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ABSTRACT OF THE DISSERTATION

Resolving Low Energy Spectral Properties in Correlated

Electron Systems

by Goetz Moeller

Dissertation Director: GG. Kotliar and A. E. Ruckenstein

We use the limit of infinite dimensionality to study the metal-insulator transition and
the transfer of spectral weight in the Falicov-Kimball and Hubbard models.

The latter displays a non trivial critical point, the physics of which we analyze using
a novel self-consistent projective technique. This allows us to determine the critical as
well as the low temperature properties of the Hubbard model in the limit of infinite
dimensions exactly. The method is general and can be applied to study any system
exhibiting a separation of scales.

We furthermore propose a model which mimics the effect of 1/d corrections to
the limit of infinite dimensionality. This permits us to discuss modifications of the
Mott transition, as well as to investigate the competition between Kondo and RKKY

interactions.
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Chapter 1

Introduction

1.1 Strong Correlations in Many-Electron Systems

The discovery of the high temperature superconductors [1] in 1986 has sparked a re-
newed interest in the old problem of strong electronic correlations in condensed matter
physics. In strongly correlated materials itinerant electrons are subject to a strong local
Coulomb repulsion. The common feature in the theoretical description of strongly cor-
related systems is the necessity to go beyond the traditional concepts and methods of
condensed matter physics, the independent particle approximations & la Hartree-Fock
and perturbation theory.

While high temperature superconductivity as well as anomalous normal state prop-
erties [2] of the copper oxides are likely to be the most fascinating examples of strongly
correlated electron systems, they are by far not the only ones. The archetypical case in
which strong electronic correlations lead to highly non-trivial physical consequences is
the Kondo effect [3, 4], in which conduction electrons scatter off a localized magnetic
impurity, leading to a minimum in the electrical resistivity. Other examples are the
physics of nuclear matter, liquid *He [5] and heavy Fermion materials [6]. In liquid
3He [5] — due to its nuclear spin a fermionic system — the atoms experience a strong
Coulomb repulsion as a result of the high density of the system. In the heavy Fermion
compounds [6], f-electrons are subject to a screened and thus essentially local Coulomb
interaction which can not be treated in a mean-field way.

In this thesis we will consider other important examples. These are the Mott-
Hubbard metal-insulator transition [7] as observed e.g. in V503, as well as the re-
distribution of spectral weight between high and low energy scales in the density of

states [8, 9, 10, 11] upon doping, as observed in spectroscopic measurements on (for



example) the cuprates.

Given a specific phenomenon, the job of the theoretical physicist is twofold: One
has to find an appropriate model describing the phenomenon; given this, one has to
proceed by solving the latter. In the following we will essentially be concerned with
the second aspect, since many of the problems in the field of strong correlations are
due to the fact, that there are only few non-trivial models that can be solved exactly,
such that finding systematic approximations capturing the essential physics becomes a
crucial and challenging undertaking.

As mentioned, in most of the systems mentioned above itinerant electrons are sub-
ject to a strong local Coulomb repulsion. Since even the simplest theoretical models
describing strongly correlated electrons are not fully understood, we will mostly focus
on what may be considered the simplest model capturing the competition between itin-
erant and local correlations, the single band Hubbard model. This model is given by
the Hamiltonian

H== 3 tijafltio + U nprng —ud (npr+ng) (1.1)
ijio i i
which describes fermions created by operators f; hopping on a lattice with hopping
amplitude ¢;; , and experiencing a strong on-site Coulomb repulsion U. On our way to
understanding this problem we will also consider an even simpler relative, the Falicov-
Kimball model, which is essentially a Hubbard model in which only one spin species
has a kinetic term, i.e. ¢;;,4 = ¢, ¢;;,, = 0.

It should be emphasized that the full Hubbard model is expected to describe some
of the physics of strongly correlated materials (e.g. the metal-insulator transition), has
been used successfully in the description of some of the materials exhibiting properties
associated with strong correlations (e.g. *He [5], V203 [7, 12, 13]) and may account for
the complex phenomenology seen in high temperature superconductors [14, 15].

The essential difficulty arises from the fact that traditional perturbative approaches
[16] fail. This is due to the fact that an expansion in the kinetic energy, which is
formally small, is a singular perturbation, while the interaction term in the physical

systems of interest is quite large. Furthermore, the competition between local and



itinerant aspects characterizing strongly correlated electron systems leads to problems
which are dominated by several energy scales. Those are generally harder to treat,
and in the case of strong correlation often have the additional complication that one of
those may become extremely small. The classic example is again the Kondo effect, in
which virtual transitions to highly excited states lead to the appearance of a scattering
resonance of very small width at the Fermi level [4].

In order to put this thesis into perspective, let us briefly recapitulate some of the
approaches to the rather innocent looking Hubbard Hamiltonian which have been made
over the decades.

Several simple models of strongly correlated systems, in particular the Hubbard
model, can be solved ezactly in one spatial dimension using Bethe Ansatz methods [17,
18]. While these solutions have given invaluable insights, the extraction of important
physical information, in particular of dynamical correlation functions, is still not pos-
sible. Additionally, it is a matter of debate which features of the one-dimensional
solutions survive in higher spatial dimensions. In particular, in the case of the Hubbard
model, the Bethe ansatz solution shows that the model is insulating for any finite in-
teractions U, which is known to be incorrect at least in the limit of infinite dimensions
[19, 20, 21]. Moreover, the Hubbard model in one dimensions is not a Fermi liquid, a
property for which there is no evidence in infinite dimensions.

Among the first serious attacks on the strong correlation problem in more than one
dimension were the original papers by Hubbard [22, 23, 24] on the Hubbard model.
Hubbard introduced various expansions around the atomic limit based on equation of
motion and diagrammatic schemes, which are are decoupled in an uncontrolled way,
While these approximations capture the high-energy features of the Hubbard model
correctly, they are uncontrolled and violate sumrules as well as conservation laws, often
failing to give sensible results in simple physical limits. Thus they cannot be trusted to
adequately describe the low energy physics of the metallic regime.

At the same time, techniques based on variational trial wavefunctions [25, 26] were
developed, yielding a good description of the metallic region, but failing to describe the

incoherent high energy features correctly. In addition, these schemes still require the



evaluation of expectation values with rather complicated many-body wave functions, a
formidable task which so far has been addressed successfully only numerically [27] and
in infinite dimensions [28].

A highly successful approach to the strong correlation problem is based on functional
integrals with auxiliary fields (“slave bosons”, “slave fermions”) [29, 30, 31, 32], which
become exact when the size of the symmetry group N goes to infinity. While these have
provided insights into the low energy behavior of the Hubbard model and its relatives,
they are largely limited to the case in which the interaction strength goes to infinity (for
extensions beyond this limit see Ref. [33]) and do not capture the incoherent features.

Numerical approaches [34] to the strong correlation problem based on the exact
diagonalization of small clusters have led to important insights, but are troubled by
the tremendous size of the Hilbert space involved. As an example, for a ten-site lattice
in which the spin in z direction as well as the number of particles are conserved, the
number of basisvectors spanning the Hilbert space at half-filling (i.e. one electron per
site) is already 63504. Thus even state of the art computers cannot handle systems of
sizes coming even remotely close to the systems encountered in real life. This does not
only imply that finite size effects may be large, but in particular that the level spacings
are much too large to capture the low energy physics accessed experimentally correctly.
To obtain a resolution of 5meV or 50K for a one-dimensional system with a bandwidth
of 1eV, a 200 site cluster is needed. The total size of the Hilbert space at half-filling
then is 10117 [35], a number already larger that the estimated number of particles in
the universe.

One of the most promising approaches to the strong correlation problem is the limit
of infinite dimensionality [36]. The major advantage of this framework is that for the
first time it allows the formulation of a systematic mean-field approach to strongly
correlated materials [37] in which all energy scales are treated on an equal footing.
Since we believe that this framework is the most powerful technique currently at our
disposal, we will use this approach in our investigations. We will review this approach
and motivate our assessment in Chapter 2.

It should be emphasized that a tremendous amount of work has been done in the



field of strong correlations. Good reviews are found in the references cited, as well as

in the comparatively recent books by E. Fradkin [38], P. Fulde [39], and A. Hewson [4].

1.2 The Focus of the Present Work

In this thesis we will use the limit of infinite dimensionality to study the physics of
the Falicov-Kimball and Hubbard models, as well as propose a model which enables
us to go beyond the limit of infinite dimensionality. In particular, we will develop a
novel method, the self-consistent projective technique, which allows us to study the low
energy features and the critical properties of models of strongly correlated fermions in
infinite dimensions.

We will start by reviewing the essentials of the limit of infinite dimensionality in
Chapter 2. This review emphasizes the aspect that in this limit a lattice model reduces
to an impurity model in a self-consistently determined bath, yielding a natural mean-
field theory of strongly correlated electron systems. Furthermore, we will describe a
powerful technique [40] which enables us to efficiently solve the corresponding impurity
model self-consistently.

In Chapter 3 we will study the metal-insulator transition, the transfer of spectral
weight upon doping, as well as a possible scenario for the breakdown of Fermi liquid
theory in the Falicov-Kimball model. Since this work was done before the techniques and
approaches of the rest of the thesis were developed, it uses a slightly different approach
to the limit of infinite dimensionality. Since the mechanisms for the phenomena studied
are quite different in the Falicov-Kimball and Hubbard models, the study provides an
interesting contrast to the physics described in the following chapters. We have therefore
included it for pedagogical reasons. In order to preserve the continuity of the methods
outlined in Chapter 2, the reader may choose to skip it on a first reading.

In Chapter 4 we will use the techniques developed in Chapter 2 in order to study
the Mott metal-insulator transition in the Hubbard model at half-filling. In particular,
we will establish the coexistence of metallic and insulating solutions over a finite range

of interactions U and show that the transition at zero temperature is of second order.



Moreover, we will see that the transition is characterized by a vanishing low energy
scale [19, 20, 21] which prevents us from investigating the critical properties. This will
motivate the development of the self-consistent projective technique in Chapter 6.

Chapter 5 studies the Hubbard model away from half-filling and addresses the ques-
tion of transfer of spectral weight, a hallmark of strongly correlated electron systems.
The method we are using allows us to study the Hubbard model at finite doping and
zero temperature for the first time in a reliable way. Using the mapping of the Hubbard
model onto a self-consistent Anderson model [41] we will moreover gain considerable
analytic understanding of the physics exhibited by the Hubbard model. Again we will
encounter the existence of a vanishing energy scale at small doping, underlining the
need for a new technique to address the low energy properties of models in infinite
dimensions.

In Chapter 6 we will develop a novel technique, the self-consistent projective tech-
nique, which enables us to overcome the problems associated with the existence of two
energy scales, in particular a vanishing energy scale, demonstrated in the previous chap-
ters. The technique allows us to eliminate the high energy part of the problem in the
spirit of the renormalization group [42] and to reduce it to an effective problem exhibit-
ing only one scale which can be analyzed much more easily. It should be emphasized
that the technique is general and can be applied to any problem exhibiting a separation
of scales. Its strength derives from the fact that the high energy features enter into the
low energy problem solely via numerical coefficients, in the spirit of Landau-Ginsburg
theory [43]. The qualitative behavior of the model is therefore fully determined by the
effective low energy problem. We will develop the method in detail for the case of the
Hubbard model.

In Chapter 7 we will proceed by using the technique to analyze the critical properties
of the Hubbard model at and away from half-filling, which for the first time can be
done ezactly in infinite dimensions. This yields results that can be directly compared
to experimental data.

In Chapter 8 we will analyze some of the finite temperature properties of the Hubbard

model using the full infinite d Hubbard model, as well the the self-consistently projected,



effective model, which allows us to reach temperatures unattainable using previous
methods and techniques.

Finally, we will discuss the Hubbard model on a double-stranded Bethe lattice in
the limit of infinite dimensions (Chapter 9). This leads to a two impurity problem
embedded in a self-consistent medium mimicking the higher order 1/d effects of the
single site problem. This allows us to examine qualitatively new physical questions,
which are outside the scope of the d = oo limit of the Hubbard model, such as the

competition between RKKY and Kondo interactions.



Chapter 2

Infinite Dimensionality — A Primer

2.1 Infinite Dimensionality — A Mean-field Theory for Strongly Cor-

related Systems

While the approaches mentioned in the introduction (other than infinite d) have led
to important insights, they do not provide a mean-field theory of itinerant electron
systems with strong correlations, which becomes ezact in some well defined limit and
is able to capture both high and low energy features correctly. A road towards a mean-
field theory of strongly correlated electron systems was paved in a pioneering paper by
Metzner and Vollhardt [44]. While until then it was well known that the limit of infinite
spatial dimensions leads to a well defined mean-field theory for (mostly classical) spin
systems, it was not clear, how a similar theory can be constructed for itinerant systems
in which the physics is determined by the interplay between strong local repulsion and

itinerant band behavior.

Metzner and Vollhardt realized that if the hopping matrix element ¢ in the kinetic

energy
T=- Z tijcjgcjo (2.1)
07<i7j>
is scaled as
t
t st =— (2.2)
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where d is the dimensionality of the system, a non-trivial limit in which both the kinetic
and the potential energy remain finite results, such that the competition between them
remains. It should be noted that such a scaling does not necessarily exist. In particular,
the large-N limit mentioned above always leads to a trivial atomic limit [45].

In the case of a hypercubic lattice this leads to a (non-interacting) density of states



(DOS) which is Gaussian, i.e.

. (2.3)

o

1
pole) = ﬁe_(
The crucial consequence of this rescaling, however, is the fact that the single-particle
Green function scales as
Gy ~ L (2.4)

Vd

which in turn implies a local, i.e. momentum-independent, self-energy.

The momentum independence of the single particle Green function leads to consid-
erable simplifications in the evaluation of diagrammatic expansions [46, 47] as well as
in calculations involving variational wavefunctions [28, 48, 49]. In particular, it should
be noted that the Gutzwiller approximation, an approximation commonly used in the
evaluation of variational calculations, becomes exact in infinite d [49].

Brandt and Mielsch [50] observed that in the case of the Falicov-Kimball model, a
simplified Hubbard model in which only one spin species is allowed to hop, the limit
of infinite dimensionality allows for a mapping onto an atomic problem, which can be
solved exactly. We will reexamine the solution to the Falicov-Kimball model in Chapter
3 from a different point of view.

Georges and Kotliar [41] showed how the idea of Brandt and Mielsch can be general-
ized to provide a natural mean-field theory of strongly interacting systems by allowing
for a mapping of a lattice problem onto an impurity problem in a self-consistently de-
termined medium. This is accomplished in the following way: Since the self-energy in
infinite dimensions is a local quantity, it is possible to consider an auxiliary impurity

problem with a single site action

B B B
Sefrle, CT] :/0 dT/O dT’ZC(TT(T)Gal(T —eo (7)) + U/O drny(T)ny (1) (2.5)

where GG contains all information about the other lattice sites and has the full imaginary
time (and thus frequency) dependence. This is the result of the fact that the occupation
of the impurity site undergoes quantum fluctuations between the allowed configurations

of the impurity site, although no explicit hoppings are allowed.



The impurity problem has an associated self-energy defined through Dyson’s equa-

tion as
1

Gy (iwn) = Bimp[Glo] (iwn)

The mean-field equations then require that the local, site-diagonal Green function of

Giwy,) =

. (2.6)

the Hubbard model

Gilion) = /dGiwn + ,up—O(;)— ¥ (iwy,) (27)
be the same as the impurity Green function G of the impurity model. The equations
(2.5) - (2.7) thus provide a natural mean-field theory of strongly correlated electron
systems in which G describes the effect of all other electrons surrounding the site
considered and thus constitutes the average field.

Although the effective impurity model is considerably simpler than the associated
lattice problem, it remains a formidable many-body problem since G, which plays the
role of the effective field has the full frequency dependence and is thus a function of
infinitely many variables. It is this feature which distinguishes the mean-field theory of
strongly correlated systems from the mean-field theory of, among others, spin systems,
where the mean field is simply given by a single parameter (the effective field). This is
due to the fact that the effective field describes several energy scales, which cannot be
captured by a single parameter (for a clear presentation of these aspects, see the recent

review by Kotliar [37]).

2.2 An Explicit Example: The Hubbard Model in Infinite Dimensions

A particularly clear path of reducing the lattice problem to an impurity problem is
given by integrating out all lattice sites except the one at the origin. In the case of a
Bethe lattice this can be done exactly, leading to an explicit form of Gp. While one
may be tempted to reason that a Bethe lattice is highly artificial, since there are no
closed loops, it can be argued that it is in fact closer to physical systems, since it has
a bounded density of states (as opposed to the infinite tails of the Gaussian density of
states) which is given by a semicircle of half-width D = 2t and has the form

2 €

pole) = /1 - (5)2 (2.8)
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effective single
site problem

Figure 2.1: Illustration of the reduction to single site problem by integrating out sites
1 to m in a Bethe lattice

Since the derivation of the mean-field equations is particularly simple in the case
of a Bethe lattice, and can easily be extended to more complicated lattice models (see
also Chapter 9), we will give an explicit derivation of the mean-field equations for the
case of the Hubbard model.

Consider the Bethe cluster of coordination number m (in the case of a Bethe lattice
the coordination number m plays the role of the dimensionality d) depicted in Fig. 2.1.
The partition function Z of the Hubbard model on a Bethe lattice is given as

m

s * io—t(cke; )+ ¥nionis
> = PPl D)o K5 T trmeremticins)

o foﬁ dr ZU (c(*,(87-—p)co—t(c:n+10ca+h.c.)+ %nana) z [C* ] (29)

101 Cio

where Z [¢},,, ¢mo] denotes the partition function in which the partial trace over the

electrons of the m-th site and the branches connected to it has been taken. Integrating
out the sites 1,...,m as shown in Fig. 2.1 and using the equivalence of the sites of a
Bethe lattice we find

m

2l d = [ I <D e, D [c“{aclg])z (e, exlexp (= (7 dr (1) (cEery + hoc)
exp (— foﬁ dr ¥, ci(0- — p)cy + Snongs)). (2.10)
Defining Scs¢[c*, ¢] = —In Z[c*, ¢], rescaling the hopping amplitude ¢ as t — t/\/m

and expanding to lowest order in m one obtains an effective action in terms of the local

single particle Green function G (7 — 7') = —(Te(r)c(r")T) given as

B B
Sefrle, CT] = /0 deTIC*(T)Gal(T —1)e(r) —{—/0 drng(T)ny (7). (2.11)



Fourier transforming one obtains the self-consistency equation
Gal(iwn) =iw, + i — tQG(iwn) (2.12)

with G(iw,) = — [ e™“nT(Trc(7)c(0))s,,, and Matsubara frequencies w, = 5(2n+1).
It should be noted that we have restricted ourselves to the study of non-superconducting
phases in which the expectation value (T ¢4(7)c;(0)) vanishes. We also use the fact that
due to spin conservation (T;c¢, (T)CZ,(O» ~ 8y

We have thus mapped the lattice model onto an impurity model in a self-consistently
determined bath of conduction electrons with self-consistency condition (2.12). Once
self-consistency is reached, G/(iw) — Gy;(iw) = 0, where G; is the local Green function
of the lattice Hubbard model.

At this point it should be mentioned that the procedure as presented naturally leads
to an expansion in 1/d if higher order terms in the expansion of (2.10) are retained. Go-
ing to higher order leads to the appearance of 2n point correlation functions of the form

F((,Tf)gn (71, ey T2n) = (T oy (T1)Coy (T2).o-Cs, _ (T2n—1)C5, (T2n)) coupling to a product of
2n fermion operators in the effective action (for the a discussion of this expansion in the
disordered Hubbard model, see Ref. [51]). To order (n = 2), these lead, in particular, to
retardation effects in the Hubbard interaction. Again these higher correlation functions
have to be determined self-consistently. While this leads to a natural loop expansion
in a Hubbard model with disorder [51], it is far from clear how these equations can
be truncated in the Hubbard model without disorder without violating conservation
laws: While for d = oo one obtains a conserving approzimation [52, 53] in which it is
possible to define a generating functional Q such that ¥ = g—g and ¥ = Y[G], taking
functional derivatives in the presence of higher order terms does not lead to a closed
set of equations. The question how the infinite d approximation can be extended sys-
tematically and consistently therefore remains an open question. In Chapter 9 we will
follow a different path to address these questions. Other approaches based on cluster

approaches are presently being developed [54].

Even in the case of d = oo in which “only” the single particle Green function has to



be determined self-consistently, the resulting mean-field theory remains a highly non-
trivial many-body problem. In the case of the Falicov-Kimball model this can be solved
exactly, leading to a set of coupled, non-linear equations. In the case of a Lorentzian
density of states [55, 41] these can be analyzed analytically. In more complicated models
like the Hubbard model, however, it is not possible to obtain analytical expressions for
Green function and self-energy and the resulting impurity problem has to be solved
numerically.

The first approaches to the Hubbard model in infinite dimensions [20, 19, 21, 56, 57]
relied on Quantum Monte Carlo (QMC) simulations and iterated self-consistent second-
order perturbation theory (IPT) in the spirit of Yamada and Yoshida [58, 59, 60] to solve
the effective impurity model. While both methods were able to (and continue to) answer
crucial questions and could elucidate the physics of the Hubbard and related models
in infinite dimensions (establish the presence of a metal-to-insulator transition [20,
19, 21, 56, 57], indicate the presence of superconductivity in a two-band Hubbard
model [61, 40], etc.) both suffer from inherent difficulties which cannot be overcome.

The Quantum Monte Carlo method is intrinsically a finite temperature approach
and is limited—largely due to the limitations of todays computers—to fairly high tem-
peratures. A detailed investigation of the experimentally and theoretically relevant low
temperature regime is therefore not possible. In addition, the presence of statistical
noise limits the accuracy of the results.

Second-order self-consistent perturbation theory gives excellent zero temperature
results and can be shown to be exact in the strong as well as the weak-coupling limit of
the half-filled Hubbard model. However, it suffers from different weaknesses. Near the
metal to insulator transition higher order corrections become important such that this
approximation is not sufficiently accurate to determine whether the Mott transition at
T = 0 is first or second order. The perturbative approach is also known to fail away
from half-filling [62]. Even at half-filling it exhibits pathologies which are known to be

incorrect, such as a vanishing second derivative of the self-energy.



2.3 The Anderson Connection

A particularly fruitful approach to the problem, which forms the basis of the work
on the Hubbard model presented in this thesis, has been suggested by Caffarel and
Krauth [40] and, in a different form, by Si et al. [63]. The approach exploits the
fact that the Hubbard model in infinite dimensions can be mapped onto an actual
impurity problem, the single impurity Anderson model [41] in which, however, the bath
of conduction electrons, usually taken to have a flat density of states, is determined
self-consistently, such that the density of states is a complicated, frequency dependent,
function. (In the case of more complicated lattice models the impurity models are
generalized accordingly.)

The mapping can be accomplished easily in the following way: Starting with an
Anderson Hamiltonian of the form

Hapr = Z ékazaakff + Z(Vkazafa + h.C.) + UnanN — ,u(nfT + nﬁ) (2.13)
ko ko

one can integrate out the conduction electrons ax, to obtain an action of the same form
as found in the infinite dimensional Hubbard model if the bath electrons are chosen to

fulfill the new self-consistency condition

V2
PG(iw) =Y —E— 2.14
G (iw) ; o — (2.14)
i.e. the density of states of the Anderson model is given as
pam(€) = ZVk25(e — €L). (2.15)
k

One is thus left with the task of solving an Anderson model subject to the self-
consistency condition (2.14). It should be emphasized that the resulting self-consistent
Anderson problem is a Hamiltonian problem, which can be tackled with standard ap-

proaches, in particular with exact diagonalization methods.

2.4 A Path to Solving Self-consistent Impurity Problems

An appealing way to solving the resulting self-consistent impurity problem was proposed

by Caffarel and Krauth and—using a similar approach—Si et al. [63]. The idea is



to solve the effective Anderson model on a finite cluster which — through the self-
consistency condition — amounts to parametrizing the impurity Green function by a
finite number of parameters {Vj, ez} where k = 1, ..., Nyazn.

Starting from an initial guess for those parameters one determines the ground state
using Lanczos methods (for a review see Refs. [64] and [65]). We are using the modified
Lanczos as described in Ref. [66] modified such that at each step of the Lanczos
procedure a tridiagonal submatrix of dimension N, X Ny, (instead of 2 x 2 as described
in [66]) is diagonalized. This leads to a considerably better approximation to the ground
state wavefunction.

At zero temperature, systems of up to ten sites can be handled easily on a worksta-
tion. For an analysis of the finite temperature properties, all eigenstates up to a cutoff
given by the temperature are necessary and one has to resort to exact diagonalization,
which limits the possible system sizes to a maximum number of sites N = 6. For a
more detailed discussion of the procedure at finite temperature see the corresponding
chapter.

