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ABSTRACT OF THE DISSERTATION

Mott transition in strongly correlated materials: a
realistic modeling using LDA4+DMFT

by Sahana Murthy

Dissertation Director: Professor Gabriel Kotliar

We study aspects of the Mott metal-insulator transition in simple models and in real
materials. We first investigate the density-driven Mott transition in the degenerate
Hubbard model within the framework of dynamical mean-field theory (DMFT). We
demonstrate the divergence of compressibility near the finite temperature transition
endpoint using quantum Monte Carlo simulations. We show that our results are relevant
to the a-v transition in Cerium.

In the latter part of the thesis, we use a combination of density functional methods
with local density approximation (LDA) and many body techniques such as DMFT to
realistically model two materials with strong correlations. We compute the band struc-
ture and spectra of YbRhoSis which has an antiferromagnetic ground state. YbRhySis
is known to have a strong anisotropy in its magnetic response with respect to its crys-
tal structure. We determine magnetic anisotropy energy of YbRhoSis from its total
energy. Using LDA4+DMFT methods we calculate the spectra and equilibrium volume
of Americium. We show that on applying pressure, a Mott metal-insulator transition

takes place in Americium which is in accordance with experimental studies.
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Chapter 1

Introduction

The understanding of the structure and properties of materials, the relationship between
their phases and the mechanism that gives rise to transitions between the phases have
been the focus of a number of theoretical and computational investigations in solid state
physics. There have been two main approaches that have contributed to progress in
determining the structure and properties of materials: studies of model Hamiltonians
and first-principles or ab-initio calculations. We can learn aspects of universal behavior
of systems by studying simple models. For example, critical exponents of measurable
quantities such as heat capacity and susceptibility derived from the Ising model are
applicable to a wide variety of systems. On the other hand, non-universal features
require detailed modeling that involve particulars such as atomic charge and crystal
structure. This thesis deals with the realistic modeling of strongly correlated materials
using tools from both the approaches.

Model Hamiltonians have proved to be very useful in understanding materials with
strong correlation effects. These are materials in which there is a competition be-
tween the kinetic energy and the interaction energy of electrons. Strong correlation
effects arise due to partially filled d and f shells in the atoms constituting the ma-
terials. Strongly correlated materials exhibit interesting physical properties such as
high temperature superconductivity, anomalous behavior in resistivity, specific heat
and transport properties. Examples of strong correlation effects are seen in high tem-
perature superconductors such as copper oxides, Uranium and Cerium based heavy
fermion systems, colossal magnetoresistance materials such as manganites and carbon
based compounds such as bucky balls and carbon nanotubes.

The Mott-Hubbard metal-insulator transition [1] is another important effect induced



by strong correlations. It has been observed in V203 [2], pyrites such as Ni(Se, S), [3],
and layered organic conductors [4]. It is a difficult problem to treat theoretically since
the electron kinetic energy and interaction energy are of the same order. Since there
is no natural small parameter, standard perturbative techniques fail. The dynamical
mean-field theory (DMFT) [5] is a framework in which both localized bands in the
insulating phase and quasi-particle bands in the metallic phase are treated on an equal
footing. It is exact in the limit of infinite dimensions. In particular, DMFT studies
of the Hubbard model have been successful in understanding some universal aspects
of the physics of the Mott transition such as high temperature behavior near Mott
endpoint [], phase diagram at integer occupation [| and transfer of spectral weight near
the transition [6,7]. However, the main drawback of studying models is that physical
quantities such as interaction strength and doping need to be treated as parameters.

A different approach to studying electronic structure of solids is based on first-
principles (or ab-initio) techniques. There are no empirically adjustable parameters
here. The input to these calculations consists only of atomic charges and crystal struc-
tures, hence a detailed modeling of the solid is possible. The most widely used tool in
ab-initio calculations is Density Functional Theory [8,9], especially in the Local Density
Approximation (LDA) or Generalized Gradient Approximation (GGA) [10]. Density
functional methods have been tremendously successful in treating weakly correlated
materials such as simple metals and semi-conductors. They provide a simple concep-
tual picture of the ground state and correctly predict excitation spectra and transport
properties in such materials. However, these methods often fail to capture the correct
physics in strongly correlated materials.

In recent years, a combination of Local Density Approximation and dynamical mean-
field theory (LDA+DMFT) has been successfully used to study strongly correlated
materials [11,12]. In this approach, the light s,p (sometimes d) electrons which have
extended wave functions are treated by LDA. The localized d (or f) electrons are treated
in the DMFT framework. This method can be used to calculate excitation spectra and
total energy as well as correlation functions. Theoretically, the LDA+DMFT method

can be constructed from an effective action point of view [13] where the free energy is



a functional of the local Green’s function and the density. Other extensions to LDA
have also been tried: LDA+U [14-16], which has been shown to be a static limit of
LDA+DMEFT [17] and LDA+GW [18,19] which is a perturbative calculation starting
from LDA spectra.

LDA+DMEFT has proved to be a powerful tool for the realistic modeling of strongly
correlated electron systems. There have been various successes: Phase diagram of
plutonium [20], a-v transition in the 4f electron system Cerium [21,22], optical and
transport properties of La;_SryTiO3 [23,24], Mott Hubbard metal-insulator transition
in V203 [25] to name a few. This thesis is an attempt to understand the structure and
properties of two strongly correlated materials using the above methods, with a focus
on the metal-insulator Mott transition.

This thesis is organized as follows:

In chapter 2 we begin with the physical ideas behind the Mott transition. We
introduce the the Hubbard model. We go through the mechanism behind dynamical
mean-field theory and its mapping to the impurity model. We then describe one of
various ways to solve for the properties of the impurity model. This is the quantum
Monte Carlo technique, which is exact, but computationally difficult for accessing low
temperatures. Studying the behavior of the system as a function of various parameters,
we look into the details of the finite temperature doping driven Mott transition. We
concentrate on the behavior of the charge compressibility near the transition.

Chapter 3 serves two purposes. In the first part, we briefly review density functional
theory from an effective action point of view. We discuss existing density functional
methods that go beyond the standard LDA technique, and can be used when strong
correlations are present. These are the LDA+U and LDA+DMFT methods. We outline
the numerical implementation of another impurity solver for the DMFT loop, the so-
called Hubbard-1 approximation, which we will employ in a later calculation. The latter
part of 3 is devoted to the details of our computation scheme. We describe the various
input files that are required in the computer program.

We then turn to applications of the above methods to real materials in the lan-

thanide and actinide series. In chapter 4 we study the ground state and magnetic



properties of a heavy fermion compound YbRhoSis . We also propose a procedure in
the LDA4U implementation, that improves results for the ground state properties. The
theoretical tools we discussed, the physical concepts behind the Mott transition and the
insights we gained into the details of the band structure calculation all come together
in chapter 5. We use the LDA+DMFT technique, with the Hubbard-1 impurity solver,
to investigate the structure, equilibrium volume, and details of the Mott transition in
elemental Americium.

We conclude in chapter 6 with a summary of the thesis, and directions for future

work.



Chapter 2

Finite temperature Mott transition in the degenerate
Hubbard model

The Mott transition is a metal-insulator transition that is driven by electron-electron
interactions [1]. It occurs when the ratio of the electron interaction strength to the band-
width is increased. Experimentally, this phenomenon is realized in many compounds
such as V203 [2], Ni(Se, S), [3,26] and the family of organic conductors x~-BEDT [4,27].
On the theoretical side, the Hubbard model is among the first, and perhaps the sim-
plest model that can capture the essential physics of the transition. In recent years,
tremendous theoretical progress has been made in understanding the Mott transition
by applying the dynamical mean-field theory (DMFT) [5] to the Hubbard model. In
this chapter, we study finite temperature aspects of the doping driven Mott transition
in the Hubbard model, and the behavior of the compressibility near the Mott endpoint
within the DMFT approach.

2.1 The Mott transition

Experimental evidence

The classical system in which a Mott transition is observed is V203 doped with Cr or
Ti [2]. The transition can be driven by varying pressure, chemical potential (or doping)
and temperature. Recently, a first order metal-insulator transition was observed in the
organic superconductor x-(BEDT — TTF),Cu[N(CN),Cl, as a function of hydrostatic
pressure [28]. The study shows a large softening of sound velocity of the material near
the critical point. The sound velocity is proportional to the square root of compressibil-

ity, hence a sharp decrease in the velocity points to a divergence in the compressibility.



Fig. 2.1 shows the phase diagram and the dip in sound velocity in this system.

8]
¥ 0o
50 F - *
7 005 |
40 F :“"v )
—_ 2l 0] =
f anf o4 M = lof
! g 10k
. = 210 hars. Y
0r 015 F -— 3:\; e
?‘r!lvll - ila- o oaay —m =
10 F S
sc1  sCell | SCHIII 0wt L
[ i2 3 3p 38 4D
0 100 :l 0 RI)U -Il_l(l 50[. 60 10 20 an 40 50 60 70 B0 o)
P (bar) TiK)
Figure 2.1: Left: Temperature versus pressure phase diagram of k-

(BEDT — TTF),Cu|[N(CN),Cl for different crystals.

The grey circle near 200

kBar represents the critical point. Right: relative sound velocity (w.r.t. its value at
90K) as a function of temperature at various pressures. From D. Fournier et. al. [28].

It has been suggested by B. Johansson [29] that the Mott transition concept is also
relevant to lanthanide and actinide materials. The a-vy transition in Cerium shows
certain universal features that are common to other systems in which a metal-insulator
transition is observed. For example, Beecroft and Swenson [30] measured a large de-
crease in the compressibility in the transition from the insulating low-pressure phase

(7-Ce) to the metallic high-pressure phase (a-Ce). Fig. 2.2 shows the pressure-volume

isotherms for the a-v transition in Ce.
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Theoretical understanding

From a theoretical point of view, the electronic structure of solids has been well under-
stood in two limits. When the overlap between electron orbitals is large, a wave-like
description is relevant, and band theory accounts for most of the properties of the solid.
At the other end, when the electron orbitals are far apart, a real-space description in
terms of localized atomic wave-functions is valid.

Strongly correlated materials fall away from either of these limits. Strong correla-
tion effects arise due to the dual character of the electron: wave-like and particle-like.
In other words, there is a competition between the kinetic energy and the electron-
electron interaction energy. One of the earliest models that was proposed to capture
the effects of strong correlations in d and f-band materials was the Hubbard model [31].
However, it has been solved exactly only in one dimension, where there cannot be a
finite temperature phase transition.

Standard methods such as perturbation theory fail in the strong correlation problem
since a method that can simultaneously treat itinerant and localized nature of electrons
is required. One such framework that can describe both metallic (itinerant) and insu-
lating (localized) phases is dynamical mean-field theory [5]. DMFT can be regarded as
the quantum analog of the classical mean-field theory for magnetism. The essence of
the method is to replace the interactions of an electron at a lattice site with its neigh-
bors by an effective interaction with an average field. This effective field represents the
dynamic state of the neighbors.

In the DMFT framework, the metal-insulator transition (MIT) can be interpreted
as arising from bifurcation points of a functional of the local Green’s function. The case
of the correlation driven MIT at half-filling, is now well understood. At temperature
T = 0 there are two bifurcation points, one denoted by U1 (T = 0) where the insulating
solution disappears, and the other denoted by U (T = 0) where the metallic solution
disappears [32]. It was found that in the U-T phase diagram of the frustrated Hub-
bard model, there is a region where two mean-field solutions, one metallic-like and one

insulating-like can be obtained. This region is delimited by the U, (T') and U (T') lines



as shown in Fig. 2.3. Within the region there is a first-order MIT line [33,34] that ends
in a finite temperature second-order critical point (Unrrr, Tarrr) with a rapid variation
of the susceptibility connected to the double occupancy [6,35]. At higher temperatures

the Uxa(T) and U, (T) lines become crossover lines.

p=U/2

U
Ucl Uc2

Figure 2.3: Phase diagram of Hubbard model at the particle-hole symmetric point
w = U/2. The solid lines denote Ui (T)(left) and Ug(T)(right). The dashed line
denotes the first order transition line. The black circle at the top is the position of the
second-order transition (Upsrr, Tarrr)-

The doping driven MIT at zero temperature was studied in [36]. It was shown that
there are two solutions in an area bound by the curves p.1(U), where the insulating
solution disappears, and p2(U), where the metallic state disappears. The finite tem-
perature aspects of the doping driven Mott transition will be the subject of this chapter.
We will concentrate on the paramagnetic phase, and will not consider effects of long
range order.

We will also discuss the behavior of the charge compressibility near the Mott end-
point at finite temperatures. The compressibility is known to diverge at the density
driven MIT in two dimensions at 7' = 0 [37]. This behavior has also been observed
on other models of correlated electron systems such as the t-J model indicating that
this phenomenon is quite general [38]. Simple models of the Mott transition, such as
the Gutzwiller approximation or the slave-boson approach predict a finite compressibil-

ity [39]. It is important to understand the physical origin of this result, and to see if it



is realized in the DMFT solution of the Hubbard model. The previously investigated
bifurcation points within the DMFT, have either a finite charge compressibility, such
as in the T' = 0 density driven Mott transition, or a vanishing charge compressibility,

as in the T = 0 correlation driven transition.

2.2 The Hubbard model

We begin with a general Hubbard Hamiltonian that has m-band degeneracy. Since we
will be working in the grand canonical ensemble, we introduce a chemical potential in
the Hamiltonian, given by:

1 1
H=- Z t?]?mlcgmgcima"i_ 5 Z Unimanim’fa"*' 5 Z Unimanim’a —H Z Nimo

{i,m,c} i,m,m/c i,m#m’c imo

(2.1)
;

Here c;,, . creates an electron in a state localized at site ¢ with orbital index m and
spin o =7, |. The first term describes the hopping between nearest neighbor sites (ij)
where the hopping integral ¢ has been assumed to be independent of the site indices.
The parameter U is the on-site Coulomb repulsion, namely, the energy cost associated

with having a double occupancy on each site. 1, = ol Cime 18 the particle occupation

imo
number. ¢t and U have been assumed to be independent of the band indices. This model

_ @m-1U

is particle-hole symmetric when u 3

2.3 Dynamical mean-field equations

The central idea of this method is to map a lattice model with many degrees of free-
dom, such as the Hubbard model in Eqn. (2.1), onto a one-site impurity model with
fewer degrees of freedom [5]. This is supplemented by a self-consistency condition that
determines the effective bath (effect of the other degrees of freedom) with which the
impurity interacts. This approach can be shown to be exact in the limit of infinite
dimensions d — o0, or large lattice coordination number z, with an appropriate scaling
of parameters [40].

We consider the Hubbard model in (2.1) on a Bethe lattice with large connectivity

z. A semi-circular density of states p,(€) = (527 )V4t2 — €2 is obtained where D=2t is

2mt2
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the half-bandwidth. In this case, we can write the effective action for this model as:

B B
Sepg = [ ar [ el — 7 e
O e
(2.2)

U 8
+5/0 dr Z NimeNim/ —o + Z NimoMim/ o

i,m,m’ o i,m#m’ o
In the d — oo limit the above lattice model is mapped on to the degenerate Anderson

impurity model.

Hay = Hy+ Hy (2.3)

Hy = Z ekmcimgckmg + Z (Vkmc};mafm + h.c) + Z (Ef + (2m —1)/2U0)nme
k>2,m,o k>2m,o m
(2.4)
1
H=U Z {nmanm/a - E(nmo + nm’o)} (2'5)
m<m/,o
The Weiss function Gp,, in Eqn. (2.2) is given by a self-consistency condition
Gor (iwy,) = dwy, + p — t2Gp (iwn) (2.6)

Here G(iwy,) is the local Green’s function for the impurity. The conduction orbitals
have index k£ = 2, N and the impurity f—orbital corresponds to k = 1. cg,, and ch are
the band electron annihilation and creation operators, Vi, is the hybridization between
the band and the impurity electrons. n,, = f%,, fn is the occupation number for the

impurity electrons and E7 is the f-level energy.

VZ
In terms of the hybridization function A, (iw) = Z —km__ the DMFT equation
W — €km
k
for the Bethe lattice can be written as
t2Gm(iw)[A] = A, (iw) (2.7)

The coupled problem of finding the impurity Green’s function G and the Weiss
field Gy is solved iteratively until required convergence is reached. Impurity models
have been intensely studied for the past few decades, and a number of analytical and
numerical tools exist to tackle them. In the next section, we focus on one numerical
method: the Quantum Monte Carlo (QMC) algorithm by Hirsch and Fye [41], to obtain

the Green’s function G.
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2.3.1 Hirsch-Fye Quantum Monte Carlo algorithm

We discretize the time interval [0, ] into L slices of length A7 such that
Amp=I1A7T, [1=1,2,---,Land 8= LAT.

