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ABSTRACT OF THE DISSERTATION

Mott transition in strongly correlated materials: a

realistic modeling using LDA+DMFT

by Sahana Murthy

Dissertation Director: Professor Gabriel Kotliar

We study aspects of the Mott metal-insulator transition in simple models and in real

materials. We first investigate the density-driven Mott transition in the degenerate

Hubbard model within the framework of dynamical mean-field theory (DMFT). We

demonstrate the divergence of compressibility near the finite temperature transition

endpoint using quantum Monte Carlo simulations. We show that our results are relevant

to the α-γ transition in Cerium.

In the latter part of the thesis, we use a combination of density functional methods

with local density approximation (LDA) and many body techniques such as DMFT to

realistically model two materials with strong correlations. We compute the band struc-

ture and spectra of YbRh2Si2 which has an antiferromagnetic ground state. YbRh2Si2

is known to have a strong anisotropy in its magnetic response with respect to its crys-

tal structure. We determine magnetic anisotropy energy of YbRh2Si2 from its total

energy. Using LDA+DMFT methods we calculate the spectra and equilibrium volume

of Americium. We show that on applying pressure, a Mott metal-insulator transition

takes place in Americium which is in accordance with experimental studies.
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Chapter 1

Introduction

The understanding of the structure and properties of materials, the relationship between

their phases and the mechanism that gives rise to transitions between the phases have

been the focus of a number of theoretical and computational investigations in solid state

physics. There have been two main approaches that have contributed to progress in

determining the structure and properties of materials: studies of model Hamiltonians

and first-principles or ab-initio calculations. We can learn aspects of universal behavior

of systems by studying simple models. For example, critical exponents of measurable

quantities such as heat capacity and susceptibility derived from the Ising model are

applicable to a wide variety of systems. On the other hand, non-universal features

require detailed modeling that involve particulars such as atomic charge and crystal

structure. This thesis deals with the realistic modeling of strongly correlated materials

using tools from both the approaches.

Model Hamiltonians have proved to be very useful in understanding materials with

strong correlation effects. These are materials in which there is a competition be-

tween the kinetic energy and the interaction energy of electrons. Strong correlation

effects arise due to partially filled d and f shells in the atoms constituting the ma-

terials. Strongly correlated materials exhibit interesting physical properties such as

high temperature superconductivity, anomalous behavior in resistivity, specific heat

and transport properties. Examples of strong correlation effects are seen in high tem-

perature superconductors such as copper oxides, Uranium and Cerium based heavy

fermion systems, colossal magnetoresistance materials such as manganites and carbon

based compounds such as bucky balls and carbon nanotubes.

The Mott-Hubbard metal-insulator transition [1] is another important effect induced
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by strong correlations. It has been observed in V2O3 [2], pyrites such as Ni(Se,S)2 [3],

and layered organic conductors [4]. It is a difficult problem to treat theoretically since

the electron kinetic energy and interaction energy are of the same order. Since there

is no natural small parameter, standard perturbative techniques fail. The dynamical

mean-field theory (DMFT) [5] is a framework in which both localized bands in the

insulating phase and quasi-particle bands in the metallic phase are treated on an equal

footing. It is exact in the limit of infinite dimensions. In particular, DMFT studies

of the Hubbard model have been successful in understanding some universal aspects

of the physics of the Mott transition such as high temperature behavior near Mott

endpoint [], phase diagram at integer occupation [] and transfer of spectral weight near

the transition [6, 7]. However, the main drawback of studying models is that physical

quantities such as interaction strength and doping need to be treated as parameters.

A different approach to studying electronic structure of solids is based on first-

principles (or ab-initio) techniques. There are no empirically adjustable parameters

here. The input to these calculations consists only of atomic charges and crystal struc-

tures, hence a detailed modeling of the solid is possible. The most widely used tool in

ab-initio calculations is Density Functional Theory [8,9], especially in the Local Density

Approximation (LDA) or Generalized Gradient Approximation (GGA) [10]. Density

functional methods have been tremendously successful in treating weakly correlated

materials such as simple metals and semi-conductors. They provide a simple concep-

tual picture of the ground state and correctly predict excitation spectra and transport

properties in such materials. However, these methods often fail to capture the correct

physics in strongly correlated materials.

In recent years, a combination of Local Density Approximation and dynamical mean-

field theory (LDA+DMFT) has been successfully used to study strongly correlated

materials [11, 12]. In this approach, the light s, p (sometimes d) electrons which have

extended wave functions are treated by LDA. The localized d (or f) electrons are treated

in the DMFT framework. This method can be used to calculate excitation spectra and

total energy as well as correlation functions. Theoretically, the LDA+DMFT method

can be constructed from an effective action point of view [13] where the free energy is
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a functional of the local Green’s function and the density. Other extensions to LDA

have also been tried: LDA+U [14–16], which has been shown to be a static limit of

LDA+DMFT [17] and LDA+GW [18, 19] which is a perturbative calculation starting

from LDA spectra.

LDA+DMFT has proved to be a powerful tool for the realistic modeling of strongly

correlated electron systems. There have been various successes: Phase diagram of

plutonium [20], α-γ transition in the 4f electron system Cerium [21, 22], optical and

transport properties of La1−xSrxTiO3 [23,24], Mott Hubbard metal-insulator transition

in V2O3 [25] to name a few. This thesis is an attempt to understand the structure and

properties of two strongly correlated materials using the above methods, with a focus

on the metal-insulator Mott transition.

This thesis is organized as follows:

In chapter 2 we begin with the physical ideas behind the Mott transition. We

introduce the the Hubbard model. We go through the mechanism behind dynamical

mean-field theory and its mapping to the impurity model. We then describe one of

various ways to solve for the properties of the impurity model. This is the quantum

Monte Carlo technique, which is exact, but computationally difficult for accessing low

temperatures. Studying the behavior of the system as a function of various parameters,

we look into the details of the finite temperature doping driven Mott transition. We

concentrate on the behavior of the charge compressibility near the transition.

Chapter 3 serves two purposes. In the first part, we briefly review density functional

theory from an effective action point of view. We discuss existing density functional

methods that go beyond the standard LDA technique, and can be used when strong

correlations are present. These are the LDA+U and LDA+DMFT methods. We outline

the numerical implementation of another impurity solver for the DMFT loop, the so-

called Hubbard-1 approximation, which we will employ in a later calculation. The latter

part of 3 is devoted to the details of our computation scheme. We describe the various

input files that are required in the computer program.

We then turn to applications of the above methods to real materials in the lan-

thanide and actinide series. In chapter 4 we study the ground state and magnetic
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properties of a heavy fermion compound YbRh2Si2 . We also propose a procedure in

the LDA+U implementation, that improves results for the ground state properties. The

theoretical tools we discussed, the physical concepts behind the Mott transition and the

insights we gained into the details of the band structure calculation all come together

in chapter 5. We use the LDA+DMFT technique, with the Hubbard-1 impurity solver,

to investigate the structure, equilibrium volume, and details of the Mott transition in

elemental Americium.

We conclude in chapter 6 with a summary of the thesis, and directions for future

work.
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Chapter 2

Finite temperature Mott transition in the degenerate

Hubbard model

The Mott transition is a metal-insulator transition that is driven by electron-electron

interactions [1]. It occurs when the ratio of the electron interaction strength to the band-

width is increased. Experimentally, this phenomenon is realized in many compounds

such as V203 [2], Ni(Se, S)2 [3,26] and the family of organic conductors κ-BEDT [4,27].

On the theoretical side, the Hubbard model is among the first, and perhaps the sim-

plest model that can capture the essential physics of the transition. In recent years,

tremendous theoretical progress has been made in understanding the Mott transition

by applying the dynamical mean-field theory (DMFT) [5] to the Hubbard model. In

this chapter, we study finite temperature aspects of the doping driven Mott transition

in the Hubbard model, and the behavior of the compressibility near the Mott endpoint

within the DMFT approach.

2.1 The Mott transition

Experimental evidence

The classical system in which a Mott transition is observed is V203 doped with Cr or

Ti [2]. The transition can be driven by varying pressure, chemical potential (or doping)

and temperature. Recently, a first order metal-insulator transition was observed in the

organic superconductor κ-(BEDT − TTF)2Cu[N(CN)2Cl, as a function of hydrostatic

pressure [28]. The study shows a large softening of sound velocity of the material near

the critical point. The sound velocity is proportional to the square root of compressibil-

ity, hence a sharp decrease in the velocity points to a divergence in the compressibility.
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Fig. 2.1 shows the phase diagram and the dip in sound velocity in this system.

Figure 2.1: Left: Temperature versus pressure phase diagram of κ-
(BEDT − TTF)2Cu[N(CN)2Cl for different crystals. The grey circle near 200
kBar represents the critical point. Right: relative sound velocity (w.r.t. its value at
90K) as a function of temperature at various pressures. From D. Fournier et. al. [28].

It has been suggested by B. Johansson [29] that the Mott transition concept is also

relevant to lanthanide and actinide materials. The α-γ transition in Cerium shows

certain universal features that are common to other systems in which a metal-insulator

transition is observed. For example, Beecroft and Swenson [30] measured a large de-

crease in the compressibility in the transition from the insulating low-pressure phase

(γ-Ce) to the metallic high-pressure phase (α-Ce). Fig. 2.2 shows the pressure-volume

isotherms for the α-γ transition in Ce.

Figure 2.2: Relative volume as a function of pressure in cerium. From Beecroft and
Swenson [30]
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Theoretical understanding

From a theoretical point of view, the electronic structure of solids has been well under-

stood in two limits. When the overlap between electron orbitals is large, a wave-like

description is relevant, and band theory accounts for most of the properties of the solid.

At the other end, when the electron orbitals are far apart, a real-space description in

terms of localized atomic wave-functions is valid.

Strongly correlated materials fall away from either of these limits. Strong correla-

tion effects arise due to the dual character of the electron: wave-like and particle-like.

In other words, there is a competition between the kinetic energy and the electron-

electron interaction energy. One of the earliest models that was proposed to capture

the effects of strong correlations in d and f -band materials was the Hubbard model [31].

However, it has been solved exactly only in one dimension, where there cannot be a

finite temperature phase transition.

Standard methods such as perturbation theory fail in the strong correlation problem

since a method that can simultaneously treat itinerant and localized nature of electrons

is required. One such framework that can describe both metallic (itinerant) and insu-

lating (localized) phases is dynamical mean-field theory [5]. DMFT can be regarded as

the quantum analog of the classical mean-field theory for magnetism. The essence of

the method is to replace the interactions of an electron at a lattice site with its neigh-

bors by an effective interaction with an average field. This effective field represents the

dynamic state of the neighbors.

In the DMFT framework, the metal-insulator transition (MIT) can be interpreted

as arising from bifurcation points of a functional of the local Green’s function. The case

of the correlation driven MIT at half-filling, is now well understood. At temperature

T = 0 there are two bifurcation points, one denoted by Uc1(T = 0) where the insulating

solution disappears, and the other denoted by Uc2(T = 0) where the metallic solution

disappears [32]. It was found that in the U -T phase diagram of the frustrated Hub-

bard model, there is a region where two mean-field solutions, one metallic-like and one

insulating-like can be obtained. This region is delimited by the Uc1(T ) and Uc2(T ) lines
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as shown in Fig. 2.3. Within the region there is a first-order MIT line [33,34] that ends

in a finite temperature second-order critical point (UMIT , TMIT ) with a rapid variation

of the susceptibility connected to the double occupancy [6,35]. At higher temperatures

the Uc2(T ) and Uc1(T ) lines become crossover lines.

T

U
Uc2Uc1

µ = U/2

Figure 2.3: Phase diagram of Hubbard model at the particle-hole symmetric point
µ = U/2. The solid lines denote Uc1(T )(left) and Uc1(T )(right). The dashed line
denotes the first order transition line. The black circle at the top is the position of the
second-order transition (UMIT , TMIT ).

The doping driven MIT at zero temperature was studied in [36]. It was shown that

there are two solutions in an area bound by the curves µc1(U), where the insulating

solution disappears, and µc2(U), where the metallic state disappears. The finite tem-

perature aspects of the doping driven Mott transition will be the subject of this chapter.

We will concentrate on the paramagnetic phase, and will not consider effects of long

range order.

We will also discuss the behavior of the charge compressibility near the Mott end-

point at finite temperatures. The compressibility is known to diverge at the density

driven MIT in two dimensions at T = 0 [37]. This behavior has also been observed

on other models of correlated electron systems such as the t-J model indicating that

this phenomenon is quite general [38]. Simple models of the Mott transition, such as

the Gutzwiller approximation or the slave-boson approach predict a finite compressibil-

ity [39]. It is important to understand the physical origin of this result, and to see if it
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is realized in the DMFT solution of the Hubbard model. The previously investigated

bifurcation points within the DMFT, have either a finite charge compressibility, such

as in the T = 0 density driven Mott transition, or a vanishing charge compressibility,

as in the T = 0 correlation driven transition.

2.2 The Hubbard model

We begin with a general Hubbard Hamiltonian that has m-band degeneracy. Since we

will be working in the grand canonical ensemble, we introduce a chemical potential in

the Hamiltonian, given by:

H = −
∑

{i,m,σ}

tmm′
ij c†imσcimσ+

1

2

∑

i,m,m′σ

Unimσnim′−σ+
1

2

∑

i,m6=m′σ

Unimσnim′σ−µ
∑

imσ

nimσ

(2.1)

Here c†imσ creates an electron in a state localized at site i with orbital index m and

spin σ =↑, ↓. The first term describes the hopping between nearest neighbor sites 〈ij〉

where the hopping integral t has been assumed to be independent of the site indices.

The parameter U is the on-site Coulomb repulsion, namely, the energy cost associated

with having a double occupancy on each site. nimσ = c†imσcimσ is the particle occupation

number. t and U have been assumed to be independent of the band indices. This model

is particle-hole symmetric when µ = (2m−1)U
2 .

2.3 Dynamical mean-field equations

The central idea of this method is to map a lattice model with many degrees of free-

dom, such as the Hubbard model in Eqn. (2.1), onto a one-site impurity model with

fewer degrees of freedom [5]. This is supplemented by a self-consistency condition that

determines the effective bath (effect of the other degrees of freedom) with which the

impurity interacts. This approach can be shown to be exact in the limit of infinite

dimensions d→ ∞, or large lattice coordination number z, with an appropriate scaling

of parameters [40].

We consider the Hubbard model in (2.1) on a Bethe lattice with large connectivity

z. A semi-circular density of states ρo(ε) = ( 1
2πt2

)
√

4t2 − ε2 is obtained where D=2t is
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the half-bandwidth. In this case, we can write the effective action for this model as:

Seff =

∫ β

0
dτ

∫ β

0
dτ ′

∑

〈ij〉,m,σ

c†imσ(τ)G−1
0mσ(τ − τ ′)cjmσ(τ ′)

+
U

2

∫ β

0
dτ





∑

i,m,m′,σ

nimσnim′−σ +
∑

i,m6=m′,σ

nimσnim′σ





(2.2)

In the d → ∞ limit the above lattice model is mapped on to the degenerate Anderson

impurity model.

HAM = H0 +HI (2.3)

H0 =
∑

k≥2,m,σ

εkmc
†
kmσckmσ +

∑

k≥2,m,σ

(Vkmc
†
kmσfm + h.c) +

∑

m

(Ef + (2m− 1)/2U)nmσ

(2.4)

HI = U
∑

m<m′,σ

{

nmσnm′σ − 1

2
(nmσ + nm′σ)

}

(2.5)

The Weiss function G0m in Eqn. (2.2) is given by a self-consistency condition

G−1
0m(iωn) = iωn + µ− t2Gm(iωn) (2.6)

Here G(iωn) is the local Green’s function for the impurity. The conduction orbitals

have index k = 2, N and the impurity f−orbital corresponds to k = 1. ckm and c†km are

the band electron annihilation and creation operators, Vkm is the hybridization between

the band and the impurity electrons. nm = f †mfm is the occupation number for the

impurity electrons and Ef is the f-level energy.

In terms of the hybridization function ∆m(iω) =
∑

k

V 2
km

iω − εkm
the DMFT equation

for the Bethe lattice can be written as

t2Gm(iω)[∆] = ∆m(iω) (2.7)

The coupled problem of finding the impurity Green’s function G and the Weiss

field G0 is solved iteratively until required convergence is reached. Impurity models

have been intensely studied for the past few decades, and a number of analytical and

numerical tools exist to tackle them. In the next section, we focus on one numerical

method: the Quantum Monte Carlo (QMC) algorithm by Hirsch and Fye [41], to obtain

the Green’s function G.



11

2.3.1 Hirsch-Fye Quantum Monte Carlo algorithm

We discretize the time interval [0, β] into L slices of length ∆τ such that

∆τl = l∆τ, l = 1, 2, · · · , L and β = L∆τ .

The partition function is

Z = Tr exp{−βH} = TrΠexp{−∆τ(H0 +HI)} (2.8)

Using the Trotter formula, the discretized partition function is

Z ' Z∆τ = TrΠexp{−∆τH0} exp {−∆τHI} (2.9)

The discretized Green’s function is

G∆τ
m,k1,k2

(τl1τl2) =
〈

T (cmk1(τl1)c
†
mk2

(τl2)
〉

1

Z∆τ
Tre−βHcmk1(τl1)c

†
mk2

(τl2)

(2.10)

for l1 > l2. We then use a discrete Hubbard-Stratonovich transformation to decouple

the quartic interaction in HI [42].

exp

[

−∆τU

(

nmnm′ − 1

2
(nm + nm′)

)]

=
1

2

∑

Smm′=±1

exp
[

λSmm′(nm − n′m)
]

(2.11)

where coshλ = exp(∆τU/2) and Smm′(τl) are auxiliary Ising-like fields at each time

slice. This transformation renders HAM quadratic in Smm′{τl}.

Using (2.11) we write the partition function as

Z∆τ [{Smm′}] = Tr{Smm′}

∏

m

detOm[{Smm′}] (2.12)

Here O[{Smm′}] is a NL × NL (N being the number of conduction orbitals, and L

being the number of time slices) matrix defined as

(Om)l,l = I

(Om)l,l−1 = −e(−∆τH0m)e(V
m
l−1)(1−2δl,1) (2.13)

(Om)l,l′ = 0 otherwise

with V l
m = λ

∑

m6=m′

Smm′(τl)|m〉〈m| for m < m′.
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For the auxiliary spin dependent Green’s function, we have

G∆τ
m [{Smm′}] = O−1

m [{Smm′}] ≡ Gm (2.14)

We then get a relation between Green’s functions for two different configurations.

