

Gph
2 = D (2.19)

Solving Eqs(2.1, 2.15, 2.16, 2.18, 2.19) we find selfconsistency equations:

G =
∑

q

(G−1
0q −G−1

0imp +G−1)−1

D =
∑

q

(D−1
0q −D−1

0imp +D−1)−1

h = m(D−1
0q=0 −D−1

0imp) (2.20)

2.4 Heisenberg Magnet

The last example we consider is the Heisenberg Magnet:

H =
1

2

∑

ij

JijSiSj (2.21)

Here we must use the cumulant expansion. The derivation of DMFT equations in

this case is almost identical to the case of the Hubbard model, which we already

considered, so we summarize results. The lattice and impurity actions read:

Slat =

∫

dτ
∑

i

SB[Si(τ)] +
1

2

∑

ij

JijSi(τ)Sj(τ)

Simp =

∫

dτSB[S(τ)] +
1

2
S(τ)χ−1

0imp(τ − τ ′)S(τ ′) (2.22)
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For G2, G2imp and the correlation function χ = 〈SS〉 we find:

G2(ii) = −[(Ĵ−1 +M2)
−1]ii

G2imp = −[(χ0imp +M2)
−1]ii (2.23)

and

χ = M2 +M2G2M2 (2.24)

The bare cumulant M 0
2 is defined here as 〈SS〉Sloc

. From Eqs.(2.22-2.24) we obtain

selfconsistency condition:

χ =
∑

q

(Jq − χ−1
0imp + χ−1)−1 (2.25)
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Chapter 3

EDMFT

3.1 Introduction

The dynamical mean field theory has been very successful in unraveling non per-

turbative problems such as the Mott metal to insulator transition [30]. In spite

of its many successes, this technique has several limitations resulting from its

single site character and from the lack of feedback of the non local collective ex-

citations on the one particle spectra. Several approaches are being pursued to

extend the scope of the DMFT method. In this chapter we explore an extension

of the DMFT method (EDMFT) [10,11] which maintains a local self energy while

incorporating feedback effects of the charge and spin dynamics in the one electron

properties. This method gives rise to quantum impurity problems with fermionic

and bosonic baths that need to be solved self consistently. This method has al-

ready been applied to wide class of models, such as the spin fermion model [31],

fermions interacting with long range (Coulomb) electron-electron interaction [32],

electron-phonon systems [28] and frustrated magnets [33].

The EDMFT equations are more involved than the conventional DMFT equa-

tions because they involve a solution of a self consistency problem in an addi-

tional bosonic sector and only recently a full numerical analysis of the self con-

sistency conditions of EDMFT were carried out [28]. The interpretation of the

EDMFT instabilities is also not as straightforward as in DMFT because bosonic

and fermionic propagators involve very different regions of momentum space, and

a formulation of EDMFT for ordered phases was only obtained recently [29].
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In this chapter we develop the EDMFT approach further by analyzing several

aspects of this method: a) We implement a semiclassical technique for its solution

[34–36] and compare its results to the earlier QMC study [28] to test its accuracy.

We show that the analytic treatment is in satisfactory agreement with exact

(QMC) results in the high temperature regime of the three dimensional model

and provides analytic expressions for various physical quantities. b) We extend

this study to the case of 2-dimensional phonons, which had not been treated in

ref [28]. We demonstrate that in the 2-dimensional case the EDMFT treatment

at finite temperatures, if it produces an ordering transition it is necessarily of the

first order. This analysis applies to a very general class of models including those

used in ref [31].

We also analyze the EDMFT equations in the ordered phase [29], for a simple

spin model. This analysis clarifies the the strengths and the limitations of the

EDMFT approach, in a very simple setting.

The chapter is organized as follows. In section 3.2 we write the Fermion Boson

model and the extended DMFT equations. We then describe the semiclassical

strategy for their analysis in both weak and strong electron-phonon coupling. In

section 3.3 we present results of solving the saddle point equations for 3D phonons

coupled to electrons in different regimes and discuss the agreement with results

in QMC approach. In section 3.4 we describe the results for 2D phonons. If the

electrons are fully integrated out, the semiclassical treatment of EDMFT has to

reduce to a mean field theory in classical statistical mechanics. In section 4.2 we

compare EDMFT with other classical mean field treatments such as the Weiss

mean field approach and the Bloch Langer method [37]. The stability analysis of

the EDMFT theory is carried out in an appendix 4.4.
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3.2 Model and semiclassical approximation

The model under consideration is described by the lattice Hamiltonian:

H = Hel +Hph +Hel−ph (3.1)

where

Hel = −
∑

ij,σ

tijc
†
iσcjσ (3.2)

Hph =
∑

i

p2
i

2M
−
∑

ij

Jij

2
xixj (3.3)

Hel−ph =
∑

iσ

λxi(c
†
iσciσ − 1

2
) (3.4)

The first term describes free electrons, c†iσ (ciσ) creates (annihilates) an elec-

tron with spin σ on a site i. The second term describes nonlocal (dispersive)

phonons, xi and pi are canonical variables. The last term couples the fermionic

and the bosonic degrees of freedom. We consider a half filled system of fermions.

The second term could alternatively be written as:

Hph =
∑

q

ωq(a
†
qaq +

1

2
) (3.5)

where aq, a
†
q are related to the phonon field by xq = (2Mωq)

− 1

2 (aq + a†−q) and

ω2
q = Jq/M . Dispersion (momentum dependence) of the boson frequency ωq

stems from nonlocal character of Jij. The local limit of Jij corresponds to the

Holstein model [38], so the model under consideration is an extension of the

Holstein model to dispersive phonons.

The extended DMFT equations for this model [28] are a set of equations for

Weiss functions G−1
0σ (iωn) and D−1

0 (iωn):
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Gσ[G0, D0](iωn) =
∑

q

[

iωn − tq +Gσ[G0, D0]
−1(iωn) −G−1

0σ (iωn)
]−1

(3.6)

D[G0, D0](iωn) =
∑

q

[

M(iωn)2 − Jq +D[G0, D0]
−1(iωn) −D−1

0 (iωn)
]−1

(3.7)

where full Green’s functions Gσ(iωn) and D(iωn) are expressed through G−1
0σ (iωn)

and D−1
0 (iωn) in terms of the effective impurity action:

Seff =
∑

ωn,ωm,σ

c†σ(iωn + iωm)
(

G−1
0σ (iωn)δ0,ωm

+ λx(iωm)
)

cσ(iωn) − 1

2
D−1

0 (iωm)x2(iωm)

(3.8)

Gσ(iωn) =

∫

D[c†σ, cσ, x]cσ(iωn)c†σ(iωn)e−Seff [c†σ,cσ,x]

∫

D[c†σ, cσ, x]e−Seff [c†σ,cσ,x]
= 〈cσ(iωn)c†σ(iωn)〉Seff

(3.9)

Dσ(iωn) = −〈x2(iωn)〉Seff
(3.10)

Eqs(3.6-3.10) in general have to be solved numerically. In many cases though,

a number of approximations reducing numerical work but preserving a physical

content of the problem are possible. One of the approximations is in using a model

density of states (DOS) for fermions and bosons, so that momentum summations

in EDMFT equations could be performed analytically. It is convenient to chose

semicircular electron DOS:

ρel(ε) =
2

πW 2

√
W 2 − ε2 (3.11)

where W is the electron band halfwidth. The particular choice of semicircular

electron DOS is qualitatively unimportant since we consider half filled electron

band. For phonons, on the contrary, the shape of the phonon band near the
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bottom is crucial for temperatures smaller than the phonon band width. For d-

dimensional phonons the bottom of the band has ε
d−2

2 singularity. That is why to

represent 3d and 2d phonons we chose semicircular and stepfunctionlike phonon

DOS respectively:

3d ρph(ε) =
2

πω2
1

√

ω2
1 − (ε− ω0)2 (3.12)

2d ρph(ε) =
1

2ω1
θ(ω2

1 − (ε− ω0)
2) (3.13)

After replacing the summations over the wave vector by integrations over

energy, Eq(3.6) and Eq(3.7) read:

Gσ(iωn) =

∫

dε
ρel(ε)

ζ − ε
(3.14)

D(iωn) =

∫

dε
ρph(ε)

ξ2 − ε2
(3.15)

where ζ = iωn + G−1
σ (iωn) − G−1

0σ (iωn), ξ2 = M(iωn)2 + D−1(iωn) − D−1
0 (iωn);

density of states ρ(ε) ≡ dq
dεq

. For electron ρel(ε) and phonon ρph(ε) DOS respec-

tively εq = tq and ε2q = Jq. For DOS defined in Eqs(3.11- 3.13) integrations over

energy in Eqs(3.14,3.15) yield:

Gσ(iωn) =
2

W 2

(

ζ − s
√

ζ2 −W 2
)

(3.16)

where s=sgn[Imζ].

3d D(iωn) =
1

ξω2
1

(2ξ +
√

(ξ − ω0)2 − ω2
1 −

√

(ξ + ω0)2 − ω2
1) (3.17)

2d D(iωn) =
1

4ξω1
ln[

(ξ + ω1)
2 − ω2

0

(ξ − ω1)2 − ω2
0

] (3.18)

We consider here a semiclassical treatment of the problem. In its most general

form, the approach has been described in ref [34], and is an application of the
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saddle point method. We use a more limited form of this method that consists of

evaluating Eqs(3.9,3.10) by a saddle point technique. It can be viewed as a com-

bination of two separate approximations: the static approximation (equivalent

to the phonon mass M → ∞ limit) and a saddle point analysis of the EDMFT

equations in the static approximation.

The approach of treating the collective excitations as classical, while the elec-

trons are treated fully quantum mechanically, goes back to the Hubbard approx-

imation [39] . It was pointed out that a static approximation of the impurity

model coupled with the DMFT self consistency conditions indeed gives a solu-

tion closely related to Hubbard’s [40]. This approach has been used extensively

in refs [35, 36] in DMFT studies of the Holstein model. From the DMFT studies

of the Mott transition [30], we know that this approach becomes insufficient in

the correlated metallic regime at very low temperatures, where a quasiparticle

feature forms in addition to the spectral features produced in the semiclassical

approximation. It is worth pointing out, that improvements of the static or of the

saddle point approximation [34], will not remedy this shortcoming, which requires

a non perturbative resummation of instanton events. Still, we show here that this

simple analysis is able to reproduce all the trends of the solution of the EDMFT

equations by the more expensive QMC method [28].

The EDMFT equations in the static approximation Eqs(3.9,3.10) reduce to:

G(iωn) =

∫

dxP (x)
1

G−1
0 (iωn) + λx

(3.19)

D = −β
∫

dxP (x)x2 (3.20)

where
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P (x) =
1

N
exp

(

g
∑

n≥0

ln
(

1 −G0(iωn)2λ2x2
)

− β

2
D−1

0 x2

)

(3.21)

Eqs(3.19-3.21) have to be solved together with Eqs(3.6, 3.7). In the static

limit only the zero phonon frequency survives, so we drop frequency index for

the phonon correlation functions D0 and D . In Eqs(3.19-3.21) and everywhere

below we consider x being the phonon field amplitude, it is related to its Fourier

transform as x = β− 1

2xωm=0. We consider no symmetry breaking in the electron

spin channel, so we dropped the spin index; factor g (equal 2 for spin one-half) in

the Eq(3.21) appears from trace over the spin index. N normalizes P (x) to unity.

P (x) is the probability distribution function of the phonon field amplitude x.

We now evaluate Eqs(3.19-3.21) in the saddle point approximation in the

variable x. There are two limits, weak and strong coupling. In the weak coupling

the saddle point is at x = 0, and in the strong coupling there are two equivalent

saddle points at x = ±x0 6= 0. Deriving the saddle point equations we explicitly

use semicircular electron DOS, Eqs(3.11 ,3.16). The relation between the bare

and full Green’s functions is especially simple in this case:

G0(iωn)−1 = iωn − t2G(iωn) (3.22)

where t = W/2. Everywhere below in the chapter energy is measured in units of

t. In this chapter we restrict ourselves to the particle-hole symmetric case.

In the weak coupling regime in the saddle point approximation, which includes

Gaussian fluctuations of x around zero, semiclassical EDMFT equations Eqs(3.19-

3.21) read:

G̃(G̃+ ω)3 − (G̃+ ω)2 + α2 = 0 (3.23)

D−1
0 −D−1 = −T

∑

n≥0

2gλ2

(G̃+ ωn)2
(3.24)
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where G̃ = iG(iωn) and α2 = λ2|D|T = −λ2T
∫

dερph(ε)[D
−1−D−1

0 − ε2]−1, so α2

is solved for the phonon self energy thus making the system of the saddle point

equations closed.

In the strong coupling regime we consider two saddle points x = ±x0. We

discard fluctuations around these points (so |D| = βx2
0), since nontrivial infor-

mation is contained in the fact that we have two saddle points, and not in the

Gaussian fluctuations, like it was in the case of weak coupling. EDMFT equations

Eqs(3.19-3.21) now read:

G̃(G̃+ ω)2 − (G̃+ ω) + G̃α2 = 0 (3.25)

D−1
0 = −T

∑

n≥0

2gλ2

(G̃+ ωn)2 + λ2TD
(3.26)

Weak coupling equations Eqs(3.23,3.24) are a saddle point expansion up to the

first order in small parameter λ2DT , and strong coupling equations Eqs(3.25,3.26)

- up to the first order in large parameter λ2D/T . These equations have overlapped

regions of applicability, provided T � 1. This allows us to combine weak and

strong coupling equations into a unique set of equations, controlled by the small

parameter T :

G̃(G̃+ ω)2 − (G̃+ ω) + G̃α2 = 0 (3.27)

D−1
0 −D−1 = −2gλ2T

∑

n≥0

G̃

G̃+ ωn

(3.28)

These are our final semiclassical EDMFT equations. They are exact in the limit

MT 2 � ω2
0, T � 1. For 3d and 2d phonons Eqs(3.27,3.28) have to be solved

together with Eq(3.17,3.18), where ξ2 = D−1 − D−1
0 . Saddle point equations

Eqs( 3.27,3.28) are very simple, they can be solved for D and D0 with minimal

numerical efforts. Lhs part of Eq(3.27) is a third degree polynomial, so electron
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Green’s function can be written as an elementary function determined by a single

parameter α2 which is a function of phonon self energy and bare parameters of

the model.

In the limits of small and large α2 (or λ) Eqs.(3.27,3.28) are solved completely

for self energies:

α� 1

Σel(iωn) =

(

−ωn

2
+

√

1 + (
ωn

2
)2

)

α2 (3.29)

Σph = −4g

3π
λ2 (3.30)

Moreover, in the dispersionless case α2 = λ2T/(ω2
0 − 4g

3π
λ2). This expression is

valid everywhere except for the small region ∆λ ∼ ω0T below λc ∼ ω0. We

consider here a disordered phase solution. In d = 3 the disorder solution becomes

unstable at λ ∼ ω0 − ω1 while it remains stable for all coupling in d = 2. The

self energies in the strong coupling regime α � 1 are given by :

Σel(iωn) =
α2

ωn
(3.31)

Σph = −gλ
2

2α
(3.32)

In the strong coupling the phonon field distribution function is split in two peaks.

2x0, the peak separation is given by x0 = −gλD0/2, D = −βx2
0. In the dis-

persionless case α2 = (g
2
λ2/ω2

0)
2, this is valid when λ � ω0. This is completely

similar to the previous analysis [36].

In d = 3 the instability to the ordered phase occurs already at small ω1 ∼
ω3

0

βg2

1
λ2 , so D0 stays practically unrenormalized.

In d = 2 at ω1 ∼ ω3
0

βg2

1
λ2 the system enters a regime when the phonon energy

is exponentially small:
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Σph − (ω0 − ω1)
2 ≈ 2ω1 exp

[

−βgω1

ω3
0

λ2

]

(3.33)

In the limit T → 0 one readily obtains the polaron formation condition, which

happens at intermediate (λc ∼ ω0) coupling:

−4g

3π
λ2

cD0 = 1 (3.34)

where D0 = ω−2
0 in the dispersionless case, but has to be found numerically for

interacting phonons.

3.3 3D phonons

In this section we compare our semiclassical solution to the exact QMC results

[28]. The saddle point equations we derived are exact when (2πT )2Mω−2
0 � 1 and

T t−1 � 1. The QMC results [28] however, were obtained for (2πT )2Mω−2
0 ≈ 2.5

and T t−1 ≈ 0.13. We want to show, that even in these cases when the parameters

controlling the saddle point equations are relatively close to 1, the semiclassical

solution, even without including the refinements outlined in ref [34] not only

captures all the qualitative trends of the exact solution, but in many instances is

quantitatively close to it.

We study the case of 3-dimensional phonons. We use the same parameters as

in the ref [28]: inverse temperature β = 8, the phonon band is centered at ω0 = .5,

electrons have double spin degeneracy g = 2 and hopping amplitude t = 1, phonon

mass M = 1. The electron band is half filled. To model 3d phonons semicircular

DOS Eq.(3.12) is used. We present the solution of Eqs(3.27,3.28) and Eq(3.17).

In every figure in this section we plot both our and QMC curves. Our results

are plotted using solid or dashed lines only, without symbols. QMC graphs are

presented using dotted lines and always with symbols.

A local instability, starting from the disordered phase, takes place within

EDMFT when as discussed in ref [28] the effective phonon frequency ω∗ =
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Figure 3.1: d = 3. Effective phonon frequency ω∗ as a function of λ2/ω2
0 at

ω1 = 0.0, 0.1, 0.2, 0.3. Comparison to QMC.

√

(ω0 − ω1)2 + Π, given by the pole in the phonon Green’s function, becomes

equal to zero. The phonon mode softening for different values of the phonon dis-

persion are shown in Fig.(3.1). ω∗ is plotted versus the quantity characterizing

the effective interaction: U = λ2/ω2
0. The effective electron-electron interaction,

mediated by phonons is given by Ueff = λ2D0 evaluated at zero frequency .

When the phonon dispersion vanishes Ueff = U . The upper curve in Fig.(3.1)

corresponds to the dispersionless case.

On the other hand, we find this is not the best way to detect an instability to

an ordered phase and we discuss in the appendix an alternative way to compute

within EDMFT the phonon self energy which retains momentum dependence.

The equations in section 3.2 do not include the possibility of the phonon field

symmetry breaking. They need to be modified to describe long range order-

ing [29], and we implement this in section 4.2. A well known property of mean
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field theories is that they allow the analytic continuation of mean field solutions

beyond the parameter regime where they are stable. This was very fruitful in the

understanding of the paramagnetic Mott insulating phase which is unstable to

ferromagnetism [30]. As was done by QMC in ref [28] , we study the continua-

tion of the EDMFT equations beyond paramagnetic phase. It may hopefully be

understood as a metastable phase. This requires some care since the instability

to a charge ordered phase is signaled by a singularity appearing in the integrand

in Eq(3.15) and this instability causes D to acquire an imaginary part. As in

ref [28], we take the principal part of the integrand setting to zero the imaginary

part of D0 in every numerical iteration loop which allow us to compare our results

with the results of QMC.