Given the ground state it is possible to determine the zero temperature Green
function using a continued fraction expansion. The zero temperature Green function

can be decomposed into “particle” and “hole” contributions as

G(2) = GP(2) + G"(2) (2.16)

with
GP(z) = <g8|faT_Egs)fJ|98> (2.17)
6" = oslfl gy oo (215)

where F,, is the ground state energy. The respective contributions can be obtained
from a continued fraction [67] expansion as
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where

178 = fllgs) (2.20)
1f8) = folgs) (2.21)
|fn+1> = H|fn>_an|fn>_b721|fn—1> (222)
and with coefficients
an, = (fulH|fn) (2.23)
2 _ _{alfa)
bn B <fn—1|fn—1> (224)
bo = 0. (2.25)

Having determined the Green function one is left with the task of closing the self-
consistency, which is the crucial approximation involved in this scheme: While the
Green function as determined from the continued fraction expansion is a true many-
body Green function with a large number of poles, the number of sites in the bath,
Npath, and thus the number of poles this function is to be fitted to is considerably
smaller. Caffarel and Krauth suggested implementing the self-consistency using a x?2

fit, minimizing the expression

) 1 Nq Neyath sz )
= Gliw,) — — 2.26
Vo = sy 6 - X ] (2.26)

which can be done efficiently and with great accuracy using a modification of the
conjugate-gradient method from Numerical Recipes [68]. (It should be noted that we
have found improved convergence if the routine is implemented such that it is truncated
after a few iterations and restarted with the previous output.) Here the high-frequency
cutoff is chosen to be larger than the largest energy scale in the problem such that
changing it does not affect the results. The low frequency cutoff, which is given by
the lowest frequency fitted (i.e. the temperature in any finite temperature calculation
and a “fictitious” temperature "T" at T' = 0), is determined by the smallest pole in
the Green function which is extracted as described in Appendix E. An incorrect low
frequency cutoff can be recognized easily by large x2, an unphysical up- or downturn

in G(iwy,), and/or the fact that the program fails to converge.



An alternative procedure which was first suggested by Si et al. [63] and was also
implemented to solve the Hubbard model [69] is based on the observation that the
continued fraction expansion naturally lends itself to an interpretation of electrons
hopping on two chains, such that the Hamiltonian of the bath is represented by two
chains (as opposed to a star, as done in the fitting procedure). The new parameters
can then be determined directly by truncating the continued fraction expansion and
the minimization procedure is avoided altogether. While in principle the method has
the additional advantage of preserving the moments of the density of states order by
order, in practice an extra site at the origin has to be included in order to be able to
feed back a metallic bath, which spoils this property.

We have found that—taking both x4 and moments as criteria, that the x? fit gives
a considerably better representation of the low-frequency behavior while at the same
time representing the moments quite well. To illustrate this we display the normalized

difference between the exact and the fitted moments Am;} /m}e®a for positive energies

+exact
n

as obtained from the x% method in Figure 2.2. Here Am} = m — m}/i* where
m} = [;7 dee"p(e,) and where we have chosen the metallic solution at U = 2.7 and
half filling. We clearly see that the representation of the moments is very good and
improves as the number of sites increases.
It is also possible consider interpolations between both methods. This can be done
by minimizing the expression
Nmoment

S ((amp/mby + (Amz D). 220)

X =exgr+(1-o)5
Nmoment 1=,

where 0 < ¢ < 1. This reduces to fitting the Green function only for ¢ = 1 and

fits moments only for ¢ = 0. While we have not made a systematic investigation of

this “hybrid” method, we found that in the cases considered the accuracy of the fit

gets consistently worse if ¢ # 0,1 are considered. This can be seen by plotting x? as

d2 X2
dc?

a function of ¢: In the cases considered < 0, i.e. ¢ = 0,1 correspond to local
minima of x2(c). Additionally, we found that for an increasing admixture of “moment
fitting” the structure in the spectral function was increasingly washed out. A rigorous

analysis remains an interesting problem. Based on our experience we have thus used
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Figure 2.2: Relative difference between exact and fitted positive moments Am{ /m{,
Am3 /md, Am¥/md, Am}/m] as obtained from the x? fit method for U = 2.7 and
half-filling as a function of the number of sites.



the self-consistency in the form (2.26) whenever the cluster approach is used.

Having extracted the new parameters {¢x, Vi } from the fit, we iterate the procedure
until convergence is achieved. An excellent convergence criterion is the ground state
energy of the effective impurity model.

The method gives excellent results for any filling and agrees extremely well with
known results and the existing schemes (Quantum Monte Carlo, iterated perturbation
theory) in the parameter regimes in which those give reliable results. An essential
limitation, however, is the fact that it is based on a cluster approach, implying a
finite number of poles with a characteristic spacing depending on the system size. In
the chapters on the self-consistent projective technique we will demonstrate, how this
weakness can be overcome.

Once we have obtained the self-consistent solution to the problem, other physical
quantities can be evaluated. Since we have the full ground state (and possibly the
excited states as well) of the system, as well as a method to evaluate diagonal correla-
tion functions, the continued fraction expansion, it is possible to determine other local
correlation functions of the system.

In a straightforward extension of the previous paragraph we can determine the local

spin susceptibility

B .
Xalivm) = (gn/2)? [ dre™ ™ (1,8.(1)S.(0)) ., (2.28)

where S, = %(f;fT - flﬁ) and Bose frequencies v, = nnT.
Again we can decompose the function into “particle” and “hole” contributions as

Xs (iwn) = XE (twy,) — X?(iwn) with

Xs(z) = (gs]S S.|gs) (2.29)

1
ZZ—(H—E())

Xa(z) = (gslS S:lgs)- (2.30)

1
zZ + (H - E())
Notice the minus sign, since we are calculating a bosonic function. The respective
contributions can be obtained from a continued fraction [67] expansion as before, except

that

178) = 1/3) = S-lgs)- (2.31)



It should also be pointed out that it is possible to calculate certain off-diagonal

expectation values by reducing them to diagonal form using the identity

<A|iwj:(11'{—E)|B> - %((<A|+<B|)iwi(11{—E)
1 1
<A4|m|/1> - <B|m|3>>-

(14) +1B)) (2.32)

where the matrix elements are assumed to be real. Finally we will also see, that energies
and other expectation values can be determined easily using this method.

Given the fact that the system is represented by only a few poles, the accuracy
is particularly impressive, especially if only one scale enters the problem. This can
be checked by comparing the numerical results for the non-interacting system to the
exact results. In this case almost perfect agreement for n versus p curves, energies and
susceptibilities can be achieved.

In this chapter we have seen, how the limit of infinite dimensionality allows us to
map a lattice problem onto an impurity problem in a self-consistently determined bath
of conduction electrons and outlined how this is a natural mean-field theory of many-
body systems. We have presented a method to solve this resulting impurity problem
numerically using an approach based on exact diagonalization and we have shown, how
other physical quantities can be obtained using this approach. Use of this approach
will be made in Chapter 4. In the next chapter we will first consider a model which is
exactly solvable in infinite dimensions, the Falicov-Kimball model, and discuss some of

its physics.



Chapter 3

Metal-to-Insulator Transition and Transfer of Spectral
Weight in the Falicov-Kimball Model

In this chapter we will study the correlation induced metal-insulator transition, the
transfer of spectral weight as well as a scenario for the breakdown of Fermi liquid
theory [2] in the Falicov-Kimball model [70, 24, 25], a model which can be solved
exactly [50] in the limit of infinite dimensions.

We shall see that the metal-insulator transition in this case differs fundamentally
from the mechanism realized in the Hubbard model (see Chapter 4), since it proceeds
simply by a band splitting as originally proposed by Hubbard [24]. Contrasting the two
cases (we will discuss the Hubbard model in the following chapters) leads to further
insights into the nature of the metal-insulator transition in various contexts.

The transfer of weight between upper and lower Hubbard band as a function of
doping in this case manifests itself through the linear reduction of the high energy
spectral weight, induced as a result of the decrease of the double occupancies with
increasing doping. Again, this is fundamentally different from the scenario realized in
the Hubbard model and should be contrasted with the results of Chapter 5.

Finally, we will investigate whether the Falicov-Kimball model can be used as the
simplest model of a non-Fermi liquid metal. The breakdown of Fermi liquid theory re-
quires the violation of Landau’s basic assumption of the one-to-one correspondence be-
tween the low-energy excitation spectra of the interacting and non-interacting systems.
This clearly requires the presence of qualitatively new low energy excitations which
should not be associated with the low energy collective mode signaling the proximity
to an obvious phase transition. While this does not necessarily imply the breakdown of

Fermi liquid theory, as we shall see in the Hubbard model, it may provide a route to it:



A possible scenario is that these “zero-energy” modes arise from the transfer of spectral
weight from the “upper Hubbard” band to the chemical potential, upon weakly doping
the insulating state [71]. This excitation can be pictured as a “shake-up” satellite aris-
ing from the scattering of a conduction electron off the interband exciton (i.e., a bound
state of a conduction hole at the chemical potential and a single-particle excitation in
the upper band). Due to orthogonality catastrophe effects [71], these excitations are
virtually dispersionless and thus contribute to the “incoherent” part of the spectrum.
It is this special feature which prevents the system from undergoing a simple phase
transition at any finite temperature.

As we will see, these effects are not present in the d = oo solution of the Falicov-
Kimball model. Nevertheless this will turn out to be the simplest situation exhibiting
transfer of spectral weight and a metal-to-insulator transition due to correlations. Fur-
thermore it mimics the situation for the breakdown of Fermi liquid theory described
above: it describes a spinless Fermi sea of “d”-electrons interacting with localized “f”-
electrons. These are described by fermion operators d; and f; and represent, respec-
tively, conduction and dispersionless upper Hubbard or charge-transfer bands.!

The corresponding Hamiltonian reads

H=—t > dd;+S Esfl i+ U dldiflfi — 0> (dld; + f1 1) (3.1)
<t,5> 3 3 7
Here, U is the Coulomb potential, ¢ is the nearest-neighbor hopping amplitude, E’ is
the bare position of the local level, and p is the chemical potential which governs the
total electron density.

We note that, since the f-electrons have no dynamics of their own, the model

(3.1) is formally identical to a single-particle scattering problem with a potential which

is defined by the positions and occupancies of the localized states. The latter are

'The assumption of a dispersionless “upper band” requires some explanation: the physical argument
is simply that, as far as the behavior of high-energy excitations (like those defining the upper band) is
concerned, the physics of a weakly doped system is virtually identical to that of the underlying insulating
state. In the latter, the presence of antiferromagnetic or charge density wave order leads to a dramatic
decrease of the coherent bandwidth of single-particle excitations. This is well known, for example, from
recent studies of the motion of a particle (or hole) in an ordered antiferromagnetic background [72].
Moreover, a finite doping generally leads to a further decrease of the coherent bandwidth due to the
“orthogonality catastrophe”.



determined self-consistently by minimizing the free energy. This procedure can be
carried out exactly in the limit of infinite dimensions, where the f-electrons can be
treated as uncorrelated. This was first realized by Brandt and Mielsch [50] who showed
that in infinite dimensions the problem maps onto an effective single-site problem.
Using this mapping, they and others studied various thermodynamic properties and
static correlation functions. As discussed we will concentrate on the spectral properties,
such as the single-particle Green function and the frequency-dependent conductivity, in
order to study the transfer of spectral weight between high- and low-energy excitations,
and to clarify the possible consequences for the physics of the metallic state.

We start with the observation that, in infinite dimensions, the coherent potential
approximation (CPA) becomes exact for the model (3.1) in the disordered normal phase.
In CPA [73] one assumes a local (i.e., momentum-independent), frequency-dependent
self-energy, 3(z) (2 = w 4 id), which describes the scattering off a single site in terms
of the exact local Green function

w@:[:a;f§%j; (3.2)

As we saw in the previous chapter, the locality of the self energy becomes exact in
the limit of infinite dimensions, such that this assumption becomes exact in this limit.

A self-consistent t-matrix approximation corrected for double counting leads to

nyU

G s P TTPR

(3.3)

Here, ny is the concentration of f-electrons and p,(¢€) is the non-interacting d-electron

density of states. As shown by Metzner and Vollhardt [44], the limit of infinite di-

mensions on a hypercubic d-dimensional lattice requires a rescaling of the hopping

amplitude as t — t/2\/3. Measuring all energies in units of D = 2¢, the d = oo density
1

of states takes the Gaussian form p,(¢) = NG exp(—e€?), and the local Green function

can be written as

G(2) = —ivmexp —(z — X(2))erfe(2(2) - 2), (3.4)

where er fc is the complementary error function.



Making connection with the framework developed in the previous chapter we would

like to point out [53] that this can in principle be written in the form

, 1-n
G() =~
0

nf
+ 3.5
Gyl —U (3.5)

where GGV is the self-consistently determined Green function of the corresponding im-
purity model. This displays explicitly the transfer of spectral weight in the conduction
electrons and shows, that it proceeds as in the atomic solution to the Hubbard model.
We will see a scenario which is quite different when analyzing the full Hubbard model.

As in the case of impurity scattering, the grand canonical potential is given by

Q
% = B(Ef—pwns+nslnng + (1 —ng)In(l —ny)
— [ dop(@) In(1 + exp(3( = w))). (3.6)
Here, 3 is the inverse temperature and p(w) = —LIm G(z = w+i6) is the renormalized

d-electron density of states. However, in our case the concentration of f, electrons has

to be determined self-consistently by minimizing {2 with respect to ny. This yields the

expression
1
nf = ERen_M 9 (3'7)
exp (L7—) +1
in which the renormalized f-electron energy Eﬁe“ is given by
= b= [ T 20 o
. dp(z G (= oG (z 9G(z) (9X(z IX(z oG (z
Since %}l = -z Imﬁ;l and an(f) = 328( an(f) lg +8GEZ; s an(f)) , where
%% |ln, and %?l |, are obtained from Eq. (3.3), we arrive at
G (=
o) _ Uy, ox) (3.9)
v G (= )
Ing T [U=-25(2)]G(0E) - [U - SE)I8E) 550

Equations (3.4 )-(3.9) completely determine the single-particle and thermodynamic
properties of model (3.1) in the disordered state.

Before summarizing our results for the single-particle spectral function and the
dynamical conductivity, a few comments concerning the derivation of the latter are

in order. Due to the momentum independence of the self-energy in strictly infinite



dimensions [44] one can argue [74] that, in this limit, the vertex corrections to the
current-current correlation function vanish identically for a vanishing external momen-
tum. This follows explicitly by considering the extension of the conventional Ward

identity [75] to the lattice:
qolo(k +q,k)+A(g) - T(k+q,k) = G (k+q) - G (k), (3.10)

where I'g and T are the density and current vertex functions, respectively, ¢ = (7,90 =
w), and &(q) = 2(sin(%),sin(%), ...,sin(%)) is the discrete lattice divergence in mo-
mentum space. Gk(lg,w) is the full single particle Green function given as Gk(lg, z) =

1

) where we have used the fact that, in infinite dimensions the self-energy is

momentum independent. As a result the interaction contribution to the ¢ — 0 current
vertex, which is an odd function under parity, must vanish. (Note, however, that the
even-parity density vertex, ['g, is nontrivial!)

For our model, in which there is no dynamics of the f-electrons, the absence of
vertex corrections to the conductivity is well known from the case of s-wave impurity
scattering [73]. In this case the frequency-dependent conductivity can be obtained from
the single-particle Green function by computing the particle-hole bubble multiplied by
the square of the bare current vertex, j,(k) = —tev, = —% sin(k;). Following the

standard steps [16], and making use of the d — oo limit to perform the momentum

summation, we obtain the following simple expression for the real part of the dynamical

conductivity:
0 0 ! n _ !
Reo,,(w) = teQ/ depo(€) / iﬁA(e,w’)A(e,w’ + w)nF(w ) —nrlwtw ), (3.11)
—00 —oo 4T w
where A(e,w) = —2ImGy(e,w) is the d-electron spectral function and np(w) is the

Fermi distribution.

We are now in position to discuss our results, which are obtained from a numerical
solution of Egs. (3.4 )-(3.9). Asis obvious from Eq. (3.7),at T =0,nf =0and ny =1
are self-consistent solutions, corresponding to the conditions, Eﬁe” > u and E}%e“ <
p. The associated self-energies are given by X(z) = 0,U, respectively, and therefore

describe the physically trivial limit of a non-interacting conduction band (which, in



the case of ny = 1, is shifted by the “Hartree” energy, U). (Here we ignore the finite
temperature transition to a “chessboard” phase [50] by continuing the disordered state
down to 7' = 0.) The physically “interesting” solutions, however, for which ¥ becomes
frequency dependent and acquires a finite imaginary part, are obtained only in the case
of non-integral ny. Such solutions correspond to situations in which the right hand
side of Eq. (3.7), regarded as a function of ny, is intersected by F(ny) = n; along
the rapidly varying part of the Fermi function, i.e., for Eﬁe” within an energy of order
T?%/u of the chemical potential, p. (We note that this construction is sensible at any
finite temperature, no matter how small.) This “pinning” of the renormalized f-level
to the chemical potential occurs throughout a region in the U — n plane (n = ny + n,
and n, is the concentration of conduction electrons) for any value of the bare f-level
energy, Fy, inside the conduction band. This is illustrated in Fig. 3.1 for a typical
value of Ef(= —.5). At half filling (ng+ns = 1), for the Gaussian density of states, the
ground state remains, strictly speaking, metallic for all values of U. For small U the
single-particle density of states (Fig. 3.2) shows a simple peak centered at the chemical
potential, p = U/2, while the dynamical conductivity (Fig. 3.3) displays the usual Drude
peak at w = 0. As a trivial consequence of the breakdown of translational invariance,
as in the case of impurity scattering Im¥(w) remains finite at w = p, also implying a
finite width for the associated Drude peak. However, in the (particle-hole symmetric)
metallic state at half filling the low frequency corrections to ImY are proportional to
(w — p)? (see Fig. 3.4) and thus, one might still want to regard this state as a Fermi
liquid. With increasing U the density of states at p decreases exponentially, and the
spectral weight appears equally distributed between the “lower” and “upper” Hubbard
bands, centered, respectively, at energies 0 and U (Fig. 3.2). Correspondingly, the
Drude weight in the conductivity (Fig. 3.3) decreases and reappears in the form of a
high energy (“incoherent”) peak centered at U, expressing the fact that, at half filling,
the conduction process must involve hopping into sites occupied by f-electrons. The
widths of the peaks in the density of states as well as of the features in the conductivity
are determined by the maximum of ImY¥ and the width of the bare Gaussian density

of states, v/2D. The decrease of the integrated weight of the high energy, “incoherent”
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Figure 3.1: Pinning curves at 7' = 0 (Ey = —0.5) with impurity concentration (from
left to right) ny = 1,0.
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Figure 3.2: Conduction electron density of states at half filling (n = 1) for interaction
strengths U = 0.5 (solid line), U = 2.5 (dotted line), U = 4.5 (dashed line). Energies

are measured with respect to the center of the bare conduction band.
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Figure 3.3: AC conductivity at half filling for interaction strengths U = 0.5 (solid line),
U = 2.5 (dotted line), U = 4.5 (dashed line).
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Figure 3.4: Imaginary part of the self energy at half filling (n = 1) for interaction
strengths U = 0.3 (solid line), U = 1.3 (dotted line), U = 2.3 (dashed line). Energies
are measured with respect to the chemical potential.



contribution to ¢ with increasing U is consistent with the f-sum rule, [ dwRe 0,,(w) =
—ne? < T, >, and reflects the associated decrease in the average kinetic energy, < T}, >.
(The spectral and f-sum rules are satisfied for all our spectra.)

Note that, in spite of the sharp decrease in both, Im¥(w = ) and Reog,(w = p) at
U ~ D, there is no strict metal-to-insulator transition in the d = oo since exponentially
small values of the density of states and DC conductivity still remain at g and 0,
respectively, for arbitrarily large interaction strengths. Although within our accuracy
we cannot differentiate between the results for the Gaussian and bounded densities of
states (Fig. 3.5), we expect that the latter does give rise to a genuine metal insulator
transition. Note, however, that the transition simply occurs by a splitting of the bands,
not by the collapse of a small energy scale as in the Hubbard model. We will discuss
this issue at length in the following chapters.

To study the behavior of the spectra away from half filling as a function of U at
fixed n and fixed £y we must consider finite temperatures. In this regime nontrivial
solutions are implemented by varying both n; (which can take on values between 0 and
1) and p. Our results are shown in Figs. 3.6 and 3.7.

For intermediate-to-strong values of U the “upper” and “lower” Hubbard bands have
unequal weights, and the conductivity displays both a Drude peak at w = 0 as well as a
high energy, “incoherent” contribution centered at U. For a fixed n, the single-particle
density of states shows a shift of spectral weight from high to low energies with increas-
ing U (Fig. 3.6). This is consistent with the decrease in ns and the associated reduction
in the number of sites available for double-occupancy. With increasing U, the behavior
of the conductivity (Fig. 3.7) shows two effects: the average kinetic energy decreases,
implying a decrease of both, Drude and finite frequency (incoherent) contributions. In
addition, as in the single-particle spectrum, increasing U also leads to the transfer of
weight from high to low energies, evidenced by the relative increase in the Drude weight.
The latter effect is reflected in the “crossing” of the Drude weights with increasing U.
We note that the leading correction to ImX(y) is now linear in (w — u) (Fig. 3.8), in
contrast to the half-filled case. (This effect is due to particle-hole asymmetry and will

only affect the subleading low-energy behavior of the conductivity.) The dependence
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Figure 3.5: AC conductivity at w = 0 at half filling as a function of the interaction
strength U for Gaussian density of states (solid line) and constant density of states

(dotted line)
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Figure 3.6: Conduction electron density of states for interaction strengths U = 0.5
(solid line), U = 2.5 (dotted line) and U = 4.5 (dashed line) for finite hole concentration
(n=0.92, T = 0.1, Ef = 0). Energies are measured with respect to the center of the

bare conduction band.
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Figure 3.7: AC conductivity for interaction strengths U = 0.5 (solid line), U = 2.5
(dotted line) and U = 4.5 (dashed line), for finite hole concentration (n = 0.92, 'y = 0,
T =0.1).
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Figure 3.8: Imaginary part of the self energy for interaction strengths U = 0.5 (solid
line), U = 1.2 (dotted line) and U = 2.5 (dashed line) for finite hole concentration
(n =092, F; = 0, T = 0.1). Energies are measured with respect to the chemical
potential.
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Figure 3.9: Condugjon-¢leatromodensitgo for fidbingsano= 0102 (soliaJ line), n = 0.92
(dotted line) and n = 1 (dashed line), (U = 2.5, T = 0.1, F; = 0). Energies are
measured with respect to the center of the bare conduction band.

of the spectra on filling, for fixed values of U, is dominated by the variations of the
f-level occupancy: The weight at u increases with decreasing filling, with a correspond-
ing decrease in the weight of the upper-band (Fig. 3.9). Similarly, the weight of the
Drude peak in the conductivity increases at the expense of the high frequency part, as
expected from the decrease in the number of scattering centers (Fig. 3.10).

It is worth noting that there are no low-temperature solutions with the bare f-
level position above the band. One might have expected a nontrivial solution of this
type as a result of an excitonic shift of the f-level towards the chemical potential.
However, since the Hamiltonian (3.1) involves no fluctuations of the f-occupancy, the
ground state does not contain such excitonic contributions. Thus, the mechanism for
the breakdown of Fermi liquid theory alluded to in the introduction [71] is beyond

the scope of the present treatment. Including these new effects requires the addition
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Figure 3.10: AC conductivity for fillings n = 0.72 (solid line), n = 0.92 (dotted line)
and n = 1 (dashed line), (U =2.5,T7 = 0.1, E; = 0).



of a ny-nonconserving contribution to the Hamiltonian, the simplest version of which
would involve a hybridization interaction between the two bands. Nevertheless, the
physics discussed here — especially the “pinning” of the renormalized f-level at the
chemical potential — is expected to survive in certain multi-band extensions of the
Falicov-Kimball model, even in the presence of weak hybridization [87].

In summary, we have computed the “exact” single particle spectra and the frequency-
dependent conductivity for the simplified Hubbard model in infinite dimensions. The
only nontrivial solutions involve an approximate “pinning” of the renormalized f-level
within an energy of order T2/ of the chemical potential. The resulting physics is equiv-
alent to that of a self-consistent impurity problem which, due to the broken transla-
tional symmetry, always leads to a finite value of Im¥(w = p). Although the disordered
ground state is, strictly speaking, metallic for all fillings and interaction strengths, the
behavior at half-filling at U ~ /2D is virtually identical to that expected for a metal-
to-insulator transition which occurs through a band splitting. This is clearly distinct
from the metal-insulator transition that occurs in the Hubbard model, which, as we
will see, is driven by the collapse of a quasiparticle resonance at the Fermi level. The
transfer of spectral weight is solely a result of the fact that the number of doubly oc-
cupied (empty) sites changes as the system is doped. No non trivial transfer of weight

occurs.