The partition function is
Z =Trexp{—0H} = Trllexp{—AT(Ho + Hp)} (2.8)
Using the Trotter formula, the discretized partition function is
Z ~ Z57 = Trllexp{—ArHy} exp {—ATH/} (2.9)

The discretized Green’s function is

G s (1 71) = (T oty (7, ) el (712) )

1 _
ﬁTre ﬁHkal (1, )c:rnk2 (115)

(2.10)

for 1 > lo. We then use a discrete Hubbard-Stratonovich transformation to decouple
the quartic interaction in Hy [42].
1 1 ,
exp | —ATU | npnpy — §(nm + ) )| = 3 Z exp [ASpms (N — nipy)] - (2.11)
S =E1
where cosh A = exp(A7U/2) and S,/ (1) are auxiliary Ising-like fields at each time
slice. This transformation renders H 4y quadratic in S,/ {7}

Using (2.11) we write the partition function as
Z3 S = Tris,, 3 | [ det Oml{Simm}] (2.12)

Here O[{S,umw}] is @ NL x NL (N being the number of conduction orbitals, and L

being the number of time slices) matrix defined as

Omhiy=1
(Om)l,l—l — _6(*A7H0m)e(VﬂH)(l*%l,l) (2.13)
(Om)ir = 0  otherwise

with V!, = A Z Sy (17)|m)(m| for m < m’.

m#m/
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For the auxiliary spin dependent Green’s function, we have
GﬁT[{Smm/}] = Or_nl {Smm } = G, (2.14)
We then get a relation between Green’s functions for two different configurations.

Gl = AnGh, (2.15)

where A, =1+ (1= Gyp)(eVm™Vm —1). (2.16)

This is a L X L matrix equation.
If we now make only one local change in the field at one time slice such that two

configurations differ by a single spin

St — S ey for m >m/
— =8 for m<m/
the above equations are simplified. exp{V’,, — V;,,} has only one non-zero diagonal
element at the [ — th part of the matrix O. A=Y, = 0 for [ # k and det A,,, = At =
1+ (1= Gp")(exp{V",, = V;,'} = 1).
We would also need to calculate the Boltzmann ratio of two different configurations

which for a single spin flip is given by :

m (2.17)
R = <o2m) — det [ I — (G — 1) (exp{V'm — Vin} — I)]

Again, for a single spin flip, this simplifies to

Ry, = Ry Ry

Ry =1 — 1[G (1,1) — 1][exp(=2AS — 1)]

Ry =1 —[G) (1,1) = 1][exp(2AS s — 1)]
The f-Green’s function simplifies to :

1
R,

1
G (1, 1) = G (I, 1s) + G (11,1) — 0][exp(2AS s — 1)] e

m/

G (11, 12) = GI (11, 19) + [GL (11,1) — 61][exp(=2ASmmr — )] =G (1,15)  (2.18)

GI (1) (2.19)
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The physical Green’s function is then calculated as an average of the spin-dependent

Green’s functions.

Ggizysical = % Z Gm[{smm/}](Tl) det Om[{Smm’}] (220)
S

mm/

2.3.2 Implementation

The practical implementation of the above procedure involves the following steps:
e We start with a guess for Gy, and an arbitrary configuration of spins.
e In the first iteration we invert the matrix Oy, to obtain G, {Smm (1)}

e For the subsequent iterations we change the configuration using a single spin-flip.
We calculate the ratio R. If R is greater than a random number (between 0 and
1) chosen we accept the flip and calculate G, { Sy (77)}. Otherwise we generate

the next configuration.

e Every 100 iterations we start the spin configuration chain again by equating all
auxiliary spins to zero and calculating the inverse of O,,. This is done to check

that the precision has not degraded.
e We then use the self-consistency condition
Gork (iwn) = dwy, + p — 3G (iwp)
to calculate the new Weiss field Go,, (new)

e The Gy, (new) thus calculated is fed back into the QMC algorithm in the next

step of the iteration.

e This process is iterated till G, and Gg,, converge.
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Figure 2.4: Hirsch-Fye Quantum Monte Carlo algorithm
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2.4 Results

We use the Hirsch-Fye QMC algorithm to obtain the impurity Green’s function and
iteratively solve the DMFT equations (2.3)-(2.6). Different phases can be obtained
depending on the values of the interaction parameters in the Hamiltonian (Eqn. 2.1).
In this section, we investigate the finite temperature aspects of the doping driven metal-

insulator transition.

2.4.1 Effect of doping

The total occupation number for the impurity electrons is computed from the Green’s
function. After the QMC runs stabilize, the full Green’s function G(iw) is checked to
see whether we have metallic or insulating behavior. Curves of the impurity occupation

number ny are plotted against the chemical potential p.

Gon(73,0) = +<T(cm(n)cin(o)>> (2.21)
Gm(0+) - cm(O)cIn(O)

= 1—ch(0)en(0)
= 1l—npm, (2.22)

nf = 1-Gn(0") (2.23)

We concentrate on the paramagnetic case where ny = n| for a given band index m.
We plot the average occupation number ny as a function of the chemical potential p
for various values of the interaction U. For the 1-band model, A7 = 0.5 for the 2-band
model, A7 = 0.25. all energies are in units of half-bandwidth D = 1.

The graph of occupation number n; versus the chemical potential p at T = 1/32
and U = 1.5 for the 1-band model is shown in Fig. 2.5 (left) and that for U = 3.2
is shown in Fig. 2.5 (right). For smaller values of the interaction U the occupation
number is a smooth function of p, that is, the system has metallic-like behavior. As U
is increased, a gap opens up in the n ¢-u curve near half-filling, indicating the insulating-
like behavior of the system. Due to particle-hole symmetry in the 1-band model, we

use a shifted chemical potential i = p — %



18

14 -

0.6 -

0.2

ouU=15

-2

18

14 -

0.6 [

0.2

16

aU=3.2

.
0

ur:u—UIZ

Figure 2.5: ny vs. p curves in the half-filled case for a single band with § = 1/T =
32, At = 0.5, D = 1. The interaction has a value U = 1.5 (left) and U = 3.2 (right).

The 2-band results are shown in Fig. 2.6. We concentrate on the region near ny = 1
at T = 1/8. At this high temperature only one solution exists. However, as T is
decreased, we see a flat portion in the ng-p curve at which the occupation number

remains close to 1 over a range of p.

2.4.2 Coexistence between metallic and insulating phases
Coexistence in the 1-band model

In the region of intermediate U, at sufficiently low temperatures, we expect the metallic
and and insulating solutions to exist simultaneously. As we start doping the system
a little, the two phases should still coexist. However at high doping we expect the
insulating phase to become unstable and disappear. The existence of two phases should
result in two simultaneous values for ny at the same chemical potential. The n versus
w curve in Fig. 2.7 shows this coexistence at U = 2.44 and = 1/T = 64 in the 1-band
model. At ji = 0, both the metallic and the insulating solutions are seen. Away from
half-filling, the two solutions give different values of ny. When the doping becomes
large, only the metallic solution survives.

In Fig. 2.7, to obtain the two different values of the occupation number, we start
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Figure 2.6: ny vs. p curves at 3 = 8

from two different initial guesses or seeds in the QMC algorithm. The occupation num-
ber represented by circles (metallic behavior) are calculated by using a seed from low
U. We first start at high doping in a metallic state and continuously evolve towards
integer filling. The solution always remains metallic. To obtain the other solution, rep-
resented by triangles, we begin with the insulating solution at i = 0,n = 1 using a seed
from high U and gradually increase the doping. This state is essentially incompressible
as n almost remains constant while increasing p. This can be continuously followed
as p is increased, until the eventual jump of n towards the unique solution present at
the higher values of p. This procedure is later used to determine the location of the
coexisting region [43] in the phase diagram. The Green’s functions corresponding to
these values of n; are distinct and are shown in Fig. 2.8.

As we increase the interaction to U = 4.0 we find that at f =0and T'=1/5 = 1/64
only the insulating solution survives (Fig. 2.9. If we start from a large (hole) doping
where only the metallic solution survives and decrease the magnitude of the chemical
potential, we find that the metallic solution disappears at a value of the chemical
potential 1 ~ 1.07. At the same time, if we start at i = 0 where ny = 1 and increase

the magnitude of doping, the insulating solution disappears at a chemical potential
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Figure 2.7: Coexisting solutions for U=2.44, § = 64 in the single band case.
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Figure 2.8: Imaginary part of Green’s functions for U=2.44, 3 = 64
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1~ 1.03. However at a higher temperature 7' = 1/ = 1/40 no coexistence between

metallic and insulating solutions is seen.

1-band, U=4.0

,v’
0.98 - K

n;
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) J/ A — 4 B=64,ins
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Figure 2.9: Left: Occupation number for various values of §. Right: Occupation
number for S = 64 metallic and insulating solution

Coexistence in the 2-band model

We find coexisting metallic and the insulating solutions near ny = 1 at 7' = 1/40. In

Fig. 2.10 we see the ny versus. p curves in the 2-band case for U = 3.0 at various

temperatures. As T is decreased, we see that the curves begin to acquire a sigmoidal

shape, which is a hallmark of the approach to a second-order critical point in Landau

theory of phase transitions.

As discussed in the 1-band case, we followed a careful procedure to obtain coexisting

solutions. At T' = 1/40 two different solutions were found at the same chemical potential

= 1.2. The metallic solution (the circles in Fig. 2.10) was obtained using as starting

point, the solution for U = 2.8 and the insulating solution (the triangles in the n versus

u curve in Fig. 2.10) was obtained by using the Green’s function at U=3.5 as the seed

(Fig. 2.11). Using these solutions the ny versus. p curve slightly away from ny = 1

was obtained. The insulating solution disappeared for increased doping and away from

nle.
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We then study the nature of the solutions as the temperature is raised. Each of the
metallic and the insulating solutions at 7' = 1/40 was used as a seed to determine the
solution at higher temperatures. It was found that the metallic solution disappeared
as the temperature was raised (to 7" = 1/32) near ny < 1 but the insulating solution
survived. However at p = 1.25 for which ny > 1 it was found that both solutions
survived till 7' = 1/32. As the temperature was further raised, no coexistence was seen.
The Green’s function for the two phases at p = 1.2 for 7' = 1/40 and T' = 1/64 are

shown in Fig. 2.12.
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Figure 2.10: Particle occupation n function of p for different temperatures in the 2-
band model at U=3.0. The top panel shows curves with T" > Ty;rr and in the bottom
panel we have T' < Thsrr.
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Figure 2.12: Metallic and insulating Green’s function for U = 3.0 , 5 = 40(left) and
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2.4.3 Convergence of solutions

We present a few technical details regarding the stability of the solutions, especially
near a phase boundary. To determine the convergence of the self-consistent solutions, we
examined the difference in the imaginary part of the self energy at the first Matsubara
frequency Im¥(w) as w — 0 between two successive iterations . The iterations were
halted when this difference ||[ImY*!(w — 0) — Im¥(w — 0)| became smaller than a

threshold.

If we are away from the coexistence region, the solution converges in 12—15 iterations
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when the initial guess is close to the solution. At a lower value of U where there is
only one solution, the Green’s function converges in ~ 20 iterations even with an initial
guess far from the true solution. Each DMF'T iteration consists of 100000 Monte Carlo
sweeps. However, close to the coexistence region, the number of iterations required for
convergence becomes large. At the boundaries of the region, the number of iterations
is expected to become very large due to critical slowing down.

The convergence of the metallic Green’s function in Fig. 2.12 at U = 3.0, u = 1.225
starting from the metallic seed is shown in Fig. 2.13(left). The convergence of the

insulating Green’s function in Fig.2.12 is shown in Fig. 2.13(right).
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Figure 2.13: Convergence of metallic (left) and insulating (right) Green’s function

2.4.4 Compressibility divergence

From the n ¢-p curves, we compute the numerical derivative of the particle number with
respect to chemical potential, which is proportional to the compressibility. In the case
of the finite temperature doping driven MIT, we observe a divergence in compressibility
as we approach the second order transition point [44].

Fig. 2.14 shows the behavior of Kk = An/Apu as a function of p and T for U=4.0 in
the 1-band model. We can see that near y = 1.07, which we identify as p.; ,  increases
rapidly indicating a divergence near the phase boundary where the insulating solution
disappears. (Figs. 2.15 shows that as temperature is decreased x~! decreases rapidly

indicating a divergent compressibility as we pass through the MIT. The data for x—!
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as a function of T" was fitted to a power law. It was found that a power law type of

behavior k=1 ~ (T — T.)® with b ~ 0.33 for U = 2.44. matches the data.
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Figure 2.14: 1-band model, U=4.0. Top: Compressibility as a function of chemical

potential. Bottom: Inverse compressibility £~ = (dn/du)~" at U=4.0 in the 1-band
model as a function of T. The solid line is the function k=% ~ (T' — T¢)? with b ~ 0.47

2.5 Phase diagram

From the above numerical results we propose a schematic phase diagram for the Hub-

bard model, which for the 1-band case is shown is shown in Fig. 2.16. The regions of
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Figure 2.15: Left: Inverse compressibility ' = (dn/dp)~" at U=2.46 in the 1-band
model. The solid line is the function x~! ~ (T — T¢)® with b ~ 0.33. Right: x~! at
a constant doping n = 1.003 as a function of T in the 2-band model. The solid line is
a fit to a power law using the functional form k ~ (T' — T.)® with the power b ~ 1/3.
The intercept with the T'—axis gives our estimate for T, = 0.0288.

coexisting solutions are shown as cross sections of constant U in the (U, T, u) parameter
space. The p-axis starts at zero doping, thus n = 1 on the (U, T)-plane where i = 0,
which for the 1-band model is i = p — U/2. At larger values of U, the regions of
coexisting solutions are two triangles, one for n < 1 and the other for n > 1. In the
1-band model, these triangular peaks are symmetric about p = U/2. These triangles
are delimited by the p.1(T) and pe2(T") lines which correspond to the disappearance of
the insulating and the metallic solutions respectively. As U decreases, the triangular
regions approach each other and fully merge at U = Ujpsrr. Further lowering U makes
the single triangular region diminish until U = U, (T = 0) where it vanishes.

The coexistence region in Fig. 2.7 curve at U = 2.44 and = 1/T = 64 near i =0
correspond to the region in Fig. 2.16 where Uy < U < Ugo. For the parameters in
Fig. 2.7, we see that the metallic state exists all the way down to zero doping at i = 0.
This implies that for Uy < U < U, the peo(T) line does not go all the way to T'= 0
in contrast to the case when U > U,y (Fig. 2.9).

The interaction U = 4.0 is greater than U, in the 1-band model. Using our results

for U = 4.0 and those obtained in [45], we can map out the part of the phase diagram
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in Fig. 2.16 that corresponds to the parameter space where U > U, and n < 1. In this
case, at zero doping, only the insulating solution survives at low temperatures. The
results are shown in Fig. 2.17.

The disappearance of the metallic or the insulating solutions is captured by the
critical slowing down of the solutions as shown in Fig. 2.18. As we approach the phase
boundaries of the coexistence region, it is seen that the number of QMC iterations
required for the solutions to converge increase. In Fig. 2.18 it is seen that starting
with the metallic solution at low doping, if we increase u, the number of iterations
needed for the metallic solution to converge diverges , indicating that we are near the
te2 boundary. Similarly starting with the insulating solution near half-filling, if we
decrease u, i.e go far away from half-filling the number of iterations required for the
convergence of the insulating solution diverges. This indicates that we are close to the
L1 boundary.

The phase diagram for the 2-band model shown in Fig. 2.19. is qualitatively similar
to the 1-band model except that the pairs of triangles at a given U do not have the
same height due to absence of particle-hole symmetry. The n;-p curves in Fig. 2.10
correspond to the region in the phase diagram where Up;rr < U-Ugo. As T is decreased,

the curves show a crossover from small to large compressibility.

2.6 Discussion

A common feature that emerges from the model is that, in the regions where two
mean-field solutions exist, the system has two different values of n for given T and u.
Furthermore, these two solutions have different free energies and the actual thermody-
namic state of the system is that of minimum energy. Hence a jump in particle number
is predicted at a first order line. The determination of this line implies a precise cal-
culation of the free energy, which is technically difficult, and outside the scope of this
work.

In the T-p-U phase diagram, the two mean-field solutions exist within the triangular

regions. A first order transition exists where the free energies cross. At finite T, this
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Figure 2.16: Schematic phase diagram for the 1-band Hubbard model. The cross sec-
tions are on the T'— p plane for different values of U with U increasing towards the top
of the figure. The peaks are symmetric about u = U/2. . and U. are the chemical
potential and interaction respectively below which the insulating solution does not sur-
vive. e and Uy are those above which the metallic solution does not exist. The black
circle denotes the second order transition point (Unsrr, Tarrr) at m = 1. The shaded
regions denote the coexistence region between metallic and insulating phases.
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Figure 2.17: Phase diagram for U=4.0. The black circles denote are obtained from QMC
simulations. The dashed and the dotted lines denote p.; and .o lines respectively.

leads to a first order transition surface between an insulating and a metallic-like state.
The intersections of this surface with the constant U cross sections are first order lines
that we denote by dashed lines in Fig. 2.16. At T = 0 within the coexistence regions,
i.e. the base of the triangles, the metallic state is always stable, thus one can cross the
first-order surface towards the insulator by either increasing 7' or changing the chemical
potential.

At finite T, the two solutions merge where the triangular regions end. Hence there
is a line of second order transitions where the first order surface ends (thick double-line
in Fig. 2.16. The doping is small but non-zero along this line except at U = Upsrr.
Our numerical results show a divergence of compressibility on this line of second order
transitions. The idea of divergent compressibility at the Mott endpoint has been shown
to arise from general Landau theory arguments [46].