G−1
m = AmGm (2.15)

where Am = 1 + (1 −Gm)(eV
′

m−Vm − 1). (2.16)

This is a L× L matrix equation.

If we now make only one local change in the field at one time slice such that two

configurations differ by a single spin

Smm′ → S′
mm′ for m > m′

→ −S′
mm′ for m < m′

the above equations are simplified. exp{V ′
m − Vm} has only one non-zero diagonal

element at the l − th part of the matrix O. A−1
lk = 0 for l 6= k and detAm = Am

ll =

1 + (1 −Gm
ll)(exp{V ′l

m − Vm
l} − 1).

We would also need to calculate the Boltzmann ratio of two different configurations

which for a single spin flip is given by :

R =
∏

m

Rm

Rm =
det(O′

m)

det(Om)
= det

[

I − (Gm
ll − I)

(

exp{V ′
m − Vm} − I

)

]

(2.17)

Again, for a single spin flip, this simplifies to

Rm = RmRm′

Rm = 1 − [Gf
m(l, l) − 1][exp(−2λSmm′ − 1)]

Rm′ = 1 − [Gf
m′(l, l) − 1][exp(2λSmm′ − 1)]

The f -Green’s function simplifies to :

G′f
m(l1, l2) = Gf

m(l1, l2) + [Gf
m(l1, l) − δ1][exp(−2λSmm′ − 1)]

1

Rm
Gf

m(l, l2) (2.18)

G′f
m′(l1, l2) = Gf

m′(l1, l2) + [Gf
m′(l1, l) − δl1][exp(2λSmm′ − 1)]

1

Rm′

Gf
m′(l, l2) (2.19)
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The physical Green’s function is then calculated as an average of the spin-dependent

Green’s functions.

Gphysical
m =

1

Z

∑

Smm′

Gm[{Smm′}](τl) detOm[{Smm′}] (2.20)

2.3.2 Implementation

The practical implementation of the above procedure involves the following steps:

• We start with a guess for G0m and an arbitrary configuration of spins.

• In the first iteration we invert the matrix Om to obtain Gm{Smm′(τl)}.

• For the subsequent iterations we change the configuration using a single spin-flip.

We calculate the ratio R. If R is greater than a random number (between 0 and

1) chosen we accept the flip and calculate Gm{Smm′(τl)}. Otherwise we generate

the next configuration.

• Every 100 iterations we start the spin configuration chain again by equating all

auxiliary spins to zero and calculating the inverse of Om. This is done to check

that the precision has not degraded.

• We then use the self-consistency condition

G−1
0m(iωn) = iωn + µ− t2Gm(iωn)

to calculate the new Weiss field G0m(new)

• The G0m(new) thus calculated is fed back into the QMC algorithm in the next

step of the iteration.

• This process is iterated till Gm and G0m converge.
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Figure 2.4: Hirsch-Fye Quantum Monte Carlo algorithm
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2.4 Results

We use the Hirsch-Fye QMC algorithm to obtain the impurity Green’s function and

iteratively solve the DMFT equations (2.3)-(2.6). Different phases can be obtained

depending on the values of the interaction parameters in the Hamiltonian (Eqn. 2.1).

In this section, we investigate the finite temperature aspects of the doping driven metal-

insulator transition.

2.4.1 Effect of doping

The total occupation number for the impurity electrons is computed from the Green’s

function. After the QMC runs stabilize, the full Green’s function G(iω) is checked to

see whether we have metallic or insulating behavior. Curves of the impurity occupation

number nf are plotted against the chemical potential µ.

Gm(τi, 0) = +
〈

T
(

cm(τi)c
†
m(0)

)〉

(2.21)

Gm(0+) −→ cm(0)c†m(0)

= 1 − c†m(0)cm(0)

= 1 − nm (2.22)

nm
f = 1 −Gm(0+) (2.23)

We concentrate on the paramagnetic case where n↑ = n↓ for a given band index m.

We plot the average occupation number nf as a function of the chemical potential µ

for various values of the interaction U . For the 1-band model, ∆τ = 0.5 for the 2-band

model, ∆τ = 0.25. all energies are in units of half-bandwidth D = 1.

The graph of occupation number nf versus the chemical potential µ at T = 1/32

and U = 1.5 for the 1-band model is shown in Fig. 2.5 (left) and that for U = 3.2

is shown in Fig. 2.5 (right). For smaller values of the interaction U the occupation

number is a smooth function of µ, that is, the system has metallic-like behavior. As U

is increased, a gap opens up in the nf -µ curve near half-filling, indicating the insulating-

like behavior of the system. Due to particle-hole symmetry in the 1-band model, we

use a shifted chemical potential µ̃ = µ− U
2 .
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Figure 2.5: nf vs. µ curves in the half-filled case for a single band with β = 1/T =
32,∆τ = 0.5, D = 1. The interaction has a value U = 1.5 (left) and U = 3.2 (right).

The 2-band results are shown in Fig. 2.6. We concentrate on the region near nf = 1

at T = 1/8. At this high temperature only one solution exists. However, as T is

decreased, we see a flat portion in the nf -µ curve at which the occupation number

remains close to 1 over a range of µ.

2.4.2 Coexistence between metallic and insulating phases

Coexistence in the 1-band model

In the region of intermediate U, at sufficiently low temperatures, we expect the metallic

and and insulating solutions to exist simultaneously. As we start doping the system

a little, the two phases should still coexist. However at high doping we expect the

insulating phase to become unstable and disappear. The existence of two phases should

result in two simultaneous values for nf at the same chemical potential. The nf versus

µ curve in Fig. 2.7 shows this coexistence at U = 2.44 and β = 1/T = 64 in the 1-band

model. At µ̃ = 0 , both the metallic and the insulating solutions are seen. Away from

half-filling, the two solutions give different values of nf . When the doping becomes

large, only the metallic solution survives.

In Fig. 2.7, to obtain the two different values of the occupation number, we start
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Figure 2.6: nf vs. µ curves at β = 8

from two different initial guesses or seeds in the QMC algorithm. The occupation num-

ber represented by circles (metallic behavior) are calculated by using a seed from low

U . We first start at high doping in a metallic state and continuously evolve towards

integer filling. The solution always remains metallic. To obtain the other solution, rep-

resented by triangles, we begin with the insulating solution at µ̃ = 0, n = 1 using a seed

from high U and gradually increase the doping. This state is essentially incompressible

as n almost remains constant while increasing µ. This can be continuously followed

as µ is increased, until the eventual jump of n towards the unique solution present at

the higher values of µ. This procedure is later used to determine the location of the

coexisting region [43] in the phase diagram. The Green’s functions corresponding to

these values of nf are distinct and are shown in Fig. 2.8.

As we increase the interaction to U = 4.0 we find that at µ̃ = 0 and T = 1/β = 1/64

only the insulating solution survives (Fig. 2.9. If we start from a large (hole) doping

where only the metallic solution survives and decrease the magnitude of the chemical

potential, we find that the metallic solution disappears at a value of the chemical

potential µ ≈ 1.07. At the same time, if we start at µ̃ = 0 where nf = 1 and increase

the magnitude of doping, the insulating solution disappears at a chemical potential
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Figure 2.7: Coexisting solutions for U=2.44, β = 64 in the single band case.
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Figure 2.8: Imaginary part of Green’s functions for U=2.44, β = 64
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µ ≈ 1.03. However at a higher temperature T = 1/β = 1/40 no coexistence between

metallic and insulating solutions is seen.
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Figure 2.9: Left: Occupation number for various values of β. Right: Occupation
number for β = 64 metallic and insulating solution

Coexistence in the 2-band model

We find coexisting metallic and the insulating solutions near nf = 1 at T = 1/40. In

Fig. 2.10 we see the nf versus. µ curves in the 2-band case for U = 3.0 at various

temperatures. As T is decreased, we see that the curves begin to acquire a sigmoidal

shape, which is a hallmark of the approach to a second-order critical point in Landau

theory of phase transitions.

As discussed in the 1-band case, we followed a careful procedure to obtain coexisting

solutions. At T = 1/40 two different solutions were found at the same chemical potential

µ = 1.2. The metallic solution (the circles in Fig. 2.10) was obtained using as starting

point, the solution for U = 2.8 and the insulating solution (the triangles in the n versus

µ curve in Fig. 2.10) was obtained by using the Green’s function at U=3.5 as the seed

(Fig. 2.11). Using these solutions the nf versus. µ curve slightly away from nf = 1

was obtained. The insulating solution disappeared for increased doping and away from

nf = 1.
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We then study the nature of the solutions as the temperature is raised. Each of the

metallic and the insulating solutions at T = 1/40 was used as a seed to determine the

solution at higher temperatures. It was found that the metallic solution disappeared

as the temperature was raised (to T = 1/32) near nf < 1 but the insulating solution

survived. However at µ = 1.25 for which nf > 1 it was found that both solutions

survived till T = 1/32. As the temperature was further raised, no coexistence was seen.

The Green’s function for the two phases at µ = 1.2 for T = 1/40 and T = 1/64 are

shown in Fig. 2.12.
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Figure 2.10: Particle occupation n function of µ for different temperatures in the 2-
band model at U=3.0. The top panel shows curves with T > TMIT and in the bottom
panel we have T < TMIT .
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Figure 2.12: Metallic and insulating Green’s function for U = 3.0 , β = 40(left) and
β = 64(right)

2.4.3 Convergence of solutions

We present a few technical details regarding the stability of the solutions, especially

near a phase boundary. To determine the convergence of the self-consistent solutions, we

examined the difference in the imaginary part of the self energy at the first Matsubara

frequency ImΣ(ω) as ω → 0 between two successive iterations i. The iterations were

halted when this difference ‖ImΣi+1(ω → 0) − ImΣi(ω → 0)‖ became smaller than a

threshold.

If we are away from the coexistence region, the solution converges in 12−15 iterations
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when the initial guess is close to the solution. At a lower value of U where there is

only one solution, the Green’s function converges in ∼ 20 iterations even with an initial

guess far from the true solution. Each DMFT iteration consists of 100000 Monte Carlo

sweeps. However, close to the coexistence region, the number of iterations required for

convergence becomes large. At the boundaries of the region, the number of iterations

is expected to become very large due to critical slowing down.

The convergence of the metallic Green’s function in Fig. 2.12 at U = 3.0, µ = 1.225

starting from the metallic seed is shown in Fig. 2.13(left). The convergence of the

insulating Green’s function in Fig.2.12 is shown in Fig. 2.13(right).
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Figure 2.13: Convergence of metallic (left) and insulating (right) Green’s function

2.4.4 Compressibility divergence

From the nf -µ curves, we compute the numerical derivative of the particle number with

respect to chemical potential, which is proportional to the compressibility. In the case

of the finite temperature doping driven MIT, we observe a divergence in compressibility

as we approach the second order transition point [44].

Fig. 2.14 shows the behavior of κ = ∆n/∆µ as a function of µ and T for U=4.0 in

the 1-band model. We can see that near µ = 1.07, which we identify as µc1 , κ increases

rapidly indicating a divergence near the phase boundary where the insulating solution

disappears. (Figs. 2.15 shows that as temperature is decreased κ−1 decreases rapidly

indicating a divergent compressibility as we pass through the MIT. The data for κ−1
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as a function of T was fitted to a power law. It was found that a power law type of

behavior κ−1 ∼ (T − Tc)
b with b ∼ 0.33 for U = 2.44. matches the data.
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Figure 2.14: 1-band model, U=4.0. Top: Compressibility as a function of chemical
potential. Bottom: Inverse compressibility κ−1 = (dn/dµ)−1 at U=4.0 in the 1-band
model as a function of T. The solid line is the function κ−1 ∼ (T − TC)b with b ∼ 0.47

2.5 Phase diagram

From the above numerical results we propose a schematic phase diagram for the Hub-

bard model, which for the 1-band case is shown is shown in Fig. 2.16. The regions of
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Figure 2.15: Left: Inverse compressibility κ−1 = (dn/dµ)−1 at U=2.46 in the 1-band
model. The solid line is the function κ−1 ∼ (T − TC)b with b ∼ 0.33. Right: κ−1 at
a constant doping n = 1.003 as a function of T in the 2-band model. The solid line is
a fit to a power law using the functional form κ ≈ (T − Tc)

b with the power b ∼ 1/3.
The intercept with the T−axis gives our estimate for Tc = 0.0288.

coexisting solutions are shown as cross sections of constant U in the (U, T, µ) parameter

space. The µ-axis starts at zero doping, thus n = 1 on the (U, T )-plane where µ̃ = 0,

which for the 1-band model is µ̃ = µ − U/2. At larger values of U , the regions of

coexisting solutions are two triangles, one for n < 1 and the other for n > 1. In the

1-band model, these triangular peaks are symmetric about µ = U/2. These triangles

are delimited by the µc1(T ) and µc2(T ) lines which correspond to the disappearance of

the insulating and the metallic solutions respectively. As U decreases, the triangular

regions approach each other and fully merge at U = UMIT . Further lowering U makes

the single triangular region diminish until U = Uc1(T = 0) where it vanishes.

The coexistence region in Fig. 2.7 curve at U = 2.44 and β = 1/T = 64 near µ̃ = 0

correspond to the region in Fig. 2.16 where UMIT < U < Uc2. For the parameters in

Fig. 2.7, we see that the metallic state exists all the way down to zero doping at µ̃ = 0.

This implies that for UMIT < U < Uc2, the µc2(T ) line does not go all the way to T = 0

in contrast to the case when U > Uc2 (Fig. 2.9).

The interaction U = 4.0 is greater than Uc2 in the 1-band model. Using our results

for U = 4.0 and those obtained in [45], we can map out the part of the phase diagram
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in Fig. 2.16 that corresponds to the parameter space where U > Uc2 and n < 1. In this

case, at zero doping, only the insulating solution survives at low temperatures. The

results are shown in Fig. 2.17.

The disappearance of the metallic or the insulating solutions is captured by the

critical slowing down of the solutions as shown in Fig. 2.18. As we approach the phase

boundaries of the coexistence region, it is seen that the number of QMC iterations

required for the solutions to converge increase. In Fig. 2.18 it is seen that starting

with the metallic solution at low doping, if we increase µ, the number of iterations

needed for the metallic solution to converge diverges , indicating that we are near the

µc2 boundary. Similarly starting with the insulating solution near half-filling, if we

decrease µ, i.e go far away from half-filling the number of iterations required for the

convergence of the insulating solution diverges. This indicates that we are close to the

µc1 boundary.

The phase diagram for the 2-band model shown in Fig. 2.19. is qualitatively similar

to the 1-band model except that the pairs of triangles at a given U do not have the

same height due to absence of particle-hole symmetry. The nf -µ curves in Fig. 2.10

correspond to the region in the phase diagram where UMIT < U<Uc2. As T is decreased,

the curves show a crossover from small to large compressibility.

2.6 Discussion

A common feature that emerges from the model is that, in the regions where two

mean-field solutions exist, the system has two different values of n for given T and µ.

Furthermore, these two solutions have different free energies and the actual thermody-

namic state of the system is that of minimum energy. Hence a jump in particle number

is predicted at a first order line. The determination of this line implies a precise cal-

culation of the free energy, which is technically difficult, and outside the scope of this

work.

In the T -µ-U phase diagram, the two mean-field solutions exist within the triangular

regions. A first order transition exists where the free energies cross. At finite T , this
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Figure 2.16: Schematic phase diagram for the 1-band Hubbard model. The cross sec-
tions are on the T −µ plane for different values of U with U increasing towards the top
of the figure. The peaks are symmetric about µ = U/2. µc1 and Uc1 are the chemical
potential and interaction respectively below which the insulating solution does not sur-
vive. µc2 and Uc2 are those above which the metallic solution does not exist. The black
circle denotes the second order transition point (UMIT , TMIT ) at n = 1. The shaded
regions denote the coexistence region between metallic and insulating phases.
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Figure 2.17: Phase diagram for U=4.0. The black circles denote are obtained from QMC
simulations. The dashed and the dotted lines denote µc1 and µc2 lines respectively.

leads to a first order transition surface between an insulating and a metallic-like state.

The intersections of this surface with the constant U cross sections are first order lines

that we denote by dashed lines in Fig. 2.16. At T = 0 within the coexistence regions,

i.e. the base of the triangles, the metallic state is always stable, thus one can cross the

first-order surface towards the insulator by either increasing T or changing the chemical

potential.

At finite T , the two solutions merge where the triangular regions end. Hence there

is a line of second order transitions where the first order surface ends (thick double-line

in Fig. 2.16. The doping is small but non-zero along this line except at U = UMIT .

Our numerical results show a divergence of compressibility on this line of second order

transitions. The idea of divergent compressibility at the Mott endpoint has been shown

to arise from general Landau theory arguments [46].

From the experimental viewpoint, we believe that our results highlight important
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Figure 2.18: Critical slowing down observed in the vicinity of µc1 and µc2 for the 1-band
model at U = 4.0, β = 64. The inverse number of iterations required for the metallic
solution to converge goes to zero as we near µc2 and those of the insulating solution to
converge goes to zero as we approach µc1. The arrows indicate the directions in which
the boundaries were approached.
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Figure 2.19: Schematic phase diagram for the 2-band case. There is an asymmetry in
the triangular peaks as compared to the 1-band case. The cross sections are on the T−µ
plane for different values of U as before. µc1 and Uc1 are the chemical potential and
interaction respectively below which the insulating solution does not survive. µc2 and
Uc2 are the chemical potential and interaction above which the metallic solution does
not exist. UMIT is the value of the interaction at which the metal-insulator transition
takes place. The shaded portions are the regions of coexistence between the metallic
and the insulating solutions.
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aspects in the α-γ transition in Ce. The divergence of compressibility in the Ce α-γ

transition has an electronic origin and can be understood from model calculations. The

decrease in compressibility that we found during the transition from the insulating to

the metallic phase is similar to what has been measured by Beecroft and Swenson [30].

2.7 Summary

We have shown that within the dynamical mean-field theory of the Hubbard model,

there is a region where the paramagnetic metallic and paramagnetic insulating phases

coexist. We have explored the coexistence region for the 1-band Hubbard model both

at the particle-hole symmetric point and away from it. For the 2-band Hubbard model

we have studied the region in phase space near the occupation number nf = 1. We

calculated the compressibility from the nf versus µ curve. We find numerical evidence

for a divergent compressibilty near the finite temperature Mott endpoint. Based on

our numerical studies we have proposed a phase diagram for the doped 1- and 2-band

Hubbard model. Our results are relevant to the Ce α-γ transition.
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Chapter 3

Density Functional Theory, LDA, LDA+U and

LDA+DMFT

In this chapter, we first briefly review the density functional theory (DFT) local density

approximation (LDA). We then discuss methods that go beyond the LDA to tackle

strongly correlated systems: LDA+U and LDA+DMFT. We also discuss the structure

of the LMTART program that is based on DFT methods.