3.3.1 Weak coupling

The finite dispersion treated within DMFT renormalizes D0 (see Fig.(3.2.a)).

Since the effective electron electron interaction is proportional to D0, the electron

self energy is enhanced as well (see Fig.(3.2.b)). While the features of the exact

solution are qualitatively well reproduced in the semiclassical approach, it lacks

quantitative agreement. The weak coupling is the worst case. The quantitative

agreement is better for intermediate and strong coupling.

3.3.2 Strong coupling

In the strong coupling regime as dispersion increases, D0 renormalizes downward

(see Fig(3.3.a)), together with the electron self energy (see Fig.(3.3.b)). For the

strong coupling the quantitative agreement with QMC is very good.
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Figure 3.2: d = 3. Weak coupling λ = .2. Comparison to QMC. a) The bare
phonon greens function. b) The imaginary part of the electron self energy with
the spectral function in the inset. ω1 = 0.1, 0.2, 0.3.
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Figure 3.3: d = 3. Strong coupling. λ = .8. a) Bare phonon greens function. b)
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3.3.3 Intermediate coupling

At intermediate coupling system is in a crossover between weak and strong cou-

pling regimes. As ω1 increases, effective electron-electron interaction first becomes

stronger, D0 and electron self energy increases, like at weak coupling. At ω1 = ω∗

behavior changes on reverse, the picture is similar to strong coupling case. This

is illustrated in Fig.(3.4.a) and Fig.(3.4.b).

3.4 2D phonons

In the previous section we calculated various functions at different parameters in

3D case. The saddle point approximation is exact in the limit of infinite mass M

and zero temperature T . At finite M and T the applicability of the method in a

wide region of parameters was established in the previous section by comparison

to QMC data. In this section we study 2D phonon case (Eqs(3.27,3.28) and

Eq(3.18)) in the same range of parameters.

Unlike the 3d case, the 2d disorder solution is locally stable, and we focus on

this solution in this section. As we will show in section 4.2 EDMF in dimensions

d < 4 , gives rise to a first order transition at a critical coupling strength. We

study the disordered state solution continued along the second order transition

branch, which is skipped in the first order transition.

In the EDMFT approach, d = 2, appears as a lower critical dimension for

finite temperature second order transition. This result describes accurately the

situation with order parameters posessing a continuous symmetry, but it is a

spurious consequence of the inability of a local approximation to generate spatial

anomalous dimensions in the cases where order breaks a discrete symmetry.

First we illustrate the exponential softening of the collective mode : in Fig.(3.5)

we plot effective frequency ω∗ versus U . The Fig.(3.5) should be compared to

Fig.(3.1) (3D case). In the latter the curves hit U axis, what implies a second
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Figure 3.4: d = 3. Intermediate coupling λ = .4. Comparison to QMC. a) Bare
phonon greens function. b) Imaginary part of the electron self energy with the
spectral function in the inset. ω1 = 0.0, 0.2, 0.4.
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Figure 3.5: d = 2. Effective phonon frequency ω∗ as a function of λ2/ω2
0 at

ω1 = 0.0, 0.05, 0.1, 0.15, 0.2

order transition. In Fig.(3.5) the curves rather gradually approach U axis, never

crossing it.

Phonons generate effective electron-electron interaction ∼ λ2D0 , so we are

especially interested in D0 behavior. We investigate 2D system for similar sets of

parameters as we did in 3D case.

We obtained the following plots in weak, intermediate and strong coupling

regimes:

The behavior of 2D system is very similar to that of 3D system before the

energy of the phonon mode vanishes. In all cases D0 gets renormalized, as the

dispersion, and consequently the effective interaction, increases. The electron self

energy enhances correspondingly. The only difference is the rate of D0 renormal-

ization in the weak, strong and intermediate coupling. D0 renormalizes faster at

larger λ (see Fig.(3.9)), since electrons are stronger coupled to phonons.
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Figure 3.6: d = 2. Weak coupling. λ = .2. a) The bare phonon greens function.
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Chapter 4

Functional approach to EDMFT

4.1 Intro to functional formulation of the EDMFT

In this chapter we adopt a different point of view on DMFT, we will consider

it as a local approximation on the free energy functional. The history of using

free energy functionals for formulating various approximations goes back to the

work of Baym and Kadanoff [41], after whom those functionals are named. The

functional approach is a convenient tool to systematize and compare different

approximations. It also guarantees that a given approximation is going to preserve

certain conservation laws and certain sum rules.

The Baym Kadanoff functional can be written in terms of variables which are

important for a current problem. One first inserts in the action the source fields

coupled to those variables and then perform the Legender transformation with

respect to these variables. We illustrate this in detail below, using as an example

φ4 theory. The source dependent action reads:

S[φ] =
1

2
D−1

0 φ2 +
U

4!
φ4 +

J

2
φ2 (4.1)

where D−1
0 is the free theory propagator, U is the repulsive interaction and J/2

is the source field. The summation over the space and time coordinates is un-

derstood in Eq.(4.1), but is omitted for simplicity. The partition function of the

system is given by:

Z =

∫

Dφe−S[φ] (4.2)

The integration in Eq.(4.2) is performed over different field configurations. The
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free energy is defined as:

W = − lnZ (4.3)

The source dependent free energy is a generating functional for correlation func-

tions:

D = 〈φ2〉 = 2
δW

δJ
(4.4)

The Baym Kadanoff functional is defined as a Legendre transform:

ΓBK = W − 1

2
JD (4.5)

It is easy to check that the variation with respect the propagator is equal to the

source field:

δΓ

δD
= −1

2
J (4.6)

We see that at stationarity the source field must vanish and the functional be-

comes the exact free energy of the system. The propagator and the source filed

D and J are related to each other through Eq.(4.4). This relations has to be

inverted and the functional has to be written in terms of the correlation functions

D only, before it can be of any use. The inversion can be done order by order in

U . We will do it in a slightly different way. Let us write the Dyson equation:

J = D−1 −D−1
0 + Σ (4.7)

where Σ is the self energy. Using this equation we cast the action in a slightly

different form:

S[φ] =
1

2
D−1φ2 +

Σ

2
φ2 +

U

4!
φ4 (4.8)

Now the Baym Kadanoff functional can be written as:

ΓBK = −1

2
lnD +

1

2
D(D−1

0 −D−1) − 1

2
ΣD − Φ1 (4.9)

where the functional Φ1 is the sum of all vacuum graphs constructed from the

propagator D and two and four point vertices Σ and U respectively. The diagram-

matic representation of the functional Φ1 up to the second order is depicted in
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Φ1

Figure 4.1: Diagrammatic expansion of Φ1 up to the second order. Σ and U are
denoted by a cross and a dot respectively

the Fig.4.1: The second graph in Fig.4.1 cancels the term −ΣD in Eq.(4.9). One

can understand that in the all other graphs the vertex Σ acts like a counterterm

for two particle reducible (2PR) insertions, which are constructed from U vertex,

by canceling those insertions in each order. We demonstrate this explicitly by

computing the symmetry factors for the diagrams shown in Fig.4.1:

Φ1 = −1

8
U − 1

2
ΣD +

1

48
ΣD +

1

4
Σ2D2 +

1

4
UΣD3 +

1

16
U2D2 + ... (4.10)

The self energy expansion to the second order reads:

Σ = −U
2
D +

1

6
U2D3 (4.11)

From Eq.(4.10) and Eq.(4.11) we find that the last three terms in Φ1 indeed cancel

out in first two orders. Eventually only two particle irreducible graphs (2PI) are

left in Φ1 and ΓBK can be written as:

ΓBK = −1

2
lnD +

1

2
D(D−1

0 −D−1) + Φ (4.12)

where Φ includes all 2PI vacuum graphs taken with an overall minus sign. In a

similar way one can derive the free energy functional for other theories, including

those with broken symmetries.
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4.2 Ordered Phase and Critical Temperature

We now turn to the generalization of the EDMFT equations to the ordered phase

[29]. For simplicity we will consider a classical model. This is justified, since in the

semiclassical limit we can always integrate out the electrons, reducing EDMFT

equations to classical mean field equations. For instance tracing out the electrons

and performing a static approximation in the electron-phonon field leaves us with

an action of the form ( neglecting terms of order φ6 and higher):

S[φ] =
∑

i

r

2
φ2

i +
U

4
φ4

i −
∑

ij

φi
Jij

2
φj = Sloc[φ] −

∑

ij

φi
Jij

2
φj (4.13)

To extend the EDMFT approach to the ordered phase it is useful to write

down the Baym Kadanoff functional for the action,

Γ[m,D] = −1

2
Tr logD +

1

2
Tr(D−1

0 −D−1)D +
1

2
mD−1

0 m + Φ[m,D] (4.14)

Φ is a sum of all two particle irreducible diagrams constructed from phonon

Green’s functions D, phonon field expectation value m and four legged interac-

tion vertex −3!U . We could also say that Φ is a sum of all two particle irre-

ducible diagrams constructed from phonon Green’s functions D and four, three,

two legged vertices plus the first diagram shown in figure (4.2), which contains

no propagators. The vertices yield factors of −3!U , −3!Um, −3Um2 and −1
4
Um4

for four, three, two and zero legged vertices respectively. Each diagram in Φ has

an extra −1 factor.

In the Fig(4.2) we drew first and second order (in U) diagrams entering Φ.

The extended DMFT equations in the ordered phase are derived by making the

local approximation on Φ in the Baym Kadanoff functional and solving the sta-

tionary conditions for the magnetization and the local propagator resulting from

the stationarity of Eq.(4.14) after this local approximation is made. In the lo-

cal approximation the leading terms in a perturbative expansion in the quartic
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Φ
Figure 4.2: Diagrammatic expansion of Φ up to the first two orders in U

Figure 4.3: Diagrammatic expansion of m up to the first two orders in U . A thin
line is the free phonon propagator D0, a thick line is the full phonon propagator.
A full dot stands for m.

coupling are given by Φ = 1
4
Um4 + 3

2
UDm2 + 3

4
UD2 − 3U2D3m2 − 3

4
U2D4 + ...

Stationarity of the functional in Eq.(4.14) would give exact equations for D

and m. In the local approximation these equations reduce to EDMFT equations

in zero magnetization and therefore generalize those to the ordered phase [29].

They are given by

m(r − Jq=0) + δΦ
δm

= 0

D =
∑

q

[r − Jq + 2 δΦ
δD

]−1 (4.15)

where only local graphs are included in Φ . Diagram series equivalent to the first

equation are shown in Fig.(4.3).

For the practical solution of the EDMFT Eqs.(4.15) , it is useful to follow

the dynamical mean field procedure of introducing an impurity local effective

action [2, 30] to sum up the graphs generated by the functional for Φ and its

functional derivatives δΦ/δD and δΦ/δm in terms of the cavity fields h and ∆ .

The effective action
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SEDMFT [φ] = Sloc[φ] − hφ− ∆

2
φ2 (4.16)

generates the correct local quantities provided that the Weiss fields h and ∆ are

chosen to obey the EDMFT self consistency conditions:

r − ∆ −D−1 = −2
δΦ

δD
(4.17)

h = −m(r − ∆) − δΦ

δm
(4.18)

Eqs.(4.15) and Eqs.(4.17,4.18) are a closed set of EDMFT equations, describ-

ing both ordered and disordered phase of the classical system Eq(4.13):

D =
∑

q

[D−1 + ∆ − Jq]
−1 (4.19)

SEDMFT [φ] = Sloc[φ] −m (Jq=0 − ∆)φ− ∆

2
φ2 (4.20)

m = 〈φ〉SEDMFT
(4.21)

D = 〈φ2〉SEDMFT
−m2 (4.22)

The equations above are consistent in describing the transition: magnetiza-

tion vanishing in the ordered phase, and divergence of spin susceptibility across

the transition do occur at the same critical temperature. This is not surprising,

since the EDMFT equations can be derived from the approximation to the free

energy functional. We will argue below that the magnetic ordering transition for

d < 4 is actually the first order. This is an artifact of EDMFT, and one needs

to compare free energy in different extrema to find a correct first order transition
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temperature. For this purpose we show how free energy can actually be computed

from the impurity model.

The source dependent impurity action reads:

Simp[φ] = Sloc[φ] − (h + h̃)φ− 1

2
(∆ + ∆̃)φ2 (4.23)

The corresponding Baym Kadanoff functional of the impurity model is a Legendre

transform of the impurity free energy Wimp, which is performed with the fields

−h̃ and −∆̃:

Γimp[m,D] = Wimp[h̃, ∆̃] + h̃m+
1

2
∆̃(D +m2) =

−1

2
logD +

1

2
D−1

0impD +
1

2
mD−1

0impm+ Φ[m,D] (4.24)

The local correlation functions D and m in the impurity model and in lattice

EDMFT approximation are the same, so Φ in Eq.(4.14) and Eq.(4.24) coincide.

This allows us to express Γ in terms of the impurity free energy Wimp:

Γ = Wimp[h̃, ∆̃] − 1

2
TrlogD +

1

2
Tr(D−1

0 −D−1)D +
1

2
logD

− 1

2
(D−1

0imp −D−1)D +
1

2
m(D−1

0k=0 −D−1
0 )m + (h+ h̃)m +

1

2
∆̃(D +m2) (4.25)

At the saddle point

δΓ

δD
=

1

2

[

∑

k

(D−1
0k=0 −D−1

k ) + (D−1 −D−1
0 )

]

+
1

2
∆̃

δΓ

δm
= m(D−1

0k=0 −D−1
0 ) + h + h̃ (4.26)

at zero source fields we recover the EDMFT equations. At the stationarity the

expression for the free energy in Eq.(4.25) simplifies to:

Γ = Wimp +
1

2

∑

k

log(D−1 + ∆ − Jk) +
1

2
logD +

1

2
(∆ − Jk=0)m

2 + hm (4.27)

This result is an extension of the free energy formula to the ordered phase [7].



41

When U → ∞, r → −∞, U/r = −1 the system, described by the action

Eq(4.13) reduces to a classical Ising model with spin values ±1. In this limit the

standard Weiss mean field equations

m = tanhmJq=0 (4.28)

can be compared with the EDMFT equations which now read:

m = tanhm (Jq=0 − ∆)

1 −m2 =
∑

q

[(1 −m2)−1 + ∆ − Jq]
−1

(4.29)

We will also compare the EDMFT equations to an extension of mean field

theory due to Bloch and Langer (BL) [37]:

M1 =

+∞
∫

−∞

dx(2πG2)
− 1

2 exp[−(M1Jq=0 − x)2

2G2
] tanhx (4.30)

M2 =

+∞
∫

−∞

dx(2πG2)
− 1

2 exp[−(M1Jq=0 − x)2

2G2
](cosh x)−2 (4.31)

G2 =
∑

q

Jq

1 − JqM2
(4.32)

where M1 is the magnetization. It can be shown that EDMFT counts (without

overcounting) more terms in diagrammatic expansion of various physical quanti-

ties, like correlation function or free energy, than BL method does. One can also

check that for the classical ±1 spin model EDMFT gives a better estimate for Tc

than BL method does.

4.3 Numerical analysis

We computed the critical temperature Tc for the Ising model on a Bethe lattice

with finite coordination following the paramagnetic solution till it disappears
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Figure 4.4: Top to bottom: BL, EDMFT, exact solution, MFT; Critical Jc (ver-
tical axis) vs nearest neighbors number z (horizontal axis)

using the different approximations described in this section. The results are shown

in Fig(4.4). The EDMFT result shows significant improvement over MFT, and

is slightly better than BL method. Some more technical details comparing the

approximation schemes are relegated to Appendix A.1.

In spite of the quantitative improvement of Tc, the order of the transition is

incorrectly given by the EDMF approximation. In Fig(4.5) we present result of

solving EDMFT equations for the simplest ±1 spin model in d = 3. We plotted

magnetization as a function of temperature. At sufficiently low temperature the

solution consists of three branches with magnetizations m3 > m2 > m1 = 0.

These branches are extrema of the free energy, which is shown schematically in

Fig.(4.6). m3 and m1 correspond to local minima in the free energy, while m2

corresponds to a local maximum and is unphysical. The transition is clearly of

the first order. The order of the transition does not change up to d = 4.

The Fig.4.6 is only a caricature of the actual free energy, drawn out of scale

to simplify the perception. The free energy in the limit of classical spins is given
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Figure 4.5: Magnetization vs. temperature on a cubic lattice. There are three
branches at 3.96 < T < 4.45: m3 > m2 > m1 = 0, m1 and m3 are physical
solutions, while m2 is not. Classical ±1 spin Ising model.
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Figure 4.6: Free energy evolution with T . Free energy has a single minimum
(m = 0) above T = 4.45; at T = 4.45 the solution bifurcates at m = .45. There
are free extrema at 3.96 < T < 4.45 corresponding to 0 = m1 < m2 < m3. As T
approaches Tc = 3.96, m2 merges with m1.
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Figure 4.7: Evolution of the free energy with temperature in the classical Ising
spin model. Curves, bottom to top, are plotted in the temperature interval from
4.00 to 4.60 with the step 0.05. Curves are shifted for convenience.

by:

Γ =
1

2

∑

k

log((1 −m2)−1 + ∆ − Jk) + log(1 −m2)

+m tanh−1m− 1

2
∆(1 −m2) − 1

2
Jk=0m

2 (4.33)

In the Figure.4.7 we plotted free energy of the 3d classical Ising spin model solved

in EDMFT setup. One can see how the triple minimum feature evolves across

the transition, and that the extremal point indeed correspond to the solution of

EDMFT equations, plotted in Fig.4.5. The free energy curves corresponding to

different temperatures are shifted for convenience, actual curves are more sepa-

rated.

The inability of EDMFT to predict the correct order of the transition is related

to the inability of a local theory to produce anomalous dimensions, and persists in

quantum problems when the dynamical critical exponent and the dimensionality

are such that they require the introduction of spatial anomalous dimensions.
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Figure 4.8: Soft spins, −r = U = 1. Inverse temperature is plotted verses the
coordination number.

Details are given in Appendix A.2.

In the end of this section we present results of the solving soft spin EDMFT

equations. The purpose of this is twofold: first we demonstrate that the limit of

classical spins was taken correctly, and second, we would like to demonstrate the

performance of EDMFT in comparison to MFT and exact solution. As can be

seen form the set of figures Fig.4.8-Fig.4.11, for soft spins, in the regime r, U ≈ J ,

EDMFT overestimate Tc, as much as MFT underestimates it. It is also obvious

that in the limt r, U � J we recover the case of previously studied classical spins.