Chapter 4

The Mott Transition in the Hubbard Model

As mentioned in the introduction, the correlation induced metal-insulator transition
(as opposed to the band insulator), generally known as the Mott or Mott-Hubbard
transition constitutes one of the prime examples in which strong correlations between
the electrons dominate the low-energy behavior of a physical system. The paradigmatic
example for this metal-insulator transition is V,O3s, where the transition was observed
as early as 1946 [76]. While bandstructure calculations for this compound predict
that it is metallic at low temperatures, one experimentally observes a metal-insulator
transition as a function of temperature in which the conductivity drops drastically by
seven orders of magnitude.

Ever since its discovery, the Mott transition has been the subject of intense ex-
perimental and theoretical (for references, see for example Refs. [7, 15]) investigations.
From a theoretical point of view, several ideas have been put forward since the inception
of the theoretical investigation by Mott [7, 77].

According to the simple picture originally proposed by Mott [7, 77], a strong local
Coulomb repulsion U between two electrons on any given site leads to the splitting of
a band of width 2D into two subbands, whose centers are separated by an energy gap
U, the so-called “upper” and “lower Hubbard bands”. One can view the two bands as
corresponding to the propagation of doubly occupied and empty sites, respectively: If
one particle is added to the half filled system one has to doubly occupy a site which
costs an energy U. Since there are N (number of sites) ways to do this, these form a
band of highly excited states. The same holds for the addition of a hole. If the system
is half filled (one electron per site) and the gap between these two subbands, U — D,

is greater than zero, the lower band is completely filled and separated from the upper



band by a finite gap. The system is therefore insulating. For U — D < 0 both bands
touch and the system is conducting. It should be noted that this is exactly the scenario
we observed in the Falicov-Kimball model in the previous chapter.

These early ideas were put on a more rigorous footing by Anderson [78, 79], who
introduced the now so-called “Hubbard model”, describing mobile electrons experienc-
ing a strong on-site repulsion, as the simplest model of antiferromagnetic (“super”)
exchange in insulators. Independently, J. Hubbard [22, 23, 23] introduced the Hubbard
Hamiltonian in his studies of the Mott transition, resulting in a picture similar to the
Mott’s. While treating the local aspects of the physics correctly, the simple picture
is unfortunately incorrect, since his treatment fails to take the itinerant aspect of the
problem into account correctly.

Gutzwiller [25], and Brinkman and Rice [26] treated the problem variationally, start-
ing with the so-called Gutzwiller wavefunction, a filled Fermi sea of free electrons in
which the number of doubly occupied sites is reduced variationally. Since this approach
is based on a Fermi liquid point of view, it gives a good description of the metallic
region. The mechanism driving the metal-insulator in this scenario is quite different,
since the transition in this approach occurs through a continuous narrowing of the
quasi-particle resonance, i.e. a diverging effective mass.

While both approaches (together with more sophisticated treatments) have yielded
complementary insights into the problem, and one has thus obtained a good picture of
the Mott-Hubbard transition, the approaches discussed so far fail to yield a systematic
and unified approach treating high and low energy scales on an equal footing.

Over the past two years, new insights into the problem were gained using the limit
of infinite dimensionality [36, 44], which we have discussed in Chapter 2 and used to
solve the Falicov-Kimball model in the previous chapter. As we have seen, the limit of
infinite dimensionality allows for a mapping of a variety of lattice models onto impurity
problems in a self-consistently determined bath [53, 41] and is therefore a natural way
to formulate a mean-field theory of itinerant systems.

Several groups [20, 19, 21] established the ezistence of a Mott transition in the

Hubbard model at half-filling and showed, that — coming from the metallic side — it



occurs as described by Brinkman and Rice: A quasiparticle resonance at the Fermi
level narrows continuously until at a critical value of the interaction, U, the resonance
disappears, leaving behind two well separated bands centered at £U/2. It should be
emphasized that due to the fact that the density of states at the Fermi level in infinite
dimensions is pinned to the non-interacting value, ImG(0%) = —2/D, as was first
pointed out by Miiller-Hartmann [46], the transition has to occur through a narrowing
of the Kondo resonance and cannot proceed by a shrinking of the resonance. In order to
realize other scenarios it will be necessary to go beyond the limit of infinite dimensions
(see Chapter 9 for a discussion of this aspect).

Coming from the insulating side, it is possible to obtain insulating solutions down
to a value U, < U,q, at which the resonance at the Fermi level pops up discontinuously.
Between U,y and U both solutions coexist [12, 56].

At finite temperature, the difference between the free energy of the solutions is
dominated by the entropy term. The large entropy, which is a result of the degeneracy
of the ground state in the insulating case, makes it possible to unambiguously determine
the existence of a first order transition line close to Ue (7). As the temperature is
reduced, the free energy approaches the energy, therefore an accurate evaluation of the
energy is necessary. Depending on which solution is lower in energy two very different
scenarios may take place: If Fr,; < Fares, the transition will be close to U,; and the
sudden destruction of the metallic state implies a first-order transition even at T = 0.
On the other hand, in the case Fyser < Fr,s, the metallic solution continuously merges
with the insulating one at U.q, and the quasiparticles display a diverging renormalized
mass [12].

A resolution of this issue using the approaches to the model used until now, the
Quantum Monte Carlo method and second-order perturbation theory, has been impos-
sible. While the limit 7" = 0 cannot be attained by Quantum Monte Carlo simulations,
within the second-order perturbative approach the energies of the two solutions are
almost degenerate, making the consideration of higher-order corrections necessary. As
discussed in Chapter 2, an alternative numerical approach to the problem was intro-

duced by Caffarel and Krauth [40] and Si et al. [63]. While the large d mean field



equations are functional equations for the Green function G'(iw,), an approximation
can be obtained by modeling G/(iw,) using a finite number N of parameters, which
reduces the functional equations to non-linear algebraic equations in N unknowns. Fol-
lowing this idea, two different parameterizations of the single particle Green function
were introduced [40, 63]. Both take advantage of a mapping of the lattice problem
onto an Anderson impurity model with a self-consistently determined bath. The N
parameters that model G'(iw,) define the hopping amplitudes and energies of the ef-
fective electron orbitals of the bath, as will be discussed in detail in next section. The
resulting problem can then be solved at T" = 0 by exact diagonalization of the effec-
tive Hamiltonian. This is followed by the new determination of the set of parameters,
and the procedure is iterated until convergence is attained. The method is thus non-
perturbative in nature and overcomes the problems of both Quantum Monte Carlo and
perturbation theory, allowing for an accurate evaluation of the energies at T' = 0.

In this chapter we apply this approach to the study of the Hubbard model at half-
filling. We establish the coexistence of metallic and insulating solutions over a finite
range of the interaction parameter U and show that at 7" = 0 the energy of the metallic
solution is lower than the insulating one, implying that the metal-insulator transition in
the Hubbard model with semicircular density of states is of second order. This justifies
a posteriori the relevance of the earlier studies [57] of this quantum critical point which

captures the essence of the Brinkman-Rice transition.

4.1 Methodology

In the limit of infinite dimensionality the Hubbard model with a half filled band, de-

scribed by the Hamiltonian

1 1
H=—t > flfie+UD (npir— ) (s = 3), (4.1)
<t,5> 7
can be reduced to an effective impurity problem, supplemented by a self-consistency
condition [41]. As discussed in previous chapters we will focus on a Bethe lattice of

infinite connectivity m, which in the non-interacting limit corresponds to a semicircular

density of states of half width 2¢, where the hopping parameter ¢ is rescaled in the



usual way as ¢ — ﬁ Integrating out the degrees of freedom other than the origin,

one obtains an effective local action of the form

B
Sefrle, CT] = Z/o deT/f;(T)Gal(T — 1) fo (7))

40 [ dr(ngs(n) = D)) - 3 (4.2

In the following we focus on the paramagnetic solution at half-filling. In this case the

self-consistency condition reads
Gyt iw,) = iw, — G (iw,) (4.3)

where G (iw,) = — foﬁ dre™r™ (T, f(7) f1(0))s,,, is the local Green function of the Hub-
bard model once self-consistency is reached. As we saw in Chapter 2 [41] an action of
the same form can be obtained from an Anderson impurity model by integrating out
the conduction electrons. Note that the self-consistency condition implies that the role
of the hybridization function is played by the local Green function itself. Let us briefly
recapitulate the procedure: G/(iw,) is modeled by a finite set of parameters. In terms
of the impurity problem, this represents an effective bath for the impurity with a finite
number of poles. This effective impurity model is then solved by exact diagonalization
and a new ((iw,) is calculated. A new set of parameters is then obtained from G (iw,)
by approximating it by a function with a number of poles equal to the number of sites
in the conduction electron bath. This number is in general smaller than the number
of poles of G/(iw,). Note that this represents a further approximation of the method
(beyond the effective Hamiltonian being finite). The whole process is iterated until
convergence of the parameters is achieved.

Exploiting these ideas, two new similar algorithms were proposed [40, 63], differing
basically in the way the new set of parameters is obtained, that is, how the G/(iw,)
is parametrized by a smaller number of poles. We will consider both schemes and
comment on their respective advantages and limitations.

As mentioned, the number of poles of G/(iwy,) is in general larger that the number of
sites in the bath, therefore this approximation is an essential ingredient of the scheme.

Caffarel and Krauth [40] proposed to obtain the new parameters by a x? fit of G (iwy,).



Starting with an Anderson Hamiltonian of the form

1 1
Hav = D echyoro+ 3 (Vicl, fo +he) + Ulngr = g —5)  (44)
k,o k,o
the self-consistency condition becomes
2 Ak Vi
t°G(w) = ——. 4.5
=2 (4.5
We thus have to minimize
) Nq Neath sz )
= G (iw,) — —r 4.6
V=3t - 3 (46)
where we sum over frequencies w, = (2n 4+ 1)77. The “fictitious temperature” T

simply serves as a low-frequency cutoff and is reduced systematically as the system size
increases, since this leads to a more accurate description of the low-frequency region.
The upper cutoff NqAw is chosen to be ~ 2U, beyond which the results no longer
change significantly if the cutoff is changed. This leads to a new set of parameters V
and €. Note that this Hamiltonian effectively describes an impurity surrounded by a
“star” of bath electrons.

It should be noted that in order to obtain a metallic solution one has to feed back a
pole at the Fermi level in order to allow for the binding of a Kondo singlet. Depending
on the value of the interaction, the system will flow to the insulating solution even in
the coexistence region if this is not taken care of. Since the Green function obtained
from the continued fraction representation never has poles exactly at zero, but two
poles close to the origin (from particle and hole contributions, respectively) the low
frequency cutoff has to be larger than the frequency position of the smallest pole of the
Green function in order to allow for a collapse of the two lowest poles representing the
Kondo resonance to one pole at zero.

In order to obtain the insulating solutions, the number of sites in the bath has to be
even and one has to feed back an insulator. For U > U, an insulator can be obtained
with an odd number of particles in the bath if the site at the Fermi level effectively
decouples from the system, i.e. the hopping between the impurity and the site at energy

zero vanishes. Since the groundstate in that case is a degenerate doublet, one then has



to diagonalize the total spin S2 of the system in order to obtain the correct ground
state. We also note also that the spectral sumrule has to be enforced explicitly.

An alternative route was introduced in the context of an extended Hubbard model
[63]. This procedure takes advantage of the fact that the Green function G/(z) can be
decomposed into “particle” and “hole” contributions as G(z) = GP(z) + G"(z) with
G?(2) = (g5l fo =m=myy F195) and G"(2) = (gs| I =y fo l99)-

The respective contributions can be obtained from a continued fraction expansion

as
hy sp/h
T p——— Sl (4.7)
= /h2 :
wF (H — Ep) ziEo—ag/h— by -
ok Eg—a?/Pe 2
0 1 z:}:EO—aS/h—...

where |f(§)> = fT|gS> |f(§L> = fo|g5> and |fn+1> = H|fn> - an|fn> - b721|fn—1>7 an =

(fulH|f0), b2 %f?—Iff"% bo = 0. This implies that G? and G"* can be regarded as
resulting from a Hamiltonian describing an impurity coupled to two chains with site

p/h

energies a;/ and hopping amplitudes

bﬁ/h. Again, the number of poles in the Green
function is in general larger than the number of sites of the Hamiltonian and in order
to close the self-consistency, the continued fraction expansion has to be truncated. The
approximation in this scheme relies on the fact that the continued fraction representa-
tion captures exactly the moments of the energy of the Hamiltonian, up to the order
retained in the continued fraction. It can thus be thought of as a moment by moment
fitting. This scheme has the numerical advantage that it avoids the multidimensional
fit of the Green function, but the disadvantage that it can be implemented practically
only in the case of a semi-circular density of states. Unfortunately, in the metallic case
an explicit extra site at the Fermi energy has to be introduced in order to allow to
feed-back a metallic bath. The hopping parameter to this extra site is calculated by a
single parameter minimization of the expression

ZWTLH
= > |G aliwn, @) — G(iw)]? (4.8)

Zw’ﬂL
where now G 4 (iwy,, o) = =t (1 - a)Gn, (iw,). G, is the truncated Green function

to length No = Npaer/2 and wy, and wy are low and high energy cut-offs defined by the



lowest poles of G and G, respectively. Since this effectively changes the moments as
spectral weight is taken from high energies to low energies, it spoils the moment-by-
moment nature of the approximation. While the modification of the moments is small
for a large number of sites, we believe that for the number of sites within reach with
using current workstations, the xy? method is considerably better and will focus on the
approach based on it for further results. Futher remarks regarding the two methods
can be found in Chapter 2. All results in this thesis are obtained using the x? fit of the
Green function to close the self-consistency.

We obtain the ground state energy and wave function of the Anderson Hamiltonian
by exact diagonalization (up to six sites) and the modified Lanczos technique (see
Chapter 2). Systems of up to ten sites can be handled on a workstation. The zero
temperature Green function of the local site is then obtained from a continued fraction
expansion using the recursion method discussed above. Finally a new set of input
parameters is obtained using the y? fit and the method is iterated until convergence
is achieved. Once we have obtained the self-consistent solution to the problem, we
can extract the physical information needed. A major advantage of the formulation
of the problem in terms of an Anderson impurity model is the fact that the energy
of the Hubbard model can be obtained directly without frequency summations using
Anderson model relations.

The kinetic energy per site is given as

xin = ﬁi\f S S 16 i) 0" (4.9)

<5k> twn
Taking the limit of infinite coordination number this reduces to
v n +
€Kin = ZG iwy) e n? (4.10)
tWn

Using the self-consistency condition (4.5), as well as the identity

3 ZZ o e oliwn)] fHwn)) =3 Vil flero + hec.) (4.11)

Twn, ko

we arrive at the expression for the kinetic energy

exin =y ViRe(gs|flcrs|gs). (4.12)
ko
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Figure 4.1: Coexisting solutions for the Green functions at T = 0, U = 2.7 at half-
filling. Also shown (but indistinguishable) are the fitted functions using a fictitious
temperature “T”=0.005 and N=8 sites.

The potential is simply obtained as

cpot = U(gslnsny,lgs). (4.13)

4.2 Results

In our analysis we have focused on two major aspects: The determination of the coex-
istence region in which both metallic and insulating solutions exist and the resolution
of the controversy regarding the lowest energy solution, i.e. the question whether the
Mott-Hubbard transition at zero temperature is first or second order.

We are able to obtain converged metallic and insulating solutions for a finite range
of the interaction U. Metallic and insulating solutions for U = 2.7 inside the coexistence
region as functions of iw, are shown in Fig. 4.1 (the half-bandwidth 2t is set equal to
unity) . The corresponding analytically continued Green functions giving the density

of states are displayed in Fig. 4.2. Due to the cluster approach we are using, this gives

"Note that the pinning condition at w = 0 is fulfilled [46].



a discrete number of poles. The important feature to notice (this will be crucial in the
following chapter) is the strong separation of scales exhibited in the metallic solution:
Two broad, incoherent features comprising the upper and lower Hubbard bands are
well separated from the narrow Kondo resonance at the Fermi level. The self-consistent
projective technique we will develop in the following chapters we will exploit exactly
this feature by eliminating the upper and lower Hubbard band altogether and focusing
solely on the quasiparticle resonance. The insulator in the second case merely consists
of high energy features (upper and lower Hubbard bands).

The kinetic, potential and total energies for the two solutions in the coexistence
region are displayed in Fig. 4.3. Clearly, the metallic solution is lower in energy in the
whole coexistence region. The energy difference between the solutions shown in the
inset of Fig. 4.3 goes to zero as U, is approached, implying that the transition at zero
temperature can indeed be classified as second order. This should be contrasted with
the results from second-order perturbation theory, where the two solutions were found
to cross in energy at an intermediate value of the interaction U. A point worth noticing
(as was already observed within the perturbative approach) is that the energy difference
between the solutions is much smaller than any energy scale of the problem. This is
due to an almost perfect compensation of the gain in delocalization (kinetic) energy by
the loss of energy through double occupancy (potential energy), in the metallic state
compared to the insulator. Another important observation is that while finite size
effects are apparent in the results for the kinetic and potential energy, the convergence
of the total energy is much faster [80]. A few runs for a ten site system show essentially
no difference to the results for eight sites, indicating that the thermodynamic limit has
been reached.

As the critical point U, is approached from below, finite size effects become relevant
for U = 2.8. This limitation of the scheme is due to the fact that as the low energy scale
associated with the quasiparticle peak goes to zero close to the transition, the discrete
nature of the approximation starts playing an important role and the Kondo resonance
is represented by only a single pole. The validity of the procedure and therefore results

for the energy therefore becomes less reliable. This is also reflected in the behavior of
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Figure 4.2: Density of states of the half-filled Hubbard model at T = 0, U = 2.8 cor-
responding to insulating (top, N=9 sites) and metallic (bottom, N=10 sites) solutions.
A small broadening § = 0.01 of the poles is chosen to indicate their structure.
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the quasiparticle weight z = 1/(1 — %), which goes to zero linearly for U < 2.8, but
becomes non-linear beyond this value. Since this breakdown of linearity coincides with
the point beyond which the Kondo resonance no longer shows any structure, we believe
this to be a limitation of the approximation. In order to obtain an accurate description
of the behavior near the transition a more sophisticated tool is clearly needed. An
approach that remedies this problem, the self-consistent projective technique, will be
developed and presented in the following chapters.

Due to these difficulties in the critical region and at small frequencies it is hard to
extract the critical value U, from the quasiparticle weight using the present scheme.
Some information, however, can be obtained using the difference between the double
occupancies of metal and insulator which goes to zero at the transition, since it requires
accurate information about the high-energy region. In Fig. 4.4 we display the differ-
ence between the double occupancies of metallic and insulating solutions. We see the
excellent convergence as we go from eight to ten sites, but also notice the breakdown
of the method in the critical region due to the strong separation of scales. Considering

the linear region only, this can be represented by the functional form
el — Ny = 0.05(U. — U) (4.14)

where U, = 2.96, which differs from the exact value (see Chapter 7) of U, = 2.92 by less
than two percent. This can be compared to the result using the four boson approach

of Kotliar and Ruckenstein [32, 81] which yields

3
Pous = é(UC —U) ~ 0.07(U. - U) (4.15)

where U, = % Note that in the 4 boson approach the double occupancy goes to zero
at the metal insulator transition while it remains finite in infinite dimensions [12].
The fact that the transition is indeed second order and that the metallic solu-
tion is always lower in energy can also be seen from the following analytic argument.
Using the Hellman-Feynman theorem we see that for metallic and insulating solu-

tions %g—s = (ng4nysy). Integrating this equation between U, and U one finds that

Eg{s — Eé\s/f > 0 since the metal has a greater double occupancy. Thus U is indeed
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the physical transition at 7" = 0 in agreement with the numerical findings. Notice
also that since the double occupancy difference is linear as shown in Figure 4.4, the
energy difference is quadratic, explaining the smallness of the energy differences near
the transition.

Finally, we would like to comment on the disappearance of the insulating solution at
U.1. While perturbation theory gives a U.; = 2.6, the present scheme yields insulating
solutions down to values U, & 2.35 which is smaller than the perturbative result but
still does not indicate a closing of the gap as in the scenario described by Hubbard in
which the gap closes continuously.

In conclusion, in this chapter we have resolved the standing questions regarding the
metal-insulator transition in the Hubbard model in infinite dimensions, using a powerful
algorithm to obtain Green functions at zero temperature, We were able to demonstrate
the existence of a region in which metallic and insulating solutions coexist, which is in
agreement with previous results, and showed that the metallic solution is always lower
in energy. This implies that while at finite temperature the transition is first order,
it becomes second-order at T = 0, similar to the work of Brinkman and Rice in the
context of the Gutzwiller approximation [26, 57]. The method presented is very general
as well as simple, especially when compared to Monte Carlo simulations. Unfortunately
we also noted its limitations, in particular in the analysis of the critical behavior. We
will show how these can be overcome, using the separation of scales pointed out in this
chapter, in Chapter 6. In the following chapter we will proceed by analyzing the doped
Hubbard model.



Chapter 5

Doping the Hubbard Model

The method of solving the Hubbard model in infinite dimensions by mapping it onto
an Anderson model which is solved self-consistently using exact diagonalization as de-
scribed earlier, has other major advantages. It is so far the only method that allows for
an accurate investigation of the metal-insulator transition away from half-filling and at
zero temperature, where both, perturbation theory and Quantum Monte Carlo meth-
ods, fail and thus allows us to determine physical quantities like the spectral functions,
magnetic susceptibility and specific heat for different values of doping.

In this chapter we will focus on three aspects: We will analyze the behavior of
n versus u, in particular the charge susceptibility dn/du near the transition, which
has been discussed controversially [82, 83] and extend the discussion of the coexistence
region to the case of finite doping. This also allows for a preliminary investigation of the
question where the states induced by doping the Mott insulator are generated, which
is highly relevant in the light of the experiments on the cuprates [8, 9, 10, 11]. We will
then discuss the question of transfer of spectral weight in the Hubbard model, which
is again of strong experimental and theoretical [15, 71, 84, 85, 35] interest. We will
restrict our discussion to the case of hole doping to keep the notation simple. Due to
the particle-hole symmetry of the Hubbard model exactly the same arguments apply
to the case of electron doping and all plots are symmetric with respect to particle and

hole doping.

5.1 Coexistence at Finite Doping

We will begin by extending the discussion of the coexistence region to finite doping.

While the coexistence of metallic and insulating solutions for values of the interaction
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Figure 5.1: Coexistence region of metallic and insulating solutions at zero temperature
and finite doping in the Ay — U plane where Ay = p — U/2. (N=5 and partly N=7
sites for Uy, pe2 from Chap. 7.

between =~ 2D and = 3D at half filling is well established, it is not clear, whether
this feature survives in the doped system. In particular, it has not been possible to
stablize an insulating solution for interactions less than the critical U., for any finite
doping [86] using the Quantum Monte Carlo method. On the other hand it is not clear,
why the insulating solution should not survive as the chemical potential is changed
based on continuity. The algorithm discussed in the previous chapter allows us to settle
the question unambiguously. We find that it is indeed possible to stabilize insulating
solutions for a finite chemical potential, such that the coexistence region extends over a
finite area in the u — U plane. The corresponding phase diagram is depicted in Fig. 5.1.

No coexistence has been found for interactions U < 2.35.

From an inspection of the phase boundary as well as by looking at n vs. p curves it



becomes obvious that as one approaches the metal from the insulating side the quasi-
particle peak emerges discontinuously, i.e the transition is first order, as the chemical
potential moves into the Hubbard band.

As in the case of half filling the insulator is always higher in energy, such that the
metallic solution corresponds to the physical solution. In the following we will therefore
focus on the disappearance of the metallic solution as coming from the metallic side.
As in the case of half filling this happens through a continuous narrowing and finally

disappearance of the quasiparticle peak and is thus a second order transition.

5.2 Charge Susceptibility

The behavior of the charge susceptibility x. = dn/du as the Mott transition is ap-
proached from below, i.e. as U — U. — 0~ has been discussed before [12] using the
results obtained from Quantum Monte Carlo calculations. In particular, Rozenberg et
al. observed, that the charge susceptibility remains finite for any U < U, and approaches
zero at the transition, which is in marked contrast with the findings of Imada [82, 83],
who observes a divergence of the charge susceptibility in Monte Carlo simulations of
the two dimensional Hubbard model, which in turn leads to a diverging effective mass.
As can be seen in Fig. 5.2, our calculations show that the charge susceptibility in infi-
nite dimensions indeed remains finite, confirming the finite temperature QMC results
of Ref. [12].