3.1 Density functional theory

3.1.1 LDA

Density functional theory is a powerful tool to study weakly interacting systems. It is

the basis of the LDA and the LDA+U methods which are used to calculate the band

structures of materials. A brief description of DFT from the effective action point of

view is presented here [8], [9], [47].

Consider a fermionic system that is coupled to an external source J(x). The Hamil-

tonian is

H = H0 +

∫

dx3ψ†(x)J(x)ψ(x) (3.1)

where H0 is the Hamiltonian without the source. The partition function is

Z = exp[−W [J ]] =

∫

D[ψψ†] exp−
∫

dtL (3.2)

where L is the Lagrangian.

For the system consists of electrons moving in a crystal potential Vc(x) and inter-

acting via Coulomb interactions V , in the presence of an external source J coupled to
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the electron density, the partition function is

Z =

∫

D[ψψ†] exp[−
∫

dxψ+(x)[∂τ − 52

2m

1

2

∫

dxdx′ψ+(x)ψ+(x′)V (x− x′)ψ(x′)ψ(x) − J(x)ψ†(x)ψ(x)]

(3.3)

Here x = (x, τ) denotes the space–imaginary time coordinates. By performing a

Legendre transform of Γ we can eliminate the potential in favor of the density ρ.

Γ[ρ] = W [J ] −
∫

J(x)ρ(x) (3.4)

The minimum of this functional gives the true density and the total energy.

To construct approximations to the functional Γ it is very useful to introduce the

Kohn–Sham potential, VKS, which is defined as the potential such that when added to

the non–interacting kinetic energy, it produces the given density in a reference system

of non–interacting particles . i.e.

ρ(r) = T
∑

σ

∑

iωn

〈σr
∣

∣(iωn + ∇2/2 − VKS)−1
∣

∣σr〉eiω0+
(3.5)

The exact functional can now be viewed as a functional of two variables

Γ(ρ, VKS) = −T
∑

iωn

tr log[iωn + ∇2/2 − VKS] −
∫

VKS(r)ρ(r)dr+

1

2

∫

ρ(r)ρ(r′)

|r − r′| drdr
′ +

∫

Vext(r)ρ(r)dr+Exc[ρ]

(3.6)

Γ(ρ) is obtained by substituting VKS(ρ) obtained by solving eqn.(3.5) (which makes

eqn.(3.6) stationary) into Γ(ρ, VKS). Exc[ρ] is the exchange–correlation energy which is

a functional of the density and not of the external potential.

Extremizing eqn.(3.6) with respect to ρ gives

VKS(r)[ρ] =

∫

ρ(r′)dr′

|r− r′| + Vxc(r)[ρ] + Vext(r)[ρ] (3.7)

where Vxc(r) is the exchange-correlation potential obtained as

δExc

δρ(r)
≡ Vxc(r) (3.8)

If we restrict ourselves to zero–temperature and interpret the Fermi functions as

step functions. Eqn. (3.5) can be rewritten as

[−∇2/2 + VKS(r)]ψkj(r) = εkjψkj(r) (3.9)
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ρ(r) =
∑

kj

f(εkj)ψ
∗
kj(r)ψkj(r) (3.10)

and VKS is given as an explicit function of the density.

The total energy of the crystal is given as

Etot =
∑

kj

f(εkj)εkj +
1

2

∫

ρ(r)ρ(r′)

|r− r′| drdr
′ +

∫

Vext(r)ρ(r)dr+

∫

εxc[ρ(r)]ρ(r)dr +Edc

(3.11)

where

Edc = −
∫

VKS(r)ρ(r)dr (3.12)

simply subtracts the interaction energy from the Kohn–Sham eigenvalues which are ex-

plicitly included in the Hartree and exchange–correlation term to avoid double counting.

Since Exc[ρ] is not known explicitly, this method is useful only because of successful

approximations to the exchange energy. In the Local Density Approximation (LDA)

the exchange energy functional is assumed to be local:

Exc[ρ] =

∫

εxc[ρ(r)]ρ(r)dr (3.13)

with εxc[ρ(r)] being the energy density of the uniform electron gas.

Here ρ(r) is uniquely expressed in terms of the orbitals ψkj(r). In order to truncate

the DFT, we introduce a finite basis set χk
α(r) and expand

ψkj(r) =
∑

α

χk

α(r)Akj
α (3.14)

keeping a finite set of α. This truncation restricts the active part of the multiplicative

operator associated with the potential VKS to have a form

V̂ =
∑

k

|χk

α〉Vαβ〈χk

α| (3.15)

For a known potential VKS this construction can be done once and for all. However,

since VKS depends on the density, the basis |χk
α〉 is adapted iteratively to the self–

consistent solution.

3.1.2 LDA+U

The LDA method is not very successful when strong electron correlations are present

as the electrons are localized due to the interactions. The LDA+U method [14], [15]
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is a technique that is proposed when strong correlations are present in the system.

For simplicity we will deal with spin unrestricted formalism so that the total energy is

invariant with respect to orientation. This allows us to choose a specific quantization

axis.

We introduce a set of localized orbitals φa(r−R) which are used to build an occu-

pancy matrix. If φa are identified with the correlated electrons, we can represent the

correlated part of the electron density by

nσ
ab =

∑

kj

f(εkjσ)

∫

ψ∗
kjσ(r)φa(r)dr

∫

ψkjσ(r′)φ∗b(r
′)dr′ (3.16)

The total energy is now a functional of ρ(r) and of nσ
ab. The LDA+U functional is

ΓLDA+U [nσ
ab, λ

σ
ab, V

σ
KS , ρ

σ] = −T
∑

iωn

tr log[iωn + ∇2/2 − V σ
KS −

∑

ab

λσ
abφa(r)φ

∗
b (r

′)]

−
∑

σ

∫

V σ
KS(r)ρσ(r)d −

∑

σ

∑

ab

λσ
abn

σ
ab +

1

2

∫

ρ(r)ρ(r′)

|r − r′| drdr
′

+ELDA
xc [ρσ ] +EModel[nσ] −Edc[n

σ]

(3.17)

where λσ
ab are Lagrange multipliers.

EModel[nσ] =
1

2

∑

σ

∑

abcd

Uabcdn
σ
abn

−σ
cd +

1

2

∑

σ

∑

abcd

(Uabcd − Jabcd)n
σ
abn

σ
cd (3.18)

is the contribution from the Coulomb energy in the shell of correlated electrons. Edc[n
σ]

is the double-counting term which is subtracted as part of the energy in EModel has

been taken into account in the LDA part.

The form of the double counting term [14] used here is

Edc =
1

2
Ū n̄(n̄− 1) − 1

2
J̄ [n̄↑(n̄↑ − 1) + n̄↓(n̄↓ − 1)]. (3.19)

where

Ū =
1

(2l + 1)2

∑

ab

〈ab|1
r
|ab〉 (3.20)

J̄ = Ū − 1

2l(2l + 1)

∑

ab

(〈ab|1
r
|ab〉 − 〈ab|1

r
|ba〉) (3.21)

Here n̄σ =
∑

a n
σ
aa, and n̄ = n̄↑ + n̄↓.
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We get the self-consistency equations by extremizing the functional with respect to

VKS.

ρσ(r) = T
∑

iωn

〈

r

∣

∣

∣

∣

∣

[iωn + ∇2/2 − V σ
KS −

∑

ab

λσ
abφa(r)φ

∗
b(r

′)]−1

∣

∣

∣

∣

∣

r

〉

eiωn0+
=
∑

kj

f(εkjσ)|ψkjσ(r)|2

(3.22)

with

[−∇2/2 + V σ
KS +

∑

ab

λσ
abφa(r)φ

∗
b(r

′)]ψkjσ = εkjσψkjσ (3.23)

V σ
KS is obtained by extremizing the functional w.r.t. ρ(x):

VKS(r)[ρ] =

∫

ρ(r′)dr′

|r− r′| + Vxc(r)[ρ] + Vext(r)[ρ] (3.24)

We get the correction to the potential λσ
ab by extremizing the functional w.r.t. nσ

ab

λσ
ab =

∑

cd

Uabcdn
−σ
cd +

∑

cd

(Uabcd − Jabcd)n
σ
cd −

dEdc[n
σ]

dnσ
ab

(3.25)

The double counting term generates the correction to the potential in the form:

λσ
ab =

∑

cd

Uabcdn
−σ
cd +

∑

cd

(Uabcd − Jabcd)n
σ
cd − Ū(n̄− 1

2
) + J(n̄σ − 1

2
) (3.26)

The interaction matrices are defined as:

Uabcd = 〈ac|1
r
|bd〉 =

∫ ∗

a
φa(r)φ

∗
c(r

′)vC(r − r′)φb(r)φd(r
′)drdr′ (3.27)

Jabcd = 〈ac|1
r
|db〉 =

∫ ∗

a
φ(r)φ∗c(r

′)vC(r− r′)φd(r)φb(r
′)drdr′ (3.28)

where φ(r) are the set of projectors and vc(r − r′) is the Coulomb interaction that has

to take into account the effects of screening by conduction electrons.

These matrices are expressed in terms of Slater integrals. Representing φlm(r) =

φl(r)i
lYlm(r̂) and for a ≡ lm, b ≡ lk, c ≡ l′m′, d ≡ l′k′ we can express U and J as

〈lml′m′|1
r
|lkl′k′〉 =

min(2l,2l′)
∑

l′′=0,2,...

4π

2l′′ + 1
F

(u)l′′vv

ll′ C l′′m′′=m−k
lklm C l′′m′′=k′−m′

l′m′l′k′ δk′−m′,m−k (3.29)

〈lml′m′|1
r
|l′k′lk〉 =

min(2l,2l′)
∑

l′′=0,2,...

4π

2l′′ + 1
F

(j)l′′

ll′ C l′′m′′=m−k′

l′k′lm C l′′m′′=k−m′

l′m′lk δm−k′,k−m′ (3.30)
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where the quantities F (u) and F (j) are given by the following radial integrals

F
(u)l′′

ll′ =

∫

rl′′

r′l′′+1
φ2

l (r)φ
2
l′(r

′)drdr′ (3.31)

F
(j)l′′

ll′ =

∫

rl′′

r′l′′+1
φl(r)φl′(r)φl(r

′)φl′(r
′)drdr′ (3.32)

If l = l′, F (u) and F (j) are equal and are reduced to constants. For d-electrons,

there are three constants F (0), F (2), F (4) and for f-electrons, there are four constants

F (0), F (2), F (4), F (6). The Slater integrals can be linked to U and J via U = F (0) and

J = (F (2) + F (4))/14 for d-electrons with F (2)/F (4) = 0.625. For f-electrons, U = F (0)

and J = (286F (2) + 194F (4) + 250F (6))/6435.

3.1.3 LDA+DMFT method

In the LDA+U method, the Coulomb interaction in eqn.(3.18) are treated in a Hartree-

Fock approximation, thus it fails to describe the many body nature of the electron-

electron interaction in strongly correlated materials. Also, in the LDA+U method, we

do a Legendre transformation with respect to a part of the density, which lacks a clear

physical significance. A method that has been developed to treat correlated materials, is

LDA combined with the Dynamical Mean-Field Theory (DMFT). The DMFT has been

an extremely successful method to treat model Hamiltonians that describe materials

with strong correlations. However, the model Hamiltonians used have parameters. By

combining LDA+DMFT, we would like to introduce microscopic details to the approach

and make the calculation first-principles [47].

The following section contains a brief description of the LDA+DMFT method from

an effective action point of view [13, 48].

In DMFT, we deal with functionals of the local Green’s function, which is a well

defined object. We start with the LDA+DMFT functional ΓLDA+DMFT (ρ, VKS,χ,A)
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which has the form

ΓLDA+DMFT (ρ, VKS,χ,A) = −T
∑

iωn

tr log[iωn + ∇2/2 − VKS − Σab(iωn)φa(r)φ
∗
b(r

′)]−
∫

VKS(r)ρ(r)dr −
∑

iωn

∑

ab

Σab(iωn)Aba(iωn)+

∫

Vext(r)ρ(r)dr +
1

2

∫

ρ(r)ρ(r′)

|r− r′| drdr
′ +ELDA

xc [ρ]+

∑

j

Φ[Aab(j, iω)] + ΦDC

(3.33)

Φ is the sum of all two–particle irreducible graphs constructed with the local part of

the interaction and ΦDC is taken to have the same form as in LDA+U method as

described later.

In a fixed tight–binding basis, −∇2 + VKS reduces to HTB(k) . The functional

ΓLDA+DMFT for a fixed density and truncated to a finite basis set takes the form of

the DMFT functional

Γ[A[∆], χ[∆]] =

W0[∆] − Tr logA−
∑

k

∑

iωn

Tr log[iωn − ε(k) − χ] −
∑

iωn

[χ− iωn + ε̄+ ∆]A (3.34)

Its minimization leads to the set of equations with Kohn–Sham potential as in the LDA

method, and

Σab(iωn) =
δΦ

δAab(iωn)
+ εDC

ab (3.35)

which identifies Σ as a self–energy of a generalized Anderson impurity model in a bath

characterized by a matrix of levels

ε0ab = εDC
ab +

∑

k

HTB
ab (k) (3.36)

and a hybridization function ∆ab(iωn) obeying a self–consistency condition

iωOab − ε0ab − ∆ab(iωn) = Σab(iωn) +

[

∑

k

(iωnO − ε0 − t(k) − Σ(iωn))−1

]−1

(3.37)

Finally, minimizing eqn.(3.33) with respect to VKS indicates that ρ(r) should be com-

puted as

ρ(r) = T
∑

iωn

〈

r

∣

∣

∣

∣

∣

[iωn + ∇2/2 − VKS −
∑

ab

Σab(iωn)φa(r)φ
∗
b(r

′)]−1

∣

∣

∣

∣

∣

r

〉

eiωn0+
(3.38)
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which as indicated before, when truncating in a fixed set of orbitals becomes

ρ(r) = T
∑

iωn

χα(r)
[

(iωn −HTB(k) − Σ(iωn)
]−1

χ∗
β(r) (3.39)

We express the functional in terms of the Weiss field, i.e. the hybridization function

that added to the atom produces the exact spectral function. This allows us to eliminate

the functional Φ. We can express the LDA+DMFT functional as:

ΓLDA+DMFT (ρ, VKS,χ,A,∆) = −Tr log[iωn + ∇2/2 − VKS − Σab(iωn, r, r
′)(χ)]−

∫

VKS(r)ρ(r)dr −
∑

iωn

∑

ab

tr[Σab(iωn)Aba(iωn)]+

∫

Vext(r)ρ(r)dr +
1

2

∫

ρ(r)ρ(r′)

|r − r′| drdr
′ +ELDA

xc [ρ]+

+ ΦDC +Wat[∆[A]] − Tr∆[A]A− Tr logA+ TrA−1
at A

(3.40)

Here

Σab(iωn, r, r
′)(χ) =

1

Ns

∑

αβRpRlRq

χα(r −Rp)O
−1(Rp−Rl)αcχcc”(iωn)O−1(Rl−Rq)cβχ

∗
β(r−Rq)

where Ns is the number of lattice sites and Wat[∆] is simply the free energy of the atom

(described by the atomic Hamiltonian hat) in the presence of a hybridization field.

Sat[∆] =

∫

τ,τ ′

∑

i,σ

c+l
iσ (τ)

[

δ(τ − τ ′)
∂

∂τ ′
+ ∆lm(τ − τ ′)

]

cmiσ(τ ′) +

∫

dτhat (3.41)

Wat[∆] = − log

∫

dc+dc e−Sat[∆]− � ab � ab ∆(τ,τ ′)c+a (τ)cb(τ
′)dτdτ ′

(3.42)

ΦModel
dc =

1

2
Ū n̄(n̄− 1) − 1

2
J̄ [n̄↑(n̄↑ − 1) + n̄↓(n̄↓ − 1)]. (3.43)

with U and J as defined in eqns.(3.20) and (3.21).

Here n̄σ =
∑

a n
σ
aa, and n̄ = n̄↑ + n̄↓. n in this case should be viewed as a functional of

the local Greens function n = trA = T
∑

ωn,ae
iωnA(iωn)aa

This generates the correction to the potential in the form:

λσ
ab =

∑

cd

Uabcdn
−σ
cd +

∑

cd

(Uabcd − Jabcd)n
σ
cd − Ū(n̄− 1

2
) + J(n̄σ − 1

2
) (3.44)

To solve the impurity model, various techniques such as Quantum Monte Carlo,

Gutzwiller method or approximations such as the Hubbard-I method can be used.
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3.2 Structure of the LMTART program

In this section we shall describe the overall structure and details of certain parts of the

LMTART program, which is based on the equations in section 3.1.

The LMTART package contains Fortran 90 programs which can be grouped accord-

ing to the function they perform. Furthermore, the programs are named such that

the first three letters of the program name in each group are the same. The names

of the programs in the LMTART package can be thought of as having two parts such

as: abc *.f where the first part abc denotes the group it can be classified into, and the

second part (denoted by the wildcard character *) is different for each program in the

group. We first provide a list (alphabetical) that contains a description of the various

programs grouped according to the task they perform. Following that, Fig. 3.1 shows

an overview of the schematic flow diagram of the LDA+DMFT implementation.

Programs with the name:

• bnd *.f

Form the core of the solution to the generalized eigenvalue problem in the LMTO

method. This includes preparing Hamiltonian matrix and overlap matrix (after

factoring in contributions due to the spin-orbit coupling), calculating eigenvalues

and eigenvectors, and preparing wave functions. Also calculating the fat-bands

when required.

• chi *.f

Calculate the susceptibility.

• dmf *.f

Implement DMFT loop. Solve impurity model to find Green’s function. Execute

DMFT self-consistency condition.

• frc *.f

Calculate total energy and band energy in LDA, and various contributions to

force by computing the derivative of total energy w.r.t. nuclear displacements.

• ftb *.f
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Calculate Hamiltonian, overlap matrices and all physical quantities such as total

energy, in the tight-binding scheme.

In particular, see ftb ftbands.f which is the control module to solve the eigenvalue

problem using the tight-binding method.