47

5 10 15 20
Z

0

0.1

0.2

βc

r=−3, U=3

   exact
   EDMFT
   MFT

Figure 4.9: Soft spins, −r = U = 3. Inverse temperature is plotted verses the
coordination number.
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Figure 4.10: Soft spins, −r = U = 10. Inverse temperature is plotted verses the
coordination number.
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Figure 4.11: Soft spins, −r = U = 300. Inverse temperature is plotted verses the
coordination number. This graph should be compared to the classical spin limit,
Fig.4.5
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4.4 Instability analysis

Let us consider a very general electron phonon Hamiltonian which describes an

electron phonon system with electron-electron interaction (local or long range),

electron-phonon interaction and phonon-phonon interaction (phonon unharmonic-

ity). We can always use a Hubbard Stratonovich decoupling on electron-electron

interaction, so we assume that information about long range electron-electron in-

teraction is stored in the phonon dispersion and we will not write the long range

interaction explicitly. We can introduce a source dependent action S where the

sources are coupled to different fields. The free energy W = − ln
∫

eS is the

generating functional for expectation values of those fields.

S =

∫

dxdx′

c†σ(x)G−1
0σ (x− x′)cσ(x

′) +
1

2
φ(x)D−1

0 (x− x′)φ(x′)

+ δ(x− x′)
(

Un↑(x)n↓(x) + V4φ
4(x) + λφ(x)c†σ(x)cσ(x)

)

− Jσ(x, x′)c†σ(x)cσ(x′) − 1

2
φ(x)K(x, x′)φ(x′) − δ(x− x′)L(x)φ(x) (4.34)

x variable includes both space and time in the above formula and repeated indices

imply summation. Expectation values of the fields coupled to the sources are given

by:

G =
δW

δJ
, K = 2

δW

δK
, m =

δW

δL
, (4.35)

Exact Greens functions correspond to the limit of zero sources. To study

phase transitions, like the transition when the phonon field acquires non zero

expectation value, one needs to have the free energy as a functional of correlation

functions only. Such a functional can be derived as a Legendre transform of the

free energy: Γ = W − JG − K/2D − Lm. The sources J ,K and L have to be

solved for G,D and m. The functional Γ is called a Baym Kadanoff functional and
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its stationary yields equations for zero source correlation functions. We present

the functional without derivation:

ΓBK [G,D,m] = Tr logG− Tr(G−1
0 −G−1)G

− 1

2
Tr logD +

1

2
TrD−1

0 D +
1

2
mD−1

0 m+ Φ[G,D,m] (4.36)

G0 and D0 are free fields of the action, Φ functional is the sum of all two

particle irreducible graphs constructed from the original bare interaction vertices,

from vertices generated by shifting the phonon field by m and full correlation

functions G and D.

The charge ordering instability can be studied by looking at the zero frequency-

momentum phonon propagator behavior: the propagator diverges in a charge

density wave (CDW) transition. Alternatively one can study the transition from

the ordered side, by observing the order parameter vanishing (m in our case).

The two approaches should give consistent results. We will first show that this is

indeed the case in the exact theory, then we explain how a similar approach can

be applied in the EDMF theory.

Let us introduce some compact notations we are going to use. oa
α is a field op-

erator of a kind at α space-time point. a = G specifies an electron field operator

and a = D specifies a phonon field operator. Oab
αβ,γδ is a four point function, which

is a subset of all connected diagrams in the perturbative expansion of 〈oa†
α o

a
βo

b†
δ o

b
γ〉,

rules for selecting the subset of diagrams depends on a particular operator. Mul-

tiplication of two operators is defined by: [O(1)O(2)]αβ,γδ =
∑

µν O
(1)
αβ,µνO

(2)
µν,γδ. We

are introducing three four point operators:1) χ0 includes all graphs which enter

skeleton graphs without interaction vertices. 2) Σ includes all 1D irreducible dia-

grams; 3) Γ includes all 2P irreducible diagrams. In our case reducibility of Oαβ,γδ

is understood as disconnecting αβ part from γδ part. “1D irreducible” means

“one particle irreducible with respect to cutting a phonon line”. “2P irreducible”
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Σ 2PI 2PI 2PI 2PI Σ

1PI 2PI 2PI 2PI 2PI 2PI2PI 2PI 2PI Σ 2PI

Figure 4.12: Diagrammatic expansions for Σ and Σph

means “two particle irreducible”. χ0 is trivially expressed in terms of correlation

functions: χGD
0 = χDG

0 = 0, χGG
0αβ,γδ = GαγGβδ and χDD

0αβ,γδ = DαγDβδ +DαδDβγ.

We can write out the following Dyson’s equations for the components of Σ

operator:

ΣGG = χGG
0 + χGG

0 ΓGGΣGG + χGG
0 ΓGDΣDG

ΣGD = χGG
0 ΓGGΣGD + χGG

0 ΓGDΣDD

ΣDG = χDD
0 ΓDDΣDG + χDD

0 ΓDGΣGG

ΣDD = χDD
0 + χDD

0 ΓDDΣDD + χDD
0 ΓDGΣGD (4.37)

or we could simply write:

Σ = χ0 + χ0ΓΣ (4.38)

Solving for Σ we find: Σ = [χ−1
0 − Γ]−1 = −(∂2ΓBK)−1. Second derivative

∂2ΓBK is 2 x 2 matrix defined by:

(∂2ΓBK)ab =
∂2ΓBK

∂Ca∂Cb

(4.39)

where C is a two component vector: CG = G,CD = D.

Σ matrix is related to the phonon self energy Σph in a simple way, as can be

seen from the diagrammatic series in Fig. (4.12). Σ comprises all four legged 1PI

graphs, while Σph comprises all two legged 1PI graphs. 2PI four legged block is

nothing but Γ. Two horizontal lines represent a couple of correlation functions of

the same kind, GG or DD, we assume that a summation runs over each couple

of horizontal lines, while 2PI four legged blocks are understood as 2 x 2 matrices.
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The first line is a diagrammatic analog of Eq.(4.38). The second line provides

connection between Σ and Σph. That can be written as:

Σph = − ∂2Φ

∂m∂m
+

∂2Φ

∂m∂Ca
Σab ∂2Φ

∂Cb∂m
(4.40)

or in a slightly different way:

Σph = − ∂2Φ

∂m∂m
+
∂2ΓBK

∂m∂C

(

∂2ΓBK

∂C∂C ′

)−1
∂2ΓBK

∂C ′∂m
(4.41)

The condition for the CDW instability at wave vector q is: D−1
0q − Σph = 0.

We will reproduce the above result studying CDW transition from the ordered

phase. ΓBK is the free energy, so in the transition point

d2ΓBK

dmdm
= 0 (4.42)

From the way ΓBK is constructed it follows ∂ΓBK/∂C = 0 and dΓBK/dm =

∂ΓBK/∂m. If we use d(∂ΓBK/∂C)/dm = 0 and Eq(4.42) we find:

∂2ΓBK

∂m∂m
− ∂2ΓBK

∂m∂C

(

∂2ΓBK

∂C∂C ′

)−1
∂2ΓBK

∂C ′∂m
= 0 (4.43)

This equation is identical to Eq.(4.41) as should be in exact theory. In EDMFT

approach we take the local approximation for the two particle irreducible graphs.

All 2PI graphs in ΓBK are contained by Φ. So the condition for m vanishing is

still given by Eq.(4.43) with Φ being local. Alternatively we can use Eqs(4.38)

where Γab = ∂2Φ
∂Ca∂Cb

is local, in which case these two methods are equivalent.

Let us consider the second method, when the transition is approached from the

disordered phase.

The local Γab can be computed using the impurity action of EDMF theory.

For simplicity we consider electron phonon interaction only, with the coupling

λ = 1. Equations similar to Eqs(4.37) can be written for the susceptibility χab =

〈oa†oaob†ob〉. In short notations it reads:

χ = χ0 + χ0Γ̃χ (4.44)
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where Γ̃ is different from Γ of Eq.(4.38), because now it includes 1D reducible

diagrams. The relation between Γ̃ and Γ is simple:

Γ̃ = Γ + D̂0 (4.45)

where D̂0 is 2 x 2 matrix, D̂GG
0 = D0 and D̂DG

0 = D̂GD
0 = D̂DD

0 = 0. Using

Eq(4.38), Eq(4.44) and Eq(4.45) we can express the self energy Σ through the

quantities which are directly computed from the impurity action:

Σ = [[χimp]
−1 − [χ0imp]

−1 + D̂0imp + [χ0]
−1]−1 (4.46)

where χab
imp = 〈o†aoao

†
bob〉imp, χ

ab
0imp = δabC

2
a and D0imp is the Weiss field of the

impurity action:

Simp =

∫

dτdτ ′c†σ(τ)G−1
0imp,σ(τ − τ ′)cσ(τ ′)

+
1

2
φ(τ)D−1

0imp(τ − τ ′)φ(τ ′) + δ(τ − τ ′)φ(τ)c†σ(τ)cσ(τ) (4.47)

The described method is exact in the limit d→ ∞. At finite d it yields a higher

Tc than a naive local approximation Σph = δΦ/δD. Assuming Σph = δΦ/δD

would be equivalent to taking ΓBK as being local in Eq(4.41), while the correct

approach is to take a local approximation on the Φ functional only, not on the

whole Baym Kadanoff functional.
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Chapter 5

Parquet EDMFT

5.1 Dynamical Mean Field Theories in the Parquet For-

malism

The dynamical mean field theory (DMFT) has been very successful in treating

non perturbative problems in the domain of strongly correlated electrons such as

the Mott transition [30]. In its single site version it becomes exact in the limit of

infinite dimensionality [1], but its ideas have been extended to capture the effects

that disappear in the infinite dimensional limit, such as the Anderson localization,

short range magnetic correlations or long range Coulomb interaction.

In this chapter we present an extension of the single site DMFT using a for-

malism based on the parquet equations. As first shown by Muller-Hartmann [42]

(see also Ref. [43]) this formalism allows a transparent summary of the q depen-

dence of physical quantities in the single site DMFT. Here we use the parquet

formalism to analyze various DMFT extensions. The chapter set up as follows:

in section5.2 we review briefly the exact parquet equations (the notations are de-

scribed in Appendix B.1). In section 5.3 we discuss how different methods emerge

from simple approximations to the exact equations, namely DMFT and Extended

DMFT (EDMFT). An application of the new equations is presented in section

5.4, where we show how the superconducting fluctuations are fed into the self

energy in our extension of the EDMFT.
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5.2 Parquet theory

The parquet equations relate a fully irreducible amplitude Ǐ to the full vertex

function Γ̌. It can can be written also as a relation between the direct parts I

and Γ of those quantities. We state the equations here and refer the reader to

the detailed definitions and graphical interpretation in AppendixB.1:

Ǐ = Γ̌ − Γ̌(1 +
1

2
sΓ̌)−1 1

2
sΓ̌ − Γ̌(1 + uΓ̌)−1uΓ̌ − Γ̌(1 + cΓ̌)−1cΓ̌ (5.1)

or in terms of the direct vertices:

I = Γ0 − Γ(1 + sΓ)−1sΓ − Γ(1 + uΓ)−1uΓ − Γ0(1 + bΓ0)
−1bΓ0 (5.2)

where

Γ0 = (1 + Γl)−1Γ(1 + rΓ)−1 (5.3)

In the above equations s, u and c operations are pairs of Green’s functions

connecting four point interactions in different channels and b is the dressed c

bubble. The definitions and graphical interpretation of these operations are

in AppendixB.1. The equivalence of Eq.(5.1) and Eqs.(5.2,5.3) is presented in

AppendixB.3. To complete a parquet scheme we need a relation between Γ (or

Γ̌) and the one-particle Green’s function or its self-energy Σ = −G−1 +G−1
0 :

Σ = d(V̌ +
1

2
V̌ sΓ̌) (5.4)

or in terms of the direct vertices:

Σ = (d+ e)(V + V sΓ) (5.5)

where d (e) is the operation that closes a Green’s function line in the direct

(exchange) channel. They are discussed in AppendixB.1. Assuming that Ṽ = V

the self energy formulas can be written in a number of equivalent ways, using the

relationships d(V sΓ) = d(V uΓ) = e(V cΓ) and e(V sΓ) = d(V uΓ̄) = e(V cΓ̄). It is



57

convenient to write I = V + I1 with V the bare interaction vertex. If all graphs

for I1 are kept, this is an exact formula of the many body problem.

5.3 DMFT and EDMFT approximations

In this section we introduce DMFT and EDMFT approximations in the parquet

formulation. The momentum dependence of the vertices here should be under-

stood as for the purpose of computing local quantities. For example, vertex Γ

in DMFT is local for purpose of computing the self energy, but is nonlocal for

computing susceptibilities.

The DMFT approximation consists of:

a) Taking only local graphs for I1 = I1[Gii,Γiiii] and local V in Eqs.(5.1-

5.2). The locality of I1 is understood as locality of Gii and Γiiii of which I1 is

a functional [44]. Γiiii is computed from the parquet Eqs.(5.1, 5.2) with local

operations s, u, c (b).

b) The self energy Σ is taken to be local. It is computed with local s, V and

Γiiii in Eqs.(5.4,5.5). Notice that for the purpose of computing Σ the parquet

equations are the set of completely local nonlinear equations for Gii and Γiiii.

c) Nonlocal interactions in DMFT affect the self-energy as a Hartree correc-

tions to the bare dispersion εk.

The graphs for the self-energy Σ[Gii] and for I1(Gii,Γiiii) can be obtained from

an Anderson impurity model, with unrenormalized four point interaction:

Simp =
∑

σ

c†σG
−1
0σimpcσ + V n↑n↓ (5.6)

G−1
0imp is adjusted to give the same Gii as in the lattice model in DMFT, leading

to the selfconsistency condition:



58

Gii =
∑

q

[G−1
0q −G−1

0imp +G−1
ii ]−1 (5.7)

The idea of the extended DMFT is to allow the momentum dependence of the

spin-spin, charge-charge and pair correlations influence the electron self energy.

In a most general case the interaction term is:

Vijkl = δijδklVs(i, k) + δilδjkVu(i, j) + δikδjlVt(i, j) (5.8)

The EDMFT approximation consists of:

a) taking local graphs for I1[Gii,Γiiii] in Eqs.(5.1,5.2) but keeping the non

locality of V . The vertex function Γijkl is computed with local s, u and c but

nonlocal V , so Γ has momentum dependence originating in non local V .

b) The self energy Σ is local, however nonlocality of the interaction in the self

energy must be preserved, therefor it is computed as:

Σ = diag

{

d(V̌s +
1

2
V̌ssΓ̌) + d(Vu + V̄t + VuuΓ̌) + e(Vt + V̄u + VtcΓ̌)

}

(5.9)

where operations s, u and c are taken to be local, keeping nonlocal Γ̌ and V̌ . We

use diag to show that only site diagonal terms are retained in Σ.

The local Γiiii and Gii can still be obtained from an impurity model, because

Σ and I1[Γiiii, Gii] are still those of the impurity model. But now the vertex in

the impurity model is renormalized:

Simp =
∑

σ

c†σG
−1
0σimpcσ +

∑

σ1σ2σ3σ4

V σ1σ2σ3σ4

imp c†σ1
c†σ2
cσ3
cσ4

(5.10)

Vimp = V s
imp + V u

imp + V t
imp (5.11)
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Π̌ =
∑

qs

[Π̌−1 +
1

2
V̌ s

imp −
1

2
V̌sqs

]−1

Π̌ =
∑

qu

[Π̌−1 + V̌ u
imp − Vuqu

− V̄tqu
]−1

Π̌ =
∑

qt

[Π̌−1 + V̌t
t

imp − Vtqt
− V̄uqt

]−1 (5.12)

Usually it is assumed that Vs = Vu = 0 and we need only the last two equations

in Eq.(5.12).

5.4 EDMFT2

In this section we attempt to extend further theory to include more momentum

dependence in the approximations we make on the parquet equations. Ideally we

would like to devise an approximation which included all the diagrams in the next

order in 1/d, or in the reducibility of the diagrams which are treated as nonlocal.

In the language of reducibility EDMFT retains the momentum dependence in

all one particle reducible diagrams (be it a fermion line or an interaction line).

The next logical step would be to retain nonlocality in two fermion reducible

diagrams. To define this approximation rigorously we introduce the following

projection operators:

psG(x1, x2)G(x3, x4) = G(x1, x2)G(x3, x4)δx1,x2
δx3,x4

puG(x1, x2)G(x3, x4) = G(x1, x2)G(x3, x4)δx1,x4
δx2,x3

ptG(x1, x2)G(x3, x4) = G(x1, x2)G(x3, x4)δx1,x3
δx2,x4

(5.13)

The projection operators act only on space variables. A projection operator px

acts on GG in the corresponding channel x. The projected operators are denoted



60

ṡ, u̇ and ċ:

ṡ = pss

u̇ = puu

ċ = ptc (5.14)

We can now formulate a new systematic extension of the DMFT, we denote

it as EDMFT2:

a) graphs for I1[Gii,Γiiii] are taken to be local, for computing Γijkl operations

s, u and c are projected and the interaction V is nonlocal. The momentum

dependence of Γ originates in nonlocal V and nonlocal ṡ, u̇ and ċ.

b) The self energy Σ is still local, and computed in the same way as in EDMFT,

but with projected s, u and c:

Σ = diag

{

d(V̌s +
1

2
V̌sṡΓ̌) + d(Vu + V̄t + Vuu̇Γ̌) + e(Vt + V̄u + VtċΓ̌)

}

(5.15)

We can also obtain the selfconsistency condition for Vimp, hoping that like in

the case of DMFT and EDMFT the impurity model can be used for computing

local quantities. From the requirement that Γiiii = Γimp, we obtain:

Γ̌ =
∑

qs

[

Γ̌

(

1 +
1

2
sΓ̌

)−1

− V̌ s
imp + V̌sqs

]

×

{

1 − 1

2
ṡqs

[

Γ̌

(

1 +
1

2
sΓ̌

)−1

− V̌ s
imp + V̌sqs

]}−1

Γ̌ =
∑

qu

[

Γ̌
(

1 + uΓ̌
)−1 − V̌ u

imp + Vuqu
+ V̄tqu

]

×

{

1 − u̇qu

[

Γ̌
(

1 + uΓ̌
)−1 − V̌ u

imp + Vuqu
+ V̄tqu

]}−1

Γ̌ =
∑

qt

[

Γ̌
(

1 + cΓ̌
)−1 − V̌ t

imp + Vtqt
+ V̄uqt

]

×

{

1 − ċqt

[

Γ̌
(

1 + cΓ̌
)−1 − V̌ t

imp + Vtqt
+ V̄uqt

]}−1

(5.16)

Obtaining the selfconsistency condition is not enough to guarantee that the

impurity model is equivalent to the EDMFT2 approximation formulated in terms
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Figure 5.1: Ladder diagram, particle particle channels.

of projected parquet equations. We also have to insure that the local self energy

of the lattice model and the impurity model are the same. Using the parquet

equations we can show that:

V̌ s
imp +

1

2
V̌ s

impsΓ̌imp − diag

{

V̌s +
1

2
V̌ sṡΓ̌

}

+
1

2
Γ̌loc

12 (sΓimp − diag{ṡΓ}) (5.17)

Comparing this to the selfenergy expression Eq.(5.15) we see that the impurity

model does not reproduce correctly the selfenergy. In the case d → ∞ when

ṡ → s, u̇ → u and ċ → c the last term in Eq.(5.17) vanishes and the selfen-

ergy is represented correctly by the impurity model, and we recover the EDMFT

approximation. Similar analysis can be done in u and t channels.