The more interesting feature, which we will confirm using the self-consistent projec-
tive technique to be developed in the next chapter, is that for values of the interaction
larger than the critical U, the charge susceptibility remains finite for values of the chem-
ical potential which are in the gap according to the rigid band picture. This indicates
that the states generated for sufficiently low doping are formed in the gap. As can be
seen from Fig. 5.2 the states are close to the center of the gap for U = 3.5 and approach
the band edge as the interaction increases, while remaining well separated from the

band as long as the doping is small. For larger values of doping the states merge with

the lower Hubbard band.
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This result is confirmed by looking at the spectral functions for moderate values of
the interaction (in the example shown in Fig. 5.3 we have chosen U = 4 and dopings
6 =0.01,0.086,0.2,0.35,0.51,0.7). A careful inspection, which will be confirmed using
the self-consistent projective technique, indicates that the resonance is split off from
the band for small dopings and merges with the band only as the doping increases.

In the light of the following chapters it is instructive to describe this observation in
terms of the self consistent Anderson model. The position of the resonance as a function

of doping implies that one can distinguish three regimes in the effective Anderson model.

1. At half filling and for small values of the doping the doublet state {|1),]])} is
much lower in energy than the empty and doubly occupied states, | 11) and |0),
which are essentially frozen out. There are virtually no charge fluctuations and
the system is in the local moment regime, dominated by the quantum fluctuations
between the two components of the doublet, | 1) and | |). The resonance is
separated by a finite energy gap from the lower Hubbard band and the system

exhibits a clear separation of scales.

2. As the doping is increased, a crossover into the mized valence region occurs, in
which both spin fluctuations as well as charge fluctuations between empty and
singly occupied sites occur. In this case there is no separation of scales between

resonance and Hubbard bands anymore.

3. As the chemical potential is lowered even further, the system moves into the empty

orbital regime, in which the impurity is predominantly unoccupied.

The three regimes can be distinguished quite nicely and easily by considering the
expectation values ngnge = Yo (1 = 1n6)n5), Nempty = (1 —n6) (1 —nz)) and ngoupie =
(nonz), which distinguish between local moment (ng;,4. dominant), mixed valence
(Pempty and ngiuge comparable), and empty orbital (n.p,:, dominant) regimes. Di-
agrams of the regimes in the U — Ap and U — n planes is depicted in Fig. 5.4.
Since the crossover between the regimes is smooth, we have imposed the criterion that

Nsingle > 0.9 for dominance of local moment behavior and neppey > 0.8 for the empty
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orbital regime. Also sketched is the critical line y. beyond which the system insulating.
This result will be obtained in Chapter 7.

We will confirm these observations in the following chapters using a powerful new
method, the self-consistent projective technique, which enables us to determine the
position of the resonance and the critical g even more accurately and allows us to

discuss the existence of the regimes from a different perspective.

5.3 Transfer of Spectral Weight

As mentioned in the introduction, and in parts of Chapter 3, another important ques-
tion is the transfer of spectral weight in strongly correlated systems. This is observed
experimentally using spectroscopic techniques [8, 11]. From a theoretical perspective
it is intimately related to the validity of Fermi liquid theory [71, 15, 87, 88] and thus
to the normal state properties of the model under consideration. This is particularly
relevant, given the unusual normal state properties of the high-T,. materials [2].

In order to elucidate what transfer of spectral weight is all about and why it is a
signature of strong electronic correlations, it is useful to contrast the cases of doping a
semiconductor and doping a Mott insulator (a nice and more detailed account is given
in Ref. [35].

Let us consider a semiconductor in which the valence band is fully occupied and
the conduction band is completely empty. For simplicity consider a system with NV
sites, i.e. 2N single particle states due to spin degeneracy. Since the states in a
semiconductor can be described in an independent particle framework and consist of
states with energy ¢ which are either occupied or unoccupied, the spectral function
has the form p(w) = 5% 34 6(w — €). In the undoped case, the chemical potential p
is in the center of the gap. If the system is doped with holes (electrons), the chemical
potential shifts into the valence (conduction) band. It is important to realize that the
spectral weights of valence and conduction bands, given as wt = w™ = %, remain
unchanged and that no new states arise. It should also be pointed out that as one

moves from hole doping to particle doping the chemical potential jumps by an amount
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equal to the gap.

In the case of the atomic limit of the Hubbard model, described by a Hamiltonian
Hotomic =Y ; (UniTnu — p(ng + nw)) the situation is different. Since the upper band
describes the propagation of doubly occupied sites, the weight of the upper band now
depends on the doping 4, i.e. the concentration of holes (electrons) per site. In the case

(1-9)

of hole doping the respective weights are now given as w™ = %(1 +4) and wt = %
due to the presence of strong Coulomb correlations. Thus, through hole doping weight
gets transferred from high to low energies. Recall that transfer of weight of this form is
exactly what is observed in the Falicov-Kimball model [88, 50, 53]. In that case the gap
remains intact and no new states are created in the gap. Also, once again the chemical
potential exhibits a jump of order U — 2D, the band gap, as one goes from particle
doping to hole doping.

Experimentally, other scenarios are observed. Allen et al. [10], for example, observe
that for hole-doped compound Las_,Sr,CuQOgsand for the electron doped compound
Ndy_,Ce,CuO4 new states are created in the insulator gap and that the chemical
potential has essentially the same position in the gap for both hole and electron doping.
In contrast to the semiconductor, the doping therefore produces new states, which arise
by transferring weight from upper and lower Hubbard bands to the Fermi level.

It is therefore of interest to investigate the influence of the kinetic term on the
transfer of spectral weight as described in the atomic Hubbard model. The crucial
questions are, whether there are any regions in which new states arise in the gap and
where the Fermi level moves as the doping is changed. While studies of these aspects
exist [85, 35, 89] they are obtained primarily using exact diagonalization techniques and
are thus subject to the problems associated with this technique.

Since we have seen that in the doped Hubbard states are generated in the gap
(Fig. 5.3), one should expect that the reduction of spectral weight at high energies is
enhanced due to the binding of the Kondo singlet at the origin. Moreover, one would

expect non-linear effects to come in, such that it should be possible to parametrize the



high-energy spectral weight by the functional form
1
w+ = 5(1—Cl5+6252). (51)

For large values of the interaction this should approach the exact result ¢; = 1 and
c3 = 0 of the U = oo limit, which can be obtained using slave boson techniques (see i.e.
Ref. [31]).

The high energy spectral weight, which is well separated from the remaining part of
the spectrum and can therefore be extracted easily, is shown in Fig. 5.5 as a function of
doping for several values of the interaction U. Also shown is the high energy spectral
weight for the U = oo Hubbard model. Clearly the curves approach the exact U = oo
result. The equations can be fitted well by the functional form (5.1) and the coefficients
follow the expected behavior: ¢; is enhanced to & 2.2 for U = 3 and decreases mono-
tonically, approaching the U = oo value ¢y = 1, ¢3 is & 4. for U = 3 and approaches
the U = oo value ¢; = 0.

The observed behavior can be understood from the self-consistent solutions of the
two simplest toy models for the metallic and the insulating Hubbard model. The self-
consistent 1 + 1-site Anderson model, in which the bath of electrons is represented by
one site at the Fermi level, gives a surprisingly good description of the metallic behavior
and of the metal-insulator transition due to the fact that it allows for the binding of
a singlet state at the Fermi level and thus exhibits a low energy features dominated
by the Kondo effect. The 2 + 1-site Anderson model, in which upper and lower band
Hubbard bands are represented by one pole, respectively, gives a good picture of the
insulating state. Both models are solved in Appendices B and C; here we will simply
use the results derived there.

The crucial feature regarding the transfer of spectral weight, which can also be seen
from the solution of the 2 + 1-site insulator is the fact that the only self-consistent
solution to order (V/U)? has equal hybridizations V* and V= with upper and lower
Hubbard bands, respectively. This implies directly that the weights of the upper and
lower Hubbard bands are equal. Any transfer of spectral weight is thus necessarily due

to the appearance of the Kondo resonance at the Fermi level and should be explicable
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from the solution of the 1+ 1-site problem.
As demonstrated in the Appendix B (cf. Eq. (B.15)), the high energy spectral

(1—-o |E(20‘)/j|U))2' Close to the transition V' — 0 and we can

weight is of the form ﬁ
1

also expand in V/p such that it assumes the form (1 — o(

22
2 2

m ))? in agreement with

Eq. (5.1). It is thus reduced from the insulating value as expected. From the explicit

form of the ground state wavefunction (B.8), which to order V/u is given as

gsher = (524 il 140) 4 mal0; 1) (5.2)

where again the k; are coefficients and the states are labelled as indicated in Appendix
B, this can be seen to be the result of the admixture of the state |0; 1)) = C$01|0> to
the zeroth order singlet ground state |S2). Since in that state |0;1]) the impurity site
is empty, this effectively reduces the weight of the upper band.

It is remarkable that our results are in excellent qualitative agreement with the
experimentally observed transfer of spectral weight in the copper oxides [11], if the
charge transfer gap in Lag_,Sr,CuQy is interpreted as a Mott gap. A more careful
study using a full two band model would be interesting.

In summary, we have studied the behavior of the Hubbard model in infinite dimen-
sions as a function of doping. We have seen that at values of the interaction U < U,y
metallic and insulating solutions coexist and that, as in the half-filled case, the metallic
solution is lower in energy. For U > U, doping induces states in the Hubbard gap which
move towards the lower (upper) Hubbard band as the interaction or the hole (electron)
doping concentrations are increased. For any value of the interaction a small doping
concentration leads to states separated from the upper and lower Hubbard bands. We
also observe an anomalous transfer of spectral weight from high energies to the Fermi

level, which can be understood from the Kondo effect exhibited by the doped system.



Chapter 6

Resolving the Low Energy Properties: The

Self-Consistent Projective Technique

6.1 Separation of Scales and How to Take Advantage of It

As was shown in several publications [20, 19, 21], and as we saw explicitly in the previous
chapter, the metallic phase of the Hubbard model in infinite dimensions exhibits a
separation of scales for intermediate and large values of the interaction (U > 2.5D) and
for zero and small doping §. This can be seen most clearly from the spectral functions
as shown in Figures 4.2 and 5.3, which show the density of states of the Hubbard model
at half-filling and for small doping.

Clearly, the spectra can be separated into three distinct features. The high energy
features are given by the broad upper and lower Hubbard bands which are centered
at energies —u and U — p. At half-filling p = U/2, such that they are centered sym-
metrically about the Fermi level at +U/2. These are well separated from the narrow
Kondo resonance at the Fermi level, the weight of which, w, goes to zero at the metal-
to-insulator transition. The system of equations to be solved close to the transition
contains two vastly different energy scales, given by the chemical potential p and the
width of the Kondo resonance, wD, rendering an accurate numerical treatment, in
particular of the critical region, impossible.

In this chapter we will show, how we can use the natural separation of scales to
our advantage by eliminating the high energy degrees of freedom, thereby reducing the
full problem to an effective low energy problem containing only one scale, which can
be tackled numerically. From the resulting effective problem one can easily obtain low
frequency (temperature) results, as well as information about the critical behavior of the

models considered. It is this idea that forms the basis of the self-consistent projective



technique.

While we develop and use the technique to study the particular case of the Hubbard
model, the method is completely general and can be applied to any problem exhibiting
a separation of scales, a common situation in strongly correlated electron systems.
An essential feature of the method is the fact, that the high energy parts only enters
via parameters which determine the detailed low energy behavior. In that sense it is
similar to a Landau-Ginsburg analysis, in which high energy, short distance effects only
determine the coefficients of the various terms of the Landau-Ginsburg functional.

In the case of the Hubbard model we will see that the self-consistent projective
technique enables us to analyze the physical properties near the transition and the
exact properties at the critical point, illustrating that it is a powerful technique to
obtain the low frequency behavior of strongly correlated electron systems.

As one can see immediately from the spectral functions (Figures 4.2 and 5.3) the
separation of scales implies that it is possible to decompose the single particle density of
states p(¢) of the Hubbard model into high and low frequency parts as p(¢) = p'**(€) +
p"9%(€). Given the mapping of the Hubbard model onto a single impurity Anderson
model [41]

Hapr = Zékczocka + E Vk(f;rcka + h.C.) + UnanN — ,u(nfT + nN) (6.1)
ko ko

with self-consistency condition

S 2D e, Vidion) (6.2)

P Wy, — €}
(recall that ¢ = D/2) this implies, that we can also separate the variables ¢ and
Vi describing the self-consistently determined bath of conduction electrons into sets
{€r, 1, Vi, i} corresponding to the high energy features and {e 1, Vi 1} containing the
low-energy states up to a cut-off given by the Kondo temperature or renormalized Fermi
energy of the Hubbard model and carrying spectral weight

w=4/D* > V7. (6.3)
k€low

In terms of the regimes discussed in the previous chapter, the separation of scales

occurs as long as the effective Anderson model is in the local moment regime, in which



the impurity site is fluctuating between the two spin configurations | 1) and | |), which
are much lower in energy (by an amount ) than the empty and double occupied
configurations |0) and | 1]).

A schematic description of the separation of scales as well as of the effective low
energy problem is shown in Fig. 6.1. It should be emphasized that the particular im-
plementation of the self-consistent projective method to the Hubbard model developed
in this thesis is restricted to the local moment regime. This is due to the fact that we
assume a certain structure of the part of the Hamiltonian containing the high energy
states. We shall see explicitly later, how it implicitly contains the information about
the range of validity of the present implementation. It should be emphasized, however,
it can be applied to other cases and other regimes.

In order to eliminate the high energy degrees of freedom, we first separate the

impurity Hamiltonian H 47 into three parts as
Hart = Har + Ho + Har (6.4)
Hqz is given as

Hat = Ungprngy — u(ngs +np) + O Vi (cf, fo + he) + D ennchens  (6.5)
o,k o,k
and can be thought of as an Anderson impurity in a semiconductor.
Hy = > wDépef cro (6.6)
k,o

describes a narrow band of low energy conduction electrons. Since the energy will
turn out to be of order wD, we have introduced dimensionless, rescaled variables €; =

el /(wD). The hybridization #ps with the low energy electrons is given by

Hy = VwD Y (b, f, + hec) (6.7)
with
Lo =Y 2Vitro (6.8)
k

the local low energy conduction electron operators normalized to have canonical anti-

commutation relations

{CLU,CEU} =1 (6.9)
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Figure 6.1: Schematic plot of the spectral functions of the conduction electrons and
of the impurity configurations, illustrating the separation of scales into low and high
energy contributions.



{eto,cro} = {c}, e} = 0. (6.10)

Again we have rescaled the Vi 1 by introducing rescaled variables Vi = Vi.r/ (VwD),
which thus shows explicitly the perturbative nature of the hybridization with the low
energy band.

As long as we are in the local moment regime, which is the case in the critical region
and thus the regime we will restrict ourselves to in this work, the contribution to the
Hamiltonian containing the high energy states, H,¢, has low-lying spin doublet ground
states |o)r,, with energy E¢f. These are separated by a gap of order y from the high
energy excited states. These high energy states (i.e. the excited states of #H,:) shall be
denoted by |a). This structure of the eigenstates can be seen most clearly by considering
the impurity orbital only. The four possible states in that case are the doublet ground
state |o) = f1]0) with energy —u, which is well separated from the doubly occupied and
empty states, fTTfI|O) and |0), at energies U —2u and zero, respectively. Hybridizing the
single impurity with lower and upper Hubbard bands simply renormalizes the states
by “dressing” them with particle-hole excitations without altering their transformation
properties, i.e. the ground state remains a degenerate doublet.

Upon diagonalizing H,: the full Hamiltonian can be thus be decomposed into a high
energy sector spanned by the states {|a)m,,} @ {|¥1)}, a low energy sector spanned by
the states {|o)m,, } @ {|vr)} with {|¢1)} states of the ¢l | and mixing terms. In order
to obtain the effective low energy Hamiltonian, we perform a canonical transformation
which eliminates the coupling between high and low energy subspaces and thus yields
effective low and high energy Hamiltonians. We thus have to find an operator S medi-
ating the transformation such that the effective Hamiltonian is block diagonal, i.e. find
S such that

HH = e SHanre™ = 1 + 45 (6.11)

where the subscripts L and H denote operators acting on the low and high energy
sectors only, respectively. The action of the canonical transformation is depicted in

Figure 6.2.

Notice that if the high energy band just consisted of a single state, this procedure
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Figure 6.2: Schematic representation of the canonical transformation

would be equivalent to a Schrieffer-Wolff canonical transformation [90]. The information
about virtual excitations to high and low energy sectors is contained in the coefficients
of the terms in the effective low and high energy Hamiltonians, respectively, as we will
see explicitly later.

In order to preserve the clarity of the logic, let us proceed in our discussion by
first giving a general outline of the procedure comprising the self-consistent projective
technique and defer the discussion of the explicit form of canonical transformation and
of the operators to the next section.

Having decomposed the Hamiltonian into high and low energy parts, we now have
to transform operators, Green functions and self-consistency condition accordingly.

The canonical transformation amounts to performing a basis transformation, im-
plying that all operators have to be transformed correspondingly. In particular, for the
determination of the single particle Green function we thus obtain projected fermion

operators

F,=Ft 4 pbH | pHL | pHH — =S¢ oS (6.12)

The superscripts HL and L H denote operators connecting low and high energy sectors.

With those, the low and high energy contributions to the Green function assume the

form
1 1
Glow(iw,) = FULL FLEty L (pLIt FLLy) (6.13
I ( ) (< (,Heff gs) > < zw+(7{eff gs) >) ( )
and
Ghigh(iton) = ((FE7 : oL R— FHT) (6.1)

w— (Heff Ey) w + (Heff E,)

The self-consistency condition (6.2) can then be decomposed as

V2
0 = > kL t2Glrow (iwn) Ve, L, €613 Vi H s €k,H] (6.15)

T Wwn — €T



Viu
0 = — R G (wn) VL, .1 Vi enm)- 6.16
Xk: F——— high (10n) [V, €k,1; Vie,H s €1, ] (6.16)

Equations (6.15) and (6.16) are strictly equivalent to the original problem and form
the basis of the self-consistent projective technique.

The crucial observation is the fact that a detailed analysis of the low frequency
region (6.15) depends only weakly on the high energy part of the spectrum, which
enters only through a few numerical coefficients, as we will see in the case of the Hubbard
model. Conversely, the high energy part (6.16) only depends weakly on the low energy
part. More precisely, the low energy part only enters via integrated quantities such as
>k Vi2er 1. There are therefore various levels on which the equations can be studied.
In the model at hand, in which the physics is well understood, we will proceed by a
quantitative analysis of the equations to a given order. In problems less well understood
one can start by assuming a high energy phenomenology (i.e. a set of coefficients
entering the low energy problem) and obtain qualitative insights by investigating the
corresponding consequences for the low energy part. Again it is illuminating to make
the connection to a Landau-Ginsburg approach, in which qualitative insights about a
physical problem can be gained without knowledge of the numerical details.

In the case of the Mott transition we are interested in the numerical values of
physical quantities near the Mott transition, i.e. the critical interaction, specific heat,
and resistivity. Clearly we cannot perform the canonical transformation to all orders,

but have to expand in the “small parameter” w as
S = Vws® 4 w256 4 (6.17)

We will see after we solve self-consistently for w that this expansion is justified, since
the coeffients multiplying powers of w will turn out to be of order one in the relevant
energy regime.

The expansion yields

Hsz = w%iff(l) + wQHfo(S) + ... (6.18)

welt = w O W 4 (6.19)



and

FEE = JwFPP) 4 32 pEEE) (6.20)
FLH = pLHO) 4 o pLH?) 4 (6.21)
as will become clear from the explicit form of the expansion discussed in the following

section. Correspondingly the high and low energy contributions to the Green function

can be expanded order by order as

Ghighliwn) = G, (iwn) +wGE), (iwn) (6.22)
Grow(iwy) = wG) (iw,) + w2G P (iw,). (6.23)

Depending on whether we are interested in the properties at the critical point, at
which w — 0, or near the critical point, we have to solve the self-consistency equations

(6.15) and (6.16) to order w or to order w2.

6.1.1 Determining the Physical Properties at the Critical Point

For the determination of the physical properties at the critical point coming from the
metallic side, for which w — 07, it is clearly sufficient to treat the equations (6.15) and

(6.16) to lowest order in w, i.e. we have to solve

V2
0= —F1 —2a) (iw,), (6.24)

P Wy, — € H

which to lowest order is independent of w, and

2772
0=%" DV 2060 (). (6.25)

p iwn — €L low
We thus see that — as is intuitively obvious — at the critical point the high energy
contributions are unaffected by the presence of the vanishing Kondo resonance at low

energies, and one can therefore proceed in two steps:

1. One solves the lowest order high energy part described by the Hamiltonian ,Hgf(o)

self-consistently. For a vanishing quasiparticle weight this simply corresponds to
the solution to the insulating problem. This yields the lowest order coefficients
(1)

entering the low energy Hamiltonian w?-lsz and thus determines the low energy

properties.



2. One can then proceed by solving the low energy part at the critical point self-

consistently using the coefficients obtained from the insulating solution.

Note that to lowest order the low energy spectral weight w drops out in Eq. (6.25),
rendering the equation unstable except at the critical point. This is analogous to the
familiar case of a Landau-Ginsburg expansion (see i.e. [43]), where in order to obtain
a finite value for the order parameter in a second-order phase transition, terms in the
Landau functional to fourth order need to be retained. We will see later, how the

problem at the critical point can be solved in practice without going to higher orders.

6.1.2 Determining the Physical Properties near the Critical Point

The case close to the critical point, i.e. in which U, — U in the half filled case or |u. — |
away from half-filling are small, is more complicated. In this case the Kondo resonance
has a finite weight w and one not only has to keep terms of order w? in the low energy
part, but also terms of order w in the high energy part. This is due to the fact that
a finite width of the Kondo resonance modifies the spectral weight of the high energy

part of the problem to order w. In principle one thus has to solve the equations

Vk2H (0 . v(1 .
0 = 3P - PG ) - wi Gl i) (6:26)
k n !
D2‘~/2
0 = 27; — — 2w (iw,) — PGP (iwn) (6.27)
E ,

simultaneously. While this is a possible procedure, it is desirable to have, at least in
principle, a procedure, in which one is left with a single equation for the low energy

part only. This can be achieved in the following way.

1. We first solve the self-consistent insulator, i.e. the high energy part to lowest
order in w, as done when determining the properties of the model at the critical

point.

2. One now has to determine how the high energy Vi p are modified if the low energy

Vi1, change. This can be done in principle by expanding Eq. (6.16) around the



insulating solution. Let us define

, ) Vig
AlVi,ny €k,05 Vi s en A = :

P t2 G high (iwn) [Vi 1, €k, 175 Vil €k,
g Wn T €k,

(6.28)
where A is the formally small parameter determining the proximity to the critical
point and is thus given as A = U — U, at half-filling and as A = u — . for finite
doping. In terms of A the high-energy part of the self-consistency then simply
reads

AV w, eérm; View, €x,m; Al = 0. (6.29)

Close to the transition this can be expanded to lowest order in w and one obtains

N e . 0N ) . 0N @ O 2 DA
0 = 7‘/ /'/ -|— € _|_ V _I_ p -|— —A 630
3(V1§,1L)V1§/{)L) ETEE 86& kL 3Vk(2 kH 8622}1 kH T HA ( )

Solving this matrix equation for egfl)q and V,C(ZF)I by performing a matrix inversion
in principle gives explicit expressions for the Vk(?[ and 6521 in terms of the low

frequency parameters Vi 1, and e r..

. We can now insert these expression into the low frequency self-consistency con-
dition (6.15) and thus obtain the correct high energy coefficients (to order w) as
functions of the low frequency parameters. The low frequency is now consistently
given to order w? and can be iterated until convergence is achieved. This gives

the consistent solution of the low energy problem to order w?.

In practice carrying out this procedure is prohibitively complicated numerically and

we will resort to an approzimate scheme to obtain the higher order corrections to the

high energy Hamiltonian. This relies on information of the high energy bands from the

solution of the full Hubbard model. Since we only need these to order w, we will see,

that this indeed gives a consistent framework. We will outline the procedure used in

the following.