• hop *.f

Read hopping integrals from HOPFILE, prepare hopping matrix , tight-binding

hopping integrals are calculated by integrating over Brillouin zone, also calculate

screened structure constants.

• hub *.f

Read HUBFILE which contains Slater integrals necessary for constructing U-

matrix for the LDA+U method, compute potential in the LDA+U scheme from

Hubbard-U parameters, calculate occupation matrices needed for LDA+U method.

• ini *.f

Control the initial procedures to be performed before the main solution of the

eigenvalue problem begins.

– ini get*.f: read data for various physical quantities, e.g. ini getchi.f reads

susceptibility data, ini getbnd.f reads fatband data.

– ini make*.f : controls initial calculation of crystal group, k-mesh.

– ini read*.f: reads data, parameters from initial files defined by the user.

– In particular, see ini channels.f : Allocation of different channels inside the

program, i.e. describes the channel numbers for all the input and output

files.

• lib *.f

Contain libraries to perform standard mathematical operations such as comput-

ing spline approximations, evaluating spherical and cubic harmonics, calculating

derivatives, computing Pade coefficients etc.

• man *.f

This set of files form the main control module and contain information on which
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subroutines will be implemented depending on which options are given by the

user.

– man main.f: Main module of the entire program. Reads inputs, directs

to either ASA self-consistent method or PLW full potential self-consistent

method or Tight-binding method.

– man lmtscf.f: Main control module for self-consistency stream calls various

routines depending on options given by the user.

– man ftbscf.f: Main control module for tight-binding stream, calls various

programs depending on options given by user.

– man artout.f: writes outputs.

• opt *.f

Calculate optical matrix elements and optical properties.

• pot *.f

Calculate Coulomb potential, exchange-correlation energy and potential, multi-

poles.

• qmc *.f

Contain routines for Quantum Monte Carlo solution of the impurity model.

• rho *.f

Implement operations with charge density files: e.g. renormalizing core density,

admixture in scf loop, Broyden mixing.

• sgm *.f

Perform calculations and implement procedures involving self-energy.

• str .f

Prepare structure constants and derivatives, generate sites within a sphere, gen-

erate vectors in direct and reciprocal space.
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• ttr *.f

Calculate weight functions using tetrahedron method, search for Fermi energy,

calculate velocities inside tetrahedron.

Fig. 3.1 shows the schematic flow diagram of the LDA+DMFT implementation.

3.3 DMFT Loop

In this section, we describe in detail the sub-routines that implement the DMFT loop.

The DMFT equations have a self-energy Σ, (eqn.3.35), which is the self-energy of a

generalized Anderson impurity model in a bath characterized by a matrix of levels

ε0ab = εDC
ab +

∑

k

HTB
ab (k) (3.45)

The hybridization function ∆ab(iωn) obeys a self–consistency condition

iωOab − ε0ab − ∆ab(iωn) = Σab(iωn) +

[

∑

k

(iωnO − ε0 − t(k) − Σ(iωn))−1

]−1

(3.46)

There are various possibilities for the double-counting term εDC
ab . One choice is to

fix εDC
ab to coincide with Σ(∞), which is equivalent to Un, the Hatree-Fock limit. A

different possibility is to fix the double counting term so that the Luttinger theorem is

fulfilled, i.e. to choose εDC
ab = − 1

Ndeg

2
δ ab

∑

ab Σab(0).
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Synthesize LMTO Hamiltonian and

Initial charge density ρ(x)

Overlap matrices

G,ΣG0
−1 = G−1 − Σ

Flow Diagram: LDA+DMFT

DMFT Loop

HLDA(k),O(k)HTightBinding(tij)

(implements routine bnd bands.f)
(self-consistent charge density)ASA, PLW schemes

(implements routine ftb ftbands.f)

Tight-binding scheme

ftb ftbbnd.f
Get tight-binding Hamiltonian

Calculate hopping integrals

about tight binding states

Read hop file, get information

hop gethtb.f pot vcoul.f

pot vexch.f

pot lsda.f

Vks(r)[ρ] =
∫ ρ(r)dr

r−r′ + Vxc[ρ] + Vex[ρ]

Calculate potential:

Impurity solver such as

New ρ(x)

hop readhop.f

ini init.f

bnd lmtbnd.f

ini makescf.f

(from hub file)

(from str file)

(from ini file)

(from atomdat)

* Interaction parameters

* Crystal structure

* Scheme, Iterations

* Atomic data
Read in data:

QMC, Hubbard-I

dmf grfpot.f

dmf lmtdmf.fdmf ftbdmf.f

Self consistency condition

dmf impmod.f

Control file to calculate Green’s function in DMFT

iωOab − ε0
ab − ∆ab(iωn) = Σab(iωn)+

[
∑

k(iωnO − ε0 − t(k) − Σ(iωn))−1
]

−1
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The exact sub-routines involved are described below.

Start DMFT loop

Input to DMFT loop: HLDA
k , Ok, i.e. LDA Hamiltonian and overlap matrices from

temporary file IUHAM.

• Subroutine grfsig

Input: Σ(iω) from temporary file IUSGM.

Task: Read Σ(iω) from IUSGM (Σ = 0 in 1st iteration)

• Subroutine grfpot

Input: Σ(iω).

Task: Choose and set double counting εDC = Σ(0) or Σ(∞)

• Subroutine grfbnd

Input: HLDA
k and Σ(iω).

Task: Construct HLDA + Σ(iω) − ΣDC , compute eigenvectors AL, AR and eigen-

values εkj.

• Subroutine grffrm

Input: Eigenvalues εkj of [HLDA + Σ(iω) −ΣDC ], filling of electrons from control

file.

Task: Find Fermi level εF .

∑

kj

∑

ωn

1

iωn + εF − εkj
= Nelectrons

• Subroutine grfwgt

Input: Eigenvectors AL, AR and eigenvalues εkj of [HLDA + Σ(iω)−ΣDC ], Fermi

level εF .

Task: Find weights for k-summation

∑

k

ALAR

iωn + εF − εk
=
∑

k
WkA

LAR
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• Subroutine grflev

Input: Eigenvectors AL, AR and eigenvalues εkj of [HLDA+Σ(iω)−ΣDC ], Overlap

matrix Ok, weights for k-summation.

Task: Set matrix of impurity levels

Eimp =

(

∑

k

O−1
k

)−1 [
∑

k

O−1
k

(

HLDA
k + Σ(∞) − ΣDC

)

∑

k

O−1
k

](

∑

k

O−1
k

)−1

• Subroutine implev

Input: Impurity levels Eimp.

Task: Diagonalizes matrix of impurity levels: used later in impurity solver if

diagonal representation is selected.

• Subroutine grfloc

Input: Eigenvectors AL, AR and eigenvalues εkj of [HLDA+Σ(iω)−ΣDC ], Overlap

matrix Ok, weights for k-summation, Fermi level.

Task: Calculate local Green’s function

G(iωn) =

(

∑

k

[

(iωn + εF )O(k) − (HLDA
k + Σ(iωn) − ΣDC)

]

)−1

• Subroutine grfhyb

Input: Fermi level, overlap matrix Ok, impurity levels Eimp, Σ(iω), ΣDC , local

Green’s function G(iω).

Task: Calculate hybridization function

∆(iωn) = (iωn + εF )O − (Eimp − Σ(∞)) −G−1(iωn) − Σ(iωn)

• Subroutine impmod

Input: Hybridization ∆(iω), impurity levels Eimp, overlap Ok.

Task: Impurity solver

• Subroutine grfpot

Task: Set double counting with new Σ(iω).

εDC = Σ(0) or Σ(∞)
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Check if number of DMFT iteration is equal to NDIT (In control file: hubfile,

controls maximum number of DMFT iterations). If so, proceed to next file grfden

to calculate charge density. If not, use Σ(iω) from Impurity solver as an input to

the next iteration in the self-consistency condition.

• Subroutine grfden

Input: New Green’s function constructed from Σ(iω) calculated by the impurity

solver, eigenvectors of [HLDA + Σ(iω) − ΣDC ].

Task: Calculate charge density

ρ(r) =
∑

ωn

∑

ab

χa(r)Gab(iωn)χb(r)

from which the outer LDA loop begins again.

3.3.1 Impurity solver: Hubbard-I method

The impurity model can be solved using different solvers – exact methods such as Quan-

tum Monte Carlo (computationally expensive for low temperatures) or approximate

methods such as Hubbard-I or Gutzwiller approximation. In this section we describe

the details of one such method that is based on the Hubbard-I approximation [49, 50].

The equations can be tailored to fit the symmetry of the system in hand. A simple

case is when different states for a fixed number of electrons in an atom are considered

equivalent. The equations we describe here are suited for a system in which spin-orbit

effects are significant. In particular, we deal with an actinide system with 14 f -levels

that are split into two sub-bands due to spin-orbit coupling. In chapter 5, we discuss

the results of this calculation for Americium.

The starting point of the Hubbard-I approximation is the atomic limit. The self-

energy describes the two atomic levels and the Green’s function consists of two poles at

iω−µ and ω−µ+U . We first find the Green’s function for the atomic Hamiltonian using

the equation of motion method for the Hubbard operators. We then express the im-

purity Green’s functions in terms of the atomic Green’s function and the hybridization

∆(iω).
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We start with a multi-band impurity model that has the form H = Hatom +Hband +

Hhyb.

Hatom =
∑

ll′=5/2,7/2
m=1...(2l+1)

m′=1...(2l′+1)

εfll′mm′f
†
lmfl′m′ + U

∑

l,l′=5/2,7/2

m,m′

f †lmflmf
†
l′m′fl′m′

Hband =
∑

lk

εlkc
†
lkclk

Hhyb =
∑

ll′mk

Vll′k(f
†
lmcl′k + h.c.) (3.47)

Here l, l′ label the two bands that are split due to spin-orbit coupling. These two

bands have the j-quantum number as 5/2 or 7/2. Notation: The band with l = 5/2

and is 6-fold degenerate and that with l = 7/2 and is 8-fold degenerate. Thus m,m ′

label the degeneracy and run from 1 to (2j+1). Since the impurity level matrix εf
ll′mm′

has off-diagonal terms as zero, the first term simplifies to
∑

lm εfl f
†
lmflm. Hhyb is due to

the hybridization between the conduction electrons and the localized f electrons. The

hybridization function can be written as ∆l(iω) =
∑

l′k V
2
l′k/(iω − εl′k).

Due to the above degeneracy, we have a SU(6) × SU(8) symmetry. With this, the

impurity Green’s function in the Hubbard-1 approximation becomes

[Gimp
l (iω)]

−1
= [Gat

l (iω)]
−1 − ∆l(iω) (3.48)

The atomic Green’s function Gat is given by

Gat
l (iω) =

14
∑

n=0

n
∑

n1=0
n1<6

(n−n1)<8

(

C6
n1
C8

n−n1

[

e−Eln/T − e−En/T
])

/Z

iω + µ−Eln +En
(3.49)

where Eln is the energy of an atom with n total number of electrons, n1 in level l = 1

and n− n1 in level l = 2 is given by :

Eln = En + εfl + Un (3.50)

En =
U(n− 1)n

2
+ n1ε

f
1 + (n− n1)ε

f
2 (3.51)

The numerator in (3.49) denotes the probability of finding an atom with n total number

of electrons, n1 in level l = 1 and n − n1 in level l = 2. C6
n1

and C8
n−n1

are the
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combinatorial coefficients. Z is a normalization factor for the probability given by

Z =
14
∑

n=0

n
∑

n1=0
n1≤6

(n−n1)≤8

C6
n1
C8

n−n1
e−En/T (3.52)

Using the Hubbard-I approximation to solve for the impurity Green’s function, we

get a splitting of the upper and lower Hubbard bands for arbitrarily small but finite U .

In the LMTART program the above procedure is implemented in the routine

impatomsun so in the file dmf imp atomso.f . This in turn calls upon

cal sigma atomsun so.f and cal green atomsun0 so.f to calculate the self-energy and

Green’s function respectively. The output is the Green’s function and the probability

distribution of finding an atom with n electrons. At large U we expect this distribution

to be peaked at a single value n which should also describe the number of electrons

calculated from the Green’s function.

3.4 Preparing control files for LMTART

In this section we briefly describe the control files that need to be prepared for the

implementation of the LMTART program. For LDA calculations only, there are two

essential input files – the ini and the str files. The ini file contains details about the

various approximation schemes such as ‘full-potential plane wave’ or ‘atomic sphere ap-

proximation’ as well as those about the exchange-correlation functional. It also contains

information about the different atoms in the unit cell. The structure file or the str file

has information about the crystal structure. In addition, for LDA+U or LDA+DMFT

calculations, we need the hub file that contains the interaction parameters and the

DMFT options.

Each control file is divided into different sections, separated by 〈SECTION =〉, each

containing a certain set of data. There are certain common features in each control file:

• The first line 〈FILE = ∗ ∗ ∗FILE, INPUT = MODERN〉 where ‘***’ stands for

the type of control file – i.e., INI or STR or HUB, must be present in each control

file. This line is required by the main program in the LMTART program to call

the corresponding subroutine to read the control file.
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• The first section in the control files contains the title of the material – this section

is optional.

• A comment that usually contains the description of the parameter and some

options for it can be placed on each line after a ‘!’ mark.

• Many parameters have default values. If a default value exists, this parameter

can be omitted from the file.

3.4.1 INI file

• 〈SECTION = CTRL〉

The parameters in this section control the choice of the scheme we would like to

use in the implementation of LMTART.

– FullPot This parameters allows us to choose the approximation for the

potential seen by an atom in the solid. The choices are a Full Poten-

tial plane wave approximation (PLW) or the atomic sphere approximation

(ASA) where the potential in the interstitial region is approximated by a

constant. We can also describe the Hamiltonian in a tight-binding represen-

tation (FTB) and solve the eigenvalue problem.

• 〈SECTION = ITER〉

Details about the iterational loop are contained in this section.

– 〈SECTION = MAIN〉

This section contains information about the number of atoms and spins in

the unit cell.

– Nsort: The number of non-equivalent atoms in the unit cell. This pa-

rameter becomes important in anti-ferromagnetic calculations as explained

in section 3.4.3.

– Is: This labels the different kinds of basis atoms. The order must corre-

spond to that in 〈SECTION = BASS〉 in the str file. An example is provided

in Table 3.3.
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– Par0: The lattice parameter in atomic units needs to be provided, which

is used, along with the crystal structure to calculate the energy in Rydberg

units.

• 〈SECTION = SORT〉

This section contains information about the atoms. Once the name and atomic

number of each element is entered, the LMTART routine searches for relevant

information for the atom in the directory /atomdat/.

Note: The set of parameters above, in 〈SECTION = SORT〉 must be entered for

each non-equivalent atom (the number of non-equivalent atoms being indicated

in the parameter Nsort).

3.4.2 STR file

The structure file contains all the information about the crystal structure. To prepare

the file, we need to know about the unit cell of the lattice – the parameters describing

the geometry of the cell, the primitive translation vectors and the basis atoms. This

information can be obtained from experimental values.

Table 3.2 describes a sample str file for NiO which has a FCC structure with two

basis atoms, i.e. Ni and O. The unit cell for this is schematically shown in Fig. 3.2 In

the notation we use, the primitive vectors of the unit cell are expressed as Ax̂+Bŷ+Cẑ

as shown in Fig. 3.2.

• 〈SECTION = CTRS〉

– Natom: The total number of basis atoms in the unit cell. For the above

example of NiO it is 2. (no default)

– B to A: The ratio of the length along the y-direction to that along the

x-direction. In the above example, we have a cubic cell, hence this ratio is

1. (default is 1.0)
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〈FILE=INIFILE, INPUT=MODERN 〉
**************************************
〈SECTION=HEAD 〉 ! PROJECT HEAD:
title =NiO ! Compound title
〈SECTION=CTRL 〉 ! CONTROL PARAMETERS:
Lmto =Bare ! set: Bare / Screened / Rspace
FulPot=ASA ! set: FTB/ ASA / PLW
〈¡SECTION=EXCH 〉 ! EXCHANGE-CORRELATION:
LDA =Vosko ! set: none/Barth/Gunn/etc.
〈SECTION=ITER 〉 ! ITERATIVE PROCEDURES:
Niter1=40 ! # of iterations in SCF loop
Lbroy =1 ! Broyden mixing for low l.le.lbroy
Admix1= 0.05000 ! initial mixing for density
〈SECTION=MAIN 〉 ! MAIN ATOMIC DATA:
Natom =2 ! # of atoms in the unit cell
Nsort =2 ! # of sorts in the unit cell
Nspin =1 ! # of spins
Norbs =1 ! 1-without/2 -with spin orbit coupling
Par0 = 7.92600 ! lattice parameter in a.u.
Is(:) =1 2 ! atom-to-sort pointer array
〈SECTION=SORT 〉 ! SORT DATA:
Name = Ni ! atom label
Znuc = 28.0000 ! nuclear charge
Smts = 2.17900 ! non-overlapping MT-sphere
Split = 0.50000 ! initial splitting
〈SECTION=SORT 〉 ! SORT DATA:
Name = O ! atom label
Znuc = 8.0000 ! nuclear charge
Smts = 1.78300 ! non-overlapping MT-sphere
Split = 0.50000 ! initial splitting
Ndiv(:)=6 6 6 ! Tetrahedron mesh

Table 3.1: Input file nio.ini
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〈FILE=STRFILE, INPUT=MODERN 〉
**************************************
〈SECTION=HEDS 〉 ! STRUCTURE TITLE:
Slabl =NiO
〈SECTION=CTRS 〉 ! CONTROL STRUCTURE:
Natom =2 ! # of atoms
BtoA = 1.00000 ! b over a ratio
CtoA = 1.00000 ! c over a ratio
〈SECTION=TRAN 〉 ! PRIMITIVE TRANSLATIONS:
1/2, 1/2, 0.0 ! Ax,Ay,Az
1/2, 0.0, 1/2 ! Bx,By,Bz
0.0, 1/2, 1/2 ! Cx,Cy,Cz
〈SECTION=BASS 〉 ! BASIS ATOMS :
0.0 , 0.0 , 0.0 ! Ni@1
1/2 , 1/2 , 1/2 ! O@2

Table 3.2: Input file nio.str

– C to A: The ratio of the length along the z-direction to that along the

x-direction. In the above example, we have a cubic cell, hence this ratio is

1. (default is 1.0)

• 〈SECTION = TRAN〉 (no default)

This section contains the primitive translation vectors of the lattice. For example,

for the FCC lattice the set of vectors can be written as
(

(1
2 ,

1
2 , 0), (0,

1
2 ,

1
2 ), (1

2 , 0,
1
2)
)

and for the BCC lattice the set is
(

(1
2 ,

1
2 ,−1

2 ), (−1
2 ,

1
2 ,

1
2), (1

2 ,−1
2 ,

1
2)
)

.