5.5 Super-conducting fluctuations

To clarify the strength of the nonlocal approximation, which we introduced in

the section 5.4, in some simple setting we consider large N limit of the Sp(N) t-J

model [45]. The Hamiltonian reads

HtJ = − t

N

∑

ij

c†iαcjα − J

N

∑

ij

(εαβc
†
iαc

†
jβ)(εαβcjβciα) (5.18)

where εαβ is a generalization of the antisymmetric tensor ε. A local constraint on

the occupation number is enforced to restrict the Hilbert space of the Hamiltonian.

The four point graphs which survive large N limit to the lowest order are

ladders in the particle particle and particle hole channels. We concentrate on the

particle particle channels which represent super-conducting fluctuations, Fig.(5.1)
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Figure 5.2: Ladder diagram, particle particle channels.

In the usual EDMFT the ladder diagrams are local, while in EDMFT2 they

acquire a momentum dependence from a particle particle bubble. Non local super-

conducting fluctuations are fed back in the self energy in the diagram shown in

the Fig.(5.2), which is of order 1/N - the lowest order diagram for t-J model

Eq.(5.18).

The improvement of the EDMFT2 over the EDMFT in treating superconduct-

ing fluctuations is similar to the improvement of the EDMFT over the DMFT

in the the treatment of the charge fluctuations. The EDMFT allows a feedback

from nonlocal charge fluctuations, which are omitted in the DMFT, but it skips

on the super-conducting fluctuations because there is no pair hopping term in the

original Hamiltonian due to the local particle number conservation. EDMFT2

allows nonlocal SC fluctuations that originate from the particle particle bubble.

EDMFT2 still omits the momentum dependence of Jij which is crucial in captur-

ing the d wave super-conductivity. For that one should apply some version of the

cluster dynamical mean field theory.
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Chapter 6

Anderson localization

6.1 Introduction

Understanding the physics of the disordered materials remains a challenging and

important problem in the condensed matter field. One reason, why it is impor-

tant, is that real materials are never perfect and effects caused by disorder must

be accounted. If disorder itself or corrections to certain physical quantities due

to disorder are small, one usually talks about weak localization, which can be

treated successfully by a perturbation theory. More interesting is the case when

disorder is strong and essential for some phenomenon to occur. The Anderson

localization in 3d is an example of such phenomenon. The mechanism for lo-

calization of the noninteracting electrons in the presence of strong disorder, first

suggested by Anderson [46] in 1958, has been largely understood both qualita-

tively and quantitatively. However, the admixture of interaction (even a weak

interaction) to the strong disorder significantly complicates the consideration. In

the introducting chapter we described many successes of DMFT, showing that it

sets up an excellent tool for treating nonperturbative effects in correlated materi-

als. In view of these successes there is little doubt that possibility of including of

the efficient disorder treatment in DMFT formalism would be invaluable for the

physics community.

And this is possible to some extent. As we already mention one can describe

glasses by introduce replicas in DMFT [22]. Yet it has been known that the

replica limit is actually ill-defined and does not always work. It definitely fails
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to capture the Anderson transition. Alternative to replicas is a super symmetry

(SUSY) method, in which the disorder averaging is well defined. It was success-

fully implemented in nonlinear sigma model devised by Efetov [24], which is a

low energy effective model. Also, the use of SUSY is limited to noninteracting

systems only, therefore this method is applicable to a limited class of problems.

One is forced to seek new approaches, and there is some progress made. We

can name two methods attempting to treat disorder in DMFT fashion: statistical

DMFT [26] and typical medium theory [27]. Both methods are uncontrolled

at large disorder and confidence in using them relies on intuition and actual

qualitatively correct results which these methods produce. In its turn the intuition

is usually based on good understanding of the simpler limiting cases, namely

the clean limit and noninteracting electrons limit. Understanding these limits is

imperative before one can start to think about how to incorporate disorder in

DMFT. In the current chapter we study the noninteracting limit.

In section 6.2 we introduce the physical picture of the Anderson transition,

describe some peculiarities of the transition and pose the questions we would like

to answer in the rest of the chapter. In the next section 6.3 we overview results of

numerical simulation of the Anderson localization in the frame of the Anderson

model. In section 6.4 we overview a general analysis of the Anderson transition by

linearization of the integral equation for the distribution function of the Green’s

function. In sections 6.5 and 6.6 we consider a toy model of the AL and the

exact theory. In section 6.7 we try to reduce exact theory integral equation from

two to one variables. In section 6.8 we compare the toy model, exact model and

nonlinear sigma model.
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6.2 Phenomenon of the Anderson localization

The Anderson localization is the localization of noninteracting electrons due to

disorder. The disorder can be modeled, for example, by randomness in the ex-

ternal potential (diagonal disorder). Such randomness is characterized by the

disorder strength - a measure of the fluctuations of the potential.

In a translationally invariant system all electron states are extended wave

functions. Disordered potential breaks down translational symmetry and some

states get localized: electron in that state has finite probability to be found in

some region, while everywhere else the wave function is exponentially small. Size

of that region defines the localization length ξ. In the regime, when only a small

number of states are localized, corrections to physical quantities, such as conduc-

tivity, are small as well, and one talks about weak localization regime. On the

contrary, when most of the states or even all states are localized, the corrections

are large and of nonperturbative nature, one talks about strong localization.

When all states get localized, conductivity vanishes and system from a metal

turns into an insulator. This metal to insulator transition (MIT) is called An-

derson transition or Anderson localization. Localization is a quantum effect. It

is related to the quantum coherence, which depends strongly on dimensionality.

The lower critical dimension for the Anderson transition is d = 2. For d ≤ 2 an

arbitrary small disorder brings about the insulator phase. This is reminiscent of

the fact that in d ≤ 2, a potential well, however shallow, does always contain a

localized state.

In clean interacting systems which exhibit metal to insulator transition the

conductivity vanishes due to depletion in the density of states (DOS) around

the Fermi level. For example this happens in the Mott transition or when the

Coulomb gap forms. The vanishing of the conductivity in the AL is of very

different nature. The average DOS actually remains finite, yet conductivity goes
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to zero. This can be understood in the following way. In the phase, when all

states are localized with some characteristic localization length ξ, a given state

has a wave function which spatially overlaps with approximately ξd other states.

This number is finite, so is typical difference between energies corresponding to

different states. Such system must be insulating at zero temperature.

As the disorder is introduced to the system, the states get localized, but there

typical energies should not change much. For noninteracting electrons it explains

an interesting feature of Anderson localization, non-vanishing density of states

(DOS). The DOS here is average over all sites local density of states (LDOS).

As we explained, two states with close energies are likely to be far apart in real

space. Having finite DOS, this may happen only if LDOS is very large on a

few sites and small everywhere else. So we see, that while average LDOS is non

critical in the transition, the typical (most probable) LDOS is critical: it vanishes

in MIT, unlike DOS. So typical LDOS (which can be mathematically defined as

the geometrical average LDOS) may be a good candidate for the role of order

parameter.

Let us introduce the model which we study. This will be the Anderson tight-

binding model described by the following Hamiltonian

H =
∑

i

εic
†
ici +

∑

<i,j>

tijc
†
icj, tij = t∗ji (6.1)

where site energies εi are assumed to be random variables and hopping matrix

elements tij are equal to t for the nearest neighbors and are zero otherwise.

The details of the derivation of the equations are given in the Appendix C.1.

The resulting equation reads:

−G−1
i = εi + t2

m
∑

j=1

Gj (6.2)

This equation presents relationship between the local Green’s function Gii at zero

frequency, the sum is over the nearest neighbors. This equation is only an ap-

proximation for real d dimensional lattices, but becomes exact on a model tree
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like (loopless) lattice. The Green’s function in that case should be understood

as computed with one branch of the tree cut off. A tree like lattice with m + 1

neighbors near each site is called a Bethe lattice (or Cayley tree) with the coor-

dination number m. This is a lattice we study our model on. One may wonder

if considering problem on this lattice is meaningful. In spite of being unrealistic,

the Bethe lattice can provide useful insight in the problem. In fact it is very com-

mon to be solving physical models using Bethe lattice, due to typical simplicity of

equations for it. For the hypercubic lattice number of nearest neighbors is twice

the dimensionality of the system. Using this analogy between the dimensionality

d and coordination number m we can to some extent consider the Bethe lattice

as an approximation to a real lattice. While it is just an approximation for 2 or

3 dimensional lattices, it becomes exact in who limits, m → 1 and m → ∞, we

will concentrate particular attention on these limits.

We put t = 1, or in other words we measure frequency E and and potential ε

in terms of t, while Green’s functions in terms of t−1.

We assume that the disorder distribution is symmetric, so the localization at

zero frequency corresponds to the system becoming insulating, as we expect for

the semicircular DOS of the Bethe lattice the states on the edges of the band to

localize first and the states at zero frequency to localize last.

As we already mention, it is not enough to know the first moment of the

distribution function PG, but rather the whole distribution can be considered as

an order parameter. The knowledge of PG may also be very useful when one is

to decide how to add an interaction to the noninteracting disordered state. This

has been partially understood but was not very clearly presented throughout the

literature, therefore we would like to clarify it. This and the other main questions

which we address are listed below:

1) understanding the form of the distribution function PG(ReG, ImG) of the

real and imaginary parts of the local greens function, since PG is a central quantity
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in DMFT, and it is related to a measurable quantity - LDOS. Expression for PG

in NSM was available before.

2) Effects of coordination number, how it enters results on the Bethe lattice.

Large coordination number case was already done (Abou Chakra et.al).

3) Comparing results to NSM model, and possibility of reduction integral

equation describing the problem to one variable equation (like in NSM).

6.3 Overview of numerical results

Our most general goal is to find the distribution function PG(G) of local Greens

function G. We consider zero frequency case and we put t = 1. Corresponding

equation reads (see Appendix. C.1):

−G−1 = ε+
m
∑

j=1

Gj (6.3)

This is a stochastic equation with the independent random variables in the right

hand side. We want to find the distribution function PG, for a given distribution

function Pε, which would satisfy Eq(6.3). This equation can be written as a

nonlinear integral equation for PG.

In this section we consider numerical results we obtained. Solving integral

equation corresponding to the stochastic equation Eq.(6.3) is a difficult task. It

is much easier to use Eq.(6.3) as a recursive equation for computing sets of {Gi}

and finding the distribution statistically. In the limiting case of an infinite set the

distribution function obtained in this way is a solution of the nonlinear integral

equation for PG, but for a finite set it is only an approximation. The steps of the

algorithm for this procedure are:

1) A set of N values of G is given as an input for this step. From this set of G,

m values of G are chosen randomly. A random variable ε is generated randomly
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from the distribution Pε. These m+1 random variables are plugged in right hand

side of Eq.(6.3), and a new Gnew value generated.

2) Step 1) is repeated N times, so a new set of N values Gnew is generated.

3) New set is used to built a histogram, which is a discreetized version of the

distribution function PG.

4) The new set of G is supplied to the step 1) as an input.

In the very beginning a set of N values is chosen arbitrary, with the only

restriction that ImG > 0. Steps 1)-2) are repeated until a reasonably smooth

histogram PG is generated. By analyzing the dependence of the data on the set

size N one can interpolate the results to the limit N → ∞.

Let us use that kind of simulation to illustrate some features of the Anderson

model. Random energies ε are distributed according to Cauchy distribution

Pε(ε) =
1

π

γ

γ2 + ε2

First we illustrate the vanishing of the typical LDOS, which can be considered

as the order parameter. In Fig.6.1 we plotted exp 〈ln(ImG)〉 as a function of

disorder strength γ.

In Fig.6.2 and Fig.6.3 we plotted the distribution function Px,y(x, y), where

x = ReG, y = ImG.

In the pure system with no disorder all the lattice sites are equivalent. As a

result the G takes the same value G0 everywhere, so PG is just a delta-function:

PG(G) = δ(G− G0). In the strongly disordered system LDOS is very large on a

few sites while tends to zero on most sites. In this case, the distribution PG is

peaked around small ImG. In Fig.6.2 and Fig.6.3 we illustrated two distinctive

regimes: good metal and metal in the critical MIT regime. In the first case PG

is peaked around G0. As disorder increases this peak gets broader and shorter,

being centered roughly near the same point. At the same moment PG grows at

small ImG. At even larger disorder the peak completely vanishes, PG becomes
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Figure 6.1: 〈ImG〉typical as a function of disorder strength γ
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Figure 6.2: Distribution of the onsite Green function G = x + iy at the disorder
strength γ = .05 obtained in a simulation for the Cauchy distribution of disorder.
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Figure 6.3: The same as above but at the disorder strength γ = 1

large at very small ImG in some range of ReG. This case is presented in Fig.6.3.

At small disorder PG is peaked around the finite G0. We tested how well that

peak can be fitted by the Gaussian and log-normal distributions. The log-normal

distribution is a Gaussian distribution of the logarithm of a variable. In Fig.6.4

and Fig.6.5 we plotted
√

ln(Py(y)/Pmax
y ) as a function of y and ln y respectively.

For Gaussian distribution one would have a linear plot in y variable, and for log-

normal - linear plot in ln y. As one may judge from those plots, the quality of the

fitting is limited.

We check the assumption that the distribution function may be written in a

special factorizable form: Px,y(x, y) = F (x)Q(yf(x)). This factorization is exact

for NSM [47], but holds only approximately in the other cases that we consider.

It is possible to find f(x) analytically by studying the problem in the vicinity of

the transition. Under the assumption Px,y factorizes in variables x and η = yf(x).

We tested this assumption using contour plot of Px,lny/Px(x) in variables x and

ln η (for convenience, we chose Px,ln y rather than Px,y; vertical and horizontal axis

correspond to x and ln η respectively). Factorizability of the distribution function

in variables x and η should be manifested in the contour plot by contour lines

being straight and parallel (see Fig.6.6). As we see it is not quite so. Factorization

is not precise, it fails at very small x, especially for small y (y ≤ ytypical).
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Figure 6.4: In this figure we plotted
√

ln(Py(y)/Pmax
y ) vs. y to check how well Py

may be fitted in Gaussian distribution. If Py were Gaussian, then graph would
be a straight line. Disorder strength γ = .1
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Figure 6.5: In this figure we plotted
√

ln(Py(y)/Pmax
y ) vs. ln y to check how well

Py may be fitted in log-normal distribution. If Py were log=normal, then graph
would be a straight line. Disorder strength γ = .1
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Figure 6.6: Contour plot of the function Px,ln y/Px(x) in variables x and ln η =
ln(yf(x));vertical and horizontal axis correspond to x and ln η respectively. Sim-
ulation done for: m = 3, γ = 7.81 (α = 0.122), N = 10000
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6.4 General Approach

Integral equation corresponding to Eq(6.3) has the following generic form (in

Fourier or Laplace-Fourier space), see Appendix C.2:

PG(k, s) =

+∞
∫

−∞

dk′
+∞
∫

0

ds′

s′
Ker(k, s; k′, s′)PG(k′, s′)

m
(6.4)

where k is conjugate to x and s is conjugate to y. The toy model and NSM

[48] equations have the same structure. On the insulator side the distribution

function PG depends on the single variable k: PG(k, s) ≡ Px(k). By definition,

Px(k) = PG(k, 0)

At large s and s′ the kernel Ker depends on the ratio s/s′. It implies that PG

is a scaling function of s near MIT with some characteristic scale y−1
typical. Close

to MIT PG(k, s) has a soliton-like shape: for s � y−1
typical PG(k, s) → Px(k), and

for s� y−1
typical PG(k, s) → 0. At the scale s ∼ y−1

typical there is a smooth kink.

For s � y−1
typical deviation δPG(k, s) = Px(k) − PG(k, s) from trivial solution

Px(k) is small. We expand Eq.(6.4) to the linear order in δPG:

δP (k, s) = m

+∞
∫

−∞

dk′
+∞
∫

0

ds′

s′
Ker(k, s; k′, s′)Px(k

′)
m−1

δP (k′, s′) (6.5)

We expect the exact δPG(k, s) to satisfy (approximately) this equation for s �

y−1
typical, provided Ker(k, s; k′, s′) decays sufficiently fast for s′ > s. We argue that

the critical behavior, like the position of the mobility edge, or the scale ytypical close

to the transition, can be determined large s � 1 asymptotics of the linearized

integral equation [25, 48–50]. This will be the case if

+∞
∫

−∞

dk′
1
∫

0

ds′

s′
Ker(k, s; k′, s′)PG(k′, s′)

m−1
δPG(k′, s′) � δPG(k, s)

For s � 1 the kernel depends on the ratio s/s′, therefore the linear equation

simplifies to:

δP (k, s) = m

+∞
∫

−∞

dk′
+∞
∫

0

ds′

s′
K̃er(k, k, s/s′)Px(k

′)
m−1

δP (k′, s′) (6.6)
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where K̃er(k, k, s/s′) is the asymptotic form of Ker(k, k′; s, s′).

The eigenfunction of the linear integral operator in Eq.(6.6) which corresponds

to the exact solution of the nonlinear integral equation must satisfy the following

conditions:

1) The eigenfunction should be matching the exact solution where the lin-

earization procedure is not valid, that is at s ∼ 1 and s ∼ y−1
typical.

2) The eigenfunction should be nonegative for all s in the range 1 � s �

y−1
typical, since P (k, s) ≤ 1.

3) The corresponding eigenvalue Λ̃ should be largest in the class of the allowed

eigenfunctions and it should be 1, otherwise the eigenfunction of the linearized

equation cannot represent a stable solution of the nonlinear equation.

We will study the spectrum of the kernel of the Eq.(6.6), without the prefactor

m, that is all eigenvalues are rescaled by m: Λ = Λ̃/m. The kernel of the form

f(k, k′, s/s′)/s′ has eigenfunctions of the form ψz = C(k)sz, where C(k) is a real

function and z is a complex number. The corresponding eigenvalue is denoted as

Λz. Now we have an eigenfunction problem for an equation in one variable:

Λz(γ, z)C(k) =

+∞
∫

−∞

dk′
+∞
∫

0

dξ

ξ1+z
K̃er(k, k′, ξ)Px(k

′)
m−1

C(k′) (6.7)

We are interested only real eigenfunctions with real eigenvalues. We denote the

real eigenvalue as Λ(γ, ν(b), b): Λ(γ, ν(b), b) ≡ Λν+ib(γ, ν(b) + ib), where ν(b) is

a solution of the equation ImΛν+ib = 0. We sketch function ν(b) for the Ander-

son model and the toy model in the Figure.6.7. We also sketch real eigenvalue

Λ(γ, ν(b), b) as a function of ν in the Figure.6.8. Two upper branches correspond

to real z and the lower branch corresponds to complex value z. The kernel of the

Eq.(6.7) is real, therefore Λz = Λz∗.