1. We extract the information about the high energy features from the converged

solution of the full Hubbard model. This gives the zeroth order {V} r} and

{er,m} and thus the zeroth order weights of upper and lower Hubbard bands,



w(jé) =4/D*Y" 1 c4 VA where + and — denote upper and lower Hubbard bands,
respectively. Clearly, the weight of the Kondo resonance is not given accurately,
such that w* are only correct to order w. However, it is still possible to determine
the self-consistent modification of the latter to order w in the course of the itera-

tion. This can be seen as follows. To leading order in w the high energy spectral

+

weights close to the transition are given as w* = +

2(1 - c¢tw) where ¢* is of order

unity, as we saw in the previous section. We can therefore extract the coefficients

c* to leading order from the solution of the Hubbard model, which are then given

=L (- 2w(i0)). Here w(g) is the zeroth order weight of the Kondo reso-

w(o)

as ¢
nance obtained frum the Hubbard model. This can be done unambiguously, since
in the regime of interest the poles can be clearly separated into high and low
energy contributions. The only approximation in this scheme is the assumption
that the shape of the Hubbard bands is unchanged. This approximation is not
as severe as it may seem, since the low energy part only sees averages of the high

energy quantities.

2. Using the information about the high energy features we can now determine
the coefficients J(UU, and J* entering the low energy Hamiltonian. This is done
by performing one iteration of the “insulator” obtained by considering the high
energy features of the solution to the Hubbard model only (i.e. one explicitly

removes the Kondo resonance from the solution to the Hubbard model).

3. We now determine the solution to the low energy problem using the coefficients
J(Ug, and J1, which gives us the Vk(zew) entering the next iteration and therefore

the new low energy spectral weight w("e®),

4. We can now correct the high energy spectral weight using w* = %(1 - ciw(”ew)).
In order to fulfill the spectral sumrule, the w* are rescaled such that
wt 4+ w™ +w = 1. The procedure is iterated beginning with step (2) until con-

vergence is achieved.

Once again it should be emphasized that the only approximation in this scheme is the

assumption that the high energy features do not change their shape, which can clearly



be justified as indicated.
We are now left with the determination of the explicit form of the operators entering
the effective low energy problem. An efficient scheme to obtain these, as well as their

explicit form will be given in the following section.

6.2 The Explicit Form of the Canonical Transformation

Let us proceed by discussing how the canonical transformation can be carried out
efficiently to higher orders. As discussed we want to find a canonical transformation &/
eliminating the off-diagonal terms of the Hamiltonian connecting low and high energy
sectors, such that the effective low energy Hamiltonian H®/f = U~"H apUd is block
diagonal. A convenient way to perform the canonical transformation is given by the
canonical van Vleck perturbation theory [91]. U is chosen to have exponential form
U = e5 where ST = —§. In addition, S is chosen to be purely off-diagonal. In order to
obtain an order by order expansion of 5, it is convenient to introduce a superoperator
notation, in which with any operator O we associate a superoperator O defined as
O = [X, 0] where X is any operator. This allows us to write the transformation as
e=SHeS = ¢SH. In order to generate an order by order expansion we can decompose

this into even and odd contributions as

Hgf = cosh S(Hp + Hp) +sinh S(V) (6.31)
Heofg = cosh S(V) + sinhS(Hb + Hp) = 0. (6.32)

where the condition 'Heofl'}; = 0 enforces the condition that the effective Hamiltonian has

no terms connecting low and high energy sectors.

Rewriting Eq. (6.32) we obtain

[S,Hpy + Hu] = ScothSV (6.33)
= > S (6.34)
n=0
with ¢g = 1,¢1 = %,62: —%,....

Using Equations (6.34) and (6.31) we obtain the effective Hamiltonian as

14
Hepr = Hp + tanh(§S)2”+1V. (6.35)



Defining V through V = /wV and expanding S in w as S = wS") + wsS? +

w3/2503) + .. we obtain the terms to third order as

(SO, #, +Hy] = V (6.36)
1
3

[5(3),7{b+7{H} - HV,S(”],S(I)]. (6.37)

Since S and V are purely off-diagonal, all even terms are zero.
This enables us to obtain explicitly the action of S() and S®) on the low energy
subspace {|A)} spanned by the states {|k)} @ {|o)} as

SOy = -t —Q ) (6.38)
1 17~
SO = o ~E [V, 5M], 5O 1a) (6.39)

where ) = Y |a)(«| is the projector onto the high energy subspace spanned by the
states {|a)}.

Finally, we find the effective Hamiltonian to second order as

w32

24

Hepsr=Ho+Hu + % [\/ES(I) + w250, V} - [HV,S(I)} 75(1)} 75(1)} - (6.40)

By inserting complete sets of states of the Hamiltonian #,;, which since V' and S
are purely off-diagonal alternate between the states spanning the low energy subspace
{|A}, and the states spanning the high energy subspace {|a} the effective Hamiltonian
can be obtained explicitly.

To order w the effective high energy Hamiltonian has the form
1
ey = Hir+ 5Q [Vws®h,v]Q (6.41)

leading to the explicit representation
%fff = Z€a|0‘><0‘|
(o}

1 _ -
by S (= T e sl enn + 77 ) el ) (642

ajaz go!

where

D D
T oot = AAIFL
W = (4 ) @l oa)

D D
e e = FIAY (A : 4
o = (e @l NG oa) (0.43




Note that the coefficients are constrained by rotational invariance, as well as the con-

servation of spin and charge, which leads to terms coupling densities as well as terms
coupling spin.

The effective low energy Hamiltonian is

1 w3/2
,HeLff = Hb + §P [\/?;S(l) -|— w3/25(3), ‘/ P -

with P =

P [Hv,sm} ,5<1>} ,5<1>} P (6.44)
1 — @ projecting onto the low energy subspace. The contribution
%P [S(l), ‘N/} P is given as

= ZJkk/ckack/ E
o

%p [0 450, 7] p

/kk/c};gck’ﬂXU/O'/ (645)
with
D? . . 1 1
L D= Nz
J]Ckl 2 Vka <<O-|f0'(H_ (E‘g;j_{_Gk) + H (Eat_l_ )f0'| >Hat
1 1
| 1
<U|fa(H _ (E;; _ Gk) -I_ H (Eat ))fU|U>Hat> (6-46)
and
I D v ( / 1 1 !
Ji, o, = —WViVl {(d'|fs + o |0) Hay
kKoo g ViV (ol (H—(Eg;f-l-ek) H—(Egg-l—ejc))f' )
1 1
ot
(@75

— (B2 — &) THZ (Eot — ))fa|0 >Hat> (6.47)

Note that this also contains terms of order w? as a result of the expansion of the energy
denominators in which ¢, ~ w

This expression can be simplified considerably and we will see that to order w it has

the form of a Kondo Hamiltonian with (away from half filling) a potential scattering
term. The terms of order w?

renormalize the first order terms and give rise to an
effective interaction between the bath electrons

The Hamiltonian, as well as the operators, assume a particularly transparent form
when expressed in terms of the operators

Clo = 2 Z VkaJ

(6.48)
k
introduced earlier, as well as the operators

Celo = QZVkaC]w. (6.49)
k



The latter are the result of the expansion of the energy denominators and have been

normalized such that

{cerarcl,} =€ (6.50)
where € = 43, V2¢, is the first moment of the low energy spectral function and is
expressed in terms of the rescaled energies €, = wég. While these are not orthogonal,
this does not affect our considerations.

The explicit form of the Hamiltonian to second order in w is given as

Heff — waeff(l) ‘|‘w27'[eff(3)- (6.51)

low low low

Here, the first order contribution is given as

eI DZeknkg - = ZJL D Z XyrgMie (6.52)
with
L(1) _ (5| £t 1 )
J <<U|f0' Eath|U>Hat <U|f0 H _ Egﬁ fU|U>Hat (6'53)
and
g D( £, f t ' > 6.54
oo <U |f H Eatf | >Hat < |f0’H Eatf | >Hat ( )

We have used the standard Hubbard operators defined as X,, = |o)(o’| acting on the
low energy impurity doublet.
Due to the fact that the system is rotational invariant we observe that Jy = J

and Jy, = Jy4. Defining the quantities

(1) _ 4(1) (1)
Jpot = Jpy’ + I3y (6.55)
and
(1) — 41 (1)
and again using rotational invariance we see that furthermore Jim)n = J+() such that

the Hamiltonian can be written as a Kondo Hamiltonian! of the form

€ al DJ(i)
Hi i =D Z €kTko — ;)nS 5L g Snpy+nn) (X + X)) (6.57)

In contrast to the more common definition of J, we have defined J such that it is negative, i.e.
Jspin < 0.



with § = 15,0t X015y the spin-i operator acting on the |o),; states and 57, =
%Z czaﬁ'agc];ﬁ the local spin operator of the low energy conduction electrons. Notice
thzﬁt the identity X444+ X = 1 can be used to simplify the result. We have left it
explicit in Eq. (6.57) to illustrate the origin of the various contributions.

The second order contribution consists of two parts, resulting from the next or-
der contribution from the canonical transformation and the expansion of the energy

denominators in the coefficients J, respectively, and is given as

Heff(s) — ’}_leff(:)”can) + ’]_leff(?’ exp) (658)

low low low

The part resulting from the expansion of the denominators reads

%?gj(S,efp) - _ Q Z J.L(S,el‘p)XEU (CngCLEF + CEUCEL(T + h.c.

- = ZJ(;”;,””’ w0 (el p i + ¢y cers) (6.59)
with

JL@emp) _ D_2(<a|f 1 f1|0)H + <5|fI7f o)., (6.60)

2 T (H - Bty 7 (H - Egh)z e '
and
(3, exp) ¥ 1" et 1 ,
Joor (( "fo 5 falo" g, 4 (| £} folo)m,).  (6.61)

J(S erp) __ = J(3 exp) +

Again the rotational symmetry can be made manifest by defining .J,;

Jﬁ’exp)7 JBear) = J(B ep) J#S “?) such that J(>P) = jLGewr) and defining sz =

sptn spin
i(C;[a&aﬁCﬁ + CLUQﬁCEﬁ) such that
Eer D exr DJ(iye:L‘p)
%Efql; P) = 9 Js(;)m p)S SeL + % Z(CTLUCELJ + c;[LocLo)- (6'62)

[

Finally, the term from the next order of the canonical transformation gives

I Bem = = Z( JT? X, + Jﬁ X ,0)eh erne + JL(S’C“”)XJUCE(TCM)

D

D

DJ(3 can)

can) 5§ - o0 D can
ng )5 - S, + %(WTL + n¢L) + 1—6JH(3’ )nLTnu (6.63)



where we have relegated the explicit form of the coefficients J(3:%) to Appendix A.

The transformed f,-electron operators, F,, are obtained in an analogous fashion
from the knowledge of the explicit form of S() and S®). From F, = e~ f,e5, we get
to third order

Fo = fort [fr S w2504 2 ([, 500] 50020

5 Lo 50] 5] 5],

(6.64)
We will first give the explicit expressions for the FI! operators describing the low
energy excitations and discuss their significance. From Eq. (6.64) we see that the
contribution mediating transitions within the low energy subspace, which we need for

the determination of G, is given as

3/2

FF = P, vwSW 40?250 Py Z—P[[[f,,50], W], 5] P
= VwFO) 4 32 pLLG), (6.65)
The equations can be expressed simply in terms of the operators and expectation values

entering the Hamiltonian.

The first order term is then simply given as

LL(1 1 1 1
FPfO = = ((J%T)XTT + I X e + JJ'(I)X¢TC¢) (6.66)
or, in terms of Js(;l)n and ngig, as
1( a 1
FULL(I) = _Z (ngoz + Js(pi)n(Xcra - X ))CJ - _Jipz)n g0Csq- (667)

The third order contribution to the transformed f, again has the contributions

F®) = F@erp) 4 p3.eon) (6.68)

g
which are given respectively as

FULL(S,exp) ((Ti;ezp X,y +J(3 exp) )CELJ —{—J'L(B’exp)ngCgLa

(
1 er ex er
5( pit ) .s;)zn P) (XUU - XUU))CcLU + J;;zn p) XsoCel- (669)

and

(3,can) (3,can)

1 can
FJLL(?%C‘”L) [— (I(pot + I(sp;'n (ng — X )) NLzCLe + I(S,)m )Xc_;anLacL&

(3 can)

1
2
1 can can

5( + 105 (Koo = X, ))cLoHﬁ;?m Xogers| (6.70)



Again, the explicit form of the coefficients can be found in the Appendix.
Due to the fact that we are not using the low-high operators explicitly in our proce-
dure, we will not show their explicit form here. In general they are obtained to second

order as

HL B 1 () S g p
= Q(fa Sy, 2( fo+ £,5Ws! ))

14 Vv ,
= o) (o] folo o - o 6.71
Z' ( felo’) = |Hhigh _Eatf Hpign — Eat| ) (6.71)
Vv Vv 1 14 Vv
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Considerable insight into the physical significance of these operators can be obtained
by observing that the anticommutator of the transformed operators immediately yields
the low energy spectral weight as can be seen directly from the structure of the low
energy Green function (6.13). To simplify the calculation let us calculate the manifestly

rotationally invariant quantity

1
Alow = _Z{FULL7FULLT}

= wA(l)

low

+w?A?) 4 (6.72)

low

which gives the low energy spectral weight order by order in w. (Due to the fact that
the Hamiltonian is rotationally invariant this holds without loss of generality.) The
first order result is obtained by straightforward algebra using the first order operators

(6.67) and yields
gz

1 al 0
AL, =5 (I8 S - D - =), (6.73)

Using Eq. (6.72) as well as the fact that w is defined as the low energy spectral weight
W _q

we obtain A,

The scalar product S - 57, < 0 due to the fact that the coupling is antiferromagnetic
in the Kondo regime. It is noteworthy that to this order the result does not depend
explicitly on the density of the bath electrons (n4 + ny).

The terms of order w? have contributions from the third order operators and are

given as

A4§o2l)u = % Z ({Zj’a(?)7 Fo('l)T} + {1?’0(_1)7 F;S)T}) (674)

o



which explicitly reads
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The anticommutators of the FLH can be evaluated analogously and give order by
order the complement of the low energy operators. To lowest order in w one ob-
tains %Z{FfH(z), FJLH(Z)T} =1- %Z{FJLL(I), FfL(l)T}, so that the spectral sumrule
is obeyed.

The explicit forms of Hamiltonian and operators as derived completes the set of self-
consistent equations necessary to determine the low frequency behavior of the Hubbard
model to second order in the weight of the quasiparticle resonance. In order to solve
them we will proceed as elaborated in the case of the full Hubbard model by using a
finite cluster to represent the Anderson model and by closing the self consistency using a
x? fitting of the low energy Green function to extract the new parameters parametrizing
the low frequency bath. The details are presented in the subsequent chapters.

Notice finally that in order to evaluate other physical quantities, one once again
has to evaluate the corresponding operators. Of particular importance is the number
operator corresponding to the f, particles, since it gives the physical particle number

in the Hubbard model This is given as

N, = e=SnyeS = n, — SWn, 50 4 % SO Wn, +n, 50O +o(w?).  (6.76)

The explicit result can be found in Appendix A. For the evaluation of the magnetic
properties we furthermore need the transformed spin operator in z direction S, =
e~9S,e% which can be obtained directly from the knowledge of the number operator
(6.76) since S, = 3(ny — ny).

Let us conclude this chapter by addressing the range of validity of the self-consistent

projective technique. As emphasized, the technique in its present form relies on the



existence of a separation of scales, such that we can clearly separate the low lying states
of Hq: which enter the canonical transformation from the states higher in energy. This
is obviously the case when the Kondo resonance is well separated from upper and lower
Hubbard bands. In terms of the regimes discussed in the previous chapter, the effective
Anderson model therefore needs to be in the local moment regime. It should be noted
that in the mixed valence region the method can still be applied if one restricts the
elimination of the high energy features to the upper Hubbard band only and includes
the “empty” state in the set of low lying states. The effective Hamiltonian in that case
assumes a slightly more complicated form. In the following chapter we will determine
the position of the resonance for infinitesimal doping and see that for small doping
the resonance is always separated from the bands, such that the method in that case
is always applicable. We shall also see that the amount of doping “allowed” for the
method to be applicable decreases as the interaction increases, since the position of the
resonance approaches the band as the interaction is increased.

The crossover between local moment and mixed valence regimes as a function of
doping, and therefore the breakdown of the prsesent form self-consistent projective
technique, can be illustrated nicely in the following way: We solve the full Hubbard
model for various dopings and remove the Kondo resonance from the converged solution,
which leaves us with poles representing upper and lower band only. This determines
the part of the Hamiltonian called H,; in the previous section. We can now determine
the lowest lying states of this “semiconductor with impurity”, which correspond to
impurity states dressed by particle-hole excitations into the valence and conduction
bands. As elaborated, for small values of doping the lowest lying states are a dressed
doublet which is well separated, by an energy of order §D, from the dressed empty
state. As the doping is increased, the energies of the doublet and the energy of the
“empty” state get closer in energy until the dressed empty state is actually lower in
energy than the doublet. This can be seen from the solution of the 2 + 1 insulator by
noting that for u beyond a certain value (in the case of the 2+1 insulator this happens
for p < VV — 2V?%/U) the ground state of the insulator is no longer in the N = 3

particle space but in the subspace containing N = 2 particles.



The self-consistent projective technique as developed for the Hubbard model breaks
down once the energy separation is of the order éD, i.e. the width of the resonance.
The positions of the lowest states for U = 3.5 as a function of the chemical potential
are shown in Fig. 6.3. We would like to stress, that the idea behind the self-consistent
technique transcends the particular implementation realized here, such that more so-
phisticated applications can be envisioned.

This concludes the development of the self-consistent projective technique. It en-
ables us to determine for the first time the thermodynamic and some dynamic properties
of the Hubbard model at and near the metal insulator transition. In particular, it al-
lows for an accurate determination of the transition line, as well as the low temperature
properties, which were not accessible using other methods. While in this chapter we
have outlined the methodological as well as technical aspects of the method, we will
proceed by applying it to the particular case of the Hubbard model.

In the following chapters we will obtain some physical quantities in the critical
region. We will begin with an analysis of the critical point at half filling, determine the
position of the resonance away from half filling and analyze the approach to Mott point.
Finally, we will use the technique to study some of the finite temperature properties of

the Hubbard model.
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plot for U = 4.




Chapter 7

Critical Properties of the Mott Transition in the Hubbard
Model

In the previous chapters we have outlined, in which sense the correlation driven metal-
insulator transition is a fundamental problem in condensed matter physics. We have
seen that from a theoretical point of view, the problem is fascinating because of its
non-perturbative nature, the absence of a small parameter and the emergence of new
low energy scales and have demonstrated, how the early ideas of Mott [92], Hubbard
[22, 23, 24], Brinkman and Rice [26] have been put on a more quantitative footing by the
development of a mean-field approach to the strong correlation problem which becomes
exact in the limit of large lattice coordination [36]. Furthermore, we have demonstrated
the existence of a Mott transition in the paramagnetic phase of the half-filled Hubbard
model on frustrated lattices, which is driven by the collapse of an energy scale, the
renormalized Fermi energy. Since problems exhibiting two widely separated energy
scales are traditionally hard to analyze in the limit in which one of the energy scales goes
to zero, we have proceeded by introducing a novel projective self-consistent approach to
solving correlated electron problems in large dimensions exhibiting a clear separation of
energy scales which overcomes these problems. We are now in the position to investigate

the critical region more carefully, using the projective self-consistent technique.

7.1 The Critical Point of the Half-Filled Hubbard Model

In this section we will apply this self-consistent projective technique to the metal-
insulator transition in the half-filled Hubbard model and extract, for the first time,
exact information about the critical behavior at the transition in infinite dimensions.

We calculate the single particle spectral function at the Mott transition, which can in



principle be measured in photoemission experiments. We establish that the coefficient
of the w? term in the imaginary part of the self-energy diverges as the square of the
coefficient of the linear term in the specific heat and, with few additional assumptions,
relate it to the observed T2 resistivity in the LaTiO3 system. We show that the local
spin susceptibility diverges in the same way as the linear term in the specific heat and
calculate their ratio, a generalized Wilson number. Finally, we show that the linear
coeflicient of the imaginary part of the dynamical spin susceptibility, relevant to both
NMR and neutron scattering experiments, diverges as the square of the linear coefficient
of the specific heat. For pedagogical reasons we will outline the method developed in
the previous section again, since the equations assume a particularly simple form if the
half-filled Hubbard model at criticality is considered.

We have seen explicitly that as the interaction strength U increases, the self-
consistent single particle density of states, p(e) = —%ImG(e + 10), of the half-filled
Hubbard model develops a narrow peak about zero energy separated by regions of low
spectral density from peaks near +U/2. At a critical value of U,U,, ! the narrow
peak appears to vanish, leaving a paramagnetic insulating solution with a finite gap.
Consequently we can separate the variables €; and V} in the self-consistent Anderson
model (6.1) into sets {eg mr, Vi i} describing the high energy features and {eg r, Vi 1}
containing the low-energy behavior as discussed. p!°“(¢) contains all states up to a
cut-off that we take to be the Kondo temperature of the half-filled Hubbard model and

carries spectral weight w

w=> 4V, /D> (7.1)
k

p"9% (€) describes the upper and lower Hubbard bands, in this case two incoherent
features at energy scales :l:% that carry spectral weight 1 — w. The situation is thus
the paradigmatic example for the application of the self-consistent projective technique.
Since the goal of this section is the analysis of the behavior at the critical point U,, at

which the weight of the low energy resonance goes to zero, it is sufficient to use the

'"Here, U, corresponds to the interaction strength at the continuous transition found within second-
order perturbation method by Zhang et al. in Ref. [19] and Ref. [56] which has been shown numerically
[69] and analytically [93] to be the physical transition point at 7' = 0. See also the previous chapters.



self-consistent projective technique to lowest order.
Let us briefly recapitulate the procedure developed and elaborated in the previous

chapter. We first separate the impurity Hamiltonian into three parts as
Ham = Har + Hp + Hur (7.2)

At half filling, ¢ = U/2, such that #, is given (up to a constant) as
U 1 1

%at = 5 (”fT — 5) (nfi — 5) + Z Vk,H(C}:UfU + hC) + ZEkych_ockU' (73)
o,k o,k

and can be thought of as an Anderson impurity in a semiconductor.

Ho = > wDépef cho (7.4)
k,o

describes a narrow band of low energy conduction electrons. Since the energy will
turn out to be of order wD, we again use the dimensionless, rescaled variables €, =

€,/ (wD). The hybridization Hps with the low energy electrons is given by

Har = VoD Y (¢}, fo + h.c) (7.5)
o
with
Lo =Y 2Vicko (7.6)
k
the local low energy conduction electron operators normalized to have canonical com-
mutation relations; again we have rescaled the Vj ;, by introducing rescaled variables
Vi = Vir/(y/wD).

Since in the half-filled case the Kondo resonance is in the center between lower and
upper Hubbard bands, #,: has low-lying spin doublet ground states |o) g, with energy
Eg; which are separated by a gap of order U/2 from the excited states, such that the
effective Anderson model is clearly in the local moment regime.

We now perform a canonical transformation to project out the excited states of H,;
and derive an effective Hamiltonian, Hsz, which acts on the low energy Hilbert space
{loYm,.} @ {|¥n)} with {|1r)} states of the ¢k . As we have seen, this amounts to
finding an operator S eliminating the transitions between low and high energy states,

such that the effective low energy Hamiltonian is given as

Heps = e He. (7.7)



Since we are interested in the behavior at the critical point, it is sufficient to perform
the canonical transformation to lowest order in w, leading to the effective low energy

Hamiltonian (6.52)

H;({'Lf(l) = Hb - ZJ_L (TUCLC,CLE' - Z 00./ o’ 1o M Lo (78)
with
1(1) _
T = (0o = g o — 01 = gl ) (79)
and
1
10 = (Ve g g 1= g bl ) (710
where again X,, = |o)(o’| are Hubbard operators.

For the purpose of determining the properties at the critical point, we have seen that
it is sufficient to consider the high energy contributions to lowest order. The parameters
entering H,; can therefore be determined from the insulating solution of the Hubbard
model at U, as V! = VH(U,), which can be obtained using the methods elaborated on
in the sections about the Hubbard model.