• 〈SECTION = BASS〉 (no default)

This section contains the positions of the basis atoms in the unit cell, that, along

with the primitive translations from the above section will generate the full lattice.

Note: The order in which the basis atoms are written mut correspond to the order

in which the atoms are written in 〈SECTION = SORT〉 in the ini file
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Figure 3.2: Unit cell for NiO and translation vectors.

3.4.3 Modifications for anti-ferromagnetic solution

If we need to compute the anti-ferromagnetic solution for a given material, we need to

make appropriate changes in the ini as well as str files. To have an anti-ferromagnetic

solution, we pick alternate magnetic atoms in the lattice to have up and down spins

respectively. The unit cell thus has to be doubled, and contains two non-identical

magnetic atoms due to different spins, even though the atomic numbers of the two

atoms remain the same.

The main modifications in the ini file are in 〈SECTION = MAIN〉 as shown in a part

of the ini file for anti-ferromagnetic NiO in Table 3.3. Note, especially, the parameter

Is(:) which sorts the different atoms. Even though Atom 1 and Atom 2 are both nickel,

we treat them differently due to their different spins. 〈SECTION = SORT〉 contains

information about the different spins in the parameter Split which has different signs

for potential for up and down spins.

To determine the crystal structure we treat the lattice as a new structure with

different primitive translations and basis atoms and re-construct the str file. For the

same example of NiO as above, we begin with Fig. 3.3 to generate the primitive
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translations and basis atoms. The str file for this case is shown in Table 3.4.

〈SECTION=MAIN 〉 ! MAIN ATOMIC DATA:
Natom =4 ! # of atoms in the unit cell
Nsort =3 ! # of sorts in the unit cell
Nspin =2 ! # of spins
Norbs =1 ! 1-without/2 -with spin orbit coupling
Par0 = 7.02600 ! lattice parameter in a.u.
Is(:) =1 2 3 3 ! atom-to-sort pointer array
〈SECTION=SORT 〉 ! SORT DATA:
Name = Ni1 ! atom label
Znuc = 28.0000 ! nuclear charge
Smts = 2.17900 ! non-overlapping MT-sphere
Split = 0.50000 ! initial splitting
〈SECTION=SORT 〉 ! SORT DATA:
Name = Ni2 ! atom label
Znuc = 28.0000 ! nuclear charge
Smts = 2.17900 ! non-overlapping MT-sphere
Split = -0.50000 ! initial splitting
〈SECTION=SORT 〉 ! SORT DATA:
Name = O ! atom label
Znuc = 8.0000 ! nuclear charge
Smts = 1.78300 ! non-overlapping MT-sphere
Split = 0.50000 ! initial splitting
Ndiv(:)=6 6 6 ! Tetrahedron mesh

Table 3.3: Input file nio.ini for anti-ferromagnetic NiO

More working examples of the str file are given in chapter 4.3.1 YbRh2Si2 and in

section 5.2 for Am. Also, 3.4.3 contains the str file for the anti-ferromagnetic case for

YbRh2Si2 , where the unit cell has to be doubled to contain two magnetic Yb atoms.

3.4.4 HUB file

The main data in this file that need to be entered by the user are the choice of scheme to

treat the correlated orbitals (LDA+U or LDA+DMFT) and the values of the interaction

parameters. After the first iteration, additional data regarding occupancy matrices,

self-energies and potential terms are written into this file.
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Figure 3.3: Unit cell for anti-ferromagnetic case

〈FILE=STRFILE, INPUT=MODERN 〉
**************************************
〈SECTION=HEDS 〉 ! STRUCTURE TITLE:
Slabl =NiO
〈SECTION=CTRS 〉 ! CONTROL STRUCTURE:
Natom =4 ! # of atoms
BtoA = 1.00000 ! b over a ratio
CtoA = 1.00000 ! c over a ratio
〈SECTION=TRAN 〉 ! PRIMITIVE TRANSLATIONS:
1/2, 1/2, 1.0 ! Ax,Ay,Az
1/2, 1.0, 1/2 ! Bx,By,Bz
1.0, 1/2, 1/2 ! Cx,Cy,Cz
〈SECTION=BASS 〉 ! BASIS ATOMS :
0.0 , 0.0 , 0.0 ! Ni1@1
1.0 , 1.0 , 1.0 ! Ni2@2
1/2 , 1/2 , 1/2 ! O @3
3/2 , 3/2 , 3/2 ! O @4

Table 3.4: Input structure file nio.str for the anti-ferromagnetic case
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A sample hub file for the anti-ferromagnetic case in NiO is shown in Table 3.5. All

the energy values are in Rybergs. The various sections are explained below:

• 〈SECTION = CTRL〉

– Scheme: The details about the scheme to be used to treat the correlated

orbitals, i.e. LDA+U or LDA+DMFT. A list of all the possible schemes that

can be used is present in the file hub readhub.f and hub hubpot.f.

– Ncrl: The number of states which appear in the correlated term. Descrip-

tions and options of the other parameters in this section appear as comments

in the hub file in Table 3.5.

• 〈SECTION = DMFT〉

This section needs to be included only if the option for Scheme in the above section

is chosen as LDA+DMFT. The details of the number of Matsubara frequencies

to be used and the bandwidth for the grid are contained here.

– solver: The impurity solver used in the DMFT loop. A list of the solvers

(e.g. QMC, Hubbard-I, Gutzwiller) appears in the file hub readhub.f.

– Kstates: This is a pointer to the states in the correlated orbital that are

treated similarly. For example, in NiO, there are 10 correlated states from

the 3d orbital – hence we need 10 labels. The t2g spin-up states in are

treated similarly, thus they all carry the label 1. Similarly the eg spin-up

states all carry the label 2, and so on.

• 〈SECTION = CORR〉

This section has the core information about the interaction terms.

– Cstate: This points to the atom that has correlations, its position in 〈SECTION =

BASS〉 in the str file and the correlated orbital.

– F0, F2, F4, F6: These are parameters that appear in the Slater integrals

as explained in equations 29-32. For d-electrons, three constants F0, F2 and

F4 are needed and for f-electrons, there are four constants F0, F2, F4 and
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F6. These can be linked to U and J via U = F0 and J = (F2 + F4)/14

for d-electrons with F2/F4 = 0.625. For f-electrons, U = F0 and J =

(286F2 + 194F4 + 250F6)/6435.

Note : The set of parameters above, in 〈SECTION = CORR〉 must be entered

for each correlated state (the number of correlated states being defined by the

parameter Ncrl).

• 〈SECTION = DHUB〉

From this section onwards, data about occupancy matrices, self-energies etc are

written into the hub file after the first iteration. These quantities are self-

consistently calculated at each iteration and are rewritten. A sample occupancy

matrix for the 3d state of Ni in NiO is shown in Table 3.6.

We have now established the theoretical groundwork for the LDA+DMFT method

to realistically treat strongly correlated materials. We shall turn to two applications of

this method: in Chapter 4, we study the heavy fermion compound YbRh2Si2 and in

Chapter 5, we discuss the Mott transition issue in Americium.
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〈FILE=HUBFILE, INPUT=MODERN 〉
**************************************
〈SECTION=CTRL 〉 ! CONTROL PARAMETERS:
Scheme=LDA+U1.1 ! LDA+U1.# / LDA+C / LDA+DMFT
Yharm =cubic ! Cubic/Spherical harmonics (output)
Iharm =cubic ! Cubic/Spherical harmonics (input)
Rorbs =Both ! One/Both orbits to read
Rspin =Both ! One/Both spins to read
Ncrl = 2 ! # of correlated states
〈SECTION=DMFT 〉 ! DMFT SETTINGS:
Nmsb = 50 ! # of Matsubara frequencies
Obnd = 0.5000000 ! Effective bandwidth for the grid
Nmsl = 2048 ! # of linear Matsubara frequencies
Nmsb = 1 ! # of Matsubara frequencies
Ndit = 20 ! # of DMFT iterations
Efermi= 0.7278130 ! Fermi energy (Ry)
Solver =Hub1 ! impurity solver choice
kStates(:)=1 1 1 2 2 3 3 3 4 4
〈SECTION=CORR 〉 ! CORRELATED STATES:
Cstate =Ni1@1::3d ! Correlated state pointer
F0 = 0.5880000 ! Slater integrals
F2 = 0.6012300 ! Slater integrals
F4 = 0.3787700 ! Slater integrals
F6 = 0.000000 ! Slater integrals
Cstate =Ni2@2::3d ! Correlated state pointer
F0 = 0.5880000 ! Slater integrals
F2 = 0.6012300 ! Slater integrals
F4 = 0.3787700 ! Slater integrals
F6 = 0.000000 ! Slater integrals
〈SECTION=DHUB 〉 ! PARTIAL OCCUPANCIES:
cState=Ni1@1::3d ! spin up/dn-up/dn data are :

Table 3.5: Input hub file nio.hub
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〈SECTION=DHUB 〉 ! PARTIAL OCCUPANCIES:
cState=Ni1@1::3d

yz zx xy x2-y2 3z2-1 REAL,Up-Up
0.9540211 0.0000329 0.0000329 -0.0005166 0.0002983 yz
0.0000329 0.9540211 0.0000329 0.0005166 0.0002983 zx
0.0000329 0.0000329 0.9540211 0.0000000 -0.0005966 xy
-0.0005166 0.0005166 0.0000000 0.1318555 0.0000000 x2-y2
0.0002983 0.0002983 -0.0005966 0.0000000 0.1318555 3z2-1

yz zx xy x2-y2 3z2-1 IMAG,Up-Up
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 yz
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 zx
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 xy
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 x2-y2
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 3z2-1

yz zx xy x2-y2 3z2-1 REAL,Dn-Dn
0.9584327 0.0000286 0.0000286 -0.0000267 0.0000154 yz
0.0000286 0.9584327 0.0000286 0.0000267 0.0000154 zx
0.0000286 0.0000286 0.9584327 0.0000000 -0.0000308 xy
-0.0000267 0.0000267 0.0000000 0.9875338 0.0000000 x2-y2
0.0000154 0.0000154 -0.0000308 0.0000000 0.9875338 3z2-1

yz zx xy x2-y2 3z2-1 IMAG,Dn-Dn
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 yz
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 zx
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 xy
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 x2-y2
0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 3z2-1

Table 3.6: Partial occupancies for Ni in nio.hub
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Chapter 4

Electronic structure and properties of f-band materials:

YbRh2Si2

4.1 Introduction

In this chapter, we present our calculations of the the band structure and electronic

properties of YbRh2Si2 , a heavy-fermion compound. This material is experimentally

well studied and has an anti-ferromagnetic phase transition at low temperature (T <

10 K) and ambient pressure. Susceptibility measurements on the material show a

strong magnetic anisotropy [53]. Using DFT methods, we would like to study the

various magnetic phases of this compound and compute its magnetic properties such

as magnetic anisotropy energy.

We start our calculations with the standard LDA method. However, since YbRh2Si2

is a material with a strongly localized f -band, the LDA method is inadequate to explain

the magnetic ground state of the material, as we expect. We then employ the LDA+U

method which includes electron-electron interaction terms in the energy functional.

However we find that in this case, LDA+U does not predict the correct magnetic ground

state. The problem is traced to the double-counting term in the LDA+U functional,

which includes the part of the total energy that have already been taken into account in

the LDA Hamiltonian. This term is to be subtracted from the total energy, so that only

the correction ot the LDA mean-field solution is left. However, this procedure is not

unique and there are various ideas previously implemented such as those by Mazin [54],

Anisimov [15], Czyzyk and Sawatzky [55].

Our approach to the double-counting issue was to use an empirical method to de-

termine which choice of parameters correctly predict the ground state. Once we found
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the suitable ground state solution, we proceeded to calculate properties such as mag-

netization and magnetic anisotropy energy. With the application of pressure, it should

be possible to drive the non-magnetic phase of YbRh2Si2 into a magnetically ordered

ground state. In our calculation, we study the evolution of magnetism in this material

as a function of various parameters such as pressure and Coulomb interaction.

In section 4.2 we describe the motivation and the experimentally known properties

of this material. Section 4.3 contains the results of our calculation to reproduce the

magnetic ground state of the material using various techniques. In section 4.4, we use

our calculated band structure to compute the magnetic anisotropy energy of YbRh2Si2

. Finally, in section 4.5, we summarize the various techniques we used in the study of

the compound, and draw our conclusions.

4.2 Properties of YbRh2Si2

Experimentally YbRh2Si2 is known to have an anti-ferromagnetic quantum critical

point at ambient pressure [53]. It is an undoped and atomically well-ordered material.

X-Ray diffraction studies showed that YbRh2Si2 has a body centered tetragonal phase

as shown in Fig. 4.1 with the lattice parameters a = 4.007 Å and c = 9.858 Å [56].

The valence shell of Yb is in the 4f 13 configuration.

At high temperatures, the magnetic susceptibility shows a Curie-Weiss like behavior

with magnetic moment µeff = 4.5µB which is almost equal to that of the free Yb3+ ion.

The magnetic susceptibility along the plane of the tetragonal structure is measured to

be much larger than that along the c−axis. This anisotropy in the magnetic response

indicates that the Yb3+ moments form a 2-dimensional lattice perpendicular to the

c−axis. At ambient pressure and low temperature TN = 65mK, YbRh2Si2 develops a

long range anti-ferromagnetic order. One of the goals of our band structure computation

is to obtain the different magnetic phases of YbRh2Si2 , and to calculate it magnetic

properties. Further, we would like to compute properties of this material that might

arise as a result of the strong magnetic anisotropy.

YbRh2Si2 shows many deviations from Fermi liquid behavior at low temperatures
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Rh SiYb

Figure 4.1: Body centered tetragonal crystal structure for YbRh2Si2

such as linear temperature dependence of electrical resistivity and a logarithmic depen-

dence of specific heat C/T ∝ − lnT . These unusual properties arise due to the inter-

actions between the localized f−electrons in Yb3+ and the conduction band formed

by the s, p and d electrons. We would like to use the band structure calculation to

understand how localized bands and strong correlations in the 4f -electrons affect the

properties of the material.

4.3 Band structure calculation of YbRh2Si2

The computation of the band structure is done using the LmtART code [57] based

on the linear muffin-tin orbital density functional method as described in the previous

chapter. We start with the LDA method. Since YbRh2Si2 exhibits strong electron-

electron correlations we expect an LDA calculation to fail to reproduce the magnetic

ground state of the material. We recalculate the structure using the LDA+U technique.

We will show that LDA+U also does not work well, due to problems with the double

counting term in the functional.
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4.3.1 LDA calculation

We first describe some technical details of the numerical simulation:

The program and the database associated with it provides the Hamiltonian and

the overlap matrix of the valence orbitals as well as the necessary space group in-

formation and Brillouin zone data. The unit cell of YbRh2Si2 has five basis atoms

at the following positions: Yb(0, 0, 0), Rh1(0, 1/2, 1/4), Rh2(1/2, 0, 1/4), Si1(0, 0, 3/8),

Si2(0, 0, 5/8). This information is contained in the input structure file ybrh2si2.str

shown in Table 4.1. Details about the atomic numbers of elements in the solid, the the

lattice constant, the schemes used for self-consistency (ASA) and exchange-correlation,

and information about the iterations in the self-consistent loop, in are contained the

input file ybrh2si2.ini in Table 4.2. Finally, for the LDA+U calculation, the details of

the interactions U and J, and the correlations are contained in the file ybrh2si2.hub in

Table 4.3.

〈FILE=STRFILE, INPUT=MODERN 〉
**************************************
〈SECTION=HEDS 〉 ! STRUCTURE TITLE:
Slabl =YbRh2Si2
〈SECTION=CTRS 〉 ! CONTROL STRUCTURE:
Natom =5 ! # of atoms
BtoA = 1.00000 ! b over a ratio
CtoA = 2.46019 ! c over a ratio
〈SECTION=TRAN 〉 ! PRIMITIVE TRANSLATIONS:
-1/2, 1/2, 1/2 ! Ax,Ay,Az
1/2, -1/2, 1/2 ! Bx,By,Bz
1/2, 1/2, -1/2 ! Cx,Cy,Cz
〈SECTION=BASS 〉 ! BASIS ATOMS :
0.0 , 0.0 , 0.0 ! Yb
0.0 , 1/2 , 1/4 ! Rh1
1/2 , 0.0 , 1/4 ! Rh2
0.0 , 0.0 , 3/8 ! Si1
0.0 , 0.0 , 5/8 ! Si2

Table 4.1: Input file ybrh2si2.str
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〈FILE=INIFILE, INPUT=MODERN 〉
**************************************
〈SECTION=HEAD 〉 ! PROJECT HEAD:
title =YbRh2Si2 ! Compound title
〈SECTION=CTRL 〉 ! CONTROL PARAMETERS:
Lmto =Bare ! set: Bare / Screened / Rspace
FulPot=ASA ! set: FTB/ ASA / PLW
〈¡SECTION=EXCH 〉 ! EXCHANGE-CORRELATION:
LDA =Vosko ! set: none/Barth/Gunn/etc.
〈SECTION=ITER 〉 ! ITERATIVE PROCEDURES:
Niter1=200 ! # of iterations in SCF loop
Lbroy =-1 ! Broyden mixing for low l.le.lbroy
Admix1= 0.05000 ! initial mixing for density
〈SECTION=MAIN 〉 ! MAIN ATOMIC DATA:
Natom =5 ! # of atoms in the unit cell
Nsort =3 ! # of sorts in the unit cell
Nspin =2 ! # of spins
Norbs =2 ! 1-without/2 -with spin orbit coupling
Par0 = 7.57500 ! lattice parameter in a.u.
Is(:) =1 2 2 3 3 ! atom-to-sort pointer array
〈SECTION=SORT 〉 ! SORT DATA:
Name = Yb ! atom label
Znuc = 70.0000 ! nuclear charge
Smts = 3.66200 ! non-overlapping MT-sphere
Split = 0.00000 ! initial splitting
〈SECTION=SORT 〉 ! SORT DATA:
Name = Rh ! atom label
Znuc = 45.0000 ! nuclear charge
Smts = 2.26700 ! non-overlapping MT-sphere
〈SECTION=SORT 〉 ! SORT DATA:
Name = Si ! atom label
Znuc = 14.0000 ! nuclear charge
Smts = 2.17800 ! non-overlapping MT-sphere
〈SECTION=FFTS 〉 ! FFT GRIDS:
Ndiv(:)=6 6 6 ! Tetrahedron mesh

Table 4.2: Input file ybrh2si2.ini
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〈FILE=HUBFILE, INPUT=MODERN 〉
**************************************
〈SECTION=CTRL 〉 ! CONTROL PARAMETERS:
Scheme=LDA+U1.1 ! LDA+U1.# / LDA+C / LDA+CU1.# / LDA+G1.
Yharm =spherical ! Cubic/Spherical harmonics (output)
Iharm =spherical ! Cubic/Spherical harmonics (input)
Rorbs =Both ! One/Both orbits to read
Rspin =Both ! One/Both spins to read
Format=complex ! Real/Complex input/output
〈SECTION=CORR 〉 ! CORRELATED STATES:
Ncrl = 1 ! # of correlated states
Cstate =Yb@1::4f ! Correlated state pointer
OutSys = local ! global/local coordinate system
OutAxis = -1,1,0 ! rotational axis
OutAngle= 0*pi ! rotational angle
OutInv =no ! apply inversion after rotation
InpSys = local ! global/local coordinate system
InpAxis = -1,1,0 ! rotational axis
InpAngle= 0*pi ! rotational angle
InpInv =no ! apply inversion after rotation
F0 = 0.4411765 ! Slater integrals
F2 = 0.000000 ! Slater integrals
F4 = 0.000000 ! Slater integrals
F6 = 0.000000 ! Slater integrals
〈SECTION=DHUB 〉 ! PARTIAL OCCUPANCIES:
cState=Yb@1::4f ! spin up/dn-up/dn data are :

Table 4.3: Input file ybrh2si2.hub
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Both the full potential plane-wave (PLW) and the atomic sphere approximation

(ASA) schemes have been used. The results for the energy bands (using the PLW

scheme) show a narrow localized set of bands below the Fermi level EF which is near

13.7eV (Fig. 4.2,left). On investigating the character of these localized bands, which

are near energies of ∼ 13eV, it is seen that these correspond to the localized 4f bands

of Yb, as expected. Self-consistency for the energy was obtained in ∼ 40 iterations.