The real eigenfunction of the Eq.(6.6) will be denoted as φ(s). There are two

ways of constructing φ(s), either as a linear combination of complex valued ψz or

as a linear combination of real ψz. In the first case φ(k, s) = C(k)(c1ψz + c∗1ψz∗)
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Figure 6.7: Solution of equation ImΛz = 0 is plotted in b,ν axes, z = ν + ib, for
the Anderson and toy models respectively.

with z satisfying ImΛz = 0. In the second case φ(k, s) = C(k)(c1ψz1
+ c2ψz2

)

with z1 and z2 satisfying Λz1
= Λz2

.

Let us consider these two cases in more detail. It is convenient to switch to

the logarithmic variable θ = ln s because the kernel is translationally invariant in

θ. We first consider the eigenfunctions corresponding to the real z1, z2:

φ1(θ) = eν̃θ sinh(b̃θ + c) or φ1(θ) = eν̃θ cosh(b̃θ + c) (6.8)

where ν̃ = (z1 + z2)/2 and b̃ = (z2 − z1)/2. We assume that z1 ≤ z2. To see

how well this function can match the exact solution we compute the logarithmic

derivative at θ = 0 and θ = θk = − ln ytypical (that is for s = 1 and s = y−1
typical).

The scale θk represents the position of the kink in the distribution function. For

φ1 ∼ sinh we have:

φ′
1(θ)

φ1(θ)
= ν̃ + b̃ coth(b̃θ + c) =







ν̃ + b̃ coth(c), θ = 0

ν̃ + b̃, θ = θk

(6.9)

similarly for φ1 ∼ cosh :

φ′
1(θ)

φ1(θ)
= ν̃ + b̃ tanh(b̃θ + c) =







ν̃ + b̃ tanh(c), θ = 0

ν̃ + b̃, θ = θk

(6.10)
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Figure 6.8: Real eigenvalue Λ(γ, ν(b), b) is plotted as a function of ν for the
Anderson and toy models. In the first case eigenvalue is symmetric function with
respect to ν = 1/2. Lower branch corresponds to nonzero b, it is a monotonically
growing function of b(for b > 0). Two brunches merge at the minimum of the
upper branch.

We see that there is some freedom in matching the nonlinear solution of the

integral equation, however it is limited, and this is possible only for finite b̃ and

c. Now we show that the eigenfunctions corresponding to the complex z has a

significant advantage. The complex z eigenfunction reads:

φ2(θ) = eν(b)θ sin(bθ + c) (6.11)

where ν(b) = Rez and b = Imz. We compute the logarithmic derivative for φ2:

φ′
2(θ)

φ2(θ)
= ν + b̃ cot(bθ + c) =







ν + b cot(c), θ = 0

ν + cot(bθk + c), θ = θk

(6.12)

The crucial difference between φ1 and φ2 is that φ2 has poles at bθ + c = nπ

and therefore is somewhat “flexible” in terms of satisfying matching conditions.

For φ2 these conditions can be meet with b and c of order θ−1
k . Since the eigen-

function should be nonnegative for 0 < θ < θk we must choose n = 0, 1. We

argue that φ1 cannot be considered matched with the exact solution near the

metal to insulator transition, but φ2 can. This line of reasoning sets the scale

θk ∼ π/b. The transition occurs when the kink moves to infinity and b → 0.
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The transition point can be identified in the Fig.(6.8). In that figure two upper

branches correspond to φ1 and the lower brunch corresponds to φ2. The lower

brunch is doubly degenerate, since Λ(ν(−b),−b) = Λ(ν(b), b). The limit b → 0 is

approached at the top of the φ2 branch. The three branches meet in the minimum

of two upper branches, what follows from the equation ImΛ(ν + ib) = 0. Indeed,

Im(Λ(ν)+Λ′(ν)ib+O(b2)) = 0, or Λ′(ν) = O(b2). This proves that the condition

for MIT transition can be written as mcmin{Λ(ν(0), 0) = 1 or:

mcΛ(ν0, 0) = 1 (6.13)

where ν0 gives the minimum of Λz restricted to real z. Near the transition the

eigenvalue should satisfy:

mΛ(ν(b), b) = 1 (6.14)

Expanding this equation near the mobility edge ν = ν0, b = 0 on the metallic

side we have: (m−mc)Λ(ν0, 0) −mc/2Λ′′(ν0, 0)b2 = 0 or:

b = (
m−mc

mc
)

1

2 (2
Λ(ν0, 0)

Λ′′(ν0, 0)
)

1

2 (6.15)

This is a general result [25, 48, 50] which describes the critical behavior of the

kink: θk ∼ (m−mc

mc
)−

1

2 . We see that the eigenvalue Λ(ν(b), b) is a central quantity

determining mobility edge and the dynamics of the kink of PG(k, s) near the

transition.

6.5 Toy Model

Here we consider a simplification of the Anderson model, which we the call toy

model. The imaginary part of the AM recursive equation eq(6.3) reads:

y =

∑m
j=1 yj

(ε +
∑m

j=1 xj)2 + (
∑m

j=1 yj)2
(6.16)

In this equation real and imaginary parts of Green’s function are not independent

on each site J , though near MIT the distribution function of the real part is
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determined by equation involving Px(x) only. If in eq(6.16) x and y variables

in rhs are assumed being independent, then this equation will describe the toy

model:

y =

∑m
j=1 yj

ε′2 + (
∑m

j=1 yj)2
(6.17)

where Pε′ = Pε+
� m

j=1
xj

and Pε′(k) = Pε(k)Px(k)
m. The assumption that x and

y are uncorrelated is reasonable for large m for two reasons: 1) the correlation

between the sums
∑

xj and
∑

yj becomes weaker as m increases, 2) the width

of the distribution of
∑

xj is much smaller than the width of Pε, (see Appendix

C.3). The validity of the assumption at low m is not clear, and we will see that

two models have some differences in the limit m→ 1.

The TM shares many features with the Anderson model (AM). It is easy

to simulate Anderson transition on a finite size ”lattice” using recursion relation

eq(6.17) and the technique we described in the section 6.4 . The toy model, like the

AM, has the transition for 1 < m <∞. If we plot ytypical as a function of disorder

strength it will look similar to Fig.6.1, where we plotted ytypical for AM. Vanishing

typical density of states is a distinguished feature of the Anderson transition. In

Fig.6.9 we compared distribution functions obtained in the simulation for AM

and TM. We adjusted the disorder strength to have the same ytypical in two case.

The equation Eq.(6.17) can be written in the form of an integral equation for

Py(y) (see Appendix C.4):

P̄y(s) = 1 +

∫ +∞

0

ds′Ker(s, s′)P̄y
m

(s′) (6.18)

where Ker(s, s′) = Ker1(s, s
′) +Ker2(s, s

′)

Ker1(s, s
′) = −

√
2s√
s′
J1(
√

2ss′))P̃ε′(s
′) (6.19)

Ker2(s, s
′) =

∫ s′

−s′
dk′

s

2
√
s′2 − k′2

J1(
√

s(s′ + k′))J1(
√

s(s′ − k′))P̃ε′(k
′) (6.20)

In this equation P̄y(s) is the Laplace transform of the distribution function. The
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Figure 6.9: P− log (y) at coord. number =10

Laplace transform of the distribution function Py(y) is necessarily real and posi-

tive. Since y is always positive, the Laplace transform is an analytical continuation

of the Fourier transform to the imaginary axis. Laplace transformed functions

are marked with a bar.

The DOS in the AM is non critical across the MIT. The same is true for the

TM. Variable y in the TM plays the role of the LDOS, and the DOS is averaged

over sites LDOS: 〈y〉 =
∫

dyyPy(y) = ∂
∂s
P̄y(s)|s=0. Differentiating eq(6.18) with

respect to s and taking limit s → 0 we can see that only the term with Ker1

survives, yielding:

∂

∂s
P̄y(s)|s=0 =

∫ +∞

0

ds′P̃ε′(s
′)P̄y

m
(s′) ≈ Pε′(0) = α/π

α is finite.

In the previous section we discussed how to analyze an integral equation for

a distribution function in two variables. A similar method can be applied to the

integral equation of the TM as well. The trivial (insulator phase) solution is
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now Py(s) ≡ 1. Linearized eq(6.18) with the asymptotic kernel reads (this is the

analog of eq(6.6)):

δP (s) = m

+∞
∫

0

ds′

s′
K̃er(s/s′)δP (s′) (6.21)

We can drop the bar notation in P (s), keeping in mind that the variable s is used

for the Laplace transform only. We will consider the Cauchy distribution of the

random potential, because many results can be written in an analytical form for

it. For the Cauchy distributed ε (see Appendix C.4 and Appendix C.7):

Ker(ξ) =
√

ξPε′(
√

ξ) (6.22)

From now on we omit tilde over Ker when it depends on one or three variables,

this should be understood as an asymptotic form of the exact kernel. The eigen-

value can be computed explicitly:

Λz(γ, z) =

+∞
∫

0

dξ

ξ1+z
Ker(ξ) =

+∞
∫

0

dξ

ξ
3

2
+z
Pε(
√

ξ) = (γ2z cos πz)−1 (6.23)

The second plot in the Fig.6.8(second plot) we plotted real eigenvalues Λz for

the Cauchy distribution. The upper branch is given by Λ(γ, ν) = (γ2ν cos πν)−1.

Λ(γ, ν) → ∞, when ν → 1/2 and Λ(γ, ν) → 1 when ν → 0; Λ(γ, ν) has one

minimum at ν0 = 1
π

arctan ( 2
π

ln γ) ≈ 1/2 − 1/(2 ln γ). The lower branch, corre-

sponding to the complex z = ν + ib, is given by the equation ImΛz = 0. This

equation can be written as:

tanπν tanh πb cot (2b ln γ) = 1 (6.24)

yielding for ν(b)

ν(b) =
1

π
arctan

[

(tanh (πb) cot (2b ln γ))−1
]

(6.25)

Then from eq(6.23) we have:

Λ(γ, ν(b), b) =

[

γ2ν(b) cos πν(b) cosh πb

cos (2b ln γ)2

]−1

(6.26)
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where ν(b) is given by eq(6.25). It is easy to check that: 1) Λ(γ, ν(b), b) is a

monotonically decreasing function and ν(b) is a monotonically increasing function

of b (for positive b), 2) the minimum of the upper branch coincides with the

maximum of the lower branch.

We use eq(6.13) and eq(6.15) to obtain:

mc = γ2ν cos πν (6.27)

where ν = 1
π

arctan( 2
π

ln γ). Near the transition:

b = (
m−mc

mc

)
1

2 (
2

4 ln γ2 + π2
)

1

2 (6.28)

In all the above formulas γ enters kernel (see eq(6.22)) in Pε′(ξ) = 1
π

γ
γ2+ξ2 . This γ

is ’renormalized’ disorder strength, which is related to the ’bare’ strength γ0 as:

γ = γ0 +mα.

Mobility edge in limits of the large and small coordination number is:

γ0 → ∞, mc →
π

2e

γ0

ln γ0
(6.29)

γ0 → 0, mc → 1 +
2

π2
γ2

0 (6.30)

We will see that the low m expression for the mobility edge is different for the

AM, in which mc is linear with γ0 for mc → 1.

6.6 Anderson Model

In this section we study the Anderson model. The disorder potential is Cauchy

distributed. The equation determining the eigenvalue Λ(γ, ν(0)), now reads:

Λ(γ, β)Cβ(k) =

∫ +∞

−∞

dk′

2π

∫ +∞

0

dξ

ξ3/2−β
cos(k

√

ξ) cos(k′
√

1

ξ
)P̃ε′(k

′)Cβ(k′) (6.31)

where P̃ε′(k
′) is the Cauchy distribution with “renormalized” disorder strength

γ′ = γ + α(m− 1), and β is real.
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In the AM the eigenvalue has an interesting symmetry [49]:

Λ(γ, β) = Λ(γ, 1 − β) (6.32)

To see that we multiply equation by P̃ε′(k) and switch integration from ξ to 1/ξ:

Λ(γ, β)(P̃ε′(k)Cβ(k))

=

∫ +∞

−∞

dk′

2π

∫ +∞

0

dξ

ξ1/2+β
cos(k′

√

ξ) cos(k

√

1

ξ
)P̃ε′(k)(P̃ε′(k

′)Cβ(k′)) (6.33)

In eq(6.31) Cβ(k) is an eigenvector of Kerβ with eigenvalue Λβ. In eq(6.33)

P̃ε′(k)Cβ(k) is an eigenvector of the kernel adjoint to Ker1−β, corresponding to

the same eigenvalue. By this we prove the symmetry relation eq(6.32). From this

symmetry follows that the physical solution corresponds to β = 1/2, so from now

on we will consider only this case and will drop the index β: C(k) ≡ Cβ=1/2(k).

For β = 1/2, Kerβ = Ker1−β and g(k) = P̃ε′(k)C(k) is the adjoint of C(k).

The kernel
∫ +∞
−∞

dk′

2π

∫ +∞
0

dξ
ξ

cos(k′
√
ξ) cos(k

√

1
ξ
) reads in real space:

∫ +∞
−∞ dy 1

|x|δ(y − 1
x
). From eq(6.31) we immediately have ΛC(x) = 1

|x|g(
1
x
), and

since we are interested in the case Λm = 1:

mg(x) =
1

|x|C(
1

x
) (6.34)

We use variables x or y is an argument of a function to denote the function in

real space; if k is used as an argument, it is a Fourier transform of a function.

For example C(k) is the Fourier transform of C(x).

In general C(x) cannot be found analytically, but we can construct an ap-

proximation for C(x) which becomes exact in the limit γ → ∞ (C(x) for both

large and small disorder is studied numerically in Appendix C.6). We want to

show that at large γ ′ in the region k/γ′ � 1: C(k) ≈ Ceul + ln |k|
γ′ + O(1/ lnγ′).

Due to presence of the exponentially decaying function P̃ε′(k) = exp(−γ′|k|) in

the kernel, knowledge of C(k) at k/γ ′ � 1 is sufficient to determine the whole

function C(x). We plug C(k) = Ceul + ln |k|
γ′ +O(1/ lnγ′) into the rhs of eq(6.31)
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and show that this is approximately an eigenfunction. We perform integration:

Λ(γ, β)Cβ(k) =

∫ +∞

−∞

dk′

2π

∫ +∞

0

dξ

ξ3/2−β
cos(k

√

ξ) cos(k′
√

1

ξ
)e−γ′|k′| ×

(Ceul + ln
|k′|
γ′

+O(1/ lnγ′)) =

∫ +∞

0

dξ

ξ
cos(k

√

ξ)
1

π

γ′

γ′2 + 1
ξ

×
[

2 ln γ′ +
1

2
ln(1 +

1

ξγ′2
) +

1√
ξγ′

arctan
1√
ξγ′

+O(1/ lnγ′)

]

=

4 ln γ′

πγ′
(−1

2
[e

− k
γ′ Ei(

k

γ′
) + e

k
γ′ Ei(

−k
γ′

)] +O(1/ lnγ′)) (6.35)

We have used the formula:

∫ +∞

0

dyy cos(xy)
1

1 + y2
= −1

2
[e−xEi(x) + exEi(−x)] (6.36)

where Ei(x) is exponential integral. Using the expansion:

1

2
{e−xEi(x) + exEi(−x)} → (Ceul + ln |x|), x→ 0 (6.37)

we find lhs of eq(6.31) at small k/γ ′:

Λ(γ)C(k) =
4 ln γ′

πγ′
(Ceul + ln

|k|
γ′

+O(1/ lnγ′)) (6.38)

We can make two conclusions here: 1) at large coordination number transition

occurs at m = πγ′/(4 ln γ′); 2) the function C(x) is given by:

C(x) =
1

π

γ′−1|x|
γ′−2 + x2

[2 ln γ′ +
1

2
ln(1 +

1

x2γ′2
) +

1

xγ′
arctan

1

xγ′
+O(

1

ln γ′
)] (6.39)

it follows from eq(6.35). We know the small k asymptotics of C(k) at small k

and can also find asymptotics for large k (it comes from Fourier transformation

of the first term in eq(6.39)):

C(k) →







−(Ceul + ln |k|
γ′ ),

k
γ′ � 1

∝ γ′2

k2 ,
k
γ′ � 1

(6.40)

The limits for C(k) were obtained for the case of large γ ′. From eq(6.39) we

clearly see that 1/γ ′ is a characteristic scale for C(x) ( γ ′ is characteristic scale

for C(k)). This is different for small γ ′, see e.g. Fig.C.1. Let us try to extend
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the result for the region of small γ ′. The following arguments are not rigorous,

but hopefully we explain the qualitative picture. In eq(6.31) γ ′ plays the role of

a cut off, which arises from P̃ε′(k). Function C(k), as wee can see in eq(6.40)

has an “effective cut off” 1/γ ′ (in the real space). We can say, that the cut off

Λ in the rhs of eq(6.31) generates the cut off Λ−1 in the lhs. Let us also assume

that convolution of two functions with characteristic scales Λ1 and Λ2 has a new

characteristic scale Λ1 + Λ2. Let κ be the cut off (characteristic scale) for C(k),

then κ+ γ′ is a cut off for P̃ε′(k)C(k), what results in the cut off (κ+ γ ′)−1 in the

rhs of the equation. From where follows:

(κ+ γ′)−1 = κ (6.41)

Recalling that

γ′ = γ + α(m− 1) (6.42)

and

α−1 = γ + αm (6.43)

one gets κ = α = (−γ+
√

γ2 + 4m)/(2m). The limits of C(k) for large and small

k become:

C(k) →







−(Ceul + ln |k|α), kα� 1

∝ 1
k2α2 , kα� 1

(6.44)

Eq(6.44) reduces to eq(6.40) in the limit of large γ since α → 1/γ as γ →

∞. Apparently α is a quantity correctly defining scale in the whole range of

coordination number. It is a scale in very relaxed sense: when α is small (large

γ) C(x) is given by eq(6.39), when α → 1 (γ → 0) C(x) tends to some function.

Precise form of that limiting function can be found only numerically. Some details

are discussed in Appendix C.6.

We made an ansatz that distribution function near MIT can be written in the

following form:

Px,y(x, y) = Px(x)Q(yf(x))f(x) (6.45)
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where function Q(ξ) is normalized to 1:
∫

dξQ(ξ) = 1. This is true for NSM.

How well this formula works for AM can be tested numerically (see Fig.6.6). From

expansion Px,y(k, s) = Px(k) + C(k)
√
s we conclude that at large y (ytypical �

y � 1):

Px,y(x, y) ∝ C(x)y−3/2 (6.46)

Form of PG given by eq(6.45) is quite restrictive, so from eq(6.46) and eq(6.45)

follows Q(ξ) ∝ ξ−3/2 and:

f(x) = (Px(x)/C(x))2 (6.47)

In NSM [48] f(x) = 1/(α2 + x2). In AM f(x) has similar behavior: f(x) ∼ const

as x → 0, f(x) ∼ 1/x2 as x → ∞, f(x) has scale α. Indeed, C(x) ∼ const and

Px(x) ∼ const at small x, C(x) ∼ 1/x and Px(x) ∼ 1/x2 at large x, and both

functions have α as a characteristic scale.