From the experimental viewpoint, we believe that our results highlight important
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Figure 2.18: Critical slowing down observed in the vicinity of p.1 and peo for the 1-band
model at U = 4.0, = 64. The inverse number of iterations required for the metallic
solution to converge goes to zero as we near e and those of the insulating solution to
converge goes to zero as we approach p.;. The arrows indicate the directions in which
the boundaries were approached.
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Figure 2.19: Schematic phase diagram for the 2-band case. There is an asymmetry in
the triangular peaks as compared to the 1-band case. The cross sections are on the T'—
plane for different values of U as before. p. and U, are the chemical potential and
interaction respectively below which the insulating solution does not survive. p.o and
U. are the chemical potential and interaction above which the metallic solution does
not exist. Upsrr is the value of the interaction at which the metal-insulator transition
takes place. The shaded portions are the regions of coexistence between the metallic

and the insulating solutions.
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aspects in the a-v transition in Ce. The divergence of compressibility in the Ce a-y
transition has an electronic origin and can be understood from model calculations. The
decrease in compressibility that we found during the transition from the insulating to

the metallic phase is similar to what has been measured by Beecroft and Swenson [30].

2.7 Summary

We have shown that within the dynamical mean-field theory of the Hubbard model,
there is a region where the paramagnetic metallic and paramagnetic insulating phases
coexist. We have explored the coexistence region for the 1-band Hubbard model both
at the particle-hole symmetric point and away from it. For the 2-band Hubbard model
we have studied the region in phase space near the occupation number ny = 1. We
calculated the compressibility from the n; versus p curve. We find numerical evidence
for a divergent compressibilty near the finite temperature Mott endpoint. Based on
our numerical studies we have proposed a phase diagram for the doped 1- and 2-band

Hubbard model. Our results are relevant to the Ce a-v transition.
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Chapter 3

Density Functional Theory, LDA, LDA+U and
LDA+DMFT

In this chapter, we first briefly review the density functional theory (DFT) local density
approximation (LDA). We then discuss methods that go beyond the LDA to tackle
strongly correlated systems: LDA+U and LDA+DMFT. We also discuss the structure
of the LMTART program that is based on DFT methods.

3.1 Density functional theory

3.1.1 LDA
Density functional theory is a powerful tool to study weakly interacting systems. It is
the basis of the LDA and the LDA+U methods which are used to calculate the band
structures of materials. A brief description of DFT from the effective action point of
view is presented here [8], [9], [47].

Consider a fermionic system that is coupled to an external source J(z). The Hamil-

tonian is
H = Hy+ / dz3yt (x)J ()1 (x) (3.1)

where Hj is the Hamiltonian without the source. The partition function is

Z = exp[-W[J]] = /D[wa] exp—/dtL (3.2)

where L is the Lagrangian.
For the system consists of electrons moving in a crystal potential V.(z) and inter-

acting via Coulomb interactions V', in the presence of an external source J coupled to
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the electron density, the partition function is
z= [ Dlwwlexpl- [ dot@)for - -

2
: (3.3)
: / deda'y* () )V (@ — & )(e(e) — J(@)! (@) ()

Here x = (x,7) denotes the space-imaginary time coordinates. By performing a

Legendre transform of I' we can eliminate the potential in favor of the density p.

Tl = W) - [ J@)px) (3.4)

The minimum of this functional gives the true density and the total energy.
To construct approximations to the functional I' it is very useful to introduce the
Kohn—Sham potential, Vg, which is defined as the potential such that when added to
the non—interacting kinetic energy, it produces the given density in a reference system

of non—interacting particles . i.e.

p(r) =T (or|(iwn + V?/2 = Vics) ™! or)e™"” (3.5)

O iwn

The exact functional can now be viewed as a functional of two variables

L'(p, Vks) = —TZtr log[iw, + V?/2 — Vis] — /VKS(r)p(r)dr+
o (3.6)
% / %drdr’ + / Vear(r)p(r)dr+Eye[p]
I'(p) is obtained by substituting Vi s(p) obtained by solving eqn.(3.5) (which makes
eqn.(3.6) stationary) into I'(p, Vi s). Exc[p] is the exchange—correlation energy which is
a functional of the density and not of the external potential.

Extremizing eqn.(3.6) with respect to p gives

p(r')dr’
v —1/|

Vies(r)lp] = + Vae(r)[p] + Vear () (0] (3.7)

where V,.(r) is the exchange-correlation potential obtained as

= Vae(r) (3.8)

If we restrict ourselves to zero—temperature and interpret the Fermi functions as

step functions. Eqn. (3.5) can be rewritten as

[=V?/2 + Vics (r)|hi (1) = exjtbi (r) (3.9)
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p(r) = flew) v (1)t (x) (3.10)
kj
and Vxg is given as an explicit function of the density.

The total energy of the crystal is given as

Bt = Z flexj)ew; + % / %drdr' + /Vext(r)p(r)dr—i- /em[p(r)]p(r)dr + Eye.
N (3.11)

where
By = —/VKS(r)p(r)dr (3.12)
simply subtracts the interaction energy from the Kohn—Sham eigenvalues which are ex-
plicitly included in the Hartree and exchange—correlation term to avoid double counting.
Since Ey.[p] is not known explicitly, this method is useful only because of successful

approximations to the exchange energy. In the Local Density Approximation (LDA)

the exchange energy functional is assumed to be local:

Eaelp] = / €xclp(0)]p(x)dr (3.13)

with €,.[p(r)] being the energy density of the uniform electron gas.
Here p(r) is uniquely expressed in terms of the orbitals 1x;(r). In order to truncate

the DFT, we introduce a finite basis set xX(r) and expand

Yi(r) = D xa(r)AY (3.14)

keeping a finite set of a. This truncation restricts the active part of the multiplicative

operator associated with the potential Vi g to have a form
y k Kk
V=" Ix&) Vap(xkl (3.15)
k

For a known potential Vg this construction can be done once and for all. However,
since Vi depends on the density, the basis |xX) is adapted iteratively to the self-

consistent solution.

3.1.2 LDA+U

The LDA method is not very successful when strong electron correlations are present

as the electrons are localized due to the interactions. The LDA+U method [14], [15]
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is a technique that is proposed when strong correlations are present in the system.
For simplicity we will deal with spin unrestricted formalism so that the total energy is
invariant with respect to orientation. This allows us to choose a specific quantization
axis.

We introduce a set of localized orbitals ¢,(r — R) which are used to build an occu-
pancy matrix. If ¢, are identified with the correlated electrons, we can represent the

correlated part of the electron density by
. * IN (TN ]
%= 3 o) [ Wi ®)0u(e)ir [ igoa)07(x e (3.16)
kj
The total energy is now a functional of p(r) and of n7,. The LDA+U functional is

Lrpavungy, A Vis, p71 = =T Z trlogliw, + V?/2 = Vg — Z Aop®a(r) B3 (r')]

Wwn, ab
. r)p(r’
-> / Vis(r)p?(r)d =) Z AaTab + 5 / %drdr,
+ EilCDA[PU] 4+ EModel [na] . Edc[na]
(3.17)

where A7, are Lagrange multipliers.

EMOdel Z Z Uabcdnabncd + = Z Z abed — abcd) abngd (318)

o abed o abed

is the contribution from the Coulomb energy in the shell of correlated electrons. Eg.[n?]
is the double-counting term which is subtracted as part of the energy in EMedel has
been taken into account in the LDA part.

The form of the double counting term [14] used here is

1_ 1-
Bie = 5Un(n 1) - ij[ﬁT(ﬁT — 1) +at@b 1) (3.19)
where

U= 3 (abl~fab) (3.20)

(21 +1)2 aba e ’
J=U— " ((ab] > fab) — (ab][ba)) (3.21)

T ARt ) & Aol 1ab) —Aab b '

Here n? = ), ng, and 7 = 71! + At

aa?’
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We get the self-consistency equations by extremizing the functional with respect to

iwn0t
TZ< [iwn +V2/2 = Vitg = > Aipda(r)y ()] 7! > ’ Zf €icjo) Yo ()|
Wn ab
(3.22)
with
[—V?/2+ Vs + D> A%6a(r) 65 (2)tkjo = xjotijo (3.23)
ab
Vi ¢ is obtained by extremizing the functional w.r.t. p(x):
Viesll = [ S0 4 Vo)l + Vi)l (3.24)

We get the correction to the potential A7, by extremizing the functional w.r.t. n7,

dE4.[n?]
dngb

Zb = Z Uabcdncd + Z abed — abcd) Ud (325)

The double counting term generates the correction to the potential in the form:
Jb—ZUbdn +Z bed — bd) cd — U(ﬁ—l)ﬂ-J(ﬁU—l) (3.26)
a abed!lcq abc abc 9 9

The interaction matrices are defined as:

Uibed = <ac\%]bd) = />k qba(r)(pZ(r’)Uc(I‘ — r’)¢b(r)¢d(r')d1‘dr' (3.27)
Jabed = <ac‘%]db) = /* gb(r)(pZ(r’)Uc(r — r')¢d(r)¢b(r')drdr' (3.28)

where ¢(r) are the set of projectors and v.(r —r’) is the Coulomb interaction that has

to take into account the effects of screening by conduction electrons.

These matrices are expressed in terms of Slater integrals. Representing ¢, (r) =
#1(r)i'Y, (7) and for a = Im,b = lk,c = 1'm’,d = I'k’ we can express U and J as

min(27,20")
/ /l 1\
Iml'm!/|=IkUK) = )
" 17=0,2,...
min(27,20")
il | 21K 1K) = M gl =me k! gl <k g 3.30
{m mu )= Z 01 B g, m'lk m—k/ k—m  (3.30)
1"=0,2,...

47'(' (u)l’”’“ 'm! kA~ m! =k —
2l//+1Fll’ Cllen - Crmk 5k’—m’,m—k (3.29)
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where the quantities F(*) and FU) are given by the following radial integrals

u l// /r. "
F" = [ e (v (3.31)
l//

Fl(;)l” N / r/?lq’ﬁ(bl(r)@' (r) i (r") oy (r")drdr’ (3.32)

If ] = I', F® and FU) are equal and are reduced to constants. For d-electrons,
there are three constants F(©, F) F®) and for f-electrons, there are four constants
FO @ p@ FO) The Slater integrals can be linked to U and J via U = F(© and
J = (F® 4+ F®)/14 for d-electrons with F()/F®) = 0.625. For f-electrons, U = F©)
and J = (286F ) + 194F® 4 250F)) /6435.

3.1.3 LDA-+DMFT method

In the LDA+U method, the Coulomb interaction in eqn.(3.18) are treated in a Hartree-
Fock approximation, thus it fails to describe the many body nature of the electron-
electron interaction in strongly correlated materials. Also, in the LDA+U method, we
do a Legendre transformation with respect to a part of the density, which lacks a clear
physical significance. A method that has been developed to treat correlated materials, is
LDA combined with the Dynamical Mean-Field Theory (DMFT). The DMFT has been
an extremely successful method to treat model Hamiltonians that describe materials
with strong correlations. However, the model Hamiltonians used have parameters. By
combining LDA+DMFT, we would like to introduce microscopic details to the approach
and make the calculation first-principles [47].

The following section contains a brief description of the LDA+DMFT method from
an effective action point of view [13,48].

In DMFT, we deal with functionals of the local Green’s function, which is a well

defined object. We start with the LDA+DMFT functional I',pa+pamrr (p, Vs, X, A)
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which has the form

TLparomer(p, Visx, A) = =T Y trlogliwn + V2/2 = Vics — Sap(iwn) da(r) 5 (r')] -

/VKS r)dr — Z Z b (twn ) Apg (twn )+
iwn ab
/vm r)dr + / o d dr’ + EEPAp]+

> @A iw)] + ®pe
J
(3.33)
® is the sum of all two—particle irreducible graphs constructed with the local part of

the interaction and ®p¢ is taken to have the same form as in LDA+U method as
described later.

In a fixed tight-binding basis, —V? + Vis reduces to H'P(k) . The functional
T'rparpymrr for a fixed density and truncated to a finite basis set takes the form of

the DMFT functional
T[A[A], x[A]] =

WolA] = Trlog A=Y > Trlogliwn — e(k) — x] = Y _[x — iwn + €+ AJA (3.34)

k iwn Wn

Its minimization leads to the set of equations with Kohn—Sham potential as in the LDA

method, and

. B 0P DO
Eab(zwn) = m + € €ad (335)

which identifies 3 as a self-energy of a generalized Anderson impurity model in a bath

characterized by a matrix of levels

cop = €up +Z (3.36)

and a hybridization function A (iw,) obeying a self-consistency condition

-1
iwOgy — €2y — Agp(iwn) = Sap(iwn) + Z(z’wnO — ¥ —t(k) — E(iwn))1] (3.37)
k

Finally, minimizing eqn.(3.33) with respect to Vig indicates that p(r) should be com-
puted as

:Tz<r

Wn

fiwn + V22 = Vics = 3 S (i) (1) 65 ()]

ab

-1 r> ein0" (3.38)
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which as indicated before, when truncating in a fixed set of orbitals becomes
. . -1
=T Z Xa(r) [(iw, — HTP (k) — E(iwy,)] X5(r) (3.39)
Wn
We express the functional in terms of the Weiss field, i.e. the hybridization function
that added to the atom produces the exact spectral function. This allows us to eliminate

the functional ®. We can express the LDA+DMFT functional as:

FLDA+DMFT(p7 VKS,X7 A7 A) =-Tr log[lwn + v2/2 - VKS - Eab(inU r, rl)(X)]_

/VKS r)dr — ZZtT ab(wn,) Apq (iwn) ]+

iwn  ab

/vm r)dr + = /| dd '+ BEPA )+

+ ®pe + Wa[A[A]] - TTA[A]A Trlog A+ TrA;'A
(3.40)

Here

, 1 _ . - %
Sap(iwn, 1, 1) (X) = A Z Xa(r —Rp)O 1(Rp_Rl)aCch” (iwn)O 1(R1—Rq)chﬁ(r

S aBR,R R,
where N is the number of lattice sites and Wy [A] is simply the free energy of the atom

(described by the atomic Hamiltonian hy:) in the presence of a hybridization field.

[A] = /T J/Zc;j(f){ T — 7)§+Alm( —T’)] cn(r') + / drhe  (3.41)

Wai[A] = —log / detde e SatlA1=Eap Joy AmT)ed (rey(r')drdr! (3.42)

Model — ~Tp(p —1) — = Ja' (7' — 1) +at(ab - 1)) (3.43)

N)lH
L\’JI»—A

with U and J as defined in eqns.(3.20) and (3.21).
Here n° =Y, n%,, and n = ! +nl. n in this case should be viewed as a functional of
the local Greens function n = trA =T e“"A(iwp)aa

This generates the correction to the potential in the form:
1 . 1
ab - Z Uabcdncd + Z abed — abcd) cd U( - 5) + J(n - 5) (344)

To solve the impurity model, various techniques such as Quantum Monte Carlo,

Gutzwiller method or approximations such as the Hubbard-I method can be used.

~Ry)
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3.2 Structure of the LMTART program

In this section we shall describe the overall structure and details of certain parts of the
LMTART program, which is based on the equations in section 3.1.

The LMTART package contains Fortran 90 programs which can be grouped accord-
ing to the function they perform. Furthermore, the programs are named such that
the first three letters of the program name in each group are the same. The names
of the programs in the LMTART package can be thought of as having two parts such
as: abc_*.f where the first part abc_ denotes the group it can be classified into, and the
second part (denoted by the wildcard character *) is different for each program in the
group. We first provide a list (alphabetical) that contains a description of the various
programs grouped according to the task they perform. Following that, Fig. 3.1 shows
an overview of the schematic flow diagram of the LDA+DMFT implementation.

Programs with the name:
o bnd_*f

Form the core of the solution to the generalized eigenvalue problem in the LMTO
method. This includes preparing Hamiltonian matrix and overlap matrix (after
factoring in contributions due to the spin-orbit coupling), calculating eigenvalues
and eigenvectors, and preparing wave functions. Also calculating the fat-bands

when required.

o chi_*f
Calculate the susceptibility.
o dmf *.f
Implement DMFT loop. Solve impurity model to find Green’s function. Execute

DMEFT self-consistency condition.

o frc *.f
Calculate total energy and band energy in LDA, and various contributions to

force by computing the derivative of total energy w.r.t. nuclear displacements.

o fib_*.f
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Calculate Hamiltonian, overlap matrices and all physical quantities such as total

energy, in the tight-binding scheme.

In particular, see ftb_ftbands.f which is the control module to solve the eigenvalue

problem using the tight-binding method.

hop_*.f
Read hopping integrals from HOPFILE, prepare hopping matrix , tight-binding
hopping integrals are calculated by integrating over Brillouin zone, also calculate

screened structure constants.

hub_*.f
Read HUBFILE which contains Slater integrals necessary for constructing U-
matrix for the LDA+U method, compute potential in the LDA+U scheme from
Hubbard-U parameters, calculate occupation matrices needed for LDA+U method.
ini *.f
Control the initial procedures to be performed before the main solution of the

eigenvalue problem begins.

— ini_get*.f: read data for various physical quantities, e.g. ini_getchi.f reads
susceptibility data, ini_getbnd.f reads fatband data.

— ini_make*.f : controls initial calculation of crystal group, k-mesh.

— ini_read*.f. reads data, parameters from initial files defined by the user.