We find that the there are 14 fully occupied 4f -bands below EF at the Γ point. The

LDA calculation predicts that all the 4f -bands are filled, that is, the occupancy of the

4f -bands of Yb in YbRh2Si2 is 14.

On performing the same calculation using the ASA method to compute the poten-

tial, we find that the main differences are that the overall energies and the Fermi level

have shifted downwards with the Fermi energy EF ∼ 13eV, and that the position of

the localized 4f bands of Yb are pushed further below to 12eV (Fig. 4.2,right). Unless

otherwise mentioned, all further calculations are in the ASA method. A large contri-

bution to the bands crossing the Fermi level comes from the 5d-bands of Yb and the

4d-bands of Rh (Fig. 4.3).

According to the experimental evidence, Yb3+ in YbRh2Si2 is in a 4f 13 configura-

tion. Thus we need to improve upon the simple LDA method in order to check if one

of the Yb3+ 4f -bands lies above the Fermi energy. Since the electrons on the Yb3+ ion

are strongly correlated we will use the LDA+U method next to obtain the electronic

structure.

4.3.2 LDA+U calculation

We used the LDA calculation to estimate the interaction energy required to push one

of the 4f -bands from below to above the Fermi level. From the LDA calculation in

the ASA case, we located the 4f sub-band (amongst all the 4f -bands) that has the

highest energy at the Γ-point. It is most likely that it is this band that would be

unfilled upon the inclusion of U . From Fig. 4.4, we can see that this band is the

4f : {z(x2 − y2)} sub-band . Thus to obtain only 13 filled 4f -bands we use the correct

initial partial occupancies in the DHUB matrix. We input a partial occupancy of 0
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Figure 4.2: Energy bands of YbRh2Si2 – Full Potential(left) and Atomic Sphere Ap-
proximation(right). The colored regions in are the fat bands for Yb:4f.
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for the 4f : {z(x2 − y2)}–spin-up (an arbitrary choice, as spin-up and spin-dn bands

displayed the same behavior) and a partial occupancy of 1 for the other sub-bands.
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Figure 4.4: Energy bands of Yb:4fz(x2 − y2)

We find that even on increasing the value of U , we get all the 14 4f -bands of Yb to be

filled. The results for U = 2, 4, 6 and 8eV and are shown in Fig. 4.5 Self-consistency

for the energy was obtained in 100 iterations.

Under the simple LDA calculation, all the 14 4f -bands of Yb are filled. We want

to locate the magnetic solution with one of the 4f -bands to be pushed above the Fermi

level. Fig. 4.6 shows the behavior of the position of the center of the f -band w.r.t.

U . Thus in order to push one of the bands towards and above the Fermi level, we

propose that the value of U used in the double counting term is different from that in
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the LDA+U energy functional for the model.
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Figure 4.6: Position of center of 4f -bands of Yb as a function of the interaction U

4.3.3 Effect of the double counting term:

Our prescription for obtaining the correct band structure for this material is that we

treat the interaction U that is used in the model and the interaction Ū used in the

double counting term as two separate parameters. The former controls the position of

the band below the Fermi level while the latter controls the splitting in energy between

the occupied and the unoccupied bands, on which the magnetic moment depends. To

test this hypothesis,we run the LDA+U calculation using different values of U and Ū .

In Fig. 4.7 we plot the position of the 4f -level as a function of Ū for the interaction

U = 4.0eV and U = 6.0eV . Initially we keep Ū = U . As we decrease Ū (to Ū = 5.5eV

for U = 6eV and to Ū = 3.4eV for U = 4eV ) we find that the system has a magnetic
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solution. These results are shown in Figs. 4.8 and 4.9 where we see that a part of the

4f -band of Yb is unoccupied and the Y b-ion shows a non-zero magnetic moment.

However, when we calculate the total magnetic moment, we find that it is less than

the experimental value of ∼ 4µB . For this solution, our initial condition had, for the

4f : {z(x2 − y2)} sub-band, an occupation number of 0 (for the spin-up electron), and

for the other 4f -bands, an occupation number of 1. This led to a stable converged

solution with a total occupation of 13.3 for the f-bands. However, magnetic moment

(in units of Bohr magnetons µB) for this state was lower than the experimental one.

For U = 6eV, Ū = 5.5eV :

Orbital moment Mz = 0.4

Spin moment = 1.16

Total moment = 1.56.

The difference is due to the contribution from the orbital angular moment. In the

above state, the contribution came from the orbitals lz = +2,−2. In order to obtain

the correct angular moment, the initial state has to have the lz = +3 orbital empty and

the other orbitals filled. With this initial condition, we get a band structure as shown

in Fig. 4.9. The magnetization for U = 6eV, Ū = 5.5eV is:

Orbital moment Mz = 2.97

Spin moment = 1.14

Total moment = 4.11

Thus, using the correct value of the interaction Ū in the double-counting term, and

the correct initial conditions in the occupancy matrix, we obtain a band structure for

YbRh2Si2 that has the correct magnetic solution.

4.3.4 Comparison with other methods involving the double-counting

term

In order to describe the physics of correlated metals, which fall in between materials

which have fully localized shells, and those which have uniform electron occupancies,

Mazin et.al [54] proposed an alternate form of the double counting term in the LDA+U
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functional (c.f. Eqns. 3.18 and 3.19):

EDFT
LDA+U = −(Ū − J̄)

2

∑

σ

[

Tr(ρσ · ρσ) − (2l + 1)
[

ασn
2
σ + (1 − ασ)nσ

]]

(4.1)

0 ≤ ασ =
Tr (δρσ · δρσ)

(2l + 1)nσ (1 − nσ)
≤ 1 (4.2)

The correction to the potential is

λDFT
LDA+U(ab, σ) = −(Ū − J̄)

[

ρσ
ab − ασnσ − 1 − ασ

2

]

(4.3)

Here, the orbital occupation matrix, ρσ
ab = −1/π

∫ EFGab(E)dE where Gab is the one-

electron Green’s function, nσ = Trρσ/(2l + 1) and δρσ
ab = ρσ

ab − nσ. ασ is a system

dependent constant between 0 and 1 that is calculated using the self-consistent occu-

pation matrix at each iteration as in Eqn. 4.2 According to this scheme, our LDA+U

calculation has a double counting term in eqn.3.19 as (ρσ
ab − 1

2δab) that is equivalent to

keeping the value of α = 0.

We tested the above functional for our calculation on YbRh2Si2 . We replace the

original double-counting term (eqn.3.19) in the file hub hubpot.f by the one above. We

find that this double-counting term does not produce a magnetic ground state for

YbRh2Si2 . Fig. 4.10 shows how the 4f -bands of Yb in YbRh2Si2 behave as a function

of U using the scheme descibed above. From the self-consistent procedure we get a

value of α = 0.22. Also included in the figure are the location of the bands using the

original double-counting with U = Ū , as well as the result from our empirical method

of treating U and Ū as different parameters. We see that using the functional described

by Mazin, the center of the bands move in the correct direction, however we still do

not obtain the correct magnetic ground state. For that we must follow the method

we described in section 4.3.3 where we treat the interaction Ū as a different parameter

from the interaction U in the model.

In yet another functional for the total energy proposed by Czyzyk and Sawatzky [55],

the double counting term to be subtracted from the potential is given by (ρσ
ab − nσδab)

which corresponds to the limit of uniform occupancy in LDA , i.e. ρσ
ab(LDA) = δabn

σ.

For correlated materials, the limit of uniform occupancy is not correct, hence this

method of treating the double counting term produces the incorrect ground state for

YbRh2Si2 .
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4.3.5 Effects of pressure

If we apply pressure, we expect that the f -level moves closer to the Fermi level. If

sufficient pressure is applied, we expect some of the f -bands to cross the Fermi level

so the material has a magnetic solution. To incorporate the effects of pressure, we

decrease the volume compression factor V/V0 from its original value of 1. We find that

there is an overall increase in all the energies observed, including the Fermi level. When

pressure is increased by ∼ 10%, the center of the 4f -band moves up by ∼ 12% but the

Fermi level increases by about as much. Hence we do not observe a magnetic solution
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with the application of pressure alone.

Once we have obtained the correct magnetic solution by using the appropriate value

of the double-counting term and the interaction term, we find that on applying pressure,

the gap between the occupied and the unoccupied states decreases, leading to a decrease

in the magnetization. As pressure is applied, the volume of the muffin-tin spheres

decreases which causes a decrease in the effective interaction. The Hubbard bands

come closer and the magnetic moment decreases. Fig. 4.11 shows this trend. The band

structures for the magnetic solution on applying pressure are shown in Fig. 4.12.
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Figure 4.11: Dependence of magnetic moment on relative volume

4.3.6 Anti-ferromagnetic solution

Experimentally YbRh2Si2 is in an anti-ferromagnetic state. To obtain the anti-ferromagnetic

solution and the band structure, we have to first incorporate the correct crystal struc-

ture in the input files. In the ferromagnetic case, each unit cell has one Yb atom, which

is located at the origin. To have an anti-ferromagnetic solution, we have to double the

unit cell so that it contains two Yb atoms. Adjacent Yb atoms have opposite spins.

The following table shows the input structure file that shows the basis atoms and the
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positions of the atoms. (Compare with structure file in Table 4.1)

〈FILE=STRFILE 〉
**************************************
〈SECTION=HEDS 〉
Slabl =YbRh2Si2 ! STRUCTURE TITLE:
〈SECTION=CTRS 〉 ! CONTROL STRUCTURE:
Natom =10 ! # of atoms
BtoA = 1.00000 ! b over a ratio
CtoA = 2.46019 ! c over a ratio
〈SECTION=TRAN 〉 ! PRIMITIVE TRANSLATIONS:
1 , 1 , 0 ! Ax,Ay,Az
1 ,-1 , 0 ! Bx,By,Bz
1/2 , 1/2 ,1/2 ! Cx,Cy,Cz
〈SECTION=BASS 〉 ! BASIS ATOMS :
0.0 , 0.0 , 0.0 ! Yb1
1.0 , 0.0 , 1.0 ! Yb2
0.0 , 1/2 , 1/4 ! Rh1
1/2 , 0.0 , 1/4 ! Rh2
1.0 , 1/2 , 1/4 ! Rh3
3/2 , 0.0 , 1/4 ! Rh4
0.0 , 0.0 , 3/8 ! Si1
0.0 , 0.0 , 5/8 ! Si2
1.0 , 0.0 , 3/8 ! Si3
1.0 , 0.0 , 5/8 ! Si4

Table 4.4: Input file ybrh2si2.str

The interaction parameters we used were U = 6eV, Ū = 5.5eV. The magnetic

moment (in units of Bohr magnetons) in this case is as follows:

Orbital magnetic moment for 1st Yb atom (spin-up): 2.959937

Orbital magnetic moment for 2nd Yb atom (spin-dn): 2.667827

Spin magnetic moment for 1st Yb atom (spin-up): 1.112074

Spin magnetic moment for 2nd Yb atom (spin-dn): 0.923587

Fig. 4.13 shows the energy bands of YbRh2Si2 in the anti-ferromagnetic calculation.

4.4 Magnetic Anisotropy Energy

YbRh2Si2 shows a highly anisotropic magnetic response along different crystallographic

directions. The experimentally measured magnetic susceptibility (Fig. 4.14 from [59])
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along the plane of the tetragonal structure is ' 20 times larger than that measured

along the perpendicular c axis at 2 K and upto 100 times larger at 0.1K according

to Trovarelli et. al. [53], [59]. The magnetic anisotropy energy (MAE) is defined as

the difference of the total energies with the orientation of the magnetization pointing

in different crystalline directions. Since it depends on the total energy, the MAE is a

ground state property and hence can be calculated using density functional theory.

To calculate the MAE, we calculate the total energy with the magnetic axis pointing

in two different directions – [100] corresponding to the z-axis in the crystal and [110],

corresponding to the X-Y plane. In practice, we implement this as explained below.

We first start with the converged paramagnetic solution that we obtain with LDA+U.

To obtain the solution with the magnetization along the c-axis of the crystal, which is

also our z-direction, we set the parameter AxMag = 0, 0, 1 in the input file ybrh2si2.ini.

We also use the correct initial values in the occupancy matrix with the magnetic axis in

the [100] crystallographic direction. We calculate the total energy with these conditions

as Ec. The magnetization obtained is in the z-direction.

To calculate the total energy in the [110] crystallographic direction, that is, along

the basal a-b plane of the crystal, we set AxMag = 1, 1, 0 in the input file ybrh2si2.ini.

We also have to rotate the initial occupancy matrix, so that the orbital and the spin

magnetic moments both point along the x-y plane. We calculate the total energy Ea

in this configuration. The difference of the energies in the above two configurations is

the MAE.

We first compute the magnetic anisotropy energy using the ferromagnetic solution.

We use 12 k-points per dimension in the Brillouin zone.

For the magnetization along the c-axis, total energy Ec = −48409.504501 Ry.

Here, magnetic moment Mz = 1.08µB and Mx,My << Mz.

For the magnetization along the a-b plane, total energy Ea = −48409.504513 Ry.

Magnetic moment Mx = My = 0.48202 µB and Mz << Mx,My.

The magnetic anisotropy energy per Yb atom is

MAE = Ea −Ec = −1.32 × 10−5Ry ' −179.5µeV
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Thus Ea < Ec, that is, the configuration where the spins point along the x-y plane is

more stable, as confirmed by experiment.

Experimentally we know that the magnetic susceptibility χa ' 20χc at a field of 5T

and temperature of 2K (Fig. 4.14 from [59]). Here χa is the susceptibility along the

plane of the tetragonal structure and χc is that perpendicular to the plane, i.e. along

the c-axis. To compare the magnetic anisotropy energies in our LDA+U calculation,

as compared to the experimental value, we do a calculate the experimental value of the

magnetic anisotropy energy given the susceptibility.

We have

E = −1

2

M2

χ
(4.4)

where E is the energy, M is the magnetization and χ is the susceptibility. The magnetic

anisotropy energy MAE = Ea −Ec.

From the plots in Figs. 4.14 and 4.15 obtained from [58] and [59] at a field of 5 T

and temperature 2 K we have:

Ma = 0.73µB/atom, Mc = 0.1µB/atom

χa = 1.0 × 10−6m3/mol, χc = 0.1 × 10−6m3/mol

Converting all quantities so that the value are per atom, we have

χa =
1.0 × 10−6m3/mol

6.023 × 1023atoms/mol
= 1.66 × 10−30m3/atom (4.5)

χc =
0.1 × 10−6m3/mol

6.023 × 1023atoms/mol
= 1.66 × 10−31m3/atom (4.6)

MAE per atom = Ea −Ec = −1

2

(

Ma
2

χa
− Mc

2

χc

)

= −1

2

(

(0.73µB/atom)2

1.66 × 10−30m3/atom
− (0.1µB/atom)2

1.66 × 10−31m3/atom

)

= −1

2
×
(

3.166 × 1029(µB)2/m3 − 6.024 × 1028(µB)2/m3
)

= −1.282 × 1029(µB)2/m3

(4.7)



82

Using the value of the Bohr magneton, 1µB = 9.274×10−24J/T , and the conversion

1(µB)2/m3 = (9.274 × 1024J/T )
2 × µ0 = 1.079 × 10−52J we get

MAE per atom = Ea −Ec = −1.384 × 10−23J/atom

= −8.65 × 10−5eV/atom

(4.8)

When we compute the total energy for the anti-ferromagnetic solution, by dou-

bling the unit cell, we get total energy Ec = −96819.024913 when the magnetization is

along the c-axis of the crystal. With the magnetization pointing along the a-b plane, we

get the total energy Ea = −96819.024942. Since each unit cell has two Yb atoms, the

magnitude of the MAE per Yb atom is |Ea−Ec|/2 = (2.9×10−5)/2 = 1.45×10−5Ry '

200µeV .

The typical order of magnitude of magnetic anisotropy energies are a few µeV per

atom. For example, MAE per atom at low temperature for Fe is 1.4 µeV , for Ni is 2.7

µeV and for Co is 60 µeV . In comparison, from our LDA+U calculation, we have, MAE

per Yb atom in YbRh2Si2 to be ' 200µeV and the experimental value for YbRh2Si2 per

Yb atom is ' 86.5µeV with Ea < Ec, that is, the configuration where the magnetization

is along the a-b plane being more stable.

We also calculate the exchange energy using the total energies per atom for the

ferromagnetic and the anti-ferromagnetic case in the two directions.