The equation yf(x) = const should determine the position of the kink in the

x − y plain. Solution, yk = f(x)−1 = (C(x)/Px(x))
2, more or less agrees with

simulation (see Fig.6.6). Deviation from the scaling form at small x can likely be

attributed to the presence of the long tails in the Cauchy distribution.

6.7 Integral Equation Reduction

We would like to reduce number of variables in the integral equation from two

to one by getting rid of the variable k, which is auxiliary, because the distri-

bution of x variable is non critical. First we switch to variables, in which PG

factorizes. Expanding P (k, s) = Px(k)H(η) an comparing this expansion to

P (k, s) = Px(k) + C(k)
√
s we find new variables:

P (k, s) = Px(k)H(η), η = sh−2(k), h(k) =
Px(k)

C(k)
(6.48)
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For h(k) at small and large k we have (from eq(6.44)):

Px(k)

C(k)
→







−e−α|k|(Ceul + ln |k|α)−1, kα � 1

∝ e−α|k|k2α2, kα � 1
(6.49)

In the new variables (k and η) the integral equation reads:

P (k, η) =

∫ +∞

−∞

dk′

2π

∫ +∞

0

dη′

η′

√

η

η′
h(k)

h(k′)

× cos(k
h(k′)

h(k)

√

η′

η
) cos(k′

h(k)

h(k′)

√

η

η′
)Pε(k

′)Pm(k′, η′) (6.50)

To reduce number of variables in the integral equation we act on the rhs of eq(6.50)

with some projection operator Π̂: Π̂P (k, η) = Ψ(k)
∫

dkΦ(k)P (k, η). Equation

then reduces to:

H(η) =

∫ +∞

−∞
dkΦ(k)

∫ +∞

−∞
dk′
∫ +∞

0

dη′

η′
Ker(k, k′, η/η′)Ψ(k′)mH(η′)m (6.51)

whereKer(k, k′, ξ) =
√
ξ h(k)

h(k′)
cos(k h(k′)

h(k)
1√
ξ
) cos(k′ h(k)

h(k′)

√
ξ)Pε(k

′). To make eq(6.51)

equivalent to eq(6.50) one has to choose Ψ(k) and Φ(k): Ψ(k) = Px(k), Φ(k) =

N−1φ(k), where N =
∫

dkPx(k)φ(k) and φ(k) is quite arbitrary.

If we also want to preserve symmetry of the eigenvalue Λβ = Λ1−β, we need

to choose φ(k) being adjoint eigenfunction of the linearized eq(6.50): φ(k) =

Pε(k)Px(k)
m/h2(k). Then eigenvalue is given by:

Λβ =

∫ +∞

−∞

dkdk′

2π

∫ +∞

0

dξ

ξ3/2−β
(h(k)h(k′))−1

× cos(k
h(k′)

h(k)

√

1

ξ
) cos(k′

h(k)

h(k′)

√

ξ)Pε(k)Pε(k
′)P (k, η)mP (k′, η′)m (6.52)

to see that the expression is symmetrical with respect to change β → 1 − β, we

have to switch simultaneously ξ → 1/ξ and exchange k and k′.

Finally, equation reduced to one variable reads:

H(η) =
1

N

∫ +∞

0

dη′

η′

√

η

η′
1

2π
dkdk′

× cos(k
h(k′)

h(k)

√

η′

η
) cos(k′

h(k)

h(k′)

√

η

η′
)g(k)g(k′)Hm(η′) (6.53)
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where N =
∫

dkC(k)g(k)

For more discussion see Appendix C.8.

6.8 Comparison of NSM, TM and AM

In this section we compare critical behavior in three models: TM, NSM and AM.

We study dependence of mobility edge on disorder at large and small m.

For TM we obtained:

mc → 1 +
2

π2
γ2, γ → 0 (6.54)

mc →
π

2e

γ

ln γ
, γ → ∞ (6.55)

In NSM mobility edge is given by [48]:

1

mc
= α(K0(α)I ′1

2

(α) −K ′
0(α)I 1

2

(α)) (6.56)

from where we find: at small α, mc → −
√

α
2π

lnα; at large α, mc → 1 + 1
8α

. In

NSM α should be treated like 1/γ2 in TM. So:

mc → 1 +
γ2

8
, γ → 0 (6.57)

mc →
√
πγ√

2 ln γ
, γ → ∞ (6.58)

We see that TM and NSM have similar behavior in what concerns the mobility

edge position.

Finding the mobility edge in AM with Cauchy distributed disorder mounts

to determining the largest eigenvalue (which corresponds to the only positive

eigenfunction)of the integral operator with the kernel:

K(t, u) =
1

π

1

|u|
γ

γ2 + ( 1
u

+ t)2
(6.59)

Just from the form of the kernel we may guess that corrections to the eigenfunction

and eigenvalue at small γ are linear with γ, since the kernel has long tails ∝ γ.
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It also clearly follows from numerical solving eigenvector problem. We obtained

the following set of numbers: {mc − 1, γ} = {0.061, 0.3; 0.10, 0.5; 0.21, 1}. It is

difficult to approach very small γ. But even these numbers reveals linear law with

good accuracy, we have: (mc−1)/γ = 0.205+0.005. We also applied a variational

approach (see Appendix C.5) which yielded: (mc − 1)/γ = 2/π2 = 0.2026, what

is surprisingly close to the numerical result. So, for AM we get:

mc → 1 + c1γ, c1 ∼
2

π2
, γ → 0 (6.60)

mc →
πγ

4 ln γ
, γ → ∞ (6.61)

We see that, while at large disorder AM resembles TM and NSM (cf. eq(6.55-6.54,

6.58-6.57)), at small disorder it is different.

We also want to compare expansion in the parameter b defining kink scale.

We showed that in general Λ(γ, ν, b) = Λ(γ, ν, 0) + #b2. We want to make sure

that nothing extraordinary happens at m→ 1. We start with the toy model. As

we derived before

Λ(ν, b) = (γ′2ν cos πν cosh πb/ cos (2b ln γ ′))−1

where ν = 1
π

arctan ( 2
π

ln γ′) + O(b2). In our case γ′ → 1 and ν → O(b2). We see

that b2 term arises only from cosh πb. Finally from expansion of 1/ cosh πb and

eq(6.54) we have:

Λ → 1 − γ2

2π2
− π2

2
b2 (6.62)

In the NSM, the role of Λ is played by some function Γ0ρ(α) [48]:

Γ0ρ(α) = α(Kρ(α)I ′1
2

(α) −K ′
ρ(α)I 1

2

(α)) (6.63)

where ρ is equivalent to b. We will expand Γ0ρ(α) in α−1 and ρ around α = ∞

and b = 0. α−1 is equivalent to γ2. It is not hard to find that

∂

∂α−1
Γ00(∞) = −1

8
(6.64)
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and

∂2

∂ρ2
Γ0ρ=0(∞) = 1 (6.65)

To obtain last formula we used that ∂2

∂ρ2Kρ=0(z) → Ki(z) when z → ∞. So the

expansion is:

Γ0ρ(γ
−2) = 1 − 1

8
γ2 +

1

2
ρ2 (6.66)

To estimate coefficient in the expansion for the full model we use the same

approach (see Appendix C.5) as for the expansion in γ only. But kernel in eq(6.59)

now is slightly modified:

K(t, u) =
1

π

1

|u|
γ

γ2 + ( 1
u

+ t)2

|u|ib + |u|−ib

2
(6.67)

Then instead of eq(C.37) we have:

Λl = max{ 1

π2

∫ +∞

0

dkcibG21
13

( k2

4c2
|
1

2
+ ib

2
ib
2

,0, 1
2

)

K0(kc)e
−γk + C.C.} (6.68)

Further calculations were performed numerically. We found that coefficient near

b2 is finite when γ → 0. So we found:

Λ(γ, b) = 1 − 2

π2
γ + constb2 (6.69)

where const ≈ −1.1. As for b2 term in the expansion, all three model exhibit

similar behavior.
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Chapter 7

Conclusion

We have performed a semiclassical analysis of the E-DMFT equations for a sim-

ple Fermion Boson model. Comparison with earlier QMC treatments of the same

problem reveals that this method reproduces semiquantitatively all the trends

found in the previous study [28]. It can be used therefore in the study of more

complicated systems, such as fermions interacting with spin fluctuations. We

also investigated this approach in the order phase revealing some inadequacies

of the approach which are closely related to the existence of anomalous dimen-

sions in finite dimensional systems. Since this non trivial k dependence which is

characteristic of low dimensional systems cannot be generated by a local theory,

EDMFT produces spurious results such as the existence of a first order phase

transition in d < 4 . Since at zero temperature the dynamical critical exponent

is such that in two dimensions an ansatz without anomalous dimensions is in-

ternally consistent, [31] a continuation of the disordered state, beyond the first

order phase transition, might be useful to study this system. In this spirit we

pointed out that a continuation of the E-DMFT, at finite temperatures, suitably

interpreted, gives improved estimates of the critical temperature compared to the

simplest mean field treatment or the Bloch Langer method [37]. It could be used

to obtain better estimates of ferromagnetic transition temperatures where spatial

fluctuations of the order parameter substantially decrease the Curie temperature

below the DMFT estimates. This is the case of bcc Iron [51] , a problem which

will require a more realistic investigation of EDMFT. Further investigation of the

quantum problem will require zero temperature methods which go beyond the
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semiclassical approximation.

We derive a general criterion for the disordered phase instability in EDMFT.

Our analysis elucidates the signuture of the second order transition when ap-

proached from the disordered side. This result is a reminder of a known fact [42],

that no precursor effect of the instability toward a symmetry breaking can be ob-

served at the one-particle level. This result also casts some doubt on the validity

of the EDMFT description of the local quantum criticality [52] in terms of the

Bose Fermi Kondo model, at least in the way it was formulated in Ref. [31].

We took a different perspective on the DMF theories, by considering equations

for two body vertices - parquet equations. Local approximations leading to DMFT

and EDMFT can be concisely formulated using parquet equation. The local

approximation can be extended to include 1/d corrections, arising in particle

particle and particle hole channels. This allows to feed back to the local selfenergy

nonlocal superconducting fluctuations, for example. This can also be viewed as an

extension alternative to a cluster DMFT, which requires much more computing

power for solving. The downside is that one has to deal with matrix inversion in

the selfconsistency conditions. Yet this can be considered as a starting point for

simplifying approximations.

Finally, we performed detailed analysis of the Anderson model of localization

and compared it to the non linear sigma model description.
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Appendix A

EDMFT

A.1 Critical Temperature

The transition to the ordered state for a classical model in BL method is signaled

by the divergence in the zero momentum term in the sum:

G2 =
∑

q

Jq

1 − JqM2
(A.1)

This equation is analogous to the selfconsistency equation of the EDMFT, it arises

when summing ring diagrams. M2 is a vertex and Jij is a line in the ring diagram.

G2(i)M2 is the sum of all ring diagrams which cover the site i. M2 and G2 are

related to D in EDMFT:

D = M2 +M2G2M2 (A.2)

Below we are explicitly summing ring graphs on a Bethe lattice to express G2

through M2.

We are introducing notations: G̃2(i) and Q(i). G̃2(i) equals G2(i) when the

latter is computed on a lattice with all but one bonds cut out from the site i. the

sum of ring graphs with only one vertex belonging to the site i. Q(i)M2 includes

those diagrams from G̃2(i)M2 which have only one vertex belonging to the site i.

The following relations can be established:

G2 = zG̃2 + zG̃2(z − 1)M2G̃2 + zG̃2(z − 1)M2G̃2(z − 1)M2G̃2 + ... (A.3)
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G̃2 = Q +QM2Q+QM2QM2Q + ... (A.4)

Q = JM2J + JM2(z − 1)G̃2M2J + JM2(z − 1)G̃2M2(z − 2)G̃2M2J

+JM2(z − 1)G̃2M2(z − 2)G̃2M2(z − 2)G̃2M2J + ... (A.5)

where z is the number of nearest neighbors, J is a bond on the lattice.

Summing geometrical series, we obtain:

G2 =
zG̃2

1 − (z − 2)M2G̃2

(A.6)

G̃2 =
Q

1 −M2Q
(A.7)

Q = J2M2
1 +M2G̃2

1 − (z − 2)M2G̃2

(A.8)

Solving these equations we get:

G2 =
zQ

1 − zM2Q
(A.9)

Q =
1 −

√

1 − (z − 1)(2M2J)2

(z − 1)2M2

(A.10)

Eq(A.9) and eq(A.10) solve G2 for M2.

Curves Jc vs z for BL and EDMFT, together with MFT solution Jc = 1/z are

presented in Fig(4.4) and compared to the exact solution:

Jc =
1

2
ln

z

z − 2
(A.11)
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A.2 Order of the phase transition

Here we are proving that the EDMFT equations give a transition of the first

order for d < 4 and of the second order in the higher dimensions. For classical

phonons EDMFT equations read:

m(r − Jq=0) = − δΦ[m,D]
δm

D =
∑

q

[r + 2 δΦ[m,D]
δD

− Jq]
−1 (A.12)

It is easily seen that

δ2Φ[m,D]

δm2

∣

∣

∣

∣

m=0

= 2
δΦ[0, D]

δD
(A.13)

Solving Eq.A.12 for r using the above relation for derivatives, up to the second

order in m we have:

−m
2

2
D

′′ |m=0 = D|m=0 −
∑

q

[(

2
δ2

δD2
− 1

6

δ4

δm4

)

Φ[m,D]|m=0 m
2 + Jq=0 − Jq

]−1

(A.14)

The coefficient in front of m2 in the rhs is positive. The left hand side of Eq.(A.14)

is ∝ m2; while the right hand side has two contributions, one ∝ md−2 and the

other ∝ δβ, where δβ = β − βc. For d < 4 the term ∝ md−2 is dominant and

δβ ∝ −md−2 < 0. A negative δβ implies the first order transition. For d > 4 the

term m2 from lhs becomes dominant and δβ ∝ m2 > 0. This is the usual mean

field behavior resulting in a second order transition.

We showed that in a classical model the transition is of the first order below

the upper critical dimension. The same is true for a quantum transition as well.

We show it in the appendix A.3 considering large N limit.

As discussed earlier in connection with the order of the transition, this artifact

of the EDMF results from the inability of a local theory to capture physics that
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requires the introduction of anomalous dimensions. In spite of this shortcoming,

when properly interpreted, EDMFT results in improved estimates of the critical

temperature relative to DMFT.

A.3 Quantum phase transition

In this appendix we investigate the phase transition in the quantum version of φ4

model. We compare EDMFT and a full lattice model using large N technique.

We will show that above the upper critical dimension d > duc = 4 − z the exact

critical exponents and the critical exponents obtained in EDMFT coincide. Below

duc the EDMFT and the lattice model exhibit different critical exponents. In the

EDMFT the transition is of the first order for 1
2
duc < d < 2 and of the second order

otherwise. The transition is of the second order in the lattice case. Moreover,

in EDMFT the exponents have universal value for d < 1
2
duc and a non universal

value for 1
2
duc < d < duc.

The lattice model is described by the action:

S =
1

2
D−1

0 φ2 +
U

4
(φ2)2 (A.15)

where D−1
0ω,q = r + |ω| 2

z + q2, φ2 =
∑N

a=1 φ
2
a, U = u/N , r is a variable parameter

which drives the phase transition. Corresponding EDMFT equations are:

mD−1
0ω,q=0 +

δΦ[m,D]

δm
= 0 (A.16)

D =
∑

q

[D−1
0q + 2

δΦ[m,D]

δD
]−1 (A.17)

The functional Φ[m,D] includes all two particle irreducible diagrams which

are constructed from the magnetization m (dot), the particle propagator D (line)

and the interaction term U (four legged vertex). Φ satisfies the following equation:
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Γ
Figure A.1: 1/N expansion of Γ. All diagrams are of the order 1/N

δ2Φ[m,D]

δm2

∣

∣

∣

∣

m=0

= 2
δΦ[0, D]

δD
(A.18)

Expanding Φ in small m and using Eq.(A.18) we write EDMFT equations as:

D−1
0ω,q=0 + 2

δΦ[0, D]

δD
+

1

6

δ4Φ[m,D]

δm4
|m→0m

2 = 0 (A.19)

Dω =

∫ Λ

0

dqd[|ω| 2

z + q2 + {2Γ − 1

6

δ4Φ[m,D]

δm4
|m→0}m2]−1 (A.20)

where Γ = δ2Φ[0,D]
δD2 .

Let D0c, Dc, rc be values of D0, D, r in the transition point. Subtracting

D−1
0cω,q=0 + 2 δΦ[0,Dc]

δD
= 0 from Eq.(A.19) and keeping lowest order terms we

have:

δr + 2ΓδD +
1

6

δ4Φ

δm4
m2 = 0 (A.21)

where δr = r − rc, δD = D −Dc. This equation provides a relation between the

variation of the driving term r and the order parameter m. We will show that

for d > duc the last term in the left hand side wins over the second term, the

transition is mean field like. The second term becomes important and determines

the character of the transition for d < duc.

We will consider the large N limit up to the order of 1/N . Diagrams which en-

ter Γ are chains of bubbles (see Fig.A.1), which can be summed up as geometrical

series:

Γ =
1

N

(

u

2
+

u

1 + u
2
χ

)

(A.22)
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where χω ∼
∫

dνDνDν+ω in the quantum problem or χ = D2 in the classical

problem. The only term of the order 1/N which enters δ4Φ/δ4m is 6u/N . All

other terms are of order O(1/N 3).

Eq.(A.21) and Eq.(A.22) hold in case of a lattice as well, but D now depends

on both momentum and frequency, and summations now run over wave vectors

as well.

The upper and lower critical dimensions are determined by the convergence

of integrals TrδD and TrD in the ultraviolet and infrared limits respectively:

TrδD ∼
∫

dωdq
qd−1

(|ω| 2

z + q2)2
(A.23)

TrD ∼
∫

dωdq
qd−1

(|ω| 2

z + q2)
(A.24)

These equations are the same for the mean field and lattice models, they

yield the upper critical dimension duc = 4 − z and the lower critical dimension

dlc = 2 − z = duc − 2.

We first consider EDMFT. In a crude way one can estimate:

d > 2, Dω ∼
∫

ddq(|ω| 2

z + q2)−1 ∼ (d− 2)−1(Λ(d−2)
q − |ω| d−2

z ) (A.25)

d < 2, Dω ∼ −(d− 2)−1|ω| d−2

z (A.26)

and

d > 2, χω ∼
∫

dνDνDν+ω ∼ (d− 2)−2|ω| d−2

z
+1 (A.27)

d < 2, χω ∼ −(d− 2)−2(2
d− 2

z
+ 1)−1|ω|2 d−2

z
+1 (A.28)

Λq is a momentum cutoff. We see from Eq.(A.28) that for d < duc/2 the suscep-

tibility χω is divergent at low frequency, it leads to a universal critical behavior

for d < duc/2, as follows from the self energy calculation below. The self energy
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in large N limit is δΣ ∼ 2ΓD:

duc

2
< d < duc, Σω ∼ 1

N
(d− 2)−1u|ω| d−2

z
+1 (A.29)

dlc < d <
duc

2
, Σω ∼ 1

N

∫

dν
Dν+ω

χν
∼ 1

N
(d− 2)(2

d− 2

z
+ 1)|ω|− d−2

z (A.30)

In a similar way we can calculate a contribution from m to ΓδD

duc

2
< d < duc, ΓδD ∼ 1

N
(d− 2)−1umd−2+z (A.31)

dlc < d <
duc

2
, ΓδD ∼ 1

N
(d− 2)(2

d− 2

z
+ 1)m−d+2 (A.32)

This result together with Eq.(A.21) suggests that the transition is the first

order for 1
2
duc < d < 2.