— In particular, see ini_channels.f: Allocation of different channels inside the

program, i.e. describes the channel numbers for all the input and output

files.

lib_*.f
Contain libraries to perform standard mathematical operations such as comput-
ing spline approximations, evaluating spherical and cubic harmonics, calculating

derivatives, computing Pade coefficients etc.

man_*.f

This set of files form the main control module and contain information on which
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subroutines will be implemented depending on which options are given by the

user.

— man_main.f: Main module of the entire program. Reads inputs, directs
to either ASA self-consistent method or PLW full potential self-consistent

method or Tight-binding method.

— man_lmtscf.f. Main control module for self-consistency stream calls various

routines depending on options given by the user.

— man_ftbscf.f Main control module for tight-binding stream, calls various

programs depending on options given by user.

— man_artout.f: writes outputs.

opt_*.f

Calculate optical matrix elements and optical properties.

pot_*.f
Calculate Coulomb potential, exchange-correlation energy and potential, multi-

poles.

gme_*.f

Contain routines for Quantum Monte Carlo solution of the impurity model.

rho_*.f
Implement operations with charge density files: e.g. renormalizing core density,

admixture in scf loop, Broyden mixing.

sgm_*.f

Perform calculations and implement procedures involving self-energy.

str_.f
Prepare structure constants and derivatives, generate sites within a sphere, gen-

erate vectors in direct and reciprocal space.
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o tir_*f
Calculate weight functions using tetrahedron method, search for Fermi energy,

calculate velocities inside tetrahedron.

Fig. 3.1 shows the schematic flow diagram of the LDA4+DMFT implementation.

3.3 DMFT Loop

In this section, we describe in detail the sub-routines that implement the DMFT loop.
The DMFT equations have a self-energy ¥, (eqn.3.35), which is the self-energy of a

generalized Anderson impurity model in a bath characterized by a matrix of levels
0 DC TB
€ab = €ab T Z Hab (k) (345)
k

The hybridization function A (iw,) obeys a self—consistency condition

-1

iwOqy — €3 — Agp(iwn) = Sap(iwn) + | (iwnO — € — (k) — D(iwy)) ™" (3.46)
k

There are various possibilities for the double-counting term eﬁ)c. One choice is to
fix €J¢ to coincide with ¥(co), which is equivalent to Un, the Hatree-Fock limit. A

different possibility is to fix the double counting term so that the Luttinger theorem is

fulfilled, i.e. to choose eﬁc = L %5 ab D gp Sab(0).

Ndeg
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Impurity solver such as |<----------{-----------~---~-~+f----- dmf_impmod.

QMC, Hubbard-I

Gol=G'-3% (B>

L Self consistency condition :J 77777777777777777777 CaEael]
50w by Buin) = Buon)

(3000 — €@ — t(k) — S(iw,)) 1]} | New p(z) |

Flow Diagram: LDA+DMFT
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The exact sub-routines involved are described below.

Start DMFT loop

Input to DMFT loop: H é?D 4 Oy, i.e. LDA Hamiltonian and overlap matrices from
temporary file [IUHAM.

e Subroutine grfsig
Input: Y(iw) from temporary file ITUSGM.
Task: Read X(iw) from IUSGM (¥ = 0 in 1st iteration)

e Subroutine grfpot
Input: X(iw).

Task: Choose and set double counting epc = X(0) or 3(o0)

e Subroutine grfbnd
Input: HEPA and ¥ (iw).
Task: Construct Hypa + %(iw) — ¥ pc, compute eigenvectors ALY, AR and eigen-

values €gj.

e Subroutine grffrm
Input: Eigenvalues €y of [Hypa + 3(iw) — Xpc], filling of electrons from control
file.
Task: Find Fermi level ep.

1
E E - = 1Velectrons
Wy + €F — €k

kj wn
e Subroutine grfwgt
Input: Eigenvectors ALY, A" and eigenvalues € of [Hypa + S(iw) — X pc], Fermi
level ep.
Task: Find weights for k-summation

AL AR L R
Zk: iwn +€p — €p ZkaA A
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e Subroutine grflev
Input: Eigenvectors AL, A% and eigenvalues erj of [Hppa+X(iw) —Epc], Overlap
matrix Oy, weights for k-summation.

Task: Set matrix of impurity levels

-1
Eimp = (Z Ok_l>
k

Z O (HEPA 4+ %(00) — p0) Z o,
k k

e Subroutine implev
Input: Impurity levels E;p,p.
Task: Diagonalizes matrix of impurity levels: used later in impurity solver if

diagonal representation is selected.

e Subroutine grfloc
Input: Eigenvectors AY, A® and eigenvalues €y of [Hpa+X(iw) — X pc], Overlap
matrix Oy, weights for k-summation, Fermi level.
Task: Calculate local Green’s function

Giwn) = <Z [(iwn + er)O(k) — (HEPA + E(iw,) — zDC)]>

k

e Subroutine grthyb
Input: Fermi level, overlap matrix Oy, impurity levels Ejy,p, X(iw), Xpc, local
Green’s function G(iw).

Task: Calculate hybridization function

A(iwy) = (iwn + €7)0 — (Eimp — 2(00)) — G~ (iwy,) — B(iwy,)

e Subroutine impmod
Input: Hybridization A(iw), impurity levels Ejy,p, overlap Oy.

Task: Impurity solver

e Subroutine grfpot

Task: Set double counting with new X(iw).

epc =%(0) or X(c0)
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Check if number of DMFT iteration is equal to NDIT (In control file: hubfile,
controls maximum number of DMFT iterations). If so, proceed to next file grfden
to calculate charge density. If not, use X (iw) from Impurity solver as an input to

the next iteration in the self-consistency condition.

e Subroutine grfden
Input: New Green’s function constructed from X(iw) calculated by the impurity
solver, eigenvectors of [Hrpa + X(iw) — Xpc].

Task: Calculate charge density

p(T‘) = Z Z Xa(T)Gab(iwn)Xb(T)
wn ab

from which the outer LDA loop begins again.

3.3.1 Impurity solver: Hubbard-I method

The impurity model can be solved using different solvers — exact methods such as Quan-
tum Monte Carlo (computationally expensive for low temperatures) or approximate
methods such as Hubbard-I or Gutzwiller approximation. In this section we describe
the details of one such method that is based on the Hubbard-I approximation [49,50].
The equations can be tailored to fit the symmetry of the system in hand. A simple
case is when different states for a fixed number of electrons in an atom are considered
equivalent. The equations we describe here are suited for a system in which spin-orbit
effects are significant. In particular, we deal with an actinide system with 14 f-levels
that are split into two sub-bands due to spin-orbit coupling. In chapter 5, we discuss
the results of this calculation for Americium.

The starting point of the Hubbard-I approximation is the atomic limit. The self-
energy describes the two atomic levels and the Green’s function consists of two poles at
w—p and w—p—+U. We first find the Green’s function for the atomic Hamiltonian using
the equation of motion method for the Hubbard operators. We then express the im-
purity Green’s functions in terms of the atomic Green’s function and the hybridization

A(iw).
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We start with a multi-band impurity model that has the form H = H 301 + Hpandg +
thb-
H _ f T U T T
atom Eulmm/flmfl’m’ + flmflmfllm/fl/m’
1W=5/2,7/2 1,1/=5/2,7/2

m=1...(21+1) m,m’
m/=1...(2l' +1)

Hpyand = Z €l
1k

Hypp =Y Vi (f con + h.c.) (3.47)
Wk

Here [,1’ label the two bands that are split due to spin-orbit coupling. These two
bands have the j-quantum number as 5/2 or 7/2. Notation: The band with [ = 5/2
and is 6-fold degenerate and that with [ = 7/2 and is 8-fold degenerate. Thus m,m’
label the degeneracy and run from 1 to (2j +1). Since the impurity level matrix el};/mm/
has off-diagonal terms as zero, the first term simplifies to >, . elf fl];n fim- Hpyp is due to
the hybridization between the conduction electrons and the localized f electrons. The
hybridization function can be written as A;(iw) = >, Vi3 /(iw — €epg).

Due to the above degeneracy, we have a SU(6) x SU(8) symmetry. With this, the

impurity Green’s function in the Hubbard-1 approximation becomes
G @) = (G ()] - Auiw) (3.48)

The atomic Green’s function Gg; is given by

14 n (Cglcrghm [G—Eln/T . e—En/T]) /Z

w4+ p—Ey, + Ey

(3.49)

n1<6
(n—nq)<8

where Ej, is the energy of an atom with n total number of electrons, nq in level [ =1

and n —ny in level [ = 2 is given by :

Epn=E,+¢€ +Un (3.50)

Un—1)n
E, = % + nle{ + (n— nl)eg (3.51)

The numerator in (3.49) denotes the probability of finding an atom with n total number

of electrons, ny in level [ = 1 and n — ny in level | = 2. C§ and C_, are the
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combinatorial coefficients. Z is a normalization factor for the probability given by

14 n
Z=Y >3 cscy e FyT (3.52)
n=0 n1=0
n1<6
(n—n1)<8

Using the Hubbard-I approximation to solve for the impurity Green’s function, we
get a splitting of the upper and lower Hubbard bands for arbitrarily small but finite U.

In the LMTART program the above procedure is implemented in the routine
impatomsun_so in the file dm f_imp_atomso.f. This in turn calls upon
cal_sigma_atomsun_so.f and cal_green_atomsun0_so.f to calculate the self-energy and
Green’s function respectively. The output is the Green’s function and the probability
distribution of finding an atom with n electrons. At large U we expect this distribution
to be peaked at a single value n which should also describe the number of electrons

calculated from the Green’s function.

3.4 Preparing control files for LMTART

In this section we briefly describe the control files that need to be prepared for the
implementation of the LMTART program. For LDA calculations only, there are two
essential input files — the in: and the str files. The ini file contains details about the
various approximation schemes such as ‘full-potential plane wave’ or ‘atomic sphere ap-
proximation’ as well as those about the exchange-correlation functional. It also contains
information about the different atoms in the unit cell. The structure file or the str file
has information about the crystal structure. In addition, for LDA+U or LDA+DMFT
calculations, we need the hub file that contains the interaction parameters and the
DMFT options.

Each control file is divided into different sections, separated by (SECTION =), each

containing a certain set of data. There are certain common features in each control file:

e The first line (FILE = x % «FILE,INPUT = MODERN) where “***’ stands for
the type of control file —i.e., INI or STR or HUB, must be present in each control
file. This line is required by the main program in the LMTART program to call

the corresponding subroutine to read the control file.
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e The first section in the control files contains the title of the material — this section

is optional.

e A comment that usually contains the description of the parameter and some

options for it can be placed on each line after a ‘!’ mark.

e Many parameters have default values. If a default value exists, this parameter

can be omitted from the file.

3.4.1 NI file

e (SECTION = CTRL)
The parameters in this section control the choice of the scheme we would like to

use in the implementation of LMTART.

— FullPot This parameters allows us to choose the approximation for the
potential seen by an atom in the solid. The choices are a Full Poten-
tial plane wave approximation (PLW) or the atomic sphere approximation
(ASA) where the potential in the interstitial region is approximated by a
constant. We can also describe the Hamiltonian in a tight-binding represen-

tation (FTB) and solve the eigenvalue problem.

e (SECTION = ITER)

Details about the iterational loop are contained in this section.

— (SECTION = MAIN)
This section contains information about the number of atoms and spins in

the unit cell.

— Nsort: The number of non-equivalent atoms in the unit cell. This pa-
rameter becomes important in anti-ferromagnetic calculations as explained
in section 3.4.3.

— Is: This labels the different kinds of basis atoms. The order must corre-

spond to that in (SECTION = BASS) in the str file. An example is provided
in Table 3.3.
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— Par0: The lattice parameter in atomic units needs to be provided, which
is used, along with the crystal structure to calculate the energy in Rydberg

units.

e (SECTION = SORT)
This section contains information about the atoms. Once the name and atomic
number of each element is entered, the LMTART routine searches for relevant

information for the atom in the directory /atomdat/.

Note: The set of parameters above, in (SECTION = SORT) must be entered for
each non-equivalent atom (the number of non-equivalent atoms being indicated

in the parameter Nsort).

3.4.2 STR file

The structure file contains all the information about the crystal structure. To prepare
the file, we need to know about the unit cell of the lattice — the parameters describing
the geometry of the cell, the primitive translation vectors and the basis atoms. This
information can be obtained from experimental values.

Table 3.2 describes a sample str file for NiO which has a FCC structure with two
basis atoms, i.e. Ni and O. The unit cell for this is schematically shown in Fig. 3.2 In
the notation we use, the primitive vectors of the unit cell are expressed as Az + By+CZ%

as shown in Fig. 3.2.

e (SECTION = CTRS)

— Natom: The total number of basis atoms in the unit cell. For the above

example of NiO it is 2. (no default)

— B to A: The ratio of the length along the y-direction to that along the
z-direction. In the above example, we have a cubic cell, hence this ratio is

1. (default is 1.0)
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(FILE=INIFILE, INPUT=MODERN )

>Rk sk ok skosk ok skook sk okskosk sk oskok sk sk sk k sk sk sk skokoskoskok skokoskoskokokoskoskkok

(SECTION=HEAD )
title =NiO
(SECTION=CTRL )
Lmto =Bare
FulPot=ASA
(;SECTION=EXCH )
LDA =Vosko
(SECTION=ITER )
Niter1=40

Lbroy =1

Admix1= 0.05000
(SECTION=MAIN )
Natom =2

Nsort =2

Nspin =1

Norbs =1

Par0 = 7.92600

Is(:) =12
(SECTION=SORT )
Name = Ni

Znuc = 28.0000
Smts = 2.17900
Split = 0.50000
(SECTION=SORT )
Name = O

Znuc = 8.0000

Smts = 1.78300
Split = 0.50000
Ndiv(:)=6 6 6

PROJECT HEAD:

Compound title

CONTROL PARAMETERS:
set: Bare / Screened / Rspace
set: FTB/ ASA / PLW
EXCHANGE-CORRELATION:
set: none/Barth/Gunn/etc.
ITERATIVE PROCEDURES:
# of iterations in SCF loop
Broyden mixing for low l.le.lbroy
initial mixing for density
MAIN ATOMIC DATA:

# of atoms in the unit cell

# of sorts in the unit cell

# of spins

1-without/2 -with spin orbit coupling

lattice parameter in a.u.
atom-to-sort pointer array
SORT DATA.:

atom label

nuclear charge
non-overlapping MT-sphere
initial splitting

SORT DATA:

atom label

nuclear charge
non-overlapping MT-sphere
initial splitting
Tetrahedron mesh

Table 3.1: Input file nio.ini
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(FILE=STRFILE, INPUT=MODERN )
ook ok ko ok stk stk ko s skok o stk sk ok sk ok Kok kK ok ok
(SECTION=HEDS )

Slabl =NiO

(SECTION=CTRS )

Natom =2

BtoA = 1.00000

CtoA = 1.00000

(SECTION=TRAN )

1/2,1/2, 0.0

1/2, 0.0, 1/2

0.0, 1/2, 1/2

(SECTION=BASS )

0.0,0.0, 0.0

1/2,1/2,1/2

STRUCTURE TITLE:

CONTROL STRUCTURE:
# of atoms

b over a ratio

c over a ratio

PRIMITIVE TRANSLATIONS:
Ax,Ay,Az

Bx,By,Bz

Cx,Cy,Cz

BASIS ATOMS :

Ni@1

0aQ2

Table 3.2: Input file nio.str

— C to A: The ratio of the length along the z-direction to that along the

z-direction. In the above example, we have a cubic cell, hence this ratio is

1. (default is 1.0)

e (SECTION = TRAN) (no default)

This section contains the primitive translation vectors of the lattice. For example,

for the FCC lattice the set of vectors can be written as ((%,

and for the BCC lattice the set is ((%, %, —%), (—%, %, %),(

e (SECTION = BASS) (no default)

,0),(0,3,3),(3.0,3))

)

o= N

1
2
))-

[N

)

N[

This section contains the positions of the basis atoms in the unit cell, that, along

with the primitive translations from the above section will generate the full lattice.

Note: The order in which the basis atoms are written mut correspond to the order

in which the atoms are written in (SECTION = SORT) in the ini file
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'[ransl ation vectors:

T1:%x+%y+02
'Tz: %x+0y+%z
T3

= 0x+12y+%z

Figure 3.2: Unit cell for NiO and translation vectors.

3.4.3 Modifications for anti-ferromagnetic solution

If we need to compute the anti-ferromagnetic solution for a given material, we need to
make appropriate changes in the in: as well as str files. To have an anti-ferromagnetic
solution, we pick alternate magnetic atoms in the lattice to have up and down spins
respectively. The unit cell thus has to be doubled, and contains two non-identical
magnetic atoms due to different spins, even though the atomic numbers of the two
atoms remain the same.

The main modifications in the ini file are in (SECTION = MAIN) as shown in a part
of the ini file for anti-ferromagnetic NiO in Table 3.3. Note, especially, the parameter
Is(:) which sorts the different atoms. Even though Atom 1 and Atom 2 are both nickel,
we treat them differently due to their different spins. (SECTION = SORT) contains
information about the different spins in the parameter Split which has different signs
for potential for up and down spins.

To determine the crystal structure we treat the lattice as a new structure with
different primitive translations and basis atoms and re-construct the str file. For the

same example of NiO as above, we begin with Fig. 3.3 to generate the primitive



translations and basis atoms. The str file for this case is shown in Table 3.4.