Due to rotational invariance and the absence of potential scattering at half-filling
due to particle-hole symmetry, the matrix elements reduce to a single number I' =
D{t |f¢#f?gtﬁ| i)Hat which contains all the information about virtual transitions to
the high energies subspace that is relevant to the low energy physics. In terms of the
notation used in the previous chapter I' is given as ' = J%) = —JS) =2J1(1),

To lowest order the low energy Hamiltonian can then be written in the compact

form

Heff( ) = —wDT'S - 51, + Hp + const (7.11)

where again S = %zw, X, 51054 the spin—% operator acting on the |o),s states and
= %Z czaF)ach@ the local spin operator of the low energy conduction electrons.
a
The lﬁow energy part of the impurity Green function G is now the time ordered
Green function under Hiff of the canonically transformed f, operators of the original

Anderson model, F, = e~5f,e”. In the half-filled case at criticality these can again be



written in terms of the single coefficient ' and to lowest order in w are given by \/w

times the effective low energy operators
Dr
Fél) — _7 Z[(Xao — X_U_U)CLC, + QXCT—O'CL—U]' (7.12)
U’

We now see explicitly that the effective low energy Hamiltonian is reduced to an in-
termediate coupling Kondo problem with a single energy scale wD. The self-consistency
condition requires that the Green function of F’ equals that of ¢f,. Introducing rescaled
frequencies iw,, = iw,/(wD), and scaling out w it assumes the form

2

k

4‘7192 dowr~ Y7 1( 1~
PR G (e, Vi) (iwy,). (7.13)

The projective self-consistent method thus results in the closed set of equations (7.11-

7.13) which form the basis of our low energy analysis.

7.1.1 A Simple Toy Model

Before discussing the full numerical solution, it instructive to consider a simple toy
model in which the low energy part, i.e. the resonance, is represented by a single
orbital. In this case the low energy effective Hamiltonian can be diagonalized exactly
and it is therefore possible to gain some analytic insights. We have relegated the full
solution to the appendix and just state the results.

The Hamiltonian to order w of this 14 1 site model at half filling is given as

HY, = —4(V?/D)IrS.§ (7.14)

where § = % Y- ¢t Gapep,c, are the fermion operators corresponding to the single orbital
at the Fermialevel and V denotes the hopping amplitude between conduction electron
and impurity. ' is given by the expectation value in the insulator
=t At A D

The ground state in this problem is given by the singlet state

1
lgs) = ﬁ“ B8 =1451) (7.15)



where we use the convention |o;0¢’) = |impurity state,;conduction electron,:). The

transformed f, operator is given as
F, = —(V/D)T <(Xaa — Xs5)¢r + QXaaCc‘r)- (7.16)

Using the explicit forms of the excited states, which can be found in the appendix, we
can calculate the low energy Green function, which is given by the expression

gr2y/2 1 1

Glowliwn) = 557 (752 By Tt Egs)'

(7.17)

In order to close the self-consistency, which in the case of one bath electron at zero

vz

7o » we have to collapse the two poles of the full Green

energy is given as t2G,,, (iwy,) =

function and impose self-consistency on the spectral weight, which yields
(9/4)T2V? = V2, (7.18)

We immediately see that, as discussed, this equation is unstable except at the critical
point.

In order to determine the critical point explicitly, we now have to evaluate I'. To
lowest order, i.e. if upper and lower Hubbard bands are neglected completely, the
high energy states entering I' are just the high energy states of the impurity, such
that TO+1) = —%. A better approximation can be obtained analytically by solving
the simplest insulator in which upper and lower Hubbard bands are represented by
one pole, respectively. Again the explicit wave functions and energies can be found in
the appendix The value of T' resulting from this 2 + 1 insulator is given as ['2+1) =

—2D = (1+ ¢"—) Since at the critical point the high energy spectral weight is given by
the value of the insulator, we find Vh2igh = % = %2 such that T(2+1) = 2D =1+ 252) .

Using this value in Eq. (7.18) we obtain 1 = 2(22)%2(1 + 4U2) This equation
has a solution for one value of U only which is the critical interaction. In this simple
approximation this is given as U, = 3.22D. It is interesting to note at this point that
even this “bare bones” model gives a result that is close to the value obtained from a
slave-boson calculation using the four boson scheme of Kotliar and Ruckenstein [32],

4 boson
Uc

which yields = 3.4D. However, we will see that this is a comparatively bad



approximation to the value obtained numerically. This can be attributed to the fact
that in the 14 1 toy model the spin-spin coupling (5 §1) = —3/4 which is considerably
larger than the numerical value of —0.46. Note also that the I' as obtained from the
2 4+ 1 insulator is considerably lower than the value obtained using the full insulating
solution. A comparison of the values for Jsp;, = 2I' in the 2 4 1 insulator and in the

full solution is shown in Figure 7.1.

7.1.2 Numerical Solution to the Problem at Criticality

Having gained some insight into the structure of the solution, we can now proceed by
solving the self-consistent problem numerically in the more complicated case in which
low and high energy contributions are given by numerous low-energy parameters €
and Vi, which have to be determined self-consistently. This is carried out iteratively
using the zero-temperature algorithm [63, 40] described in the previous chapters. The
functional equations (7.11) and (7.13) are truncated by representing the conduction
electron bath in terms of a finite set of free electron orbitals CLU, k=1,...,N—1, with
the corresponding energy levels ¢ and hybridization matrix Vi. The ground state of
the impurity problem, now defined on an N site cluster, is obtained by the modified
Lanczos technique [94]. The local Green function as well as correlation functions are
calculated using a continued fraction expansion [63, 67] as discussed in Chapter 2. The
projected self-consistency condition (7.13) is again implemented in terms of a x? fitting

of the low frequency Matsubara Green function

Qma.’r

=) |Z (FUF) s (i0n) | (7.19)
. 10, —

Wn=min
where Qi and 2,42 are the low and high frequency cut-offs. Again, €2,,;, is deter-
mined by the smallest pole of the continued fraction expansion of G** and is reduced
systematically as the system size increases. 2,4, is chosen big enough such that the
results do not change. The solution is essentially independent of €2,,4.

As we saw in the previous chapter, looking at the high frequency limit of Eq. (7.13)

we obtain the condition

1= ({F,F1})=2r?D%3/8 — (S -51)1) (7.20)
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Figure 7.1: Jgpi,, = 21" at half-filling as a function of the interaction analytically (2+1
toy model) and for cluster sizes N = 3,5,7. The value corresponding to the critical
point U, is marked with a circle.

where (S - 57)7, is calculated in the self-consistent ground state of Hsz. As in the case
of the 1 4 1 site toy model, this can be satisfied for one particular value of I' and thus
U only and is therefore the eract equation for U,. A plot of J,,;, = 2I" as a function of
the interaction for cluster sizes N = 3,5,7 as well as the analytic result obtained from
the solution to the 2 + 1 site cluster is shown in Fig. 7.1

Since the equations are unstable except at the critical point we have to resort to
a trick to obtain the solution at the critical point in practise. U, can be determined
by imposing the condition (7.20) explicitly by setting (gs|F, Fl|gs) = (gs|FiF,|gs) =
1/2 in the iteration and determining the interaction U such that this assumption is
correct. The solution of the full non-linear problem as described in Section (7.3) gives
an additional check of this procedure.

We have solved the equations for clusters of 4,6,8 and 10 sites. The critical interac-
tion U, is found to be essentially unchanged as the number of sites is increased from 4 to

10 and is obtained to be 2.92. The value for (S - 57,)1, is found to be (- Sp)1, = —0.46,
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Figure 7.2: Imaginary part of the Matsubara Green function versus the rescaled fre-
quency @, for system size N = 6,8,10 and non-interacting (semi-circular) density of
states.

signaling the intermediate coupling nature of the associated Kondo problem at the
critical point.

The Matsubara Green functions as functions of the rescaled Matsubara frequency
for N = 6, 8 and 10 are shown in Fig. 7.2. The low frequency part of the Green
function improves systematically as NV increases, and remains essentially unchanged for
N = 8 and 10. Also shown in Fig. 7.2 is the Green function for the non-interacting
problem. The value of the scaled Green function at zero frequency is determined by
the low energy self-consistency equation and is the same as that of the Green function
of the non-interacting problem, I'mG(0%) = —2/D, consistent with the pinning of the

density of states expected from Fermi liquid theory [46]. Notice that this provides a



highly non-trivial check of the numerics.

In Fig. 7.3 we show the single particle spectral function for N = 10 and different
values of broadening of the poles e. For very small broadening (Plot (a), ¢ = 0.01) one
can see the individual poles of the Green function. The large number of poles clearly
demonstrates the power of the projection onto the low energy sectors.

A crucial question is how much the poles have to be broadened, i.e. which value
of ¢ = 0.01 is necessary to wash out the individual poles while retaining shape and
structure of the spectral function. In principle, a criterion should be given by the
pinning condition of the density of states. Unfortunately, this does not seem to give
a clear way to determine the correct broadening, as can be seen in Fig. 7.3 (f), which
depicts the value of —ImG(07) as a function of broadening €. Since the Green function
never has a pole at the Fermi energy, —Im((0%) does not reach the pinned value 2/D,
but stays below it by about 5%. Note also that in principle the “physical” ¢ should
correspond to the maximum of the function, at which the dependence of —ImG(0%) on
the broadening is weak. This in this case is given by ¢ = 0.0235, and the corresponding
spectral function is shown in Fig. 7.3 (b). Obviously this still has a large number of
poles, and it is thus questionable, whether it reflects the true structure of the resonance.
Further broadening on the other hand diminishes the value at zero even further. The
resolution of the issue is not clear at this point.

The solution for the Green function also allows us to determine the rescaled self-
energy 'V (id,) by extracting from Y(iw,) = iw, — (D/2)?G(iw,) — G™'(iw,) the
terms with a singular dependence on w which are given as X(i@,) = —(D/2)?G (iw,) —
G Hidy,).

Both G%(i®,) and ¥'°¥(i®,) are analytic can therefore be expanded in power
series. The coefficients can be obtained by fitting the functions by quadratic polynomials

at low frequencies. The resulting expression for the self energy is then given as
YOv(io,) = 1710, — i1.2(id,)  sgn(w,). (7.21)

The term of the self-energy linear in 1w, implies a quasi-particle residue

z = (1 - 90%/diw,)"t = w/1.7 which vanishes as the critical point is approached.
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(N=10) with a broadenings ¢ = 0.01,0.0235,0.0075,0.1, and 0.2. Plot (f) shows the
value of —ImG(0%) as a function of the broadening e.



The momentum-independence of the self-energy in infinite dimensions in turn leads to

a quasi-particle mass m*/m = 1/z = 1.7/w, and a linear coefficient of the specific heat,

4mk} 17
T 73 Duw

(7.22)

which diverge at the critical point. This divergence is consistent with the Brinkman-
Rice scenario of the Mott transition [26], as well as the previous result in the Hubbard
model at half-filling within second-order perturbation theory [12, 56]. The term of
the self-energy quadratic in (i®,)? gives rise to an imaginary part of the analytically-

continued self-energy

1.2 w?

ImX(w+i0T) = ~— D (7.23)
which also diverges at the critical point.
The local dynamical spin susceptibility
(i) = (gn/2)? [ dre ™ (1,5.(7)S.0) (7.24)

where S, = %e_s(fTTfT—fIerS = B?(X44—X)/2 as given in the appendix. B = 0.98
is the overlap between the ground states of H,; and the state describing the bare f level
(which is the ground state of #,; with V)7 set to zero), and can also be calculated from
a continued fraction expansion. The result in terms of rescaled frequency, x;(i7y,), is
shown in Fig. 7.4.

At low frequencies, x;(i7,) can be fitted by
X (i) = (gus/2)* (8 — 36|7,]) /wD. (7.25)

The local static susceptibility is given by the constant term of Eq. (7.25),

Xs = (9uB/2)*8/(wD) (7.26)

from which we derive a generalized Wilson ratio at the critical point,

free
Xs X.s oc
R= /7# =28 (7.27)
v/
where /7 = 16/(37D)(242)2 and 74, = 47k%/(3D), are the static local spin sus-

ceptibility and the linear coefficient of the specific heat for the free electron gas with
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a semicircular density of states, respectively. Compared to the universal value for the
Anderson impurity model, R4y = 2, the critical value R is enhanced. This enhance-
ment can be understood from the self-consistent modification of the electron bath.
Using G, = iw, — (D/2)?G(iw,), and following the usual derivation [4], we arrive at
a modified Ward identity given by

4, 6
(g,MB) Xs + Xe = 2k27

12 [ £20(0,0)Gw) (D/2)" ) (7.28)

where I'y4 is the full vertex function. Qualitatively, I'44 diverges like #/(wD) as the
critical point is approached, where (wD) comes in as the cutoff for the Curie-like term
in the vertex function, leading to a finite enhancement to the Wilson ratio. This can
be seen explicitly by considering the vertex of the atomic Hubbard model [95].

We note that the usual definition of the Wilson ratio in a lattice model is given in
terms of the q = 0 component of the static susceptibility. In large dimensions the q
dependent susceptibility has a typical value xj,. for a general q in the Brillouin zone
which is different from the q = 0 value, controlled by the magnetic exchange. In order
to avoid the special features of the q = 0 point in large dimensions we have used yjoc
in the definition of the generalized Wilson ratio. The enhancement of R is consistent
with the ferromagnetic tendencies found in the Gutzwiller approximation [5] where the
magnetic exchange is ignored as well.

Finally, the term of the imaginary part of the dynamical spin susceptibility linear
in |7, | implies that lim,_o ﬂwj—zoﬂ =36/(Dw)?(gup/2)%. If we use o for the static

spin susceptibility this implies a finite generalized Korringa ratio

limy 0 (X% (w +i07) /w)

K=
X3 (10%) /2

=0.3 (7.29)

at the critical point, which is again modified from the universal value for the infinite
bandwidth Anderson model [96], K4as = 1. Since x; is enhanced, the Korringa ratio
is reduced.

Our results have direct implications for the Mott-Hubbard systems. The conduc-

tivity can be estimated by converting the w? at zero temperature to (77)? at finite



temperature and assuming that the self-energy we derived at the critical point also
applies to the case of a hypercubic lattice in d dimensions [97]. This can be done in the
following way. Using the Kubo formula, which in the limit of infinite dimensions does
not have any vertex corrections [74, 88] as we saw in Chapter 3, the optical conductivity

is given as [97]

Z fu// /deA (e, )A(e,w —I—w)nF(w/) - nF(w/-l_w)i%v%Z(S(e — €r).

w
(7.30)
For w — 0 and T" — 0 one obtains the zero temperature DC conductivity as
de
where A(e,w) = —QImm, v the volume of a unit cell and vy, = 0¢z/0k,. As

shown in the previous chapters, the limit of infinite dimensionality provides a mean-field
theory of the Hubbard model. Furthermore we have argued that the bare density of
states on a Bethe lattice is a good approximation to the three dimensional case, since
it is bounded. We can thus use the self-energies obtained numerically to calculate the
spectral functions A(e,w). For I'mX small (i.e. low temperatures) we can make the

replacement
Ale,0)? = (2]mE(T) /(€ + mz(ﬂ?))2 s 275(e)/ Im(T) (7.32)

n (7.31). Performing the e integral using the é-function we are then left with the
evaluation of the expression NLZE v} 6(ex). In order to estimate the conductivity
on a three dimensional cubic lattice, this can be evaluated numerically. Using €z =
—2t "% | cos(k;a) and rescaling  as § — t/v/2d, which follows from the fact that the
coordination number on a hypercubic lattice is given as 2d (note also that with this

rescaling the second moment of Gaussian and semicircular DOS coincide), we obtain

_ 5. 18\/_tad 2

S = N, ka e i (7.33)

For d = 3 this gives S = 0.14¢a®. Using the approximation ¥(T) ~ T2 88;3:2 | wn=0

the resistivity is thus given as

p(T) = AT? (7.34)



where A = %ﬁ. Using h/(e?k%) = 4.14 - 10°Q we obtain the finite ratio

A <a2i (ai
02"\ 0o

5= 79— —)2)2.05 x 10%a (Qm) (7.35)
where «a is the hypercubic lattice spacing in units of meter. Photoemission experiments
[98] have indicated that LaTiOs is very close to the Mott transition point. As we saw
in previous sections doping a Mott insulator at U, introduces an energy scale wt which
can be identified with wD we can use the results to interface with experiments. For
Sry_La,;TiO3 with 2 = 0.95, which is close to the Mott transition, Eq. (7.35) yields
A/v? = 14 x 1075Qm when we use a = 8.3 x 1071%m [99]. This result is of the same
order of magnitude as the measured value A/v? = 6.4 x 1075Qm [100].

In summary, we have applied the projective self-consistent approach developed in
the previous chapter to the determine the critical properties at the Mott transition
in the half-filled Hubbard model. We find low energy scaling functions that can be

quantitatively related to experimental results in transition metal oxides.

7.2 The Critical Properties of the Doped Hubbard Model

We will proceed by determining the critical properties of the doped Hubbard model in an
analogous fashion to the half filled case discussed in the previous section and investigate
the question where the states induced by doping the Mott insulator are generated. As
we have discussed before, this is highly relevant in the light of the experiments on
the cuprates discussed earlier [8, 9, 10, 11]. Notice also that the exact position of the
resonance is crucial to the applicability of the self-consistent projective technique as
implemented in this thesis, since it relies on the existence of a separation of scales, i.e.

the existence of a resonance well separated from the upper and lower Hubbard bands.

7.2.1 Determining the Position of the Resonance

In the case of half filling, which we discussed in the previous section, the Kondo res-
onance developed in the center between upper and lower Hubbard bands as long as
one is in the metallic regime. Away from half filling and for values of the interaction

slightly larger than the critical value it is clear that the position of the resonance also



develops inside the gap. This follows from continuity, i.e. from Luttinger’s theorem. It
is not clear, however, where the resonance develops for values of U considerably larger
than U.. The curves displaying the particle number as a function of doping shown in
Fig. 5.2, and the spectral functions shown in Fig. 5.3 are strong evidence for the fact
that the states generated upon doping are in fact generated in the gap. Additional
support comes from the argument that the resonance will approach the Hubbard band
continuously as the interaction is increased and the system is doped. However, doubts
may be raised in particular due to the results from the rigid Mott-Hubbard picture [85]
and the large-N approach [101]: In the Mott-Hubbard picture doping with electron or
holes occupies preexisting states at the top or the bottom of the lower and upper Hub-
bard bands, respectively; in the large-N picture the doping induces states at the same
place. In both cases the resonance is not separated from the upper and lower Hubbard
bands. It is therefore desirable to determine the position of resonance i.e. the critical
i, e, for infinitesimal doping 6~ in the mean-field treatment provided by infinite d.

The position of the quasiparticle peak, p., as a function of the interaction U can
be obtained in a similar way as the critical interaction U, was obtained in the previ-
ous section. The analysis relies on the fact that at the transition the self-consistent
projective technique can necessarily be applied, if the resonance develops at or above
the lower Hubbard band (again we restrict ourselves to the hole doped case), which
is clearly the case. This is due to the fact that in this case the sum of high energy
and impurity parts of the Hamiltonian can once again be viewed as an impurity in
a semiconductor. The lowest lying states of this contribution to the Hamiltonian are
again given by a degenerate doublet, which at the critical point is separated from the
higher lying states by an energy of order the half-bandwidth D. While this separation
is no longer as large as in the case of half-filling, in which it is of order U/2, for small
doping the expansion parameter (wD)/D = w is still small and goes to zero as the
doping 6~ — 0. The effective Anderson model is again in the local moment regime and
the analysis is exactly analogous to the half-filled case.

Again, we first separate the impurity Hamiltonian into three parts as

Ham = Haor + Hp + Hm (7.36)



where in this case H,; is given as
Hat = Unppng, — p(ngy +npy) + Z Vk,H(C]jan + h.c.)+ Z Gk,HC;aCka- (7.37)
ok ok
The hybridization Hps with the low energy electrons is the same as given in the previous
section.
As we saw in the previous chapter, to lowest order the effective Hamiltonian now

has an additional potential scattering term and is given by Equation (6.57) as

. DJy)
H 1O DZ €kTho — _Jspz)n‘s SL——¢ Snpp ) (X + Xy (7.39)

with the J(1) as defined in Eqs. (7.8) and (7.9).
The projected f, electrons are accordingly given by \/w times the effective low

energy operators (6.67) as
3 L/ @ 1
ULL(I) 4(12502 + Igpgn()(w — Xw)) — Js(pz)n 55C - (7.39)

where again cr, =2 ViCho -

The condition for a vanishing resonance, i.e. for the critical point, once again is
given as 1 = {F(ﬁl), Fél)f} which in the presence of potential scattering assumes the
form

1)2
1 = —% <J(;)j(§ 5y, — %) - %) (7.40)
For a given value of U can now be satisfied for only two values of the chemical po-
tential, u* (U), the position of the resonance at infinitesimal particle and hole doping,
respectively.

In practice, . is determined in the following way: (1) One obtains the solution to
the insulator at half-filling, which gives the weights and poles of the high energy bands.
(2) The poles are shifted by the chemical potential, i.e. Zzgh — ezigh — Ap, (with
Ap = p— U/2) since all energies are measured with respect to the chemical potential.
Here we use the fact that for infinitesimal doping (i.e. to lowest order in w) the upper
and lower Hubbard bands are not modified. (3) Groundstate and groundstate energy of

this “insulator” are obtained in order to determine J( ) and J( )

spin »ot» Which is done easily



using the continued fraction expansion. (4) The self-consistently projected model is
iterated to convergence with the J(1) as determined in (3). If the criterion (7.40) is not
fulfilled, p is changed and the procedure is repeated starting with (2).

As before, the system of equations is unstable unless one is directly at the critical
point, and the condition (7.40) is enforced explicitly by setting the spectral weight to one
and monitoring the violation of condition (7.40) as elaborated in the section describing
the determination of the critical point at half filling.

Before discussing the numerical results it is again instructive to consider the impli-
cations of (7.40) analytically using the simple toy models discussed in the appendix.
The structure of Eq. (7.40) implies that the critical u. is determined by two key in-
gredients, the spin-spin coupling S - 57, which is a low energy quantity, and the high
energy coefficients Jg,;, and J,o. These can be evaluated in the effective 1 + 1 site
Kondo Hamiltonian and in the 2 + 1 site insulator, respectively. As in the half-filled
case, the effective Kondo Hamiltonian yields S.5 = —%, which even for small U com-
pares poorly with the numerical value, as we shall see in the following section. It is
thus expected that a considerable improvement of any analytic approximation requires
a more accurate treatment of the low energy part. The coefficients Jp;, and Jp,; are

determined in Appendix D and are given by the expressions

g2+ _ D n 2DV? B 3DV?
pot U—p (U=p)®  2uU?
% 3v? Vv 3v?
_ 2<1+2\/§U_m 1_2\/§U_W)
2\p— V2V + 55w VRV o
D DvV? 2DV? 1 1
Jo) = - + + (5 — =)
P U—-p 2uU%2  U—p U2 (U—p)?
Vv 3v? __v__3v
2<1 MY A PN A (7.41)
2\p= VeVt g3 uH VIV g
with the common asymptotic value in the limit U — oo, J5,, = J57, = —MQI_)%. To

order V/U one obtains

L, _ __Du _ D DV
T w2 =2V U—p 2U(p?—-2V?)
Du D DV?

Jpot

— — . 42
,u2—2V2+U—,u 2U (p? —2V?) (742)



Together with the spin-spin coupling of the 1+1 Kondo model this yields p* = 1.03,
implying that the resonance is just above the band as U goes to infinity.

We have plotted the numerical results for J,,;, and J,, for interaction U = 3,4,5
and U = 10 with cluster sizes N = 3,5, 7 together with the analytic result of (7.41) in
Fig. 7.5. As the system size grows, the coefficients are essentially unchanged from N = 6
to N = 8. The analytic result is in good agreement with the numerical result for N = 3.
Deviations are due to the fact that the analytic result is perturbative in V/U and that
the self-consistently determined bands are not perfectly rigid (i.e. the assumption that
they are centered at U — p and p, respectively, is not completely accurate). For larger
values of p the analytic result (7.41) is exact. Unfortunately, finite size effects for values
of ¢ near the band edge, are large and the perturbative calculation underestimates the
coefficients Jgp,i, and J,,¢ by more than 10%. Since this encompasses the critical p,
(=-0.88 D at U = 4) this gives rise to a large error in the determination of y.. The
2+ 1 analytic approximation is therefore not sufficient to accurately obtain the critical
behavior. Note also that inaccuracies in the determination of the critical behavior using
simple toy models are due to both low and high energy contributions.

The numerical results for the critical u, u. are displayed in Figure 7.6. Clearly the
position of the resonance begins at U, for which g, = U/2 and sweeps through the
gap continuously as the interaction is increased, approaching the line indicating the
beginning of the lower Hubbard band as predicted by a rigid band picture.