Parallel to a-b plane:

Ea
Ferro −Ea

Antiferro = −48409.504513 − (−48409.512471) = 0.07958Ry

Perpendicular to a-b plane, i.e. along c-axis:

Ec
Ferro −Ec

Antiferro = −48409.504501 − (−48409.512456) = 0.07955Ry

4.5 Summary and Conclusions

We used LDA and LDA+U methods to compute the band structure of YbRh2Si2. Both

methods predict an incorrect non-magnetic structure with all the above 4f-shells occu-

pied. Experimentally YbRh2Si2 is in an anti-ferromagnetic state with a total magnetic
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Figure 4.14: χ vs T (from Trovarelli et.al. [59])

Figure 4.15: from Trovarelli et.al. [58]
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Figure 4.16: Magnetization as a function of external magnetic field (along z-axis)

moment of ∼ 4.5µB . In order to obtain the correct magnetic solution, we proposed

that the value of U used in the double counting term, Udc, is different from that in

the energy functional. When Udc is decreased, keeping U fixed, we do observe that the

4f : {z(x2 − y2)} sub-band of Yb gets unoccupied as per the initial condition.

The magnetic anisotropy energy of YbRh2Si2 is calculated using the difference of

the total energies with the magnetization pointing in two different directions. Our

calculations show that YbRh2Si2 is a highly anisotropic material, as was observed in

experiments.
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Chapter 5

Electronic structure and properties of f-band materials:

Americium

5.1 Introduction

In this chapter, we use LDA+U and LDA+DMFT methods described in chapter 3, to

study the electronic structure and properties of Americium, another material which has

occupation in the f -shell.

Experiment and motivation:

Americium is a metal that is nearly in the center of the actinide series, which have

occupation in the 5f shell. The actinides show interesting behavior in terms of crystal

structure and atomic volumes as one moves across the series. The lighter actinides

until Pu are known to have delocalized 5f -electrons that participate in bonding. They

have open low-symmetry structures. On the other hand, the 5f -electrons in the heavier

actinides are localized and the materials have closed structures.

Fig. 5.1 shows the volume change as one moves across the actinide series. One can

see that Americium is at a pivotal position. There is a sudden change in the atomic

volume as one moves from Pu to Am across the actinide series. This jump in volume

is argued to be a Mott transition with the 5f -electrons localized in Am, and itinerant

in the preceding element, Plutonium. A natural question we can ask at this point

is whether an external parameter such as pressure cam change the character of the

5f -electrons in Am.

Am has strong spin-orbit coupling due to which it is in a non-magnetic J = 0

ground state. Experimentally, the photoemission spectra of Am has been studied by

Nagele [60], which shows a localized 5f -peak (Fig. 5.2,left).
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volume ‘‘collapses’’ are attributed to the onset of f electron
contribution to the metallic bonding. A major difference in
this work compared to former studies is the assignment of f
electron character to the Am III phase, rather than only to the
Am IV phase, and a second volume change for the Am III to
Am IV transition. However, the change in volume is lower
than the 25% change predicted by the most recent theory.28

This onset of f electron itinerancy in americium metal due to
pressure is discussed further in a subsequent section.

The isothermal bulk moduli and their pressure derivatives
were obtained by fitting the Birch34 and Murnaghan35 equa-
tions of state to the experimental curve of the lower-pressure
phases Am I and Am II ~localized f electrons! to obtain the
bulk modulus B0 and its pressure derivative B08 ~the subscript
zero indicates ambient pressure!. The following values were
obtained: Birch equation, B0529.761.5 GPa, B0853.7
60.2, and Murnaghan equation, B0529.961.5 GPa, B08

53.560.2. These moduli are consistent with values reported
for the light lanthanide metals.1 The modulus reported by
Benedict et al. for americium metal is 45 GPa,14 appreciably
higher and close to the value of 43 GPa reported for
a-plutonium.36 The modulus for plutonium with itinerant f
electrons would be expected to be higher than that for am-
ericium metal with three non-5 f conduction electrons. That
is, the lattice for a plutonium should be ‘‘stiffer’’ than that
of the dhcp form of americium metal.

Another point is that some hysteresis is observed upon the
release of the applied pressure ~not shown!. In the energy
dispersive studies, the Am IV phase was retained down to
'11 GPa and a mixture of Am III and Am IV was observed
down to '6 GPa. The Am II phase was retained after the
total release of the pressure. The retention of the fcc phase
has been observed before9,37 and was used to obtain ‘‘pres-
sure quenched’’ lattice parameters for this cubic phase. How-
ever, the retention of the Am III and Am IV phases was
surprising, as it was expected that f bonded structures forced
by pressure would quickly revert back to stable, localized f
electron structures with the release of pressure.

B. Compressibility of the Am IV phase

In the previous section the bulk modulus of americium
metal obtained from this pressure study was discussed. The
modulus can be obtained via the compression behavior of the
Am I and Am II phases using established equation of state
relationships. The bulk modulus of 30 GPa found for ameri-
cium in this work is consistent with moduli established for
several lanthanide metals that have localized f electrons.2

The steep portion of the compression curve for Am I and Am
II in Fig. 8 is in accord with a smaller bulk modulus—that is,
a metal with a softer lattice that can be readily compressed.
In contrast, the modulus of a uranium is much larger ~re-
ported as 100 to 152 GPa by various methods2! and under
pressure uranium shows a much ‘‘flatter’’ compression
curve.

In Fig. 8 it can be observed that the compression of the
Am IV curve is also much ‘‘flatter’’ than for the Am I, Am
II, or Am III phases, which suggests, that the Am IV phase
has a much higher bulk modulus. It is not fully appropriate to
calculate a bulk modulus for the Am IV phase using our
data, but a pseudomodulus can be extracted from it by ex-
trapolation. By this approach, we obtained a bulk modulus
for the Am IV phase and estimate a value approaching 100
GPa. Such a value is in full accord with a rather ‘‘stiff’’ or
‘‘rigid’’ lattice, which has 5 f electron involvement in the
metallic bonding. This pseudo bulk modulus for the Am IV
phase suggests that this phase’s compressibility falls between
those of a uranium and a neptunium, two actinide metals
with itinerant 5 f electrons. The difference in compressibility
for the Am III and the Am IV phases ~e.g., the compression
curves in Fig. 8! also supports the contention that the Am IV
phase has a higher degree of 5 f involvement in its bonding.

C. Relationship between structures

The four different americium structures observed in this
work are shown in Fig. 9, which permits one to envision the

FIG. 7. Rietveld fit of the orthorhombic ~space group Pnma)
Am IV phase at 89 GPa (l50.3738 Å, pressure transmitting me-
dium silicone oil! showing the observed ~crosses! and calculated
~line! diffraction patterns, reflection tick marks, Miller indices of
the principal reflections, and difference profile.

FIG. 8. Relative volume of americium metal as a function of
pressure up to 100 GPa.

A. LINDBAUM et al. PHYSICAL REVIEW B 63 214101

214101-6

Figure 5.2: Left: Photoemission spectra of Am by Naegele [60]. Right: Relative volume
of americium as a function of pressure obtained by Lindbaum et. al. [62]
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Experimental studies have indicated [61], [62] that pressure induces major changes

in the nature of the 5f electrons of Americium. At normal pressure, the 5f electrons of

Americium are localized. With the application of pressure, the f electrons acquire an

itinerant character. There has been considerable debate in literature about the volume

of Americium in its various phases. From the high pressure studies using synchrotron

radiation as described by Heathman et. al. in Ref. [61] Americium has 4 phases. At

ordinary pressures Americium has a double hexagonal close packed (dhcp) structure

which under application of pressure gets converted to the Americium II fcc structure at

6 GPa. This transition was reported to occur at higher pressures of 10 GPa by Benedict

et. al. [63]. With additional pressure Americium II transforms to the Americium III

phase accompanied by a volume collapse of 7% [61] which indicates that the f electrons

begin to get delocalized (Fig. 5.2, right). The goal of this study is to test the predictions

of the LDA+DMFT technique regarding the electronic structure, equilibrium atomic

volume and the Mott transition in Am.

Theoretical studies:

Previous density functional electronic structure calculations in Americium [64], [65],

[66] have shown that Americium has localized 5f-electrons at normal pressure with a

FCC crystal structure. Application of high pressure leads to a phase with open, low

symmetry structures which are accompanied by a delocalization of the 5f-electrons.

However there has been some debate about the exact structure that Americium is

calculated to have at high pressures. Two contenders have been the orthorhombic

(α-Uranium) structure [64] or the monoclinic (α-Plutonium) structure [65], [66]. A

discrepancy in all the previous theoretical studies is that the calculated volume collapse

for the transition is much higher than the experimental value.

Eriksson and Wills [64], calculate the total energy versus volume of Americium

in FCC and the α-U structures using relativistic full-potential LMTO methods. The

basis set used in this computation contains 6s, 6p, 7s, 7p and 5f orbitals. On applying

pressure, they calculate a transition from Am-II (FCC) to Am-III (α-U) accompanied

by a volume collapse of 34%.
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Figure 5.3: Four phases of Americium (Lindbaum et. al [62])

According to Soderlind et.al [65], however, the stable phase at high pressure is de-

termined to be the monoclinic, i.e. the α-Pu structure. In this calculation, the total

energies of six different crystal structures of Americium is determined as a function of

volume. A full-potential LMTO method using the generalized gradient approximation

for the exchange-correlation term is used. Spin degeneracy is assumed for all the struc-

tures except the FCC structure. The results show that on applying pressure, there

is a transition from the FCC-Americium to monoclinic-Am accompanied by a volume

collapse of 25%.

The theoretical calculations of Eriksson [64] and Soderlind et.al [65] underesti-

mate the equilibrium volume of Americium at normal pressure. The volume of FCC-

Americium is calculated to be 15% less than the experimentally determined volume by
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Benedict [63]. Soderlind et.al also compute the total volume of Americium by treating

the 5f electrons as core: in this calculation, the equilibrium volume at normal pressure

is closer to the experimental volume, but still differs by 10%.

In the study by Pénicaud [66], the total energy versus atomic volume of Am is

calculated in various structures. The normal phase is the FCC structure as in the

previous calculations. At high pressures, the stable phase is calculated to be the α-Pu

phase. On further applying pressure, a transition to the Am-IV structure is observed,

which remains stable upto very high pressures. The equilibrium volume of Am at

normal pressure in this study is close to the experimental value. The volume collapse

for the FCC-α-Pu transition is calculated to be 31%.

In our calculation, we use the LMTO method in the atomic sphere approximation.

We calculate the band structure for FCC-Americium in the LDA+U scheme, and we

find that for a certain interaction U and double counting term, we can correctly predict

the position photoemission peak. Further, our LDA+U computation of the equilibrium

volume is in close agreement with experiment. However, using the LDA+U method,

we do not get the correct magnetic moment of zero. We then use the LDA+DMFT

technique using the Hubbard-I impurity solver to compute the band structure of Am,

which should also predict the correct magnetic moment.

In section 5.2, we describe the details of the LDA+U computation of the band struc-

ture and density of states. section 5.2.2 deals with the equilibrium volume calculation.

In section 5.3 we discuss the LDA+DMFT method, and apply it to calculate the bands

in Am. Finally, our conclusions are stated in section 5.4.
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5.2 LDA and LDA+U band structure calculation of Americium

The computation of the band structure is done using the LmtART code. The details

of the calculation are as follows:

There are two input files required for the LDA calculation and an additional input

file for the LDA+U calculation. The files are shown in the following tables. Table 5.1 has

details of the crystal structure including the positions of the basis atoms and the lattice

vectors. We used the FCC structure of Americium throughout our calculation. Table

5.2 contains the scheme used to calculate the self-consistency, the number of iterations

in the self-consistent loop, atomic numbers and the lattice constant in atomic units.

We used the atomic sphere approximation (ASA) scheme to achieve self-consistency. In

order to obtain a well converged charge density and magnetization, we used the Broyden

mixing scheme. For the LDA+U calculation, the details of the correlated orbitals and

the interaction U are contained in Table 5.3. The band structure of Americium was

calculated at various values of the interaction strength U .

〈 FILE=STRFILE,INPUT=MODERN 〉
****************************************************
〈SECTION=HEDS 〉 ! STRUCTURE TITLE:
Slabl =Am
〈SECTION=CTRS〉 ! CONTROL STRUCTURE:
Natom =1 ! # of atoms
BtoA = 1.00000 ! b over a ratio
CtoA = 1.00000 ! c over a ratio
〈SECTION=TRAN 〉 ! PRIMITIVE TRANSLATIONS:
0.0, 1/2, 1/2 ! Ax,Ay,Az
1/2, 0.0, 1/2 ! Bx,By,Bz
1/2, 1/2, 0.0 ! Cx,Cy,Cz
〈SECTION=BASS 〉 ! BASIS ATOMS :
0.0 , 0.0 , 0.0 ! Am

Table 5.1: Input file am.str
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〈FILE=INIFILE, INPUT=MODERN 〉
**************************************
〈SECTION=HEAD 〉 ! PROJECT HEAD:
Title =Am ! Compound title
〈SECTION=CTRL 〉 ! CONTROL PARAMETERS:
Lmto =Bare ! set: Bare / Screened / Rspace
FulPot=ASA ! set: FTB/ ASA / PLW
〈SECTION=EXCH 〉 ! EXCHANGE-CORRELATION:
LDA =Vosko ! set: none/Barth/Gunn/etc.
GGA =none ! set: none/91/96
〈SECTION=ITER 〉 ! ITERATIVE PROCEDURES:
Niter1=200 ! # of iterations in SCF loop
Lbroy =-1 ! Broyden mixing for low l.le.lbroy
〈SECTION=MAIN 〉 ! MAIN ATOMIC DATA:
Natom =1 ! # of atoms in the unit cell
Nsort =1 ! # of sorts in the unit cell
Nspin =2 ! # of spins
Par0 = 8.72023 ! lattice parameter in a.u.
Is(:) =1 ! atom-to-sort pointer array
〈SECTION=SORT 〉 ! SORT DATA:
Name = Am ! atom label
Znuc = 95.0000 ! nuclear charge
〈SECTION=FFTS 〉 ! FFT GRIDS:
Ndiv(:)=8 8 8 ! Tetrahedron mesh

Table 5.2: Input file am.ini

We start by calculating the Americium band structure using the non spin-polarized

LDA method. As we expect, this method predicts the 5f bands to lie at the Fermi level.

Once we include the effects of U , we see the formation of Hubbard bands separated by

an energy U . The 5f -bands and the density of states are plotted in Figs. 5.4 and 5.5

respectively for various values of U . In Americium, spin-orbit effects are significant,

which lead to a non-magnetic ground state with total J = 0. When we include the

effects of spin-orbit coupling in our LDA calculation, the bands for U = 0eV that lie

near the Fermi level are split by an energy equal to the spin-orbit coupling. When we

increase the interaction U , the localized 5f -band moves further away from the Fermi

level, and the energy separation between the filled and the empty bands increases by
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U . The bands are seen in Fig. 5.6 and the density of states corresponding to the

above bands are seen in Figs. 5.7. In all further calculations, we include the effects of

spin-orbit coupling.

〈FILE=HUBFILE,INPUT=MODERN,TRACE=TRUE 〉
******************************************
〈SECTION=CTRL 〉 ! CONTROL PARAMETERS:
Scheme=LDA+U1.1 ! LDA+U1.# / LDA+C / LDA+G1.#
Yharm =spherical ! Cubic/Spherical harmonics (output)
Iharm =spherical ! Cubic/Spherical harmonics (input)
Rorbs =Both ! One/Both orbits to read
Rspin =Both ! One/Both spins to read
Format=complex ! Real/Complex input/output
〈SECTION=DMFT 〉 ! DMFT SETTINGS:
Nmsb = 1 ! # of Matsubara frequencies
Ndit = 20 ! # of DMFT iterations
Efermi= 0.6632451 ! Fermi energy (Ry)
EpsDMF= 0.1000000E-04 ! Accuracy
〈SECTION=CORR 〉 ! CORRELATED STATES:
Ncrl = 1 ! # of correlated states
Cstate =Am@1::5f ! Correlated state pointer
OutSys = local ! global/local coordinate system
OutAxis = -1,1,0 ! rotational axis
OutAngle= 0*pi ! rotational angle
OutInv =no ! apply inversion after rotation
InpSys = local ! global/local coordinate system
InpAxis = -1,1,0 ! rotational axis
InpAngle= 0*pi ! rotational angle
InpInv =no ! apply inversion after rotation
F0 = 0.1470588 ! Slater integrals
F2 = 0.000000 ! Slater integrals
F4 = 0.000000 ! Slater integrals
F6 = 0.000000 ! Slater integrals
〈SECTION=DHUB 〉 ! PARTIAL OCCUPANCIES:

Table 5.3: Input file am.hub

The occupancy matrices and the LDA+U potential are written in 〈SECTION =

DHUB〉 in the HUB file.

In Fig. 5.8 we plot the position of the center of the 5f -level (w.r.t the Fermi level)
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are the fat bands of Am:5f
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Figure 5.8: Position of center of the Am 5f -band as a function of the interaction
strength

as a function of the interaction U , as obtained from our LDA+U calculations. The 5f -

band moves away from the Fermi level as U is increased, and the center of the occupied

5f -band linearly decreases. Experimentally, according to photoemission data (Fig. 5.2,

left) obtained by Naegele et. al [60], the conduction band spectrum of Americium shows

a peak at 2.8eV below the Fermi energy which corresponds to the localized 5f -band.

From our calculations of the spectra as a function of U , (Fig. 5.8) we see that at

U = 3eV the 5f level of Americium is centered around 2.8eV below EFermi.

In the LDA calculation, the filled and the empty states are separated by an energy

gap of the order of spin-orbit coupling. As we increase the interaction U , the gap

increases linearly with U. When we add correlations, the gap between the occupied and

unoccupied states is the LDA-energy gap plus an energy equal to U. In Fig. 5.9 we see

the gap between the spin-up and the spin-down electrons of Americium plotted as a

function of U .

The LDA+U calculation however fails to predict the correct occupancy and correct

magnetic moment of Americium. The LDA calculation predicts the occupancy of the

Am 5f -band to be 6.3. As we increase U , the cost of putting two electrons on the same
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site goes up, and the occupancy of the 5f-band increases. In the LDA+U calculation

with U = 4eV, it is close to 6.8. Fig. 5.10 shows the occupancy of the Americium

5f -band as a function of U . However, the occupancy of the 5f states of Americium is

known to be 6 (Ref. [67]). In section 5.3 we will show that the LDA+DMFT calculations

predict the correct occupancy of 6, and a zero magnetic moment for Americium.