(SECTION=MAIN )

Natom =4

Nsort =3

Nspin =2

Norbs =1

Par0 = 7.02600

Is(:) =1233
(SECTION=SORT )
Name = Nil

Znuc = 28.0000
Smts = 2.17900
Split = 0.50000
(SECTION=SORT )
Name = Ni2

Znuc = 28.0000
Smts = 2.17900
Split = -0.50000
(SECTION=SORT )
Name = O

Znuc = 8.0000

Smts = 1.78300
Split = 0.50000
Ndiv(:)=6 6 6

MAIN ATOMIC DATA:

# of atoms in the unit cell
# of sorts in the unit cell
# of spins

1-without/2 -with spin orbit coupling
lattice parameter in a.u.
atom-to-sort pointer array
SORT DATA:

atom label

nuclear charge
non-overlapping MT-sphere
initial splitting

SORT DATA:

atom label

nuclear charge
non-overlapping MT-sphere
initial splitting

SORT DATA:

atom label

nuclear charge
non-overlapping MT-sphere
initial splitting
Tetrahedron mesh

Table 3.3: Input file nio.ini for anti-ferromagnetic NiO
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More working examples of the str file are given in chapter 4.3.1 YbRhsySis and in
section 5.2 for Am. Also, 3.4.3 contains the str file for the anti-ferromagnetic case for

YbRhsSis , where the unit cell has to be doubled to contain two magnetic Yb atoms.

3.4.4 HUB file

The main data in this file that need to be entered by the user are the choice of scheme to
treat the correlated orbitals (LDA+U or LDA+DMFT) and the values of the interaction
parameters. After the first iteration, additional data regarding occupancy matrices,

self-energies and potential terms are written into this file.
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BasisNi | (000
Ni | (112
O (1/2,1/2,1/2)
O (3232372

Figure 3.3: Unit cell for anti-ferromagnetic case

(FILE=STRFILE, INPUT=MODERN )

K 3Ksk ok koK sk ok sk sk ok sk sk sk ok skok sk sk ok skosk skoskok sk sk kokoskosk skokokskosk ok

(SECTION=HEDS )
Slabl =NiO
(SECTION=CTRS )
Natom =4

BtoA = 1.00000
CtoA = 1.00000
(SECTION=TRAN )
1/2,1/2, 1.0

1/2, 1.0, 1/2

1.0, 1/2, 1/2
(SECTION=BASS )
0.0,0.0,0.0
1.0,1.0,1.0
1/2,1/2,1/2
3/2,3/2,3/2

STRUCTURE TITLE:

CONTROL STRUCTURE:
# of atoms

b over a ratio

c over a ratio

PRIMITIVE TRANSLATIONS:
Ax, Ay, Az

Bx,By,Bz

Cx,Cy,Cz

BASIS ATOMS :

Nil@1

Ni2@2

O @3

O @4

Table 3.4: Input structure file nio.str for the anti-ferromagnetic case
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A sample hub file for the anti-ferromagnetic case in NiO is shown in Table 3.5. All

the energy values are in Rybergs. The various sections are explained below:

e (SECTION = CTRL)

— Scheme: The details about the scheme to be used to treat the correlated
orbitals, i.e. LDA+U or LDA+DMFT. A list of all the possible schemes that

can be used is present in the file hub_readhub.f and hub_hubpot.f.

— Necrl: The number of states which appear in the correlated term. Descrip-
tions and options of the other parameters in this section appear as comments

in the hub file in Table 3.5.

¢ (SECTION = DMFT)
This section needs to be included only if the option for Scheme in the above section
is chosen as LDA+DMEFT. The details of the number of Matsubara frequencies

to be used and the bandwidth for the grid are contained here.

— solver: The impurity solver used in the DMFT loop. A list of the solvers
(e.g. QMC, Hubbard-I, Gutzwiller) appears in the file hub_readhub.f.

— Kstates: This is a pointer to the states in the correlated orbital that are
treated similarly. For example, in NiO, there are 10 correlated states from
the 3d orbital — hence we need 10 labels. The tog spin-up states in are
treated similarly, thus they all carry the label 1. Similarly the e, spin-up

states all carry the label 2, and so on.

e (SECTION = CORR)

This section has the core information about the interaction terms.

— Cstate: This points to the atom that has correlations, its position in (SECTION =

BASS) in the str file and the correlated orbital.

— F0, F2, F4, F6: These are parameters that appear in the Slater integrals
as explained in equations 29-32. For d-electrons, three constants F0O, F2 and

F4 are needed and for f-electrons, there are four constants FO, F2, F4 and
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F6. These can be linked to U and J via U = FO and J = (F2 + F4)/14
for d-electrons with F2/F4 = 0.625. For f-electrons, U = F0 and J =
(286F2 + 194F4 + 250F6) /6435.

Note : The set of parameters above, in (SECTION = CORR) must be entered
for each correlated state (the number of correlated states being defined by the

parameter Necrl).

e (SECTION = DHUB)
From this section onwards, data about occupancy matrices, self-energies etc are
written into the hub file after the first iteration. These quantities are self-
consistently calculated at each iteration and are rewritten. A sample occupancy

matrix for the 3d state of Ni in NiO is shown in Table 3.6.

We have now established the theoretical groundwork for the LDA+DMFT method
to realistically treat strongly correlated materials. We shall turn to two applications of
this method: in Chapter 4, we study the heavy fermion compound YbRhsSis and in

Chapter 5, we discuss the Mott transition issue in Americium.
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(FILE=HUBFILE, INPUT=MODERN )
steskosk ot stk ok stk sk ksksk sk stk sk ok stk sk s ke sksksk sk ok sksk sk sk skok ok
(SECTION=CTRL )

Scheme=LDA-+U1.1

Yharm =cubic

CONTROL PARAMETERS:
LDA+UL# / LDA+C / LDA+DMFT
Cubic/Spherical harmonics (output)

Tharm =cubic

Rorbs =Both

Rspin =Both

Nerl = 2
(SECTION=DMFT )
Nmsb = 50

Obnd = 0.5000000
Nmsl = 2048

Nmsb =1

Ndit = 20

Efermi= 0.7278130
Solver =Hubl
kStates(:)=1112233344
(SECTION=CORR )
Cstate =Nil@1::3d
FO = 0.5880000

F2 = 0.6012300

F4 = 0.3787700

F6 = 0.000000
Cstate =Ni2@2::3d
FO = 0.5880000

F2 = 0.6012300

F4 = 0.3787700

F6 = 0.000000
(SECTION=DHUB )
cState=Nil@1::3d

Cubic/Spherical harmonics (input)

One/Both orbits to read
One/Both spins to read

# of correlated states
DMFT SETTINGS:

# of Matsubara frequencies

Effective bandwidth for the grid

# of linear Matsubara frequencies

# of Matsubara frequencies
# of DMFT iterations
Fermi energy (Ry)
impurity solver choice

CORRELATED STATES:
Correlated state pointer
Slater integrals

Slater integrals

Slater integrals

Slater integrals

Correlated state pointer
Slater integrals

Slater integrals

Slater integrals

Slater integrals

PARTIAL OCCUPANCIES:
spin up/dn-up/dn data are :

Table 3.5: Input hub file nio.hub



(SECTION=DHUB )
cState=Nil@1::3d

VZ
0.9540211
0.0000329
0.0000329

-0.0005166
0.0002983

vz
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

V7
0.9584327
0.0000286
0.0000286

-0.0000267

0.0000154
VZ
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

zZX
0.0000329
0.9540211
0.0000329
0.0005166
0.0002983
ZX
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
7X
0.0000286
0.9584327
0.0000286
0.0000267
0.0000154
ZX
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

Xy
0.0000329
0.0000329
0.9540211
0.0000000

-0.0005966

Xy
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

Xy
0.0000286
0.0000286
0.9584327
0.0000000

-0.0000308

Xy
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

! PARTIAL OCCUPANCIES:

x2-y2
-0.0005166
0.0005166
0.0000000
0.1318555
0.0000000
x2-y2
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
x2-y2
-0.0000267
0.0000267
0.0000000
0.9875338
0.0000000
x2-y2
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

3z2-1
0.0002983
0.0002983
-0.0005966
0.0000000
0.1318555
3z2-1
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
3z2-1
0.0000154
0.0000154
-0.0000308
0.0000000
0.9875338
3z2-1
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

REAL,Up-Up
VZ
ZX
Xy
X2-y2
3z2-1
IMAG,Up-Up
Vz
ZX
Xy
X2-y2
3z2-1
REAL,Dn-Dn
Vz
ZX
Xy
X2-y2
3z2-1
IMAG,Dn-Dn
vz
ZX
Xy
x2-y2
3z2-1

Table 3.6: Partial occupancies for Ni in nio.hub
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Chapter 4

Electronic structure and properties of f-band materials:
YbRh,Sis

4.1 Introduction

In this chapter, we present our calculations of the the band structure and electronic
properties of YbRhySis , a heavy-fermion compound. This material is experimentally
well studied and has an anti-ferromagnetic phase transition at low temperature (T' <
10 K) and ambient pressure. Susceptibility measurements on the material show a
strong magnetic anisotropy [53]. Using DFT methods, we would like to study the
various magnetic phases of this compound and compute its magnetic properties such
as magnetic anisotropy energy.

We start our calculations with the standard LDA method. However, since YbRhoSio
is a material with a strongly localized f-band, the LDA method is inadequate to explain
the magnetic ground state of the material, as we expect. We then employ the LDA+U
method which includes electron-electron interaction terms in the energy functional.
However we find that in this case, LDA+U does not predict the correct magnetic ground
state. The problem is traced to the double-counting term in the LDA+U functional,
which includes the part of the total energy that have already been taken into account in
the LDA Hamiltonian. This term is to be subtracted from the total energy, so that only
the correction ot the LDA mean-field solution is left. However, this procedure is not
unique and there are various ideas previously implemented such as those by Mazin [54],
Anisimov [15], Czyzyk and Sawatzky [55].

Our approach to the double-counting issue was to use an empirical method to de-

termine which choice of parameters correctly predict the ground state. Once we found
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the suitable ground state solution, we proceeded to calculate properties such as mag-
netization and magnetic anisotropy energy. With the application of pressure, it should
be possible to drive the non-magnetic phase of YbRhsSis into a magnetically ordered
ground state. In our calculation, we study the evolution of magnetism in this material
as a function of various parameters such as pressure and Coulomb interaction.

In section 4.2 we describe the motivation and the experimentally known properties
of this material. Section 4.3 contains the results of our calculation to reproduce the
magnetic ground state of the material using various techniques. In section 4.4, we use
our calculated band structure to compute the magnetic anisotropy energy of YbRhoSio
. Finally, in section 4.5, we summarize the various techniques we used in the study of

the compound, and draw our conclusions.

4.2 Properties of YbRh,Si

Experimentally YbRhySis is known to have an anti-ferromagnetic quantum critical
point at ambient pressure [53]. It is an undoped and atomically well-ordered material.
X-Ray diffraction studies showed that YbRhsSis has a body centered tetragonal phase
as shown in Fig. 4.1 with the lattice parameters a = 4.007 A and ¢ = 9.858 A [56].
The valence shell of Yb is in the 4f!3 configuration.

At high temperatures, the magnetic susceptibility shows a Curie-Weiss like behavior
with magnetic moment p. ¢y = 4.5up which is almost equal to that of the free Yb3t ion.
The magnetic susceptibility along the plane of the tetragonal structure is measured to
be much larger than that along the c—axis. This anisotropy in the magnetic response
indicates that the Yb3* moments form a 2-dimensional lattice perpendicular to the
c—axis. At ambient pressure and low temperature T = 65mK, YbRhsSis develops a
long range anti-ferromagnetic order. One of the goals of our band structure computation
is to obtain the different magnetic phases of YbRhoSis , and to calculate it magnetic
properties. Further, we would like to compute properties of this material that might
arise as a result of the strong magnetic anisotropy.

YbRhsSis shows many deviations from Fermi liquid behavior at low temperatures
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Figure 4.1: Body centered tetragonal crystal structure for YbRhoSis

such as linear temperature dependence of electrical resistivity and a logarithmic depen-
dence of specific heat C/T o —InT. These unusual properties arise due to the inter-
actions between the localized f—electrons in Yb?+ and the conduction band formed
by the s,p and d electrons. We would like to use the band structure calculation to
understand how localized bands and strong correlations in the 4 f-electrons affect the

properties of the material.

4.3 Band structure calculation of YbRh;Si,

The computation of the band structure is done using the LmtART code [57] based
on the linear muffin-tin orbital density functional method as described in the previous
chapter. We start with the LDA method. Since YbRhySiy exhibits strong electron-
electron correlations we expect an LDA calculation to fail to reproduce the magnetic
ground state of the material. We recalculate the structure using the LDA+U technique.
We will show that LDA+U also does not work well, due to problems with the double

counting term in the functional.
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4.3.1 LDA calculation

We first describe some technical details of the numerical simulation:

The program and the database associated with it provides the Hamiltonian and
the overlap matrix of the valence orbitals as well as the necessary space group in-
formation and Brillouin zone data. The unit cell of YbRhoSis has five basis atoms
at the following positions: Yb(0,0,0), Rh1(0,1/2,1/4), Rh2(1/2,0,1/4), Si1(0,0,3/8),
Si2(0,0,5/8). This information is contained in the input structure file ybrh2si2.str
shown in Table 4.1. Details about the atomic numbers of elements in the solid, the the
lattice constant, the schemes used for self-consistency (ASA) and exchange-correlation,
and information about the iterations in the self-consistent loop, in are contained the
input file ybrh2si2.ini in Table 4.2. Finally, for the LDA+U calculation, the details of
the interactions U and J, and the correlations are contained in the file ybrh2si2.hub in

Table 4.3.

(FILE=STRFILE, INPUT=MODERN )
okt ok ok ok ok ok sk ek kst ok ok sk sk stk ok ok ok
(SECTION=HEDS )

Slabl =YbRh2Si2

(SECTION=CTRS )

Natom =5

BtoA = 1.00000

CtoA = 2.46019

(SECTION=TRAN )

STRUCTURE TITLE:

CONTROL STRUCTURE:
# of atoms

b over a ratio

c over a ratio

PRIMITIVE TRANSLATIONS:

|

|

|

|

!
-1/2,1/2,1/2 I Ax,Ay,Az
1/2,-1/2,1/2 ! Bx,By,Bz
1/2,1/2, -1/2 I Cx,Cy, Oz
(SECTION=BASS ) ! BASIS ATOMS :
0.0,0.0,0.0 'Yb
0.0,1/2,1/4 | Rhl
1/2,0.0,1/4 | Rh2
0.0,0.0,3/8 ! Sil
0.0,00,5/8 ! Si2

Table 4.1: Input file ybrh2si2.str
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(FILE=INIFILE, INPUT=MODERN )

>k sk ok skosk ok skook sk okskook sk oskokosk sk skok sk sk sk skokoskoskosk skokoskoskokokskoskkok

(SECTION=HEAD )
title =YbRh2Si2
(SECTION=CTRL )
Lmto =Bare
FulPot=ASA
(;SECTION=EXCH )
LDA =Vosko
(SECTION=ITER )
Niter1=200

Lbroy =-1

Admix1= 0.05000
(SECTION=MAIN )
Natom =5

Nsort =3

Nspin =2

Norbs =2

Par0 = 7.57500

Is(:) =12233
(SECTION=SORT )
Name = Yb

Znuc = 70.0000
Smts = 3.66200
Split = 0.00000
(SECTION=SORT )
Name = Rh

Znuc = 45.0000
Smts = 2.26700
(SECTION=SORT )
Name = Si

Znuc = 14.0000
Smts = 2.17800
(SECTION=FFTS )
Ndiv(:)=6 6 6

PROJECT HEAD:

Compound title

CONTROL PARAMETERS:
set: Bare / Screened / Rspace
set: FTB/ ASA / PLW
EXCHANGE-CORRELATION:
set: none/Barth/Gunn/etc.
ITERATIVE PROCEDURES:
# of iterations in SCF loop
Broyden mixing for low l.le.lbroy
initial mixing for density
MAIN ATOMIC DATA:

# of atoms in the unit cell

# of sorts in the unit cell

# of spins

1-without/2 -with spin orbit coupling

lattice parameter in a.u.
atom-to-sort pointer array
SORT DATA.:

atom label

nuclear charge
non-overlapping MT-sphere
initial splitting

SORT DATA:

atom label

nuclear charge
non-overlapping MT-sphere
SORT DATA.:

atom label

nuclear charge
non-overlapping MT-sphere
FFT GRIDS:

Tetrahedron mesh

Table 4.2: Input file ybrh2si2.ini
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(FILE=HUBFILE, INPUT=MODERN )

SR>k sk kKoK skosk sk sk sk skosk sk sk skoskoskoskosk skosk skok skokoskoskoskokoskoskokoskokoskokosk

(SECTION=CTRL )
Scheme=LDA+U1.1
Yharm =spherical
Tharm =spherical
Rorbs =Both

Rspin =Both
Format=complex
(SECTION=CORR )
Nerl =1

Cstate =Yb@1::4f
OutSys = local
OutAxis = -1,1,0
OutAngle= 0*pi
Outlnv =no

InpSys = local
InpAxis = -1,1,0
InpAngle= 0*pi
InpInv =no

F0 = 0.4411765

F2 = 0.000000
F4 = 0.000000
F6 = 0.000000

(SECTION=DHUB )
cState=Yb@Q1::4f

CONTROL PARAMETERS:

LDA+UL.# / LDA+C / LDA+CU1.# / LDA+G:

Cubic/Spherical harmonics (output)
Cubic/Spherical harmonics (input)
One/Both orbits to read
One/Both spins to read
Real/Complex input/output
CORRELATED STATES:

# of correlated states
Correlated state pointer
global/local coordinate system
rotational axis

rotational angle

apply inversion after rotation
global/local coordinate system
rotational axis

rotational angle

apply inversion after rotation
Slater integrals

Slater integrals

Slater integrals

Slater integrals

PARTIAL OCCUPANCIES:
spin up/dn-up/dn data are :

Table 4.3: Input file ybrh2si2.hub



66

Both the full potential plane-wave (PLW) and the atomic sphere approximation
(ASA) schemes have been used. The results for the energy bands (using the PLW
scheme) show a narrow localized set of bands below the Fermi level Er which is near
13.7eV (Fig. 4.2,left). On investigating the character of these localized bands, which
are near energies of ~ 13eV, it is seen that these correspond to the localized 4f bands
of Yb, as expected. Self-consistency for the energy was obtained in ~ 40 iterations.
We find that the there are 14 fully occupied 4 f-bands below Ep at the I' point. The
LDA calculation predicts that all the 4 f-bands are filled, that is, the occupancy of the
4f-bands of Yb in YbRhySis is 14.