Now we consider the lattice model.

χω,q ∼
∫

dνddp(|ν+ω| 2

z +(p+ q)2)−1(|ν| 2

z +p2)−1 ∼ (d+ z−4)−1(|ω| 2

z + q2)
d+z
2

−2

(A.33)

Σω,q ∼
1

N

∫

dνdpχ−1
ν,pDν+ω,p+q ∼

1

N
(d+ z − 4)(|ω| 2

z ln |ω| + q2 ln q) (A.34)

In this case the frequency dependent part of the self energy can be conveniently

exponentiated to yield: D ∼ [|ω| 2

z̃ + q2−η]−1 with z̃ = 2 −N−1(d− duc)c1(d) and

η = −N−1(d− duc)c2(d), where c1(d) and c2(d) are some smooth functions of d.

We also calculate a contribution from m to ΓδD ∼ N−1(d − duc)m
2 lnm. It

yields δr ∼ m
1

β with β = 1
2

+ (d− duc)
1
N
c3(d). The transition is the second order

in this case.
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Appendix B

Parquet EDMFT

B.1 Definitions

For a detailed derivation of the parquet theory equations one should refer to

Ref [53]. Below we summarize notations and write out established equations

without derivations.

Any two-body vertex diagram α ≡ α(1, 2; 3, 4) has two incoming legs (indices

1 and 2) and two outgoing legs (indices 3 and 4), see Fig.B.1. The exchange of a

diagram α is defined as ᾱ(1, 2; 3, 4) = α(1, 2; 4, 3). The left-right flip of a diagram

α is defined as α̃(1, 2; 3, 4) = α(2, 1; 4, 3). A diagram called direct if incoming

particles propagate from leg 1 to leg 3 and from leg 2 to leg 4.

A sum of diagrams contributing to a two-body vertex is denoted by upper

case letters. The sum X̌ includes both direct graphs X and exchange graphs
¯̂
X.

If X = X̂ the vertex is antisymmetric: X̌ = X + X̄. This is the case we consider.

Two direct graphs α and β can be connected by two one-particle Green’s func-

tions G to form a direct two-body graph in exactly five topologically distinctive

ways:
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α

3

1

4

2

α
_

1

3 4

2

α∼

1

3 4

2

Figure B.1: Two-body diagram α. Legs 1 and 2 are incoming particles, legs 3
and 4 are outgoing particles. Diagrams ᾱ and α̃ are exchange of α and a flip of
α respectively

(αsβ)(1, 2; 3, 4) = α(1, 2; 5, 6)G(5, 7)G(6, 8)β(7, 8; 3, 4)

(αuβ)(1, 2; 3, 4) = α(1, 5; 6, 4)G(6, 7)G(8, 5)β(7, 2; 3, 8)

(αcβ)(1, 2; 3, 4) = α(1, 5; 3, 6)G(6, 7)G(8, 5)β(7, 2; 8, 4)

(αlβ)(1, 2; 3, 4) = α(1, 5; 6, 3)G(6, 7)G(8, 5)β(7, 2; 8, 4)

(αrβ)(1, 2; 3, 4) = α(1, 5; 3, 6)G(6, 7)G(8, 5)β(7, 2; 4, 8) (B.1)

All other connections can be obtained from these five by applying left-right flip

to α or β. Five basic operations are shown in Fig.(B.2). Any diagram is two

particle reducible in one (and only one) of three channels: s, u or t. If legs 1, 2

can be separated from legs 3, 4 by cutting two lines the diagram is reducible in s

channel. Separability of 1, 4 from 2, 3 and 1, 3 from 2, 4 corresponds to channels u

and t respectively. The s operation is an s channel operation, the u is a u channel

operation, the c, l and r are t channel operations.

A two-body graph can be closed off with a Green’s function to form a one-body

graph. This can be done in the direct (d operation) or exchange (e operation)
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α βc α βl α βr

α βuα βs

β β

β β

α α α

α α

β

Figure B.2: Five distinctive ways to connect two diagrams α and β.

channel:

d(α)(1, 2) = α(1, 3; 2, 4)G(4, 3)

e(α)(1, 2) = α(1, 3; 4, 2)G(4, 3) (B.2)

GII is the two-body Green’s function. The two-body vertex Γ is closely releted

to GII and defined by:

GII(1, 2; 3, 4) = G(1, 3)G(2, 4)−G(1, 4)G(2, 3)

+G(1, 5)G(2, 6)Γ(5, 6; 7, 8)G(7, 3)G(8, 4) (B.3)

Green’s function G is related to the bare Green’s functionG0 throug the Dyson

equation

Σ = G−1
0 −G−1 (B.4)

The self energy Σ can be expressed in terms of Γ and the bare interaction

vertex V :

Σ = d(V̌ +
1

2
Γ̌sV̌ ) = (d+ e)(V + ΓsV ) (B.5)
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B.2 Exact parquet theory

The parquet theory solves the problem of generating all two-body reducible graphs

from a set of two-body irreducible graphs Ǐ. If Ǐ is antisymmetric, the parquet

equations can be written in terms of direct graphs only [53, 54]:

∆S = I + U +B + L +R + A

∆U = I + S +B + L+R + A

∆B = I + S + U

S = ∆Ss(∆S + S)

U = ∆Uu(∆U + U)

B = ∆Bb(∆B +B)

Γ0 = I + S + U +B

L = ΓlΓ0

R = Γ0rΓ

A = ΓlΓ0rΓ

Γ = Γ0 + L+R + A (B.6)

where b is defined by: αbβ = αcβ + (αrΓ)cβ From the structure of the above

equations one can see that S includes graphs reducible in s channel, U includes

graphs reducible in u channel and B, L, R and A include graphs reducible in t

channel. ∆S, ∆U and ∆B contain all the graphs from Γ which are irreducible in

s, u and t channels respectively.

The set of equations Eqs.(B.6) can alternatively be written as:
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∆S = Γ − S

∆U = Γ − U

∆B = Γ0 − B

S = ∆SsΓ

U = ∆UuΓ

B = ∆BbΓ

Γ0 = I + S + U +B

Γ = (1 + Γl)Γ0(1 + rΓ) (B.7)

or

Γ12 = Γ − Γ12sΓ

Γ14 = Γ − Γ14uΓ

Γ13 = Γ − Γ13bΓ

Γ0 = I + Γ12sΓ + Γ14uΓ + Γ13bΓ (B.8)

Γ = (1 + Γl)Γ0(1 + rΓ) (B.9)

where Γ12 ≡ ∆S, Γ14 ≡ ∆U and Γ13 ≡ ∆B.

The parquet equations can be formally solved for I, see Eq.(5.2).

The parquet equations can also be written for full vertices, which include both

direct and exchange parts:



106

∆̌S = Γ̌ − Š

∆̌U = Γ̌ − Ǔ

∆̌C = Γ̌ − Č

Š =
1̌

2
∆SsΓ̌

Ǔ = ∆̌UuΓ̌

Č = ∆̌CcΓ̌

Γ̌ = Ǐ + Š + Ǔ + Č (B.10)

or

Γ̌12 = Γ̌ − 1

2
Γ̌12sΓ̌

Γ̌14 = Γ̌ − Γ̌14uΓ̌

Γ̌13 = Γ̌ − Γ̌13cΓ̌

Γ̌ = Ǐ +
1

2
Γ̌12sΓ̌ + Γ̌14uΓ̌ + Γ̌13cΓ̌ (B.11)

Š, Ǔ and Č include all graphs reducible in s, u and t channels respectively.

Γ̌12 ≡ ∆̌S, Γ̌14 ≡ ∆̌U and Γ̌13 ≡ ∆̌B.

Formal solution for I is Eq.(5.1).

Systems Eq.(B.7) and Eq.(B.10) are equivalent and the following relationships

can be established (the only requirement might be Γ̌ = ˜̌Γ or Ǐ = ˜̌I):

Š = S + S̄ (B.12)

Ǔ = U + B̄ + L̄ + R̄ + Ā (B.13)

Č = Ū +B + L +R + A (B.14)

Given Ǐ (or I) including all two-body irreducible vertex diagrams constructed

from the propagatorG and the bare interaction vertex V , Eq(5.1) (or Eq.(5.2,5.3)),
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the Dyson equation Eq.(B.4) and the expression for self energy Eq.(B.5) form a

closed set of equations:

Γ̌ = Ǐ[G, V ] +
1

2
Γ̌(1 +

1

2
sΓ̌)−1sΓ̌ + Γ̌(1 + uΓ̌)−1uΓ̌ + Γ̌(1 + cΓ̌)−1cΓ̌ (B.15)

G = [G−1
0 − Σ]−1 (B.16)

Σ = d(V̌ +
1

2
Γ̌sV̌ ) (B.17)

Below we show that the exact parquet theory is a natural starting point for

deriving DMFT, EDMFT and other possible extensions of DMFT.

B.3 Two parquet scheme equivalence

We start by showing the equivalence of Eq.(5.2) and Eq.(5.1) to the lowest order

in perturbation theory, proceeding later with proving the general case. Up to the

second order Eq.(5.2) and Eq.(5.1) read:

I = Γ − ΓlΓ − ΓrΓ − ΓsΓ − ΓuΓ − ΓcΓ (B.18)

Ǐ = Γ̌ − 1

2
Γ̌sΓ̌ − Γ̌uΓ̌ − Γ̌cΓ̌ (B.19)

Then we add Eq.(B.18) and exchange of itself, transforming any diagram of

the type αxβ into γyδ, using associativity relations: ΓlΓ = ΓuΓ̄, ΓrΓ = Γ̄uΓ,

ΓsΓ = ΓsΓ̄, ΓuΓ = Γ̄cΓ̄, ΓcΓ = Γ̄uΓ̄. Collecting terms with s, u and c operations

we arrive to Eq.(B.19).

Let us now consider all orders of perturbation theory. It is convenient to

rewrite Eq.(5.2) and Eq.(5.1) as:
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I = −Γ(1 + sΓ)−1sΓ − Γ(1 + uΓ)−1uΓ + Γ0(1 + bΓ0)
−1 (B.20)

Ǐ = −Γ̌(1 +
1

2
sΓ̌)−1 1

2
sΓ̌ − Γ̌(1 + uΓ̌)−1uΓ̌ + Γ̌(1 + cΓ̌)−1 (B.21)

Three terms in rhs of Eq.(B.20) and Eq.(B.21) are correspondingly −S, −U ,

Γ0 −B and −Š, −Ǔ , Γ̌ − Č.

Since for each operation s, u or c the usual associativity relation holds αx(βxγ) =

(αxβ)xγ, it would be convenient to write all equations using only these three op-

erations. Using relations αcβ = ᾱlβ = αrβ̄ we can write (cf Eq.(5.3)):

Γ0 = (1 + Γ̄c)−1Γ(1 + cΓ̄)−1 =
∑

n=0

k=n
∑

k=0

(−1)n(Γc)kΓ(cΓ̄)n−k (B.22)

Composite operation b = c + (rΓ)c can be written as c + cΓ̄c, so:

bΓ0 = cΓ(1 + cΓ̄)−1 =
∑

n=0

(−1)ncΓ(cΓ̄)n (B.23)

We write the last term of Eq.(B.20) in powers of Γ:

Γ0(1 + bΓ0)
−1 =

∑

n=0

(−1)nΓ0(bΓ0)
n

=
∑

i=2

∑

n1=0
n2=0

...
ni=0

(−1)p(Γ̄c)n1Γ(cΓ̄)n2cΓ(cΓ̄)n3 ...cΓ(cΓ̄)ni (B.24)

where p =
∑

i ni + i − 1 is the order of the corresponding term. One can notice

that all terms in the sum in Eq.(B.24) are different and the sum contains all terms

in the expansion of Γ̌(1 + cΓ̌)−1 except for terms of the type Γ̄cΓ̄c...Γ̄. Summing

up these unaccounted terms we obtain:

∑

n=0

(−1)nΓ̄(cΓ̄)n = Γ̄(1 + cΓ̄)−1 = Γ(1 + uΓ)−1 = Γ − U (B.25)
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We used the relationship αuβ = ᾱcβ̄. From Eq.(B.24), Eq.(B.25) and the expan-

sion of Γ̌(1 + cΓ̌)−1 it follows Γ0(1 + bΓ0)
−1 + Γ̄(1 + cΓ̄)−1 = Γ̌(1 + cΓ̌)−1. This

can be written as Γ0 − B + Γ̄ − Ū = Γ̌ − Č or finally as:

Č = Ū +B + L +R + A (B.26)

In a similar way we derive:

Ǔ = U + B̄ + L̄ + R̄ + Ā = ¯̌C (B.27)

Using associtiviaty in s channel and the relation ΓsΓ = ΓsΓ̄, it is not difficult

to check that Š = S + S̄. For that we write S and Š in series:

S = −
∑

n=1

(−1)nΓ(sΓ)n (B.28)

Š = −
∑

n=1

(−1

2
)nΓ̌(sΓ̌)n (B.29)

Each term of the n+ 1th order in Γ in Eq.(B.29) equals to S/2n if it has even

number of Γ̄ and equals to S̄/2n otherwise. Number of terms of each kind is 2n,

so it proves that

Š = S + S̄ (B.30)

Writing the fully irreducible part in two representations:

I = Γ − S − U − B − L− R− A

Ǐ = Γ̌ − Š − Ǔ − Č (B.31)

and using Eqs.(B.26,B.27,B.30) we show that Ǐ = I + Ī. This proves the equiva-

lence of direct and antisymmetric parquet equations.
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Appendix C

Anderson Localization

C.1 Anderson model equation

Let us now derive the equation describing the problem. We use the Anderson

tight-binding model described by a Hamiltonian

H =
∑

i

εic
†
ici +

∑

<i,j>

tijc
†
icj, tij = t∗ji (C.1)

where site energies εi are assumed to be random variables and hopping matrix

elements tij are equal to t for the nearest neighbors and to zero otherwise.

To derive the equation we expand around the atomic limit, that is in the

hopping amplitude t. The bare on-site Green’s function on a site subscribed with

0 is

G0
0
−1

(E) = E − ε0 (C.2)

and the dressed Green’s function is

G−1
0 (E) = E − ε0 − Σ0(E) (C.3)

where the self energy is

Σ0(E) = t2
∑

ij

G
(0)
ij (E) (C.4)

Green’s functions appearing under the sum are those calculated for the lattice

with the site 0 being removed. We would like to close the system of eq(C.3) and

eq(C.4). For that we argue that first, at large dimensionality G
(0)
ij ≈ Gij, that is

removing one site produces little effect on a Green’s function, and second, if i 6= j
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than Gij is of higher order with the respect to a local Green’s function (i = j).

After that simplifications, plugging selfenergy from eq(C.4) into eq(C.3) we get:

G−1
0 (E) = E − ε0 − t2

∑

i

Gi(E) − iε (C.5)

Here the Green’s functions are local Green’s functions and the sum is over the

nearest neighbors. We introduce also an infinitesimal positive ε to tackle possible

singularities. Later we wont write it explicitly, still recalling it where necessary.

On an artificial lattice with no loops (a tree like lattice) the derivation would

be just exact provided we sum over all but one nearest neighbors. Indeed, on a

loopless lattice G
(0)
ij = 0 for the different i and j, and summing over all but one

neighbors in the right hand side we have just G(0) in the left hand side of eq(C.5).

Such a tree like lattice with m being number of neighbors near every site is called

a Bethe lattice (or Cayley tree) with the coordination number m. And this is a

lattice we are going to solve the problem on. This is a quite unrealistic lattice,

one would wonder how it relates to a reallife lattices. For the hypercubic lattice

number of nearest neighbors is twice the dimensionality. By this analogy we can

say that the coordination number m kind of plays a role of the dimensionality and

we can hope to obtain a qualitatively correct picture for the large dimensionality,

where hopefully presence of loops is less important than at d ≤ 2. Neglecting of

loop correlations decreases the lower critical dimension (or rather coordination

number) to 1. Exactly at m = 1 the Bethe lattice is just a one dimensional

system, so this limit is also of interest. So, we will concentrate our attention on

two limits: large (m� 1) and small (m→ 1) coordination number.

We put t = 1, or in other words we measure frequency E and and potential ε

in terms of t, while Green’s functions in terms of t−1.

If the distribution of the random potential is an even function of ε then eq(C.5)

is symmetrical under the change E → −E, G → −G and the following complex

conjugation. This is assumed everywhere later. In that case E = 0 is the middle
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of the band. DOS on a Bethe lattice is a semicircle. It is natural to expect states

first to localize where DOS is small and last to localize where DOS is large, that

is right in the middle of the band. That is why we will particularly interested in

results for E = 0. In that case recursion relation describing Anderson localization

in the Anderson model reads:

−G−1 = ε+
m
∑

j=1

Gj (C.6)

C.2 Green’s function distribution function

We want to study a distribution function. In general we call it Pξ(z). Pξ(z) is a

distribution function of a random variable ξ, where the distribution assumed to

be over different sites on a lattice. It shows probability to find value of ξ = z on

a randomly chosen site. Strictly speaking, we define distribution function as:

Pξ(z) = lim
∆z→0,∆Nξ→∞

∆Nξ/N

∆z

where ∆Nξ is a number of sites on which variable ξ takes values between z and

z + ∆z; N is total number of sites in the lattice, and it is implied of course that

N → ∞. ξ may also be a vector, in that case in the above definition we change

∆z for µ(z)
∏

i ∆zi, where measure µ in our case will be just 1.

Recursive eq(6.3) can be brought in the form of an integral equation. In eq(6.3)

all the variables in the right hand side are independent, and so the distribution

function in the lhs is simply related to the distribution function in the rhs:

PG−1(G−1) =

∫

dεPε(ε)

m
∏

i=1

dGiPG(Gi)δ(G
−1 + ε− E +

m
∑

i=1

Gi) (C.7)

In the rhs we have a convolution type integral and hence it is convenient to go

to Fourier transform (FT) of the equation. Fourier transformed quantities are

marked with a tilde : P̃G(z). We will not go in the details of derivation right now,

we just need to realize a general form of the Fourier transformed equation, and this
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is an easy part. First we note that the FT of a distribution function of a sum of

several independent quantities is simply a product of FTs of distribution functions

of those quantities: P̃A+B = P̃AP̃B. Second we notice that FT of the distribution

function of an inverse quantity is related to FT of the distribution function of the

quantity itself through some linear integral operator L̂: P̃G = L̂P̃G−1 . Then the

integral equation is of the following form:

P̃G = K̂P̃m
G (C.8)

where K̂ is the integral operator: K̂ = L̂P̃ε

C.3 Real part of the Green’s function, Cauchy distribu-

tion

When transition is approached, 〈y〉typical tends to 0 while 〈x〉typical remains fi-

nite. Keeping this in mind one can drop y from the real part of eq(6.3) to find

distribution of x in the critical region:

x−1 = ε−
m
∑

j

xj (C.9)

In the case of the Cauchy distribution of the random variable ε Pε(ε) = 1
π

γ
γ2+ε2

eq(C.9) has a simple solution. One can note that the distribution of the sum

of several random variables xi distributed with Cauchy distribution is a Cauchy

distribution as well and width γ of this distribution is just sum of γi; inverse of

the Cauchy distribution with width γ is a Cauchy distribution width width γ−1.