Unfortunately, the numerical determination of Jy,;, and J,,; for large values of the
interaction is also subject to a systematic error. This is a result of the fact that the
finite number of poles representing upper and lower Hubbard bands does not permit
an accurate determination of the band edge. For interactions close to U, in the half
filled case the band edge is far away from the chemical potential, such that the exact
position of the band edge does not play a role. Jgp;, and J,. in this case can thus be
computed accurately. As U increases, however, the critical pu. moves towards the band
edge, in which case the proximity to the band edge affects the numerically obtained
values of Jg,, and J,.¢. This can be seen by the evaluation of both quantities for

U = oo as functions of pu, in which case both are known exactly since they are simply
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Figure 7.5: Jgpin and Jpo: as a function of Au for U = 3,4,5,10 with cluster sizes
N = 3,5,7. Also shown (thin solid line) is the analytic result.
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Figure 7.6: Position of the quasiparticle resonance for vanishing resonance width as
a function of the interaction (solid). The dotted line indicates the beginning of the
incoherent lower Hubbard bands as predicted by a ridid band picture. The position of
the resonance is measured with respect to the center of gravity of the bands. The figure
is reflection symmetric about the Ay = p — U/2 = 0 axis for electron doping.
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Figure 7.7: Jpi, (dashed line) and J,,: (dotted line) as a function of Ap for U = 40
with cluster size N = 7 together with the exact U = oo result (solid line).

given as Jy,in = Jpot = 2ReG(w = 0T) where G is given by the rigid band picture as
ReG(0) = g5 (p—vp— D+U—p—+/U — = D) for p > D. A comparison of the exact
U = oo values to the numerical results for ' = 80 is shown in Figure 7.7. The small
difference between Jsp;, and J,.¢ gives a measure of the distance from their asymptotic
value and indicates that this has essentially been reached. We see that for values of p up
to approximately 0.28 from the band edge the agreement between J**"°% (U = 80) and
Jerat (U = o0) is very good, while they start deviating for smaller values of u. This can
be understood by noticing that the largest pole in the finite size cluster representing
the lower Hubbard band is at a distance of 0.28D from the band edge of the exact
rigid band result. As one can see the numerical result underestimates the values of .J.
Consequently Eq. (7.40) is therefore fulfilled for larger values of the chemical potential
and it is to be expected that for values of U for which p — D < 0.28 (this yields a first
approximation) the critical u. is in fact larger than the numerical result shown in Fig.
7.6 such that the critical u. is always outside the band. We have evaluated the critical
e using the exact Jypi, and J,or for U = co. We find p.(U = oo) = 1.0185, i.e. a finite



distance from the band edge, which we expect to be close to the asymptotic value. This
is corroborated by the observation the the coupling (S - 57) saturates to the finite value
(5 51) = —0.23. If p. approached the band edge for U = oo, the coupling should go to
zero as can be seen from Eq. (7.40) together with the results for J(U = c0). For small
values of doping the quasiparticle resonance is thus always expected to be separated
from the incoherent bands, even for large values of the interaction. The self-consistent
projective technique as described can be therefore always be applied for dopings that

are sufficiently small.

7.2.2 Critical Properties at Finite Doping

The analysis of the critical properties of the doped Hubbard model proceeds along
the lines of the analysis we presented in the half-filled case. Since the numerically
obtained critical p. for larger values of the interaction is corrected upwards if the full
insulating solution is used, the quantities evaluated at criticality also change. However,
we expect these changes to be small, which can be justified by observing that the critical
properties as a function of U go to the correct asymptotic value for U = oo, as will
be demonstrated. This is due to the fact that the corrections to p. are comparatively
small (of order 0.1D), leading in turn to small changes in the correlation functions.

Again the spectral function displays considerable structure and is anything but a
renormalized bare (semicircular) density of states. In Fig. 7.8 we display the spectral
functions for values of the interaction U = 5 and U = 3.2. Evidently a clearly discernible
peak in the low energy spectrum splits off as the interaction increases. We expect that
any feature like this should be observable in photoemission spectroscopies. The fact
that the spectral function is shifted upward can be interpreted as the result of the
potential scattering term which acts as a positive chemical potential. However, due to
the dependence on k the individual poles are shifted by different amounts.

The corresponding rescaled Matsubara Green functions at the critical point for

interactions U = 3,4 and U = 5 are shown in Fig. 7.9.
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line).
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The self-energy is again determined by extracting the singular pieces from
S(iwy) = iw, + Ap — 2G (iw,) — G~ (iwy,) (7.43)

where Ay = g — U/2. The evaluation in this case requires some care, because the real
part of Ghign(iwy,) contributing to ¥ is finite at zero frequency. Since the frequency
dependence is weak, it is sufficient to replace Gp;4p(iw,) by its zero frequency value
G'high(0), which is obtained from the solution of the insulating problem. One thus

obtains the rescaled low frequency part of ¥ as
~ _ ~ -1
Elow(iwn) = A,u — tZGlow(idn) — <Glow(i@n) + Ghigh (0)) . (7.44)

Since the energies are measured with respect to the Fermi level, Luttinger’s theorem in
this case reads 0 = p — ¥(0). We find that it is obeyed, which provides a non trivial
check of the numerical results. As a consequence we moreover notice that the pinning
condition ImG(0%) = —2/D is again fulfilled.

The effective spin-spin coupling between the f,-electron and the bath decreases as
the interaction increases, as can be seen from Fig. 7.10. This can be understood by
plotting the coefficients J,.; and Jgp;, as functions of the interaction, which is shown
in the inset of Fig. 7.10. We see that while the exchange term J;,;, remains essentially
unaltered as the interaction increases, J,,.¢ varies strongly, indicating enhanced potential
scattering. (Note, however, that again we expect the values of Jy,;, and J,,: to be
corrected downward (to larger negative values) as discussed. This does not change
the qualitative argument.) The results are in qualitative agreement with the 2 + 1
approximation given in Eq. (7.41). Eq. (7.40) then immediately implies a weakening
of the spin-spin coupling between impurity and bath electrons <§ - §1,) for increasing
values of the interaction. This can be understood as being the result of the increasing
repulsion between impurity and bath electrons due to the potential scattering term.
Notice, however, that even for large values of the interaction the system remains in the

intermediate coupling regime. (Recall that the result using the exact Jy,;, and Jp, for

U = oo yields (S - 57) = —0.23.)
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The generalized Wilson ratio

free
Xs/ Xs,loc
R= % (745)
v/
as defined in (7.27), where again y/7% = 18 (2482, grows slightly as the interaction

increases as shown in Fig. 7.11 and goes to the asymptotic value (using the exact
J(U = oo) result) R = 2.77. This can be attributed to the fact that coefficient of the
divergent term of the local spin susceptibility grows faster that the corresponding term
in effective mass of the quasiparticles.
Finally, the ratio of A/y? in p(T) = AT? is again given by Eq. (7.35) as
% =79 (% (2—?)2>4.1 x 10%a (Qm) (7.46)
where «a is the lattice spacing in meters. It is found to decrease with increasing U as

shown in Fig. 7.12 which is as a result of enhanced scattering between the electrons. The
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asymptotic value using the exact U = oo values of .J is given as ¥ (iw)"/(2(iw)")? = 0.67.
It should be pointed out that since the coefficients in the series expansion of the self-
energy are obtained by a fitting procedure, the results, especially of A/v? have a large

error of order 20%.

7.3 The Approach to the Critical Point

7.3.1 Once Again: Analysis of the Toy Model

Having obtained the critical properties, we can now proceed by analyzing the approach
to the critical point at half filling, i.e. solve the full non-linear equations derived in the
previous chapter. In order to elucidate the procedure, let us once again analyze the
toy model introduced when we investigated the critical point. As discussed, the two
modifications of the analysis when considering properties away from half filling arise
from the fact that we have to include higher order contributions from the canonical
transformation to the Hamiltonian, as well as modify the high energy spectral weight
entering [' to order w. Since we only have one site at zero energy we do not obtain

any contributions due to the expansion of energy denominators to order w. Again the



calculation can be found in the appendix. The Hamiltonian to order w? is given as
to e N =
M7 = —4(V/D)’I'(1 - 4I%)5 -5 (7.47)

and the transformed operator as

Iy, = —(V/D)F[((l— §F2(V/D)2)(XW —Xw)ca+2cho) —3T(V/D)%(2n; —1)eq].
(7.48)
We readily compute the Green function which now reads
Glow(iwy,) = WQ - 11F2(V/D)2)(w —1Egs +— +1Egs)' (7.49)
leading to a the self-consistency equation
1= %qu — 113 (V/D)?). (7.50)

which determines the low energy spectral weight w = 4V?/D? as a function of the
interaction. In addition to this non-linearity, the modification of the upper and lower
Hubbard bands due to the presence of the resonance leads to a modification of I'. In the
value of I' as obtained from the 2 4 1 insulator which was given as I' = %(1 + %ﬂ),
we now have to use the high energy spectral weight corrected to order w. Using the

spectral sumrule this leads to V)2, = %2(1 — 4(2¥)?). We can use this expression in
Eq. (7.50). Expanding to order V2 we get the spectral weight near the critical point

as a function of the interaction as

w' = 0.52(U, — U)/D + o((U, — U)/D)>. (7.51)
Again this compares quite well with the result obtained in the four boson scheme [32, 81]
which is given as wBoson = 32(U. — U)/D = 0.59(U, — U) /D.
7.3.2 Approach to the Critical Point at Half-filling

The full numerical treatment of the problem using the by now familiar Lanczos diag-
onalization proceeds as outlined in the previous chapter. We extract the information
about the high energy bands from the solution to the full Hubbard model. Since the

fourth oder terms in the Hamiltonian contain higher order correlation functions we have



to resort to exact diagonalization to obtain the high energy parameters entering the
Hamiltonian. This constrains the number of sites representing the high energy bands
to 44 1. (Note that at criticality we only need to evaluate resolvent operators to obtain
the coefficients entering the low energy Hamiltonian. This can be done easily using the
continued fraction expansion.) A comparison of the results obtained from three and
five sites in the upper band, together with six and eight in the effective low energy
Hamiltonian, which is shown in Fig. 7.13 indicates that this is essentially converged.
Another indication comes from the fact that the quasiparticle weight extrapolates to
the correct critical U., which is obtained with 8 4+ 1 sites in the high energy bands and
9 4 1 sites at low frequencies.

The result obtained numerically for 4 4 1 sites in the high energy part and 7 4+ 1

sites in the low frequency region as shown in Fig. 7.13 is given as
w=0.34(U. - U)/D. (7.52)

with U, = 2.92. Since once again we have to fit the data in order to obtain the slope,
the error bar is unfortunately of the order 20 percent.

Note that in this case quasiparticle residue z = 1/(1 — %) and low energy spectral
weight w do not coincide. This is in striking contrast to the Gutzwiller approximation

which does not distinguish between the two. The quasiparticle residue as a function of

the interaction is given as

z=0.2(U,—U)/D. (7.53)

with U, = 2.93. While the slight disagreement between the critical interaction is clearly
due to numerical inaccuracies, the slope of the quasiparticle residue is strikingly smaller
than the corresponding quantity for the weight of the resonance. A comparison of the

results for w and z is shown in Fig. 7.14.

7.3.3 Approach to the Critical Point Away from Half-filling

Let us conclude this chapter by discussing the properties close to the critical point in the
doped Hubbard model. Since this is a situation which has been studied experimentally

[100] we can compare our results for A/ directly to measured values in Sry_,La, TiO3.
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Following the same procedure as in the half-filled case, we again obtain low-energy
spectral weight w and quasiparticle residue z close to the transition. For interaction
U = 4 these are depicted in Fig. 7.15. While the convergence for N = 6 and N = 8 sites
is not as good as at half-filling, which may be attributed to the fact that the separation

of scales is considerably smaller, both extrapolate within one percent to the correct p..

This provides a check of the calculation. The curves depicted can by fitted as

w(U =4) =0.36(Ap. — Ap)/D (7.54)
and

2(U=4)=0.2(Ap. — Ap)/D, (7.55)
respectively with Ay, = —0.89. Since z determines the low energy scale of the problem,

the small prefactor leads to a small low energy region, as we shall see in the analysis of
the finite temperature behavior.
Moreover, we can obtain the self-energy in form of a power series by fitting the

numerical results. The ratio A/7? can then be obtained as outlined in Eqs. (7.31 -
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7.35) and is given as

0’y
Afy? = 7.9z2w2.05 x 10%a (Qm). (7.56)

The ratio 22‘327% is shown in Fig. 7.16 for interaction U = 4. While this does not
approach the correct value for infinitesimal doping, they are of the same order of mag-
nitude. The difference can be attributed to the large error in the determination of the
second derivative of X, as well as the fact that we do not consider rescaled quanti-
ties in the case close to half filling which leads to additional inaccuracies. Since the
experiments on Sr;_,La,TiOz [100] quoted earlier were done on doped samples, we
can now improve our comparison to experiments. To lowest order the doping is given
by the low energy spectral weight. For w = 0.05 we obtain, using the lattice spacing
a =83 x1071%n [99], A/7? = 9-1075Qm. This can be directly compared to the
experimental value with = 0.05 which is found to be A/y? = 6.4 - 1075Qm. Again
this is of the same order of magnitude, and the correction to A/y? due to finite doping
goes in the right direction. Notice furthermore that the functional form is in qualitative
agreement with the results obtained by Tokura et al..

This concludes the analysis of the critical point, as well as the approach to it. For



the first time we obtained quantitative results and insights into the critical region of
the Hubbard model and evaluated scaling functions, as well as susceptibility, specific
heat, transport time and low energy spectral weight. The results can be compared to

experimental results on Sry_,La,TiO3 and are of the same order of magnitude.



Chapter 8

The Hubbard Model at Finite Temperatures

In the previous chapters we focused on the properties of the Hubbard model at zero
temperature. In order to address some of the most intriguing experimental results on
materials whose electronic behavior is dominated by strong correlations, in particular
the unconventional normal state properties of the high T.-oxide superconductors [102],
a finite temperature formalism that is able to yield reliable low temperature results is
necessary.

So far, most of the finite temperature calculations for the Hubbard model in infinite
dimensions were obtained using Monte Carlo algorithms in combination with maximum
entropy methods in order to obtain real frequency data from the Monte Carlo results
[20, 97, 103, 104]. These were supplemented by results obtained from the finite U
non-crossing approximation (NCA) [33]. Unfortunately, both methods are faced with
systematic problems. As discussed, the Quantum Monte Carlo technique fails at low
temperatures, and even a tool as sophisticated as the maximum entropy method is
not able to give a reliable analytic continuation of the data with high resolution. The
NCA results on the other hand are known to violate Fermi liquid theorems [105] at low
temperatures.

In this chapter we will outline, how the self-consistent approach based on the map-
ping of the Hubbard model on an Anderson model outlined in Chapter 2 can be im-
plemented efficiently for finite temperatures, and see that in combination with the self-
consistent projective technique results at temperatures inaccessible by previous tech-
niques can be obtained. In particular, we will present results for the local susceptibility
and the value of the self energy at zero frequency, which at low temperatures essentially

gives the inverse quasiparticle scattering rate and is thus directly proportional to the



DC resistivity.

8.1 Numerical Implementation

Let us briefly discuss some technical aspects regarding the implementation of the finite
temperature formalism. As we saw in Chapter 2 the determination of zero temperature
Green function and local susceptibility solely required knowledge of the exact ground
state and ground state energy of the Hamiltonian under consideration which can be
obtained easily using Lanczos diagonalization. Both correlation functions could then
be obtained easily using a continued fraction expansion.

In the finite temperature case, the Green function is given by the trace over all

eigenstates of the system as

Go(iw,) = % /Oﬁ e“nTtrace <e_ﬁH'Tng (T)f;(())) (8.1)

where w, = 2%(Qn + 1) are Matsubara frequencies with 3 = 1/T and Z = 3 ePFn is
the partition function. One therefore can no longer resort to Lanczos diagonalization,
but has to diagonalize the full Hamiltonian matrix exactly. This limits the system sizes
that can be diagonalized easily on a workstation (i.e. using the Numerical Recipes [68]
routines TRED2 and TQLI) to a maximum of N = 6 sites.

While one can calculate the correlation functions exactly in terms of the matrix ele-
ments |(n|f|m)|? ({|n)} are the eigenvectors of the system with corresponding eigenen-
ergies {F,}),by inserting complete sets of eigenstates in Eq. (8.1) the basis transfor-
mation necessary to evaluate the matrix elements is of order N*. Thus even for N = 6,
for which the largest blockmatrix in the Hamiltonian (using S, and particle number
as quantum numbers) has 400 x 400 elements, this basis rotation is extremely time
consuming. The calculation can be simplified by writing the Green function in the
form

1

Gollw,) = =

o= B(Fm=Fgs) ¢
> ®

1 1
(1o o=y )+ A =y o) ) (82




where in order to avoid numerical problems all energies are measured with respect to
the ground state energy F,; and where we have defined Z =Y ePEn=FEgs)  We see that
for a given temperature only the eigenstates up to a cutoff F.,; where E.y — Eys =T
enter. This greatly reduces the number of states that need to be stored and the number
of contributions that needs to be evaluated. Furthermore, we can evaluate the particle
and hole contributions to the correlation function using a continued fraction expansion
(now based on the states ff|m) and f,|m)) as done at zero temperature, and summing
over the relevant contributions.

In order to obtain the local susceptibility at zero frequency, some care has to be
taken in order to treat the term leading to Curie-Weiss behavior (which is cut-off at

low temperatures) properly. From the definition of y;

Xs(ivn) = (9nB/2)? Ze (Bm=Fos)

1
i, + (H — Ep,)

(<m|SZiVn _ (é —5S.dm) = (mls. Sz|m>> (8.3)

where iy, are Bose frequencies and S, = %(nT — ny) one readily obtains

~(En— En)

(n|S

GO0 = (/2?5 X e B

m,n

En>Em

1 TPAEmT R (m m 2_—1
+ 5 S i) () ). (8.4

This can be evaluated efficiently, since S, only connects states within the subspaces of

fixed particle number and spin along the z axis.

Proceeding in this way it is possible to obtain converged solutions ! for the full Hub-
bard model down to temperatures as low as T' = 0.02. This is already of the order of
the lowest temperatures that can be attained using the much more “expensive” Quan-

tum Monte Carlo method. Combining the method with the self-consistent projective

'"The question of convergence can be judged and measured using two different criteria. On one
hand, the results should be such that they do not change as the number of sites in the system is
increased. This is a reliable method if large system sized can be compared, as in the zero temperature
calculations of the previous chapters. In the case of finite temperatures the corresponding statistics is
rather poor, since only small systems can be considered. An alternative criterion is given by comparing
the lowest frequencies of the “true” full Green function to the fitted Green function. If the temperatures
used are too small, the fits are extremely inaccurate at low frequencies, indicating a breakdown of the
approximation.



technique, temperatures at least as low as T' = %TKondo where Tk ondo 18 the width of
the quasiparticle resonance can be achieved. This is beyond the reach of any other

present method.

8.2 Results

As indicated in the introduction to the chapter, we are primarily focusing on the local
susceptibility and the DC conductivity as determined from the quasiparticle scattering
given by Im¥(0)~!.

At half filling the system remains a Fermi liquid at low temperatures in agreement
with the results obtained using NCA and QMC [97, 104]. This can be seen particularly
clearly in Fig. 8.1 which shows extrapolated value of ¥(0) for the interaction U = 2.5.
The plot shows the results obtained from the full Hubbard model with N = 6 (thick
dashed line), which clearly break down for low temperatures (in this case 7'~ 0.007),
together with the results from the self-consistent projective technique (solid line) which
breaks down for higher temperatures (7' = 0.008). Clearly the self-consistent projective
technique enables us to reach considerably lower temperatures (7' = .003). The plot
shows the results using N = 5+1 sites representing the Kondo resonance and N = 441
representing the high energy bands. It should be noted that going below these cluster
sizes gives results which do not “connect” to the results obtained using the Hubbard
model. Here, however, both techniques have a clear, although small, range in which
they overlap. This provides a check of the self-consistent technique. Also shown (dotted
line) is a fit of the data obtained from both methods. We see that the data can be fitted
by the functional form

Y(w=0,T) = 3T + 145072, (8.5)

Since the quadratic term is dominant in the temperature range shown, this can be

considered in good agreement with the Fermi liquid prediction
Im¥(w=0,T) ~ p(T) = AT?. (8.6)

Due to the fact that in the half filled case metallic and insulating solutions are extremely

close in energy (as we saw in Chapter 7 the energy difference goes as (U. — U)?) we
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filling as a function of the interaction.

cannot reach higher temperatures than 7'~ 0.01. Beyond this temperature the system
becomes insulating even at interactions as low as U = 2.5.

This first order transition occurs for even lower temperatures as the interaction is
increased and prevents us from comparing full and projectively obtained results for
higher values of U. The corresponding phase boundary is shown in Fig. 8.2. This is to
be compared with the results from second order perturbation theory [12], which gives
considerably higher transition temperatures.

In order to obtain results at finite doping, care has to be taken in order to keep the
particle number fixed, since the dependence of the particle number n, on temperature
(for fixed p) is quite strong. Results for U = 4 and some typical values of p are shown
in Fig. 8.3. Notice that this strong temperature dependence is in striking contrast to
the T? behavior expected in a regular Fermi liquid and indicates the presence of a small

energy scale beyond which Fermi liquid theory is restored.
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The consideration of the temperature dependence of the spectral function as shown
in Figure 8.4 gives similar indications. In the figure we see the spectral density
—ImG(w+ 1) at U = 4 and n = 0.9 for temperatures 7' = 0.02,0.06 and 0.1. We
see that the weight of the Kondo resonance at the Fermi level is reduced washed out
quite rapidly as the temperature is increased, again indicating an underlying small
energy scale.

The imaginary part of the self energy, Im¥(w = 0,T') exhibits a pronounced and
extended linear region down to temperatures 7" = 0.02 (we used the full Hubbard
code in this case). The results using the full Hubbard code are displayed in Fig. 8.5.
For small doping and small temperatures one can use the self-consistent projective
technique, which indicates that Fermi liquid behavior, i.e. a T2 behavior of 3(7T),
does occur at very low temperatures. The result for U = 4 and Ap = —1.05, which
corresponds to a doping of § = 0.05, is shown in Fig. 8.6. Figure 8.7 shows the local
spin susceptibility y;(w = 0,7) as a function of temperature at dopings between § = 0.1
and & = 0.4 for a typical value of the interaction in the doped insulator, U = 4. Also
shown are the non-interacting susceptibilities for the corresponding values of §. Clearly,
the local susceptibility xi,.(T") is strongly enhanced compared to the non-interacting
values and displays a strong rise down to temperatures as low as T = 0.02 and is
cut-off only for temperatures lower than this. As in the quasiparticle scattering rate
we thus find that the low temperature properties are determined by a small energy
scale. This is not immediately obvious, since the naive expectation is that the smallest
energy scale in the problem is given by §D. An understanding of the nature of this
scale can be obtained from the toy 2 + 1 Anderson model discussed in the appendix.
Using the exact eigenstates and eigenenergies derived there it is possible to calculate
the low temperature susceptibility analytically. Treating the doubly degenerate terms
leading to the Curie like 1/7 behavior with care one can show that the low temperature
behavior of the susceptibility goes as

'1 — 6_6V2/p‘

X(T) =~ C i (8.7)

where V2 is the hopping between the impurity and the site at the Fermi level and
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V?2/u is the energy difference between the singlet ground state and the doublet states
with one particle removed. The low energy cutoff is thus given as V2/u. When solved
self-consistently, even in this naive approximation correctly gives T = 0.02 as cutoff
and therefore explains the results displayed in Figs. 8.7 and 8.5. This result can be
confirmed by considering the corresponding quantity, given as Eé\g;bllet — Eé\; in the
solution to the full problem, which is seen to yield the correct cutoff. Equivalently,
this can be understood as the result of the small quasiparticle residue z as seen in the
analysis of the approach to the critical point at finite doping.

In conclusion we have illustrated that exact diagonalization in combination with the
self-consistent projective technique is an ideal tool to study strongly correlated electron
systems at low temperatures. We see that due to the small energy scale given by the

quasiparticle residue z D, resistivity as well as local susceptibility are linear down to very

low temperatures and that the particle number is strongly temperature dependent.
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Chapter 9

Beyond Infinite Dimensions—A Cluster Approach

In the previous chapters we have outlined, how the limit of infinite dimensionality
provides a natural mean-field theory for itinerant many-body systems. We have applied
it to the study of the Falicov-Kimball and Hubbard models and seen that it provides an
intuitive and systematic framework for their study that yields experimentally relevant
information. We have proceeded by developing a method to systematically study the
low energy behavior of these models, providing us with a tool to study more realistic
systems.

In spite of the successes of the d = co mean-field approach, several questions are left
unanswered and important physical effects cannot be addressed straightforwardly in the
infinite d framework. The locality inherent in this formulation leads to the “pinning”
of the density of states at the Fermi level [46], which is likely to be an artifact of
mean-field theory. More precisely, this effect can be directly traced to the momentum
independence [44] of the local self-energy, reflecting the lack of spatial correlations. In
the context of strongly correlated, but weakly disordered systems [106, 51], the pinning
condition was shown to result in a discontinuous jump of the DC conductivity at T = 0
— the minimum metallic conductivity. If the pinning is relaxed, it is conceivable that a
continuous behavior of the conductivity would follow, thus qualitatively modifying our
picture of transport near the metal-insulator transition [108].