On performing the same calculation using the ASA method to compute the poten-
tial, we find that the main differences are that the overall energies and the Fermi level
have shifted downwards with the Fermi energy Er ~ 13eV, and that the position of
the localized 4f bands of Yb are pushed further below to 12eV (Fig. 4.2,right). Unless
otherwise mentioned, all further calculations are in the ASA method. A large contri-
bution to the bands crossing the Fermi level comes from the 5d-bands of Yb and the
4d-bands of Rh (Fig. 4.3).

According to the experimental evidence, Yb3T in YbRh,Siy is in a 4f'3 configura-
tion. Thus we need to improve upon the simple LDA method in order to check if one
of the Yb3T 4f-bands lies above the Fermi energy. Since the electrons on the Yb3* ion
are strongly correlated we will use the LDA+U method next to obtain the electronic

structure.

4.3.2 LDA+4U calculation

We used the LDA calculation to estimate the interaction energy required to push one
of the 4f-bands from below to above the Fermi level. From the LDA calculation in
the ASA case, we located the 4f sub-band (amongst all the 4f-bands) that has the
highest energy at the I'-point. It is most likely that it is this band that would be
unfilled upon the inclusion of U. From Fig. 4.4, we can see that this band is the
4f : {z(z* — y*)} sub-band . Thus to obtain only 13 filled 4f-bands we use the correct

initial partial occupancies in the DHUB matrix. We input a partial occupancy of 0
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Yb:4f -- PLW Yb:4f, ASA method

uE

Figure 4.2: Energy bands of YbRhsSiy — Full Potential(left) and Atomic Sphere Ap-
proximation(right). The colored regions in are the fat bands for Yb:4f.
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Figure 4.3: Energy bands of YbRhsSis . The colored regions in are the fat bands for
Yhb:5d (left) and Rh(4d) and Si:3p(right).
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for the 4f : {z(z? — y?)}-spin-up (an arbitrary choice, as spin-up and spin-dn bands

displayed the same behavior) and a partial occupancy of 1 for the other sub-bands.

Yb:4f{z(x%-y?)}--ASA method

Figure 4.4: Energy bands of Yb:4fz(x? — y?)

We find that even on increasing the value of U, we get all the 14 4 f-bands of Yb to be
filled. The results for U = 2,4,6 and 8eV and are shown in Fig. 4.5 Self-consistency
for the energy was obtained in 100 iterations.

Under the simple LDA calculation, all the 14 4f-bands of Yb are filled. We want
to locate the magnetic solution with one of the 4 f-bands to be pushed above the Fermi
level. Fig. 4.6 shows the behavior of the position of the center of the f-band w.r.t.
U. Thus in order to push one of the bands towards and above the Fermi level, we

propose that the value of U used in the double counting term is different from that in
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Fat bands of Yb 4f-up and 4f-dn in YbRh3Si5, Fat bands of Yb 4f-up and 4f-dn in YbRh3Si5,
LDA+U(=2eV) LDA+U(=4eV)
16 16
15 w 15—
13 /ﬁ v ﬂ\\ E 13 E
77 \ F \4 \/ F
12 12
11 -5\ \ 11
10 10 \
> > \
® : @
5] 5] X
[} [} 2
5 8 KR g8
7 7
] /.
6 6
5 5
4 — 4
3 /)A 3
2 2
r X W X K L T C r X W X K L T C
Fat bands of Yb 4f-up and 4f-dn in YbRh5Si, Fat bands of Yb 4f-up and 4f-dn in YbRh5Si,
LDA+U(=6eV) LDA+U(=8eV)
16 16
15
Y
13 Er A =

Energy, eV

>>°°° Ei\@

=
N
|

10

e e
ST

r X w X K L r

RS

e Wy
Energy, eV

AREI 7z

St
O RIS £

Aot S

IN
|

N w E- )|
o N

_|
x
3
x
A

L r

r
r

Figure 4.5: Energy bands of Yb:LDA+U, U=2,4,6,8eV
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the LDA+U energy functional for the model.
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Figure 4.6: Position of center of 4 f-bands of Yb as a function of the interaction U

4.3.3 Effect of the double counting term:

Our prescription for obtaining the correct band structure for this material is that we
treat the interaction U that is used in the model and the interaction U used in the
double counting term as two separate parameters. The former controls the position of
the band below the Fermi level while the latter controls the splitting in energy between
the occupied and the unoccupied bands, on which the magnetic moment depends. To
test this hypothesis,we run the LDA+U calculation using different values of U and U.

In Fig. 4.7 we plot the position of the 4 f-level as a function of U for the interaction
U = 4.0eV and U = 6.0eV. Initially we keep U = U. As we decrease U (to U = 5.5¢V

for U = 6eV and to U = 3.4eV for U = 4eV) we find that the system has a magnetic
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solution. These results are shown in Figs. 4.8 and 4.9 where we see that a part of the
4 f-band of Yb is unoccupied and the Yb-ion shows a non-zero magnetic moment.

However, when we calculate the total magnetic moment, we find that it is less than
the experimental value of ~ 4up. For this solution, our initial condition had, for the
4f : {z(2% — y?)} sub-band, an occupation number of 0 (for the spin-up electron), and
for the other 4f-bands, an occupation number of 1. This led to a stable converged
solution with a total occupation of 13.3 for the f-bands. However, magnetic moment
(in units of Bohr magnetons pp) for this state was lower than the experimental one.
For U = 6eV,U = 5.5¢V:

Orbital moment M, = 0.4
Spin moment = 1.16
Total moment = 1.56.

The difference is due to the contribution from the orbital angular moment. In the
above state, the contribution came from the orbitals [, = +2,—2. In order to obtain
the correct angular moment, the initial state has to have the [, = +3 orbital empty and
the other orbitals filled. With this initial condition, we get a band structure as shown
in Fig. 4.9. The magnetization for U = 6eV, U = 5.5eV is:

Orbital moment M, = 2.97
Spin moment = 1.14
Total moment = 4.11

Thus, using the correct value of the interaction U in the double-counting term, and

the correct initial conditions in the occupancy matrix, we obtain a band structure for

YbRhsSis that has the correct magnetic solution.

4.3.4 Comparison with other methods involving the double-counting

term

In order to describe the physics of correlated metals, which fall in between materials
which have fully localized shells, and those which have uniform electron occupancies,

Mazin et.al [54] proposed an alternate form of the double counting term in the LDA+U
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Figure 4.7: Position of center of 4f-band as a function of the double-counting term U
for U=4eV (top) and U=6eV (bottom)
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Figure 4.8: Energy bands(left) and DOS(right) of Yb:4f, LDA+U, U=4eV.
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Figure 4.9: Energy bands(left) and DOS(right) of Yb:4f, LDA+U, U=6eV.
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functional (c.f. Eqns. 3.18 and 3.19):

BT = -CDS (o ) — @i D fan2 + (L= ane]] (@)

2
Tr (6p7 - 6p7)
< = <1 4.2
0< a0 20+ 1)n, (1 —ny) — (42)

The correction to the potential is

1—a,
2

AR o ab0) = (0 = 7) |8 = oo - (1.9
Here, the orbital occupation matrix, p7, = —1/7 [ Er Gup(E)dE where Gy, is the one-
electron Green’s function, n, = Trp?/(2l + 1) and 6p%, = p7, — ngs. 0, is a system
dependent constant between 0 and 1 that is calculated using the self-consistent occu-
pation matrix at each iteration as in Eqn. 4.2 According to this scheme, our LDA+U
calculation has a double counting term in eqn.3.19 as (p7, — %%b) that is equivalent to
keeping the value of oo = 0.

We tested the above functional for our calculation on YbRhsSis . We replace the
original double-counting term (eqn.3.19) in the file hub_hubpot.f by the one above. We
find that this double-counting term does not produce a magnetic ground state for
YbRhsSis . Fig. 4.10 shows how the 4 f-bands of Yb in YbRhsSiy behave as a function
of U using the scheme descibed above. From the self-consistent procedure we get a
value of @ = 0.22. Also included in the figure are the location of the bands using the
original double-counting with U = U, as well as the result from our empirical method
of treating U and U as different parameters. We see that using the functional described
by Mazin, the center of the bands move in the correct direction, however we still do
not obtain the correct magnetic ground state. For that we must follow the method
we described in section 4.3.3 where we treat the interaction U as a different parameter
from the interaction U in the model.

In yet another functional for the total energy proposed by Czyzyk and Sawatzky [55],
the double counting term to be subtracted from the potential is given by (pZ, — n%04p)
which corresponds to the limit of uniform occupancy in LDA | ie. p7, (LDA) = dgn?.
For correlated materials, the limit of uniform occupancy is not correct, hence this
method of treating the double counting term produces the incorrect ground state for

YbRhsSis .
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Energy of 4f-level using different schemes
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Figure 4.10: Location of the 4f-bands in various schemes. The original double-counting
where U = U and the one used by Mazin et.al [54] as described above do not predict
a magnetic ground state. The empirical method described in section 4.3.3 does predict
the correct ground state.

4.3.5 Effects of pressure

If we apply pressure, we expect that the f-level moves closer to the Fermi level. If
sufficient pressure is applied, we expect some of the f-bands to cross the Fermi level
so the material has a magnetic solution. To incorporate the effects of pressure, we
decrease the volume compression factor V/V{ from its original value of 1. We find that
there is an overall increase in all the energies observed, including the Fermi level. When
pressure is increased by ~ 10%, the center of the 4 f-band moves up by ~ 12% but the

Fermi level increases by about as much. Hence we do not observe a magnetic solution
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with the application of pressure alone.

Once we have obtained the correct magnetic solution by using the appropriate value
of the double-counting term and the interaction term, we find that on applying pressure,
the gap between the occupied and the unoccupied states decreases, leading to a decrease
in the magnetization. As pressure is applied, the volume of the muffin-tin spheres
decreases which causes a decrease in the effective interaction. The Hubbard bands
come closer and the magnetic moment decreases. Fig. 4.11 shows this trend. The band

structures for the magnetic solution on applying pressure are shown in Fig. 4.12.

Magnetic moment vs relative volume
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Figure 4.11: Dependence of magnetic moment on relative volume

4.3.6 Anti-ferromagnetic solution

Experimentally YbRhsSis is in an anti-ferromagnetic state. To obtain the anti-ferromagnetic
solution and the band structure, we have to first incorporate the correct crystal struc-
ture in the input files. In the ferromagnetic case, each unit cell has one Yb atom, which
is located at the origin. To have an anti-ferromagnetic solution, we have to double the
unit cell so that it contains two Yb atoms. Adjacent Yb atoms have opposite spins.

The following table shows the input structure file that shows the basis atoms and the
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Figure 4.12: Application of pressure on the magnetic solution
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positions of the atoms. (Compare with structure file in Table 4.1)

(FILE=STRFILE )

ok ok ok ok ok ok ok sk kst ok ok sk sk stk ok ok ok
(SECTION=HEDS )

Slabl =YbRh2Si2

(SECTION=CTRS )

Natom =10

BtoA = 1.00000

CtoA = 2.46019

(SECTION=TRAN )

STRUCTURE TITLE:
CONTROL STRUCTURE:
# of atoms

b over a ratio

c over a ratio

PRIMITIVE TRANSLATIONS:

|

|

|

|

|

!
1,1,0 ! Ax,Ay,Az
1-1,0 ! Bx,By,Bz
1/2,1/2 1/2 | Cx,Cy,Cz
(SECTION=BASS ) ! BASIS ATOMS :
0.0,0.0,0.0 ! Ybl
10,00, 1.0 | Yb2
0.0,1/2,1/4 | Rhl
1/2,0.0,1/4 | Rh2
1.0, 1/2, 1/4 | Rh3
3/2,0.0,1/4 | Rh4
0.0,0.0,3/8 I Sil
0.0,0.0,5/8 I Si2
1.0,0.0,3/8 ! Si3
1.0,0.0,5/8 ! Si4

Table 4.4: Input file ybrh2si2.str

The interaction parameters we used were U = 6eV, U = 5.5eV. The magnetic
moment (in units of Bohr magnetons) in this case is as follows:
Orbital magnetic moment for 1st Yb atom (spin-up): 2.959937
Orbital magnetic moment for 2nd Yb atom (spin-dn): 2.667827
Spin magnetic moment for 1st Yb atom (spin-up): 1.112074
Spin magnetic moment for 2nd Yb atom (spin-dn): 0.923587

Fig. 4.13 shows the energy bands of YbRhySis in the anti-ferromagnetic calculation.

4.4 Magnetic Anisotropy Energy

YbRhsSis shows a highly anisotropic magnetic response along different crystallographic

directions. The experimentally measured magnetic susceptibility (Fig. 4.14 from [59])
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Figure 4.13: Energy bands of Yb in the anti-ferromagnetic case. Top: Bands of Yb-1

atom. Bottom: Bands of Yb-2 atom
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along the plane of the tetragonal structure is ~ 20 times larger than that measured
along the perpendicular ¢ axis at 2 K and upto 100 times larger at 0.1K according
to Trovarelli et. al. [53], [59]. The magnetic anisotropy energy (MAE) is defined as
the difference of the total energies with the orientation of the magnetization pointing
in different crystalline directions. Since it depends on the total energy, the MAE is a
ground state property and hence can be calculated using density functional theory.

To calculate the MAE, we calculate the total energy with the magnetic axis pointing
in two different directions — [100] corresponding to the z-axis in the crystal and [110],
corresponding to the X-Y plane. In practice, we implement this as explained below.

We first start with the converged paramagnetic solution that we obtain with LDA+U.
To obtain the solution with the magnetization along the c-axis of the crystal, which is
also our z-direction, we set the parameter AxMag = 0,0, 1 in the input file ybrh2si2.ini.
We also use the correct initial values in the occupancy matrix with the magnetic axis in
the [100] crystallographic direction. We calculate the total energy with these conditions
as E.. The magnetization obtained is in the z-direction.

To calculate the total energy in the [110] crystallographic direction, that is, along
the basal a-b plane of the crystal, we set AzMag = 1,1,0 in the input file ybrh2si2.ini.
We also have to rotate the initial occupancy matrix, so that the orbital and the spin
magnetic moments both point along the x-y plane. We calculate the total energy F,
in this configuration. The difference of the energies in the above two configurations is
the MAE.

We first compute the magnetic anisotropy energy using the ferromagnetic solution.
We use 12 k-points per dimension in the Brillouin zone.

For the magnetization along the c-axis, total energy E. = —48409.504501 Ry.
Here, magnetic moment M, = 1.08up and M,, M, << M.

For the magnetization along the a-b plane, total energy E, = —48409.504513 Ry.
Magnetic moment M, = M, = 0.48202 pup and M, << M, M,.

The magnetic anisotropy energy per Yb atom is

MAE =E, — E, = —1.32 x 10"°Ry ~ —179.5ueV
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Thus E, < E., that is, the configuration where the spins point along the x-y plane is
more stable, as confirmed by experiment.

Experimentally we know that the magnetic susceptibility x, =~ 20x. at a field of 5T
and temperature of 2K (Fig. 4.14 from [59]). Here x, is the susceptibility along the
plane of the tetragonal structure and . is that perpendicular to the plane, i.e. along
the c-axis. To compare the magnetic anisotropy energies in our LDA+U calculation,
as compared to the experimental value, we do a calculate the experimental value of the
magnetic anisotropy energy given the susceptibility.

We have

E=_-"_ (4.4)

where E is the energy, M is the magnetization and y is the susceptibility. The magnetic
anisotropy energy MAE = E, — E..
From the plots in Figs. 4.14 and 4.15 obtained from [58] and [59] at a field of 5 T'

and temperature 2 K we have:
M, =0.73up/atom, M., =0.1up/atom

Xa = 1.0 x 107%m3 /mol, x.= 0.1 x 1075m3 /mol

Converting all quantities so that the value are per atom, we have

1.0 x10"%m3/mol
~6.023 x 10Zatoms/mol
0.1 x 1075m3 /mol

= =1.66 x 1073'm?/at 4.6
Xe 6.023 x 10%3atoms/mol % m”/atom (46)

Xa = 1.66 x 10733 Jatom (4.5)

1 (M, M
MAEperatom:Ea—Ec:——( =< )

2\ Xa Xe

1 (0.73pp /atom)? B (0.1pp /atom)?