Then from eq(C.9) it follows immediately that

labela2Px(x) =
1

π

α

α2 + x2
, α =

−γ +
√

γ2 + 4m

2m
(C.10)

We see that distribution of the real part of the Green’s function is a non critical

at the transition. At large γ, α ≈ γ−1 and Re[
∑m

j=1Gj] ≈ m/γ. But in the

transition mc ∝ γ/ ln γ, so width of the distribution of ε increases faster than

that of Re[
∑m

j=1Gj] ≈ m/γ by ln γ.
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C.4 Fourier Laplace transormed integral equation

Integral equation corresponding to eq(6.17) in the real space reads:

Py(y) =

∫

dεPε(ε)

m
∏

i=1

dyiPy(yi)δ(y −
∑m

i=1 yi

ε2 + (
∑m

i=1 yi)2
) (C.11)

Introducing dummy variable x we can rewrite the equation:

Py(y) =

∫

dxdε
1

(x2 + y2)2
Pε(ε)

m
∏

i=1

dyiPy(yi)δ(
x

x2 + y2
+ ε)δ(

−y
x2 + y2

+
m
∑

i=1

yi)

(C.12)

Or in terms of Fourier and Laplace transforms of distribution functions (Fourier

transform: f̃(k) =
∫

dxf(x)e−ikx ; Laplace transform: f̄(s) =
∫ +∞
0

dxf(x)e−sx):

P̄y(s) =

∫

dxdydk1dk2

(2π)2

P̃ε(k1)P̃y
m

(k2)
1

(x2 + y2)2
exp (−ik1

x

x2 + y2
+ ik2

y

x2 + y2
− sy) (C.13)

Changing variables: x = U
U2+V 2 ; y = V

U2+V 2 : P̄y(s) =

∫

dUdV dk1dk2

(2π)2
P̃ε(k1)P̃y

m
(k2) exp (−ik1V + ik2U − s

V

U2 + V 2
) (C.14)

−s V

U2 + V 2
= − is

2
(

1

U + iV
− 1

U − iV
) (C.15)

exp (− is/2

U + iV
) = −2i(U + iV )

∫ +∞

0

RdRJ0(R
√

2s) exp (i(U + iV )R2) (C.16)

and formally complex conjugate equation:

exp (
is/2

U − iV
) = 2i(U − iV )

∫ +∞

0

RdRJ0(R
√

2s) exp (−i(U − iV )R2) (C.17)

Using eq(C.15),eq(C.16) and eq(C.17) we get:

exp (−isV/(U 2 + V 2) = 4(U2 + V 2)

∫ +∞

0

dR1

∫ +∞

0

dR2·

·R1R2 J0(R1

√
2s)J0(R2

√
2s) exp (i(U + iV )R2

1 − i(U − iV )R2
2) (C.18)



115

(U2 + V 2) → −(
∂2

∂k2
1

+
∂2

∂k2
2

) exp (−ik1V + ik2U) (C.19)

Changing variables: ξ = R2
1 − R2

2, η = R2
1 + R2

2, corresponding Jacobian:

J =
1

4

1
√

η2 − ξ2
=

1

8R1R2
(C.20)

Then using eq(C.18-C.20) we rewrite eq(C.14) as:

P̄y(s) = −1

2

∫ +∞

−∞
dU

∫ +∞

0

dV

∫ +∞

−∞

dk1

2π

∫ +∞

−∞

dk2

2π

∫ +∞

−∞
dξ

∫ +∞

0

dη·

·P̃ε(k1)P̃y
m

(k2)(
∂2

∂k2
1

+
∂2

∂k2
2

) exp (−ik1V + ik2U + iξU − ηV )·

·J0(
√

s(η + ξ))J0(
√

s(η − ξ))Θ(η2 − ξ2) (C.21)

Integrating over U we have:

∫ +∞

−∞
dU exp (−ik1U + iUξ) = 2πδ(−k1 + ξ) (C.22)

Integrating over V we have:

∫ +∞

0

dV

∫ ∞

−∞
dk2P̃y

K
(k2) exp (ik2V − ηV ) = 2π

∫ +∞

0

dk2P̃y
K

(−ik2)δ(k2 − η)

(C.23)

So applying eq(C.22) and eq(C.23) to eq(C.21) we get:

P̄y(s) = −1

2

∫ +∞

−∞

dk1

2π

∫ +∞

0

dk2

2π

∫ +∞

−∞
dξ

∫ +∞

0

dηP̃ε(k1)P̃y
m

(−ik2)·

·( ∂
2

∂k2
1

− ∂2

∂k2
2

)J0(
√

s(η + ξ))J0(
√

s(η − ξ))Θ(η2 − ξ2)δ(k1 − ξ)δ(k2 − η) (C.24)

or

P̄y(s) = −1

2

∫ +∞

−∞

dk1

2π

∫ +∞

0

dk2

2π
P̃ε(k1)P̄y

m
(k2)(

∂2

∂k2
1

− ∂2

∂k2
2

)

J0(
√

s(k2 + k1))J0(
√

s(k2 − k1))Θ(k2
2 − k2

1) (C.25)

(
∂2

∂k2
1

− ∂2

∂k2
2

)g(k2 + k1)h(k2 − k1) =
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(
∂

∂k1
+

∂

∂k2
)(

∂

∂k1
− ∂

∂k2
)g(k2 + k1)h(k2 − k1) = −4g′(k2 + k1)h

′(k2 − k1)

so

(
∂2

∂k2
1

− ∂2

∂k2
2

)J0(
√

s(k2 + k1))J0(
√

s(k2 − k1))Θ(k2
2 − k2

1) =

− s
√

k2
2 − k2

1

J1(
√

s(k2 + k1))J1(
√

s(k2 − k1))Θ(k2
2 − k2

1)+

2
√
s√

k2 + k1

J1(
√

s(k2 + k1))J0(
√

s(k2 − k1))δ(k2 − k1)Θ(k2 + k1)+

2
√
s√

k2 + k1

J0(
√

s(k2 + k1))J1(
√

s(k2 − k1))δ(k2 + k1)Θ(k2 − k1)−

−4J0(
√

s(k2 + k1))J0(
√

s(k2 − k1))δ(k2 + k1)δ(k2 − k1) (C.26)

−
∫ +∞

0

dk2

∫ +∞

−∞
dk1

√
s√

k2 ± k1

J1(
√

s(k2 ± k1))J0(
√

s(k2 ∓ k1))δ(k2 ∓ k1)·

·Θ(k2 ± k1) = −
∫ +∞

0

dk2

√
s√

2k2

J1(
√

2sk2)) (C.27)

2

∫ +∞

0

dk2

∫ +∞

−∞
dk1J0(

√

s(k2 + k1))J0(
√

s(k2 − k1))δ(k2 + k1)δ(k2 − k1) =

4

∫ +∞

0

dk2J0(
√

2sk2)δ(2k2) = 4

∫ +∞

0

dk2δ(2k2) = 1 (C.28)

From eq(C.26-C.28), eq(C.25) becomes:

P̄y(s) = 1 −
∫ +∞

0

dk2

√
s√

2k2

J1(
√

2sk2))P̃ε(+k2)P̄y
m

(k2)−

−
∫ +∞

0

dk2

√
s√

2k2

J1(
√

2sk2))P̃ε(−k2)P̄y
m

(k2) +

∫ +∞

0

dk2

∫ k2

−k2

dk1·

· s

2
√

k2
2 − k2

1

J1(
√

s(k2 + k1))J1(
√

s(k2 − k1))P̃ε(k1)P̄y
m

(k2) (C.29)

If the function Pε(ε) is an even function, then the final equation reads:

P̄y(s) = 1 +

∫ +∞

0

ds′(Ker1(s, s
′) +Ker2(s, s

′))P̄y
m

(s′) (C.30)
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where

Ker1(s, s
′) = −

√
2s√
s′
J1(
√

2ss′))P̃ε(s
′)

Ker2(s, s
′) =

∫ s′

−s′
dk′

s

2
√
s′2 − k′2

J1(
√

s(s′ + k′))J1(
√

s(s′ − k′))P̃ε(k
′)

We can show that eq(C.30) near MIT reduces translationally invariant (in loga-

rithmic variables) equation:

P̄y(s) =

∫ +∞

0

ds′
√

s/s′3Pε′(
√

s/s′)P̄y
m

(s′) (C.31)

To show how this we rewrite eq(C.30) in equivalent form:

P̄y(s) = 1 +

∫ +∞

0

ds′Ker′(s, s′)P̄y
m

(s′) +

∫ +∞

0

ds′
√

s/s′3Pε(
√

s/s′)P̄y
m

(s′)

(C.32)

where

Ker′(s, s′) = Ker1(s, s
′) +Ker2(s, s

′) −
√

s/s′3Pε(
√

s/s′) (C.33)

Idea is simple. We know that insulator solution (P̄y(s) ≡ 1) satisfies eq(C.32) and

eq(C.31) as well. Then if P̄y(s) = 1, two first terms in eq(C.32) cancel out. But we

can show that Ker′(s, s′) consists of two terms: one falls off quickly and another

oscillates highly at large s and k2. It means that this kernel takes contribution

only from the distribution function at small argument, where P̄y(s) ≈ 1 close

to transition. Ker1(s, s
′) and Ker2(s, s

′) −
√

s/s′3Pε(
√

s/s′) are the terms we

referred to above.

C.5 Variational method

We want to estimate largest eigenvalue of the operator K using variational ap-

proach:

K(t, u) =
1

π

1

|u|
γ

γ2 + ( 1
u

+ t)2
(C.34)
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As a trial function we will take the function which corresponds to the NSM distri-

bution function(in the sense PNSM(k, s) ≈ Px(k)−ψ(k)
√
s): ψ(x) = 1/

√
1 + c2x2;

then the lower limit for the eigenvalue of K operator will be:

Λl = max{
∫ +∞
−∞ dtduψ(t)K(t, u)ψ(u)
∫ +∞
−∞ duψ(u)ψ(u)

} (C.35)

or after some manipulations:

Λl = max{ 4

π2

∫ +∞

0

dkK0(
k

c
)K0(kc)e

−γk} (C.36)

where K0 is the modified Bessel function. The expression is symmetrical with

respect to change c → 1/c. So at c = 1 we have either maximum or minimum

of Λl. Not difficult to check that it is a maximum. At c = 1 the integral can be

done analytically:

4

π2

∫ +∞

0

dkK0(k)
2e−γk =

1

π2
(2K(

γ2

4
) − γF32(1, 1, 1;

3

2
,
3

2
;
γ2

4
)) (C.37)

where K is the elliptic integral, and F32 is the generalized hypergeometric func-

tion. Expanding in γ we have:

Λl = 1 − 2

π2
γ +O(γ2) (C.38)

C.6 C(x) function

In this appendix we explain behavior of the function C(x) (see eq(6.31)). We are

looking for the largest eigenvalue.

From the expansion PG(x, y) ∼ C(x)y−3/2 follows that C(x) is everywhere

positive. Since the kernel of the integral operator is everywhere positive, it has

only one positive eigenfunction which corresponds to the largest eigenvalue. So

the approximate eigenvector we found (see eq(6.39)) does indeed corresponds to

the largest eigenvalue. We will compare that analytical formula to numerically

obtained eigenfunctions.
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Figure C.1: Eigenfunction C(x) for small values of γ ′ (’w’ on the plot).

Function C(x) has different behavior at large and low coordination. For γ ′ � 1

(or m− 1 � 1) to the first order C(x) is independent of scale γ ′, it tends to some

function. Fig.C.1 illustrates this tendency.

For γ′ � 1 (or m� 1) C(x) is approximately given by the formula eq(6.39).

There are two terms in eq(6.39), each of which is scaling invariant, that is a

function of x/γ′. But these two terms enter with different weights, so the whole

expression is not scaling invariant. In Fig.(7) we plotted function proportional to

Cnumer(
ξ

γ′
)[2 ln γ′ +

1

2
ln(1 +

1

ξ2
) +

1

ξ
arctan

1

ξ
]−1 (C.39)

where Cnumer(x) a function found solving eq(6.31) numerically at different values

of γ′. If eq(6.39) correctly describes C(x) at large γ ′, then the function in Fig.C.2

should tend to ξ
ξ2+1

. This is demonstrated in the plot.
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Figure C.2: Function C( ξ
γ′ )[2 ln γ′ + 1

2
ln(1+ 1

ξ2 )+ 1
ξ
arctan 1

ξ
]−1 is plotted for large

values of γ′ (’w’ on the plot). If analytical expression given by eq(6.39) is correct,
than graphs should tend to asymptotic function 2ξ/(ξ2 + 1) (full line).
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C.7 Limits of the integral equation kernel

Let us consider different limits of Ker2(s, s
′) in eq(6.20), to which we refer in

many cases. We can rewrite Ker2(s, s
′) as:

Ker2(s, s
′) =

∫ 1

−1

dx
s

2
√

1 − x2
J1(
√

ss′(1 + x))J1(
√

ss′(1 − x))P̃ε(xs
′) (C.40)

Depending on how ss′ and γs′ compare to 1 we can extract different asymptotes.

Case 1): ss′ � 1, γs′ � 1. First we notice that integrand in eq(reff1) is

nonsingular at x = ±1. Due to presence of an exponential function P̃ε(xs
′) =

exp(−γ|xs′|) an important region of integration is x � 1. We use asymptotes of

Bessel functions and expansion of the arguments of the Bessel functions in x (but

not expansion of Bessel functions themselves, since s/γ is not necessarily small).

Then

Ker2(s, s
′) ≈

∫ 1

−1

dx
1

2π

2
√
s√
s′

× cos(
√
ss′(1 + x/2) + π/4) cos(

√
ss′(1 − x/2) + π/4)P̃ε(xs

′)

=

∫ 1

−1

dx
1

2π

1

s′

√

s

s′
(cos(x

√
ss′) − sin(2

√
ss′))P̃ε(xs

′)

≈
∫ +∞

−∞
dk′

1

2π

√

s

s′3
(cos(k′

√

s

s′
) − sin(2

√
ss′))P̃ε(k

′)

=

√

s

s′3
Pε(

√

s

s′
) −

√

s

s′3
Pε(0) sin(2

√
ss′) (C.41)

The second term oscillates highly and we can ignore it:

Ker2(s, s
′) ≈

√

s

s′3
Pε(

√

s

s′
); ss′ � 1, γs′ � 1 (C.42)

Case 2): ss′ � 1, γs′ � 1. This case is not much of interest as we will

consider more general limit: s� γ.

Case 3): ss′ � 1, γs′ any. Using expansion of Bessel functions at small

argument we have:

Ker2(s, s
′) ≈ s2

4

∫ s′

0

dk1P̃ε(k
′); ss′ � 1 (C.43)
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Let us consider two more general limits:

Case 4): s � γ, s′ any. In this case there are two overlapping possibilities

γs′ � 1 or ss′ � 1, but in any way the following formula works:

Ker2(s, s
′) ≈ s

s′
J2

1 (
√
ss′)

∫ s′

0

dk1P̃ε(k
′); s� γ (C.44)

Case 5): s � γ. If s′ � 1, this is just the case(1) if 1/s � s′ � 1 then

the integrand is the product of two incoherently oscillating functions. Using

asymptotes of Bessel functions we can estimate result of integrating x as ∼ 1/s′.

Recalling that δP̄y(s
′) is the sum of two functions ∝ s′ν we can estimate integral:

∫ 1

1/s
δP̄y(s

′)/s′ds′ ∼ δP̄y(s
′)|s′=1 ∼ δP̄y(1). When s′ < 1/s, Ker2(s, s

′) ∼ s2s′

and we estimate integral
∫ 1/s

0
δP̄y(s

′)s2s′ds′ ∼ δP̄y(s
′)s2s′2|s′=1/s ∼ δP̄y(1/s).

δP̄y(1/s) � δP̄y(1) � δP̄y(s), this is important to justify the statement: dis-

tribution at large y does not define distribution at small y. We of course should

not forget about Ker1(s, s
′) of eq(6.19), but it gives even a smaller contribution.

C.8 Integral equation reduction

As we see (eq(6.49)), h(k) is a relatively slowly varying function, so it may be

tempting to forget about it entirely. Then integrations over k and k′ in eq(6.53)

are just Fourier transformations, so the integral equation becomes:

H(η)

∫ +∞

−∞
dkC(k)g(k) =

∫ +∞

0

2π
dη′

η′

√

η

η′
g(

√

η′

η
)g(

√

η

η′
)Hm(η′) (C.45)

The kernel is a function of ξ = η′/η: Ker(ξ) = ξ−3/2g(ξ1/2)g(ξ−1/2). Limits of

the kernel are: Ker(ξ) ∝ ξ−2, as ξ → ∞, Ker(ξ) ∝ ξ−1, as ξ → 0. Linearized

eq(C.45) has a symmetry νβ = ν1−β, and surprisingly, even yields a numerically

exact value for ν1/2. Indeed, the linear equation for β = 1/2 is:

∫ +∞

−∞
dkC(k)g(k) = m

∫ +∞

0

2π
dξ

ξ
g(ξ1/2)g(ξ−1/2) (C.46)
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And by virtue eq(6.34) this is a correct identity. However, something is quite bad

in eq(C.45): insulator solution does not satisfy it, because integral is logarithmi-

cally divergent at small ξ.

Let us check limit ξ → 0 more accurately. In this case k ∼ ξ−1/2 � 1

and k′ ∼ ξ1/2 � 1. Then h(k) ≈ const, h(k′) ≈ 1/ ln k′. g(x) → const, as

x → 0, so only integration over k′ is important. Function g(k) has a logarithmic

singularity at small k. To take care of it we change variable of integration to

t = −k′ ln k′, then dt = −dk′(ln k′ + 1) ≈ dk′ ln k′. g(k′) ≈ − ln k′P̃ε′(k
′), so

cos(k′ h(k)
h(k′)

1√
ξ
)g(k′) → cos(t/

√
ξ)P̃ε′(t/ ln t) Function P̃ε′(k) is a smooth function

at small k, so it is probably ok to put ln t ≡ ln
√
ξ. Now integration over t yields

Pε′(1/(
√
ξ ln ξ)), and Ker(ξ) → ln ξ2/

√
ξ, as ξ → 0.
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