5.2.1 Effect of the double counting term

In the fat bands and density of states (Figs. 5.6 and 5.7), we kept the interaction Ū

in the double counting term in the same as that used in the model, U . Decreasing the

value of Ū however shifts the 5f peak away from the Fermi level. Fig. 5.11 shows the

position of the localized 5f -level as a function of the double counting interaction Udc,

or Ū at U = 3eV . In the LDA+DMFT calculation in section 5.3 we will use Udc as a

parameter to fix the 5f peak at its experimental value.
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Figure 5.11: Effect of Udc: Position of the center of the f -band as a function of the Udc,
with U kept at 4eV .

In the next section, we turn to the details of the calculation of equilibrium volume

in LDA+U, which gives excellent agreement with experiment.
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5.2.2 Volume behavior

We calculate the equilibrium atomic volume of Americium by plotting the total energy

from our LDA+U calculations as a function of relative volume V/V0, for various values of

U (Fig. 5.12). From the minimum in these plots, the equilibrium volume for Americium

is calculated. In each of the methods, the fcc structure is used as the crystal structure for

Am. In Fig. 5.12, we use the experimental equilibrium atomic volume of 29.3ÅA3 [70]

for V0. Our LDA+U calculation predicts the correct equilibrium volume at U = 4.5eV .

We also performed a calculation by considering the 5f electrons as core electrons.

In order to do this we change one of the input files lmt.am that contains all the atomic

data. We remove the 5f-electrons from the basis and set them as the core electrons. We

set lmax=2, and consider 8 valence electrons only from the 6p and 7s subshells. The 6s

electrons are considered as semi-core electrons. The input file lmt.am that we enter the

above data in is shown in Fig. 5.13. However, in this case, the self-consistent equations

fail to give a a bound state solution with 5f electrons in the core. The band structure

and the density of states for Americium in this scheme are shown in Figs. 5.14 and

5.15 respectively. According to similar calculations by Soderlind, et.al [65] the volume

obtained by treating the 5f-electrons as core electrons is only 26.6ÅA3, which is about

10% less than the experimental volume.

Table-5.4 summarizes the results we obtain:

Method Equlibrium volume (inÅ
3
)

LDA 20.3682
LDA+U, U=1eV 23.6460
LDA+U, U=2eV 26.1092
LDA+U, U=3eV 27.5871
LDA+U, U=4eV 28.7118

LDA+U, U=4.5eV 29.2
LDA w/ 5f in core 27.97

Experiment 29.3

Table 5.4: Equilibrium volumes for Am in Å
3
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* ELEMENT: Am, Configuration 6s2/6p6/7s2/6d0/5f7
〈SECTION=SORT〉

name =Am ! element name
znuc =95 ! nuclear charge
zval =8 ! # of valence electrons
zsem =2 ! # of semicore electrons
amas =243 ! atomic mass
lmaxb =2 ! Lmax for LMTO basis

〈subsection=lmto〉
! s p d f g ! States

Mqn(:) 7 6 6 5 5 ! Main quantum numbers
Bas(:) 1 1 1 0 0 ! LMTO basis set
Mnu(:) 3 3 3 0 0 ! Choice of Enu
Enu(:) +0.5,+0.5,+0.5,+0.5,+0.5 ! Initial Enu
Dnu(:) -1.0,-2.0,-3.0,-4.0,-5.0 ! Initial Dnu

〈subsection=semi〉
nsem =1 ! # semicore states
lsem =6s ! n,l

〈subsection=conf〉
!Orbital n l j #el. Levels(Ry)
1s1/2 1 0 1/2 2 -7850.4727
2s1/2 2 0 1/2 2 -1447.8048
2p1/2 2 1 1/2 2 -1394.6574
2p3/2 2 1 3/2 4 -1155.9321
3s1/2 3 0 1/2 2 -360.94632
3p1/2 3 1 1/2 2 -336.82037
3p3/2 3 1 3/2 4 -282.31668
3d3/2 3 2 3/2 4 -243.61142
3d5/2 3 2 5/2 6 -232.36490
4s1/2 4 0 1/2 2 -89.627118
4p1/2 4 1 1/2 2 -78.886649
4p3/2 4 1 3/2 4 -64.904609
4d3/2 4 2 3/2 4 -47.651517
4d5/2 4 2 5/2 6 -45.061490
4f5/2 4 3 5/2 6 -22.427601
4f7/2 4 3 7/2 8 -21.774721
5s1/2 5 0 1/2 2 -19.277471
5p1/2 5 1 1/2 2 -15.228066
5p3/2 5 1 3/2 4 -12.070072
5d3/2 5 2 3/2 4 -6.1802559
5d5/2 5 2 5/2 6 -5.7243980
5f5/2 5 3 5/2 6 -0.1227601
5f7/2 5 3 7/2 1 -0.1227601
6s1/2 6 0 1/2 2 -3.0330305
6p1/2 6 1 1/2 2 -1.9080418
6p3/2 6 1 3/2 4 -1.4078676
7s1/2 7 0 1/2 2 -0.3556810

Figure 5.13: Input file lmt.am for treating f -electrons as core.
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5.3 LDA+DMFT method

The equilibrium volume of Americium predicted by LDA+U is in good agreement with

experiment. However it fails to predict the correct zero magnetic moment. We now

apply the LDA+DMFT method described in chapter 3 to calculate the band structure

of americium.

To solve the impurity model, we use a method that is based on the Hubbard-I

approximation. We do a full self-consistent calculation, where the charge density is

recomputed after the DMFT loop and is fed back to the routine that calculates the

potential and then the new LDA Hamiltonian.

5.3.1 Hubbard-1 method

The starting point of the Hubbard-I approximation is the atomic limit. We first find

the Green’s function for the atomic Hamiltonian using the equation of motion method

for the Hubbard operators. We then express the impurity Green’s functions in terms

of the atomic Green’s function and the hybridization ∆(iω).

We start with a impurity model that has the form H = Hatom +Hband +Hhyb.

Hatom =
∑

ll′=5/2,7/2
m=1...(2l+1)

m′=1...(2l′+1)

εfll′mm′f
†
lmfl′m′ + U

∑

l,l′=5/2,7/2

m,m′

f †lmflmf
†
l′m′fl′m′

Hband =
∑

lk

εlkc
†
lkclk

Hhyb =
∑

ll′mk

Vll′k(f
†
lmcl′k + h.c.) (5.1)

Here l, l′ label the two bands that are split due to spin-orbit coupling. These two

bands have the j-quantum number as 5/2 or 7/2. Notation: The band with l = 5/2

and is 6-fold degerate and that with l = 7/2 and is 8-fold degenerate. Thus m,m ′ label

the degeneracy and run from 1 to (2j + 1). Since the impurity level matrix εf
ll′mm′ has

off-diagonal terms as zero, the first term simplifies to
∑

lm εfl f
†
lmflm. Hhyb is due to

the hybridization between the conduction electrons and the localized f electrons. The

hybridization function can be written as ∆l(iω) =
∑

l′k V
2
l′k/(iω − εl′k).
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In the case of Americium, due to the above degeneracy, we have a SU(6) × SU(8)

symmetry. With this, the impurity Green’s function in the Hubbard-1 approximation

becomes

[Gimp
l (iω)]

−1
= [Gat

l (iω)]
−1 − ∆l(iω) (5.2)

The atomic Green’s function Gat is given by

Gat
l (iω) =

14
∑

n=0

n
∑

n1=0
n1<6

(n−n1)<8

(

C6
n1
C8

n−n1

[

e−Eln/T − e−En/T
])

/Z

iω + µ−Eln +En
(5.3)

where Eln is the energy of an atom with n total number of electrons, n1 in level l = 1

and n− n1 in level l = 2 is given by :

Eln = En + εfl + Un (5.4)

En =
U(n− 1)n

2
+ n1ε

f
1 + (n− n1)ε

f
2 (5.5)

The numerator in (5.3) denotes the probability of finding an atom with n total number

of electrons, n1 in level l = 1 and n − n1 in level l = 2. C6
n1

and C8
n−n1

are the

combinatorial coefficients. Z is a normalization factor for the probability given by

Z =
14
∑

n=0

n
∑

n1=0
n1≤6

(n−n1)≤8

C6
n1
C8

n−n1
e−En/T (5.6)
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5.3.2 Tight-binding calculation

We first do a tight-binding calculation for the band structure of americium. We generate

the hop file that gives the hopping integrals and positions of the impurity levels. We

then run the LMTART program in the tight-binding mode and calculate the bands and

density of states.

Experimentally, Americium has zero magnetic moment with 6 electrons in the j =

5/2 state. Thus from the tight-binding calculation, we choose a model with two bands

– band 1 corresponding to j = 5/2 and band 2 that has j = 7/2:

HTB = t1c
†
1c1 + t2c

†
2c2 + ε1f

†
1f1 + ε2f

†
2f2 (5.7)

where c1 and c2 are the operators for the conduction electrons in bands 1 and 2 re-

spectively, and f1 and f2 are the operators for the f -electron. The parameters t1, t2, ε1

and ε2 are chosen so that the bands from the tight-binding calculation match the bands

from the fully self-consistent LDA calculation. We find that the other hoppings are

negligible compared to t1 and t2. Figs. 5.16-5.19 show a comparison between the den-

sity of states obtained from the tight-binding calculation and those obtained from the

LDA self-consistent calculation.

Figs. 5.20 and 5.21 shows how the tight-binding parameters change as a function of

pressure. In the calculation, we reduce the relative volume V/V0, thus applying pressure

on the system. As the pressure is increased we find that the parameters increase.

We then perform a DMFT calculation on the above model, using the Hubbard-I

impurity solver described in Chapter 3. A plot containing the density of states for

different values of U obtained from LDA+DMFT on the above model is shown in Fig.

5.22. As U is increased, we see the increase in the gap between the occupied and the

unoccupied states.
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Figure 5.16: Comparison of DOS : LDA and Tight binding methods
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Figure 5.17: Comparison of DOS : LDA and Tight binding methods
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Figure 5.18: Comparison of DOS : LDA and Tight binding methods
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Figure 5.19: Comparison of DOS : LDA and Tight binding methods
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5.3.3 LDA+DMFT Results

The above tight-binding model for Americium correctly describes its natural state. We

now perform a full self-consistent LDA+DMFT calculation on Am, with the effects of

spin-orbit coupling included. We use the Hubbard-I solver explained in section(5.3.1)

as the impurity solver.

In Figs. 5.23 we plot the total energy (-61102Ry) as a function of relative volume

at U = 4.5eV . The volume V0 is chosen to be the experimental volume.
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Figure 5.23: Energy vs. relative volume

The equilibrium volume is predicted correctly by the LDA+DMFT method, similar

to the equilibrium calculation in the LDA+U method. The curve with circles is obtained

from the high volume side, gradually decreasing the volume and using the self-consistent

results from the previous run for the next. The curve with squares is obtained starting

from the low volume side, and gradually increasing the volume. We find a region near

V/V0 = 0.7 where there are two different energies for the same volume. The pressure,
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i.e., the derivative of energy w.r.t. volume ∂E/∂V is plotted as a function of relative

volume in Fig. 5.24.

The region of the where there is a discontinuity in the solutions can be thought of as

a coexistence region for the metallic-like and the insulating-like phases of the material.

This is a strong indication of the a Mott transition where the 5f electrons undergo a

change of character from localized to delocalized as we increase the pressure.
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Figure 5.24: Pressure vs. relative volume

We now turn to how the Americium 5f -density of states behave as we apply pressure

on the system. The DOS calculated from LDA is shown in Fig. 5.27. As we saw in

sections 5.2 and 5.2.2, LDA neither correctly predicts the position of the 5f peak nor

the equilibrium volume. However, as we apply pressure we see that the DOS start

broadening.

We need to include the effects of U to correctly predict the 5f -peak and the equi-

librium volume. At U = 4.5eV , the value of the interaction which gives the correct

equilibrium volume, we find that the position of the 5f -peak is at 3.8eV below the Fermi
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level. In order to fix the 5f -peak at its experimental value, we use the interaction in

the double counting term Ū , or UDC as a parameter. Fig. 5.28 shows the evolution of

the DOS with pressure at U = 4.5eV when UDC is kept at the same value as U . It

turns out that to have the 5f -peak at its experimental value of 2.8eV below the Fermi

level, we need UDC to have a value slightly less than U , namely, UDC = 4.1eV . In

Fig. 5.31 we see how the DOS evolves with pressure for the parameters U = 4.5eV and

UDC = 4.1eV .

At the equilibrium volume V/V0 = 1.00, we see two Hubbard bands separated by an

energy difference that accounts for U as well as spin-orbit coupling. The filled 5f -band

below the Fermi level has 6 electrons and the unoccupied band above the Fermi level

contains 8 electrons.

We have plotted the total density of states as well as the 5f density of states. We

can see that under pressure the highly localized 5f-bands start widening and merging

into each other. When V/V0 = 1.00 we see that the 5f states do not contribute

much at the Fermi level. Most of the weight at low pressures is due to the s,p and

d electrons, shown in grey in the figure. As the pressure is increased, the ratio of 5f

states to the total DOS near the Fermi level increases. Near V/V0 = 0.75 we observe

a spreading out of the DOS that signals a transition to a metallic state. Since the

Hubbard-1 approximation essentially starts with an atomic solution, it always predicts

the existence of two Hubbard bands for an arbitrarily small U . It fails to predict a

sharp quasiparticle peak for a metallic state. However we do see a finite and increasing

but wide distribution of states at the Fermi level as we increase pressure. In Fig. 5.34

we see the total and partial 5f-density of states at the Fermi energy, and in Fig. 5.35

we see the ratio between the 5f-DOS and the total DOS plotted as a function of the

relative volume.
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Figure 5.29: Am DOS in LDA+DMFT: U = UDC = 4.5eV
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Figure 5.30: Am DOS in LDA+DMFT: U = UDC = 4.5eV
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Figure 5.31: Am DOS in LDA+DMFT: U = 4.5eV, UDC = 4.1eV
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Figure 5.32: Am DOS in LDA+DMFT: U = 4.5eV, UDC = 4.1eV
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5.4 Summary and Conclusions

We have calculated the electronic band structure of Americium using the LDA+U

method and the LDA+DMFT methods. The LDA+U method gives consistent results

with photoemission spectra and equilibrium volume of Am. However we fail to get the

correct magnetic moment in Americium using LDA+U. Americium is in a J = 0 non-

magnetic ground state due to spin-orbit coupling. However, the LDA+U computation

predicts a half-filled shell and a magnetic moment of 7 µB.

We then use the LDA+DMFT method to compute the structure and volume of Am.

We can correctly predict the position of the 5f-peak as well as the correct equilibrium

volume of Am. On applying pressure, we observe a hysteresis loop in the energy-volume

curve which strongly indicates the proximity to a Mott transition.
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Chapter 6

Summary and conclusions

In this thesis we have numerically studied aspects of the Mott transition in model

Hamiltonians as well as in real materials.

In chapter 2, we introduced the idea of the Mott transition, that is, a first order

metal-insulator transition driven by electron correlations. We applied the dynamical

mean-field theory (DMFT) to study a simple model Hamiltonian: the degenerate Hub-

bard model. Based on numerical calculations of the behavior of the particle occupation

number as a function of doping, we mapped out the phase diagram of the Hubbard

model in the paramagnetic regime. We found a region of coexistence between metallic

and insulating phases at finite temperatures. Furthermore, we showed that at small but

finite doping, the compressibility diverges at the Mott endpoint. Our model calculations

were found to be relevant to the α-γ transition in Ce.

We briefly shifted gears in chapter 3 and gave an overview of various density func-

tional methods, which are first-principles methods in the sense that no empirical param-

eters (other than atomic charges and lattice structure) are needed to predict physical

properties of materials. Density functional theory in the local density approximation

(LDA) has had considerable success in understanding electronic structure of weakly in-

teracting solids. We then moved on to describe methods that go beyond LDA, in order

to deal with strongly correlated materials. We focused on two such methods: LDA+U,

where U is the Coulomb interaction, and the LDA+DMFT which uses LDA to describe

the light s, p (or s, p, d) electrons and DMFT to treat correlated d and f electrons.

Chapters 4 and 5 contain applications of the two theoretical approaches we discussed

so far: a many body Hamiltonian approach combined with first-principles calculations.
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We used these techniques to study the electronic structure and properties of two ma-

terials that have strong correlations due to f -band electrons.

In chapter 4, we investigated YbRh2Si2 , a heavy fermion compound that exhibits

many deviations from Fermi liquid behavior due to interactions between the local-

ized 4f−electrons in the Yb3+ ion and the conduction band formed by the s, p and d

electrons. We used the LDA+U technique to determine the electronic structure and

magnetic properties of YbRh2Si2 . In the process, we did a careful study of the so-called

double-counting term, that is, the energy that needs to be subtracted from the LDA+U

functional, since part of the correlation energy is already present in the LDA functional.

As the double-counting term was too large in the standard LDA+U functional, we failed

to obtain the correct magnetic ground state of YbRh2Si2 . We presented a prescription

to rectify the situation: we used the interaction Udc in the double counting term as a

different parameter compared to the interaction U in the LDA+U functional. Keeping

Udc slightly smaller than U predicted the correct band structure and magnetic moment

of YbRh2Si2 . We also successfully calculated the magnetic anisotropy energy in this

material, which is very large.

In chapter 5, we returned to the idea of the Mott transition. We used LDA+U and

LDA+DMFT methods to examine the delocalization-localization transition of 5f elec-

trons in elemental Americium. This material, which borders Plutonium in the periodic

table, has been the subject of a number of theoretical and experimental investigations.

We put into practice the insights we gained from chapter 4 regarding the double count-

ing term to correctly predict the photo-emission spectra. The LDA+U calculation

predicted the correct equilibrium volume but not the correct magnetic moment. We

then applied the LDA+DMFT technique, using the Hubbard-1 method as the impurity

solver for the DMFT loop. We obtained strong evidence for the existence of a Mott

transition without a large volume collapse.

Outlook

The Mott transition in Americium can be better understood if we use different struc-

tures for the different phases. In our calculations we used an impurity solver that
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is computationally fast, but the price we paid is perhaps an oversimplification of the

physical picture. The Quantum Monte Carlo method, that we studied in chapter 2,

is exact, but expensive in terms of computation time. A better impurity solver that

is also fast is required in order to investigate complex materials. In addition, a first

principles approach to determine the interaction parameters and the double-counting

corrections will complete the picture of ab-inito many body calculations.
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