2 \ 1.66 x 10730m3/atom  1.66 x 10~=3'm3/atom

1
=5 X (3.166 x 102 (up)?/m> — 6.024 x 1028(u3)2/m3>

= —1.282 x 10®(up)?/m?

(4.7)
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Using the value of the Bohr magneton, 1pup = 9.274 x 10~24.J/T, and the conversion
1(pp)?/m® = (9.274 x 10%4J/T)° x o = 1.079 x 10752.J we get

MAE per atom = E, — E, = —1.384 x 10”2.J /atom
(4.8)

= —8.65 x 10~ %eV/atom

When we compute the total energy for the anti-ferromagnetic solution, by dou-
bling the unit cell, we get total energy F. = —96819.024913 when the magnetization is
along the c-axis of the crystal. With the magnetization pointing along the a-b plane, we
get the total energy E, = —96819.024942. Since each unit cell has two Yb atoms, the
magnitude of the MAE per Yb atom is |E, — E.|/2 = (2.9x 107°)/2 = 1.45 x 107 Ry ~
200ueV .

The typical order of magnitude of magnetic anisotropy energies are a few pel per
atom. For example, MAE per atom at low temperature for Fe is 1.4 peV, for Ni is 2.7
peVand for Co is 60 ueV. In comparison, from our LDA+U calculation, we have, MAE
per Yb atom in YbRhsSis to be ~ 200ueV and the experimental value for YbRhsSis per
Yb atom is ~ 86.5ueV with E, < E., that is, the configuration where the magnetization
is along the a-b plane being more stable.

We also calculate the exchange energy using the total energies per atom for the
ferromagnetic and the anti-ferromagnetic case in the two directions.

Parallel to a-b plane:
E, ferre _ g Antiferro — _48409.504513 — (—48409.512471) = 0.07958 Ry
Perpendicular to a-b plane, i.e. along c-axis:

EFerro _ g Antiferro — _48409.504501 — (—48409.512456) = 0.07955Ry

4.5 Summary and Conclusions

We used LDA and LDA+U methods to compute the band structure of YbRhsSis. Both
methods predict an incorrect non-magnetic structure with all the above 4f-shells occu-

pied. Experimentally YbRhsSis is in an anti-ferromagnetic state with a total magnetic
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Magnetization vs. magnetic field, LDA
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Figure 4.16: Magnetization as a function of external magnetic field (along z-axis)

moment of ~ 4.5up. In order to obtain the correct magnetic solution, we proposed
that the value of U used in the double counting term, Uy, is different from that in
the energy functional. When Uy, is decreased, keeping U fixed, we do observe that the
4f : {z(2? — y?)} sub-band of Yb gets unoccupied as per the initial condition.

The magnetic anisotropy energy of YbRhsSis is calculated using the difference of
the total energies with the magnetization pointing in two different directions. Our
calculations show that YbRhoSis is a highly anisotropic material, as was observed in

experiments.
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Chapter 5

Electronic structure and properties of f-band materials:

Americium

5.1 Introduction

In this chapter, we use LDA+U and LDA4+DMFT methods described in chapter 3, to
study the electronic structure and properties of Americium, another material which has
occupation in the f-shell.

Experiment and motivation:

Americium is a metal that is nearly in the center of the actinide series, which have
occupation in the 5f shell. The actinides show interesting behavior in terms of crystal
structure and atomic volumes as one moves across the series. The lighter actinides
until Pu are known to have delocalized 5 f-electrons that participate in bonding. They
have open low-symmetry structures. On the other hand, the 5 f-electrons in the heavier
actinides are localized and the materials have closed structures.

Fig. 5.1 shows the volume change as one moves across the actinide series. One can
see that Americium is at a pivotal position. There is a sudden change in the atomic
volume as one moves from Pu to Am across the actinide series. This jump in volume
is argued to be a Mott transition with the 5f-electrons localized in Am, and itinerant
in the preceding element, Plutonium. A natural question we can ask at this point
is whether an external parameter such as pressure cam change the character of the
5 f-electrons in Am.

Am has strong spin-orbit coupling due to which it is in a non-magnetic J = 0
ground state. Experimentally, the photoemission spectra of Am has been studied by

Nagele [60], which shows a localized 5f-peak (Fig. 5.2 left).
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Actinides: Experimental atomic volumes
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Figure 5.2: Left: Photoemission spectra of Am by Naegele [60]. Right: Relative volume
of americium as a function of pressure obtained by Lindbaum et. al. [62]
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Experimental studies have indicated [61], [62] that pressure induces major changes
in the nature of the 5f electrons of Americium. At normal pressure, the 5f electrons of
Americium are localized. With the application of pressure, the f electrons acquire an
itinerant character. There has been considerable debate in literature about the volume
of Americium in its various phases. From the high pressure studies using synchrotron
radiation as described by Heathman et. al. in Ref. [61] Americium has 4 phases. At
ordinary pressures Americium has a double hexagonal close packed (dhcp) structure
which under application of pressure gets converted to the Americium II fec structure at
6 GPa. This transition was reported to occur at higher pressures of 10 GPa by Benedict
et. al. [63]. With additional pressure Americium II transforms to the Americium III
phase accompanied by a volume collapse of 7% [61] which indicates that the f electrons
begin to get delocalized (Fig. 5.2, right). The goal of this study is to test the predictions
of the LDA+DMFT technique regarding the electronic structure, equilibrium atomic
volume and the Mott transition in Am.

Theoretical studies:

Previous density functional electronic structure calculations in Americium [64], [65],
[66] have shown that Americium has localized 5f-electrons at normal pressure with a
FCC crystal structure. Application of high pressure leads to a phase with open, low
symmetry structures which are accompanied by a delocalization of the jf-electrons.
However there has been some debate about the exact structure that Americium is
calculated to have at high pressures. Two contenders have been the orthorhombic
(o-Uranium) structure [64] or the monoclinic (a-Plutonium) structure [65], [66]. A
discrepancy in all the previous theoretical studies is that the calculated volume collapse
for the transition is much higher than the experimental value.

Eriksson and Wills [64], calculate the total energy versus volume of Americium
in FCC and the a-U structures using relativistic full-potential LMTO methods. The
basis set used in this computation contains 6s, 6p, 7s, 7p and 5f orbitals. On applying
pressure, they calculate a transition from Am-II (FCC) to Am-III (o-U) accompanied

by a volume collapse of 34%.
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Figure 5.3: Four phases of Americium (Lindbaum et. al [62])

According to Soderlind et.al [65], however, the stable phase at high pressure is de-
termined to be the monoclinic, i.e. the a-Pu structure. In this calculation, the total
energies of six different crystal structures of Americium is determined as a function of
volume. A full-potential LMTO method using the generalized gradient approximation
for the exchange-correlation term is used. Spin degeneracy is assumed for all the struc-
tures except the FCC structure. The results show that on applying pressure, there
is a transition from the FCC-Americium to monoclinic-Am accompanied by a volume
collapse of 25%.

The theoretical calculations of Eriksson [64] and Soderlind et.al [65] underesti-
mate the equilibrium volume of Americium at normal pressure. The volume of FCC-

Americium is calculated to be 15% less than the experimentally determined volume by
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Benedict [63]. Soderlind et.al also compute the total volume of Americium by treating
the 5f electrons as core: in this calculation, the equilibrium volume at normal pressure
is closer to the experimental volume, but still differs by 10%.

In the study by Pénicaud [66], the total energy versus atomic volume of Am is
calculated in various structures. The normal phase is the FCC structure as in the
previous calculations. At high pressures, the stable phase is calculated to be the a-Pu
phase. On further applying pressure, a transition to the Am-IV structure is observed,
which remains stable upto very high pressures. The equilibrium volume of Am at
normal pressure in this study is close to the experimental value. The volume collapse
for the FCC-a-Pu transition is calculated to be 31%.

In our calculation, we use the LMTO method in the atomic sphere approximation.
We calculate the band structure for FCC-Americium in the LDA+U scheme, and we
find that for a certain interaction U and double counting term, we can correctly predict
the position photoemission peak. Further, our LDA+U computation of the equilibrium
volume is in close agreement with experiment. However, using the LDA+U method,
we do not get the correct magnetic moment of zero. We then use the LDA+DMFT
technique using the Hubbard-I impurity solver to compute the band structure of Am,
which should also predict the correct magnetic moment.

In section 5.2, we describe the details of the LDA+U computation of the band struc-
ture and density of states. section 5.2.2 deals with the equilibrium volume calculation.
In section 5.3 we discuss the LDA4+DMFT method, and apply it to calculate the bands

in Am. Finally, our conclusions are stated in section 5.4.
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5.2 LDA and LDA+U band structure calculation of Americium

The computation of the band structure is done using the LmtART code. The details
of the calculation are as follows:

There are two input files required for the LDA calculation and an additional input
file for the LDA+U calculation. The files are shown in the following tables. Table 5.1 has
details of the crystal structure including the positions of the basis atoms and the lattice
vectors. We used the FCC structure of Americium throughout our calculation. Table
5.2 contains the scheme used to calculate the self-consistency, the number of iterations
in the self-consistent loop, atomic numbers and the lattice constant in atomic units.
We used the atomic sphere approximation (ASA) scheme to achieve self-consistency. In
order to obtain a well converged charge density and magnetization, we used the Broyden
mixing scheme. For the LDA+U calculation, the details of the correlated orbitals and
the interaction U are contained in Table 5.3. The band structure of Americium was

calculated at various values of the interaction strength U.

( FILE=STRFILE,INPUT=MODERN )

>k sk ok sk sk ok >k ok sk >kosk ok sk ok sk sk sk sksk sk sk sk okosk sk sk skoskosk sk skokok sk sk skokosk sk skoskok sk sk skokoskoskok kok

(SECTION=HEDS )

STRUCTURE TITLE:

Slabl =Am
(SECTION=CTRS) CONTROL STRUCTURE:
Natom =1 # of atoms

b over a ratio
c over a ratio

PRIMITIVE TRANSLATIONS:

BtoA = 1.00000
CtoA = 1.00000
(SECTION=TRAN )

0.0, 1/2, 1/2 Ax,Ay,Az

1/2, 0.0, 1/2 Bx,By,Bz
1/2,1/2, 0.0 Cx,Cy,Cz
(SECTION=BASS ) BASIS ATOMS :
0.0,0.0,0.0 Am

Table 5.1: Input file am.str
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(FILE=INIFILE, INPUT=MODERN )

>Rk sk ok skosk ok skook sk okskook sk oskosk sk sk skok sk sk sk skoskoskosk skokoskoskoskokokskok kok

(SECTION=HEAD )
Title =Am
(SECTION=CTRL )
Lmto =Bare
FulPot=ASA
(SECTION=EXCH )
LDA =Vosko

GGA =none
(SECTION=ITER )
Niter1=200

Lbroy =-1
(SECTION=MAIN )
Natom =1

Nsort =1
Nspin =2

Par0 = 8.72023
Is(:) =1

(SECTION=SORT )
Name = Am

Znuc = 95.0000
(SECTION=FFTS )
Ndiv(:)=8 8 8

PROJECT HEAD:
Compound title

CONTROL PARAMETERS:
set: Bare / Screened / Rspace
set: FTB/ ASA / PLW
EXCHANGE-CORRELATION:
set: none/Barth/Gunn/etc.
set: none/91/96

ITERATIVE PROCEDURES:
# of iterations in SCF loop
Broyden mixing for low Lle.lbroy
MAIN ATOMIC DATA:

# of atoms in the unit cell

# of sorts in the unit cell

# of spins

lattice parameter in a.u.
atom-to-sort pointer array
SORT DATA:

atom label

nuclear charge

FFT GRIDS:

Tetrahedron mesh

Table 5.2: Input file am.ini

We start by calculating the Americium band structure using the non spin-polarized
LDA method. As we expect, this method predicts the 5f bands to lie at the Fermi level.
Once we include the effects of U, we see the formation of Hubbard bands separated by
an energy U. The 5f-bands and the density of states are plotted in Figs. 5.4 and 5.5
respectively for various values of U. In Americium, spin-orbit effects are significant,
which lead to a non-magnetic ground state with total J = 0. When we include the
effects of spin-orbit coupling in our LDA calculation, the bands for U = 0eV that lie
near the Fermi level are split by an energy equal to the spin-orbit coupling. When we
increase the interaction U, the localized 5f-band moves further away from the Fermi

level, and the energy separation between the filled and the empty bands increases by
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U. The bands are seen in Fig. 5.6 and the density of states corresponding to the

above bands are seen in Figs. 5.7. In all further calculations, we include the effects of

spin-orbit coupling.

(FILE=HUBFILE,INPUT=MODERN, TRACE=TRUE )

>Kekosk ok sk sk ok sk ok sk >kosk ok skok sk sk sk skosk sk sk ok sk sk skokoskosk sk kokoskoskoskokokosk sk kok

(SECTION=CTRL )
Scheme=LDA+U1.1
Yharm =spherical
Tharm =spherical
Rorbs =Both

Rspin =Both
Format=complex
(SECTION=DMFT )
Nmsb =1

Ndit = 20

Efermi= 0.6632451
EpsDMF= 0.1000000E-04
(SECTION=CORR )
Nerl =1

Cstate =Am@1::5f
OutSys = local
OutAxis = -1,1,0
OutAngle= 0*pi
Outlnv =no

InpSys = local
InpAxis = -1,1,0
InpAngle= 0*pi
InpInv =no

FO = 0.1470588

F2 = 0.000000
F4 = 0.000000
F6 = 0.000000

(SECTION=DHUB )

CONTROL PARAMETERS:

LDA+UL# / LDA+C / LDA+GI.7
Cubic/Spherical harmonics (output)
Cubic/Spherical harmonics (input)

One/Both orbits to read
One/Both spins to read
Real/Complex input/output
DMFT SETTINGS:

# of Matsubara frequencies
# of DMFT iterations

Fermi energy (Ry)

Accuracy

CORRELATED STATES:

# of correlated states
Correlated state pointer
global/local coordinate system
rotational axis

rotational angle

apply inversion after rotation
global/local coordinate system
rotational axis

rotational angle

apply inversion after rotation
Slater integrals

Slater integrals

Slater integrals

Slater integrals

PARTIAL OCCUPANCIES:

Table 5.3: Input file am.hub

The occupancy matrices and the LDA+4U potential are written in (SECTION =

DHUB) in the HUB file.

In Fig. 5.8 we plot the position of the center of the 5f-level (w.r.t the Fermi level)
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Figure 5.4: Energy bands of Am in LDA+U, no spin-orbit coupling. The colored regions

are the fat bands of Am:5f
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Am: FCC structure, ASA
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Figure 5.8: Position of center of the Am 5f-band as a function of the interaction
strength

as a function of the interaction U, as obtained from our LDA+U calculations. The 5f-
band moves away from the Fermi level as U is increased, and the center of the occupied
5f-band linearly decreases. Experimentally, according to photoemission data (Fig. 5.2,
left) obtained by Naegele et. al [60], the conduction band spectrum of Americium shows
a peak at 2.8eV below the Fermi energy which corresponds to the localized 5 f-band.
From our calculations of the spectra as a function of U, (Fig. 5.8) we see that at
U = 3eV the 5f level of Americium is centered around 2.8eV below Epepm;.

In the LDA calculation, the filled and the empty states are separated by an energy
gap of the order of spin-orbit coupling. As we increase the interaction U, the gap
increases linearly with U. When we add correlations, the gap between the occupied and
unoccupied states is the LDA-energy gap plus an energy equal to U. In Fig. 5.9 we see
the gap between the spin-up and the spin-down electrons of Americium plotted as a
function of U.

The LDA+U calculation however fails to predict the correct occupancy and correct
magnetic moment of Americium. The LDA calculation predicts the occupancy of the

Am 5f-band to be 6.3. As we increase U, the cost of putting two electrons on the same
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site goes up, and the occupancy of the 5f-band increases. In the LDA+U calculation
with U = 4eV, it is close to 6.8. Fig. 5.10 shows the occupancy of the Americium
5f-band as a function of U. However, the occupancy of the 5f states of Americium is
known to be 6 (Ref. [67]). In section 5.3 we will show that the LDA+DMFT calculations

predict the correct occupancy of 6, and a zero magnetic moment for Americium.

5.2.1 Effect of the double counting term

In the fat bands and density of states (Figs. 5.6 and 5.7), we kept the interaction U
in the double counting term in the same as that used in the model, U. Decreasing the
value of U however shifts the 5f peak away from the Fermi level. Fig. 5.11 shows the
position of the localized 5 f-level as a function of the double counting interaction Ulge,
or U at U = 3eV. In the LDA+DMFT calculation in section 5.3 we will use Uy as a

parameter to fix the 5f peak at its experimental value.

Am: 5f-level as a function of U, with U=3eV
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Figure 5.11: Effect of Uy.: Position of the center of the f-band as a function of the Uy,
with U kept at 4eV .

In the next section, we turn to the details of the calculation of equilibrium volume

in LDA+U, which gives excellent agreement with experiment.
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5.2.2 Volume behavior

We calculate the equilibrium atomic volume of Americium by plotting the total energy
from our LDA+U calculations as a function of relative volume V/V}, for various values of
U (Fig. 5.12). From the minimum in these plots, the equilibrium volume for Americium
is calculated. In each of the methods, the fecc structure is used as the crystal structure for
Am. In Fig. 5.12, we use the experimental equilibrium atomic volume of 29.3 A A3 [70]
for V. Our LDA+U calculation predicts the correct equilibrium volume at U = 4.5¢V .

We also performed a calculation by considering the 5f electrons as core electrons.
In order to do this we change one of the input files Imt.am that contains all the atomic
data. We remove the 5f-electrons from the basis and set them as the core electrons. We
set Imax=2, and consider 8 valence electrons only from the 6p and 7s subshells. The 6s
electrons are considered as semi-core electrons. The input file Imt.am that we enter the
above data in is shown in Fig. 5.13. However, in this case, the self-consistent equations
fail to give a a bound state solution with 5f electrons in the core. The band structure
and the density of states for Americium in this scheme are shown in Figs. 5.14 and
5.15 respectively. According to similar calculations by Soderlind, et.al [65] the volume
obtained by treating the 5f-electrons as core electrons is only 26.6 AA3, which is about
10% less than the experimental volume.

Table-5.4 summarizes the results we obtain:

Method Equlibrium volume (in;lé)
LDA 20.3682
LDA+U, U=1eV 23.6460
LDA+U, U=2eV 26.1092
LDA+U, U=3eV 27.5871
LDA+U, U=4eV 28.7118
LDA+U, U=4.5¢V 29.2
LDA w/ 5f in core 27.97
Experiment 29.3

Table 5.4: Equilibrium volumes for Am in A°
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* ELEMENT: Am, Configuration 6s2/6p6/7s2/6d0/5f7
(SECTION=SORT)

name =Am ! element name
znuc =95 ! nuclear charge
zval =8 ! # of valence electrons
zsem =2 | # of semicore electrons
amas =243 ! atomic mass
Imaxb =2 ! Lmax for LMTO basis
(subsection=lmto)
! spdfg ! States
Maqn(:) 76655 ! Main quantum numbers
Bas(:) 11100 I LMTO basis set
Mnu(:) 33300 ! Choice of Enu
Enu(:) +0.5,40.5,40.5,4+0.5,40.5 ! Initial Enu
Dnu(:) -1.0,-2.0,-3.0,-4.0,-5.0 ! Initial Dnu
(subsection=semi)
nsem =1 | # semicore states
Isem =6s I'nl
(subsection=conf)
10rbital n 1 j #el. Levels(Ry)
1s1/2 10 1/2 2 -7850.4727
2s1/2 2 0 1/2 2 -1447.8048
2p1/2 2 1 1/2 2 -1394.6574
2p3/2 2 1 3/2 4 -1155.9321
3s1/2 3 0 1/2 2 -360.94632
3pl/2 3 1 1/2 2 -336.82037
3p3/2 3 1 3/2 4 -282.31668
3d3/2 3 2 3/2 4 -243.61142
3d5/2 3 2 5/2 6 -232.36490
4s1/2 4 0 1/2 2 -89.627118
4pl/2 4 1 1/2 2 -78.886649
4p3/2 4 1 3/2 4 -64.904609
4d3/2 4 2 3/2 4 -47.651517
4d5/2 4 2 5/2 6 -45.061490
4f5/2 4 3 5/2 6 -22.427601
4f7/2 4 3 7/2 8 -21.774721
5s1/2 5 0 1/2 2 -19.277471
5pl/2 5 1 1/2 2 -15.228066
5p3/2 5 1 3/2 4 -12.070072
5d3/2 5 2 3/2 4 -6.1802559
5d5/2 5 2 5/2 6 -5.7243980
5f5/2 5 3 5/2 6 -0.1227601
5{7/2 5 3 7/2 1 -0.1227601
6s1/2 6 0 1/2 2 -3.0330305
6pl/2 6 1 1/2 2 -1.9080418
6p3/2 6 1 3/2 4 -1.4078676
7s1/2 70 1/2 2 -0.3556810

Figure 5.13: Input file Imt.am for treating f-electrons as core.
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Am -- LDA w/ 5f-electrons in core
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Figure 5.14: Energy bands of Am treating 5f electrons as core
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Figure 5.15: DOS of Am treating 5f electrons as core
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5.3 LDA4+DMFT method

The equilibrium volume of Americium predicted by LDA+U is in good agreement with
experiment. However it fails to predict the correct zero magnetic moment. We now
apply the LDA4+DMFT method described in chapter 3 to calculate the band structure
of americium.

To solve the impurity model, we use a method that is based on the Hubbard-I
approximation. We do a full self-consistent calculation, where the charge density is
recomputed after the DMFT loop and is fed back to the routine that calculates the

potential and then the new LDA Hamiltonian.

5.3.1 Hubbard-1 method

The starting point of the Hubbard-I approximation is the atomic limit. We first find
the Green’s function for the atomic Hamiltonian using the equation of motion method
for the Hubbard operators. We then express the impurity Green’s functions in terms
of the atomic Green’s function and the hybridization A(iw).
We start with a impurity model that has the form H = Hasom + Hpand + Hayp-
Huom = Y. ey findome +U > L fun b i
W=5/2,7/2 LU=5/2,7/2

m=1...(21+1) m,m’
m/=1...(2l' +1)

— T
Hyana = Y €tnCliCir
Ik

Hpyyo = Y View(f) o + hec.) (5.1)
Wk

Here 1,1’ label the two bands that are split due to spin-orbit coupling. These two
bands have the j-quantum number as 5/2 or 7/2. Notation: The band with [ = 5/2
and is 6-fold degerate and that with [ = 7/2 and is 8-fold degenerate. Thus m,m’ label
the degeneracy and run from 1 to (25 + 1). Since the impurity level matrix el};/mm/ has
off-diagonal terms as zero, the first term simplifies to >, . elf fle Jim- Hpyp is due to
the hybridization between the conduction electrons and the localized f electrons. The

hybridization function can be written as A (iw) = >, Vi& /(iw — k).
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In the case of Americium, due to the above degeneracy, we have a SU(6) x SU(8)
symmetry. With this, the impurity Green’s function in the Hubbard-1 approximation

becomes

(G (iw)] =[Gt (iw)] ™ — Ay(iw) (5.2)

The atomic Green’s function G4 is given by

" (C8,Chy, [ ET o BIT)) /7

14
Gat . — n—ni 9.3
i (iw) Z_% nz;o PSS o (5.3)
= nizﬁ
(n—mq)<8

where Ej, is the energy of an atom with n total number of electrons, ny in level [ =1

and n —nq in level [ = 2 is given by :

Epp = En+¢ +Un (5.4)

—1
E, = 7(](” 5 n + n1e{ + (n— nl)eg (5.5)

The numerator in (5.3) denotes the probability of finding an atom with n total number

of electrons, nq in level [ = 1 and n — ny in level | = 2. C’Sl and Cﬁ,m are the

combinatorial coeflicients. Z is a normalization factor for the probability given by

14 n
7 = Z Z cs cs_ e BT (5.6)
n=0 n1zg
nys

(n—n1)<8
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5.3.2 Tight-binding calculation

We first do a tight-binding calculation for the band structure of americium. We generate
the hop file that gives the hopping integrals and positions of the impurity levels. We
then run the LMTART program in the tight-binding mode and calculate the bands and
density of states.

Experimentally, Americium has zero magnetic moment with 6 electrons in the j =
5/2 state. Thus from the tight-binding calculation, we choose a model with two bands

— band 1 corresponding to j = 5/2 and band 2 that has j = 7/2:
Hrp = ticle; + taches + 61f1Tf1 + 62f2Tf2 (5.7)

where ¢; and ¢y are the operators for the conduction electrons in bands 1 and 2 re-
spectively, and f; and f5 are the operators for the f-electron. The parameters 1,9, €]
and €9 are chosen so that the bands from the tight-binding calculation match the bands
from the fully self-consistent LDA calculation. We find that the other hoppings are
negligible compared to ¢; and 9. Figs. 5.16-5.19 show a comparison between the den-
sity of states obtained from the tight-binding calculation and those obtained from the
LDA self-consistent calculation.

Figs. 5.20 and 5.21 shows how the tight-binding parameters change as a function of
pressure. In the calculation, we reduce the relative volume V/Vj, thus applying pressure
on the system. As the pressure is increased we find that the parameters increase.

We then perform a DMFT calculation on the above model, using the Hubbard-I
impurity solver described in Chapter 3. A plot containing the density of states for
different values of U obtained from LDA+DMFT on the above model is shown in Fig.
5.22. As U is increased, we see the increase in the gap between the occupied and the

unoccupied states.
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Figure 5.16: Comparison of DOS : LDA and Tight binding methods
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Figure 5.19: Comparison of DOS : LDA and Tight binding methods
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Figure 5.20: Impurity level (w.r.t Er) as a function of relative volume
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Figure 5.21: Tight binding hoppings as a function of relative volume
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5.3.3 LDA+DMFT Results

The above tight-binding model for Americium correctly describes its natural state. We
now perform a full self-consistent LDA+DMFT calculation on Am, with the effects of
spin-orbit coupling included. We use the Hubbard-I solver explained in section(5.3.1)
as the impurity solver.

In Figs. 5.23 we plot the total energy (-61102Ry) as a function of relative volume

at U = 4.5e¢V. The volume V} is chosen to be the experimental volume.

G——o0 from insulating solution .
s=——=a from metallic solution

Energy (-61012 Ry)

AN

-2.2 r .

_2.3 L | L | L | L | L 1 L 1 L
0.5 0.6 0.7 0.8 0.9 1 11 1.2

VIV

0

Figure 5.23: Energy vs. relative volume

The equilibrium volume is predicted correctly by the LDA+DMFT method, similar
to the equilibrium calculation in the LDA+4U method. The curve with circles is obtained
from the high volume side, gradually decreasing the volume and using the self-consistent
results from the previous run for the next. The curve with squares is obtained starting
from the low volume side, and gradually increasing the volume. We find a region near

V/Vy = 0.7 where there are two different energies for the same volume. The pressure,
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i.e., the derivative of energy w.r.t. volume OE/OV is plotted as a function of relative
volume in Fig. 5.24.

The region of the where there is a discontinuity in the solutions can be thought of as
a coexistence region for the metallic-like and the insulating-like phases of the material.
This is a strong indication of the a Mott transition where the 5f electrons undergo a

change of character from localized to delocalized as we increase the pressure.

50

¢ LDA+DMFT
(G-© Experimental data

Pressure (GPa)
w
o
T

N
o
T

0.5

Figure 5.24: Pressure vs. relative volume

We now turn to how the Americium 5 f-density of states behave as we apply pressure
on the system. The DOS calculated from LDA is shown in Fig. 5.27. As we saw in
sections 5.2 and 5.2.2, LDA neither correctly predicts the position of the 5f peak nor
the equilibrium volume. However, as we apply pressure we see that the DOS start
broadening.

We need to include the effects of U to correctly predict the 5f-peak and the equi-
librium volume. At U = 4.5eV, the value of the interaction which gives the correct

equilibrium volume, we find that the position of the 5 f-peak is at 3.8eV below the Fermi
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level. In order to fix the 5f-peak at its experimental value, we use the interaction in
the double counting term U, or Upc as a parameter. Fig. 5.28 shows the evolution of
the DOS with pressure at U = 4.5¢V when Upc is kept at the same value as U. It
turns out that to have the 5f-peak at its experimental value of 2.8eV below the Fermi
level, we need Upc to have a value slightly less than U, namely, Upc = 4.1eV. In
Fig. 5.31 we see how the DOS evolves with pressure for the parameters U = 4.5¢V and
Upc =4.1eV.

At the equilibrium volume V/V = 1.00, we see two Hubbard bands separated by an
energy difference that accounts for U as well as spin-orbit coupling. The filled 5 f-band
below the Fermi level has 6 electrons and the unoccupied band above the Fermi level
contains 8 electrons.

We have plotted the total density of states as well as the 5f density of states. We
can see that under pressure the highly localized 5f-bands start widening and merging
into each other. When V/Vy = 1.00 we see that the 5f states do not contribute
much at the Fermi level. Most of the weight at low pressures is due to the s,p and
d electrons, shown in grey in the figure. As the pressure is increased, the ratio of 5f
states to the total DOS near the Fermi level increases. Near V/Vy = 0.75 we observe
a spreading out of the DOS that signals a transition to a metallic state. Since the
Hubbard-1 approximation essentially starts with an atomic solution, it always predicts
the existence of two Hubbard bands for an arbitrarily small U. It fails to predict a
sharp quasiparticle peak for a metallic state. However we do see a finite and increasing
but wide distribution of states at the Fermi level as we increase pressure. In Fig. 5.34
we see the total and partial 5f-density of states at the Fermi energy, and in Fig. 5.35
we see the ratio between the 5f-DOS and the total DOS plotted as a function of the

relative volume.
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5.4 Summary and Conclusions

We have calculated the electronic band structure of Americium using the LDA+4U
method and the LDA4+DMFT methods. The LDA+U method gives consistent results
with photoemission spectra and equilibrium volume of Am. However we fail to get the
correct magnetic moment in Americium using LDA+U. Americium is in a J = 0 non-
magnetic ground state due to spin-orbit coupling. However, the LDA+U computation
predicts a half-filled shell and a magnetic moment of 7 up.

We then use the LDA+DMFT method to compute the structure and volume of Am.
We can correctly predict the position of the 5f-peak as well as the correct equilibrium
volume of Am. On applying pressure, we observe a hysteresis loop in the energy-volume

curve which strongly indicates the proximity to a Mott transition.
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Chapter 6

Summary and conclusions

In this thesis we have numerically studied aspects of the Mott transition in model
Hamiltonians as well as in real materials.

In chapter 2, we introduced the idea of the Mott transition, that is, a first order
metal-insulator transition driven by electron correlations. We applied the dynamical
mean-field theory (DMFT) to study a simple model Hamiltonian: the degenerate Hub-
bard model. Based on numerical calculations of the behavior of the particle occupation
number as a function of doping, we mapped out the phase diagram of the Hubbard
model in the paramagnetic regime. We found a region of coexistence between metallic
and insulating phases at finite temperatures. Furthermore, we showed that at small but
finite doping, the compressibility diverges at the Mott endpoint. Our model calculations
were found to be relevant to the a-vy transition in Ce.

We briefly shifted gears in chapter 3 and gave an overview of various density func-
tional methods, which are first-principles methods in the sense that no empirical param-
eters (other than atomic charges and lattice structure) are needed to predict physical
properties of materials. Density functional theory in the local density approximation
(LDA) has had considerable success in understanding electronic structure of weakly in-
teracting solids. We then moved on to describe methods that go beyond LDA, in order
to deal with strongly correlated materials. We focused on two such methods: LDA+U,
where U is the Coulomb interaction, and the LDA4+DMFT which uses LDA to describe
the light s,p (or s,p,d) electrons and DMFT to treat correlated d and f electrons.

Chapters 4 and 5 contain applications of the two theoretical approaches we discussed

so far: a many body Hamiltonian approach combined with first-principles calculations.
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We used these techniques to study the electronic structure and properties of two ma-
terials that have strong correlations due to f-band electrons.

In chapter 4, we investigated YbRhySis , a heavy fermion compound that exhibits
many deviations from Fermi liquid behavior due to interactions between the local-
ized 4f—electrons in the Yb3* ion and the conduction band formed by the s,p and d
electrons. We used the LDA+U technique to determine the electronic structure and
magnetic properties of YbRhsSis . In the process, we did a careful study of the so-called
double-counting term, that is, the energy that needs to be subtracted from the LDA+U
functional, since part of the correlation energy is already present in the LDA functional.
As the double-counting term was too large in the standard LDA+U functional, we failed
to obtain the correct magnetic ground state of YbRhsoSis . We presented a prescription
to rectify the situation: we used the interaction Uy, in the double counting term as a
different parameter compared to the interaction U in the LDA4U functional. Keeping
Uy slightly smaller than U predicted the correct band structure and magnetic moment
of YbRhsSis . We also successfully calculated the magnetic anisotropy energy in this
material, which is very large.

In chapter 5, we returned to the idea of the Mott transition. We used LDA+U and
LDA+DMFT methods to examine the delocalization-localization transition of 5f elec-
trons in elemental Americium. This material, which borders Plutonium in the periodic
table, has been the subject of a number of theoretical and experimental investigations.
We put into practice the insights we gained from chapter 4 regarding the double count-
ing term to correctly predict the photo-emission spectra. The LDA+U calculation
predicted the correct equilibrium volume but not the correct magnetic moment. We
then applied the LDA+DMFT technique, using the Hubbard-1 method as the impurity
solver for the DMFT loop. We obtained strong evidence for the existence of a Mott

transition without a large volume collapse.

Outlook

The Mott transition in Americium can be better understood if we use different struc-

tures for the different phases. In our calculations we used an impurity solver that
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is computationally fast, but the price we paid is perhaps an oversimplification of the
physical picture. The Quantum Monte Carlo method, that we studied in chapter 2,
is exact, but expensive in terms of computation time. A better impurity solver that
is also fast is required in order to investigate complex materials. In addition, a first
principles approach to determine the interaction parameters and the double-counting

corrections will complete the picture of ab-inito many body calculations.
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