Moreover, since the limit of infinite dimensions is based on the mapping onto a
single-site (impurity) model, it cannot properly account for the competition between
the Kondo effect and the spin-spin correlations between neighboring sites — the effect
that we have argued is crucial in a number of physical situations. This is particularly

bothersome, since the competition between the Kondo effect and the RKKY interactions



is a recurring theme in many of the most interesting phenomena associated with the
physics of strong electronic correlations.

When the RKKY interactions predominate, the result is long-range magnetic or-
dering, as found in many heavy-fermion materials [6]. In situations where magnetic
ordering is absent, the manifestations are more subtle, but often equally fundamental.
In particular, it has been suggested [107] that this competition lies at the core of the pro-
posed “two-fluid” behavior, and “micromagnetism” found in some non-magnetic heavy
fermion systems. Another interesting class of systems where both the Kondo effect and
the RKKY correlations are believed to be crucial are exemplified by doped semicon-
ductors [108] near the metal-insulator transition. In these systems, non-Fermi liquid
[109, 110] metallic behavior is observed, suggesting the coexistence of local moments
and conduction electrons that seem decoupled from each other — another manifestation
of the “two-fluid” behavior [111]. There are many further examples where these effects
are of key importance. As it stands, the limit of infinite dimensions is not able to treat
both the Kondo physics and the RKKY correlations on the same footing and provide
a convincing picture of these interesting phenomena.

In order to address the limitations of the existing d = oo theory, a most straightfor-
ward approach would be to investigate systematic 1/d corrections resulting from finite
dimensionality. Several different methods for performing such expansions have been
proposed [106, 51], but each of these approaches result in formidable technical difficul-
ties, making it difficult to address the finite dimensional effects in a simple and elegant
fashion as we pointed out in Chapter 2. In this chapter, we take an alternative route:
we propose to extend the existing theories in d = oo in a way that mimics the most
important physical effects of finite dimensionality. Given the fact that the general large-
dimensions philosophy is based on the mapping of a lattice models onto appropriate
impurity models, the appropriate impurity model displaying the relevant physics is the
two impurity Kondo (Anderson) model [115], which is often used as a simplest model
for the study of the RKKY-Kondo competition. Using the methods outlined in Chapter
2 we can obtain a lattice version of this model by self-consistently embedding it in an

appropriate medium. The resulting model which we call the two-impurity Kondo lattice



model, is the “minimum model” that allows us to go beyond the limitations imposed
by the conventional d = oo approach, without performing uncontrolled or unjustified
approximations.

In the rest of this chapter, we define and examine this the model, and indicate
how the new features inherent to the RKKY-Kondo competition modify the standard
d = oo results for the Hubbard model which we described in the previous chapters.
We conclude that the RKKY interactions represent a relevant perturbation, relaxing
the pinning condition and qualitatively modifying the nature of the metal-insulator

transition.

9.1 The Model

We begin our discussion by defining the model that we consider, and derive the corre-
sponding self-consistency conditions by performing the d — oo limit. While the limit
of infinite dimensions does not impose any restrictions on the lattice structure studied
[53], the equations again become particularly simple and easy to derive in the case of a
Bethe lattice. The qualitative features of the model will be identical as on other lattices,
and the resulting spectral functions are closer to the three dimensional situation than
for example on the d = oo hypercubic lattice. The “minimum model” that we propose
is then obtained by doubling the Bethe lattice (with hopping ¢), and allowing the elec-
trons to hop between the Bethe lattices with hopping ¢,;. The geometry of the resulting
lattice is shown (for coordination number z = 3) in Fig. 9.1. Denoting the creation
operators corresponding to the two Bethe lattices with a! and b!, the Hamiltonian can

be written as

H = —t Z (ajo_aja' + b;rgbjg) + tab Z(azabw + h.c.),
<t,5>,0 io
+ U Z(naianai—o + nbionbi—a) — M Z(nm’g + nbw) (91)

where U is the Coulomb potential and ¢ is the nearest-neighbor hopping amplitude; ¢,
is the hopping amplitude between the two lattices.
It should be stressed at this point that this model clearly breaks translational invari-

ance by singling out pairs of sites connected by hopping elements ¢,;. While this feature



Figure 9.1: Lattice structure of the doubled Bethe lattice and effective two impurity
cluster.

appears somewhat artificial in a uniform system in which all neighbors are equivalent,
it leads to a controlled and non-trivial modification of the d = co limit. ' In contrast
to the standard single band Hubbard model in infinite dimensions, in which electrons
solely undergo temporal fluctuations, our model also allows for spatial fluctuations. A
systematic expansion in 1/d [106, 51] (see also Chapter 2) includes exactly these pro-
cesses and the model can therefore be interpreted as including some of the effects of
finite dimensionality.

It is clear that the model by construction enables us to study nearest-neighbor spin-
correlations. In physical terms, for ¢,; large, the model favors the formation of singlet
pairs (dimers) from the “a-b” sites. Interestingly, this symmetry breaking is not unrea-
sonable in disordered systems, where each site a has another “preferred” neighboring
site b, with which dimerization will be favored. This notion is at the heart of the “ran-
dom singlet” ordering of Bhatt and Lee [112], describing the singular thermodynamics
of doped semiconductors. Notice also that a variety of additional interpretations is
possible. In particular, the model may alternatively viewed as a two band model or as

two coupled layers.

'Tn recent work, Kotliar and Georges (private communication) have proposed a cluster 1/d expansion
of the d = oo mean-field theory, based on single and two impurity models. While uncontrolled, it offers
an elegant way of restoring the translational invariance in the cluster formulation. On physical as well
as on technical grounds, we expect the results of such a formulation to be close to the findings presented
in this chapter.



As in the case of the standard Hubbard model, the problem simplifies considerably
in the large coordination (large dimension) limit. Rescaling the hopping amplitude
tast — ﬁ (m = z — 1 is the “branching ratio” of the Bethe lattice), and taking
the limit m — oo we obtain an effective two-impurity Anderson model embedded in a

self-consistently determined bath. We introduce spinors ¢ (7) = (aj(7), b3 (7)) and the

matrix Green function

with
' B
Giw,) = — /0 e (Toe(r) et (0))s, - 9.3)
Notice that due to spin conservation G, = 8,4, Ggy.
The effective action can then be written in matrix form as
Sefrles, cn] = chan zwn Con + U/ dT(Nng4Nay + Nptney) (9.4)
0 twn

where the self-consistency condition reads

7k—’-’n + _ta
Go (iwn) = : " | - 2G(iwn). (9.5)

—Lab 1wy, + 4

While solving this model for general values of the parameters represents a highly
nontrivial task, we immediately recognize some well known limiting cases. In the limit
tep = 0, the two Bethe lattices decouple, and the model reduces to the well known
single-band Hubbard model in d = co. As we saw, at half filling, this model undergoes
a Mott transition at U = U,,, which is preceded by a formation of a pseudo-gap and the
coexistence of a metallic and an insulating solution in the region U = U, < U < U =
U.,. The metallic solution, however, is lower in energy [69] at 7' = 0 throughout the
coexistence region, so that U = U,, represents a true zero-temperature critical point
where the two solutions merge.

The other easily analyzable case is the noninteracting limit U = 0. Here, a band-
crossing transition takes place, where the density of states at the Fermi level vanishes

continuously and a gap opens at f,, = t. The origin of this transition is easy to



understand: in the atomic limit ¢,, >> ¢ the density of states reduces to the two
(bonding and antibonding) levels at Fy = +¢,;,. When the hopping ¢ increases, these
atomic levels broaden into bands of width = 2¢, so that the gap closes when the two

bands overlap, at t,; = t.

9.2 Results

While the limit of infinite dimensions simplifies the original problem considerably, solv-
ing the corresponding impurity model is still a formidable task, as we saw only too
clearly in the previous chapters. While we could in principle resort to the techniques
developed in this thesis, we will resort to a particularly simple approach first proposed
by Georges and Kotliar [41] based on solving the Anderson impurity model using second
order perturbation theory, following Yamada and Yosida [58, 59, 60]. Due to the ad-
ditional self-consistency this approach, often called the “iterated perturbation theory”
(IPT) [21], still has non-perturbative character. It is exact in both limits of U = 0
and U = oo and displays a Mott metal-insulator transition. Detailed investigations
based on other numerical approaches demonstrated [40, 69] the qualitative validity of
most [PT predictions for the single-band Hubbard model in d = co. As compared to
numerically exact solutions, IPT requires considerably less computational effort, and
thus represents a valuable guide to the physics of d = oco electrons.

In the problem that we consider in this chapter, one has to solve a two impurity
Anderson model — a task which is considerably more difficult than the simpler sin-
gle impurity model. Furthermore, numerical Monte Carlo approaches [113] to the two
impurity Anderson model have proven to be largely unsuccessful at the available com-
putational level. Extending the exact diagonalization approaches and the self-consistent
projective technique remains an open task. Taking these facts into consideration, we
propose to begin the investigation of the problem considered using the IPT approach
as a useful first attempt to gain insight into the RKKY-Kondo competition.

We will concentrate on the behavior at half-filling, where the Mott transition takes

place at t,; = 0, and investigate the modifications induced by turning on t,;, # 0.



Figure 9.2: Second-order perturbation theory self energy diagram.

In order to apply IPT to the present model, we have to compute the second-order
perturbation theory corrections around the non-magnetic Hartree-Fock solution. The
second-order diagonal /off-diagonal self-energies in this case consist of only one diagram

(see Fig. 9.2), respectively, and are given as
Say (1) = —U? Gy (1) Gay (—7) Gy (1), (9.6)

where z,y = a,b. Since the resulting equations have to be solved self-consistently,
the solution is obtained by numerical iteration until convergence is found. We have
determined the T' = 0 phase diagram of the investigated model at half filling using the
IPT approximation, and the results are presented in Fig. 9.3. At small values of U,
as tqp is increased, the behavior is qualitatively the same as at U = 0. A continuous
transition takes place, at a critical value of the hopping ¢, (U) that is found to decrease
as U increases. This behavior reflects the fact that the gradual band broadening due to
the Hubbard-Mott splitting tends to close the gap. As an illustration, we display the
evolution of the DOS as the transition is approached in Fig. 9.4. at U = 0 (Fig. 9.4 a)
and U = 1.5 (Fig. 9.4 b).Again, all energies are measured in units of the half-bandwidth
D =2t.

For larger values of U, a coexistence region of the metallic and insulating solutions
is found, similarly as for #,; = 0. The metallic solution is found for U < U., (t.s); we
note the non-monotonic dependence of U,, (t,3), which is first found to increase, and

then to decrease as a function of ¢,,. Thus, as compared with t,;, = 0, the addition of
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the RKKY correlation is found to extend the metallic region. More importantly, we
find that the metallic solution disappears discontinuously at U = U,, (tq), in contrast
to the t,5 = 0 behavior [19, 12]. The solution along this boundary is not characterized
by a low energy scale, as seen by plotting the Kondo temperature (quasiparticle weight
z=1/(1 - %2)) on one site as a function of U, for t,, = 0.2 (Fig. 9.5 a). The density
of states is also discontinuous at this boundary (Fig. 9.5(b)). We note the pronounced
dependence of the density of states at the Fermi energy on the interaction U — a clear
violation of the “pinning condition” that is observed at t,;, = 0. This behavior is even

more clearly seen by plotting the evolution of the metallic DOS as the boundary is
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Figure 9.6: Density of States for ¢,;, = 0.2 and interactions U = 1.0, 1.8, 2.6, 3.4.

approached in Fig. 9.6. Clearly, in contrast to the situation at ¢,;, = 0, the metallic and
insulating solutions do not merge at U = U, (t4), so this boundary cannot be identified
with a critical line.

Similar behavior is obtained by examining the stability of the insulating solution,
which is found to discontinuously disappear at U = U, (ts). As we can see from the
phase diagram, Fig. 9.3, the boundaries U, (t,) and U,, (¢,5) are found to join at the
critical point “B” which is also the end of the band crossing transition critical line.

We thus find that in the entire coexistence region, the metallic and the insulating
solutions merge only at two points: A (t,, = 0, U = U,,) and B. In the rest of the phase
diagram the two solutions are disjoint from each other, and the transition has a first-
order character. This conclusion can be established even more rigorously by examining
the local stability of each solution throughout the coexistence region. For this purpose,

we have developed an approach that allows us to determine the stability, as described in
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detail in the appendix. Using this method, we have established that both the metallic
and the insulating solution are locally stable, supporting the first-order scenario. (Note
that when the procedure is applied in the t,;, = 0 limit, we find that in the coexistence
region, the insulating solution is locally unstable with respect to the metallic solution,
in agreement with the results established in Chapter 4 [69].)

To obtain the location of the transition line, we have calculated the energies of the
solutions, and determined the line where they coincide, as shown in Fig. 9.3. Since the
solutions merge at points A and B (see Fig. 9.3), the energies of the solutions have to
coincide there, and the (first order) transition line connects those two points. As an
illustration, the energies of the two solutions are plotted for t,, = 0.2 as a function of
U in Fig. 9.7.

As we can see, in contrast to the ¢,; = 0 findings, the insulating solution is lower



in energy for larger values of U, consistent with the first-order scenario. This result is
perhaps not surprising, as the RKKY interactions are generally expected to stabilize
the insulating solution.

In line with this first order scenario, the boundary lines Uy, (¢,5) and U,, (¢45) should
be recognized as spinodal lines. An interesting question is why the two solutions merge
at tp = 0, 1. e. why is there a critical point there instead of a first-order transition.
The existence of bifurcations, i. e. critical points is usually associated with spontaneous
breakdown of some symmetry (e.g. up-down symmetry in the Ising model). In the case
of the single-band Hubbard model in d = co the relevant symmetry remains yet to be
discovered.

The effects of the RKKY interactions are not limited to the modifications of the
MIT scenario. They can also modify the thermodynamic behavior by affecting the
dynamics of the collective spin fluctuations governing the finite temperature response.
In order to investigate this aspect of the problem, we have computed the specific heat
in the metallic and the insulating phases of our model. To illustrate the typical metallic
behavior, we present results for the specific heat at U = 2.5, for three different values
of t,p =0, 0.2, 0.4 in Fig. 9.8.

At typ = 0 we recognize the characteristic linear specific heat at T << Tk ondo ~ 0.05,
corresponding to Fermi liquid behavior, a Schottky-like peak at T ~ T onq4o reflecting
the binding energy of the Kondo singlet, and insulating-like behavior at T'~ U/2 due
to charge fluctuations (Hubbard bands).

For t,; # 0, i.e. as the RKKY interactions are introduced, a new feature appears in
the intermediate energy range: the specific heat is enhanced at T ~ J, reflecting the
emergence of additional spin fluctuations with a characteristic energy corresponding to
the RKKY exchange interaction Jg; = 4t3b/U. For t,;, = 0.4 and U = 2.5 we estimate
Jap = 0.08, giving a (“Schottky”) peak in the specific heat at Ty ~ J/2 = 0.16, exactly
where the observed enhancement occurs.

This interpretation of the observed specific heat enhancement finds additional sup-
port by examining the corresponding behavior in the insulating regime. Typical results

are presented in Fig. 9.9, where the specific heat is plotted for U = 3.5, and t,;, = 0, 0.15
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and 0.3.

In absence of RKKY interactions (., = 0) the specific heat is vanishingly small at
low temperatures, reflecting the existence of the Mott-Hubbard gap. As in the metallic
phase, the addition of RKKY interactions (., # 0) induces specific heat enhance-
ments in a comparable temperature range, at Ty ~ 2t2,/U. We also note that the
corresponding enhancement in the metallic state (Fig. 9.8) is much more spread-out in
temperature, presumably reflecting the scattering of these fluctuations by the coupling

to the particle-hole excitations.

9.3 Beyond Perturbation Theory

The solution of our model presented in the preceding section was based on an approx-
imate scheme for the impurity problem — the perturbation theory approach of Yosida

and Yamada [58, 59, 60]. While this techniques was utilized with impressive success in



previous d = oo studies [41, 56, 12], it is important to emphasize the limitations of this
approach, and identify instances where most important problems can be expected.

When applied to single-impurity Anderson models, the approach of Yamada and
Yoshida is generally expected to be at least qualitatively correct in the entire tempera-
ture range. In this case, the ground state is a (local) Fermi liquid, so that perturbation
theory converges [114] and finite order corrections are sufficient. The situation is more
complicated in two-impurity models such as the two-impurity Kondo (Anderson) model.
Here, a critical point [115] is found at half-filling, separating the RKKY and Kondo
regimes. The emergence of this critical point has a simple physical origin. It reflects
the fact that two ground states with different symmetry are possible, corresponding to
the Kondo spins being compensated either by conduction electrons (Kondo phase) or
by each other (RKKY phase). This critical point, which reflects a degeneracy due to
level crossing [116] signals a breakdown of a Fermi liquid description. As a result, we
do not expect perturbative approaches to be accurate in the critical region. Indeed, if
the two-impurity problem is treated in perturbation theory, the critical point is washed
out into a smooth crossover.

Without providing a more elaborate treatment of the two-impurity problem, we
can at least make estimates of the regions in parameter space where IPT could prove
insufficient. Based on the information available from studies of the two impurity Kondo
model [115] (2IKM) in a fixed bath, we expect that a critical point emerges when
the RKKY interaction J,; is comparable to the “bare” Kondo temperature 7% ., =

Tkondo(tas = 0). Since near U,, the Kondo temperature vanishes
m
Tf&"ondo ~ m_i ~ (Uc2 - U)7 (97)
but the exchange interaction remains finite
Jab ~ tap/U (9.8)

one can expect that increasing U at finite ¢,, drives the system from a Kondo to an
RKKY metallic phase. The critical line where this could take place can be estimated

by equating 7% ., and J,;, and using Eqgs. (9.7)-(9.8), we find

UrkKky (tab) ~ UC2 — 4th/UC2. (9.9)
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This expression is valid only in the ¢,, — 0 limit, where to leading order we have
ignored the modifications of the (self-consistently adapting) electronic bath. This esti-
mate is plotted in Fig. 9.10, where it is compared with the perturbation theory predic-
tions for the metallic phase boundary, and the location of the first-order metal-insulator
transition. As we can see, according to IPT, the first order transition preempts the
approach to the RKKY-Kondo critical line, supporting the validity of IPT-based pre-
dictions.

The IPT prediction that the introduction of RKKY interactions induces a first-order
metal insulator transition finds additional support if we recall that a similar conclusion
was obtained by introducing additional RKKY interactions in the large-N approaches
to correlated electrons [117]. However, we emphasize that this approach did not have
the two impurity Kondo physics build in, and, in particular, the possibility that the

RKKY-Kondo competition induces a nontrivial critical point even on the impurity level.



An interesting question that deserves further study is the role of the two impurity
Kondo model critical point in the destruction of the metallic phase. Of course, this
question would be particularly relevant if additions of small perturbations, perhaps
disorder, could stabilize the metallic phase to larger values of U, so that the relevant

critical point becomes physically accessible.

9.4 Conclusions

In this chapter we addressed the role of short-ranged magnetic correlations in determin-
ing the behavior of strongly correlated electronic systems. To account for these effect,
which are not properly treated by existing approaches, we propose a two-site clus-
ter generalization of the Hubbard model in infinite dimensions as the simplest model
containing the relevant physics. The model is mapped onto a two-impurity Kondo-
Anderson model in a self-consistently determined bath, making it possible to directly
address the competition between the Kondo effect and RKKY interactions in a lattice
context.

Using a well known approximation scheme for solving the self-consistency conditions,
we have determined the phase diagram of our model and discussed the modifications
of the metallic behavior. We find that the addition of RKKY interactions induces
a first-order metal-insulator transition, by energetically favoring the insulating phase.
Additional low-energy spin fluctuations emerge, leading to enhancements of the specific

heat in the intermediate temperature range, both in the metallic and insulating phases.



Chapter 10

Conclusion

In this thesis we have used the limit of infinite dimensionality to study the Mott transi-
tion and the transfer of spectral weight in the Hubbard model. In order to analyze the
critical point, as well as the critical region of the Mott transition, we have developed a
method, the self-consistent projective technique, that allows us to determine the critical
properties exactly in the limit of infinite dimensions. This enables us to study the criti-
cal properties of of strongly correlated electron systems for the first time in a controlled
limit. The results are contrasted with the mechanisms found in the Falicov-Kimball
model, which can be solved exactly in the limit of infinite dimensionality. Furthermore,
a model mimicking the effect of 1/d corrections to the limit of infinite dimensionality
is proposed and studied.

In Chapter 2 we have provided a pedagogical introduction into the limit of infinite
dimensionality. In particular, we describe a powerful numerical technique, based on
the mapping of lattice models in infinite dimensions onto self-consistent single impurity
models, that enables us to solve the latter in an efficient and accurate way.

Chapter 3 studies the Falicov-Kimball model in the limit of infinite dimensionality.
The single particle spectral density as well as the AC conductivity for various interac-
tions and fillings are computed. We see that the metal-insulator transition in this model
at half filling proceeds through the opening of a gap. No coherent features at the Fermi
level emerge. The transfer of spectral weight occurs simply through the diminishing of
the number of doubly occupied sites as the system is doped. We furthermore establish
the existence of a region in which the renormalized f electron energy is pinned to the
Fermi level.

In Chapters 4 and 5 we have studied the Hubbard model at and away from half



filling. As compared to the Falicov-Kimball model, this model is characterized by two
energy scales: broad, incoherent features at high energies, as well as a narrow quasipar-
ticle resonance at the Fermi level. The metal-insulator transition occurs through the
continuous narrowing of a quasiparticle peak at the Fermi level. Using the framework
outlined in Chapter 2 we establish the coexistence of metallic and insulating solutions
over a finite range of interactions U and chemical potential y, in agreement with the
results obtained using the Quantum Monte Carlo method and perturbation theory. For
the first time we are able to unambiguously show that the metallic solution is always
lower in energy, and that the transition at zero temperature is therefore of second order.
This numerical result is backed by analytic considerations.

We also study the transfer of spectral weight, as well as the position of states induced
by doping the system. Since for moderate values of the interaction we find that these
are induced in the gap, this is of high experimental relevance. We see that while the
method we are using is extremely successful as long as the distance to the critical region
is finite, it fails close to the transition and does not enable us to study critical, as well as
low temperature properties. It is the interest in exactly these regimes which motivates
the development of the self-consistent projective technique in Chapter 6.

The self-consistent projective technique uses the separation of scales in the problem
to our advantage: It enables us to eliminate the high energy contributions completely,
and reduce the full problem to an effective problem having a single energy scale only.
The latter is thus considerably more amenable to analytical as well as numerical studies
and provides us with a powerful tool to study the critical region with unprecedented
accuracy, and determine the ezact critical properties. The method is general and can
be applied to any problem exhibiting a separation of scales. Its generality and success
furthermore derives from the fact that the dependence of the low frequency part on
the high energy features is weak, such that a phenomenological knowledge of these is
sufficient to obtain qualitatively correct results for the critical properties. It is therefore
in the spirit of the familiar Landau-Ginsburg theory of phase transitions. Chapter 6
provides the formal development of the method for the case of the Hubbard model.

In Chapter 7 we illustrate the power of the method by applying it to the study of



the critical properties of the Hubbard model. In the half-filled case we find that the
resulting effective problem is an intermediate coupling Kondo model. For the first time
we are able to obtain the accurate value of the critical interaction, U,., and determine
the spectral function at the critical interaction. We are also able to compute ratios
of divergent quantities, like the ratio of specific heat coefficient and linear term in the
specific heat (generalized Wilson ratio), the ratio A/v2, where A is the coefficient of the
quadratic term in the resistivity, as well as a generalized Korringa ratio. Connections
with experiments are made.

The corresponding analysis is done away from half filling, in which case we again
obtain an intermediate coupling effective Kondo model. Due to potential scattering the
Kondo coupling is reduced with increasing interaction strength. We are able to deter-
mine exactly the critical y., the position of the quasiparticle resonance for infinitesimal
doping, and establish that the resonance for small doping is always separated from the
band. In particular, for intermediate values of the interaction doping induces states well
in the gap. The method thus puts our previous result on a rigorous footing. Spectral
functions, Wilson ratio, as well as A/vy? are obtained. The analysis of the approach
to the critical point allows us to determine the slope of the quasiparticle weight as a
function of U — U, and p — p., respectively.

In Chapter 8 we analyze the properties of the Hubbard model at finite temper-
atures, using the full model as well as the self-consistent projective technique. The
self-consistent technique in this case enables us to reach temperatures which could not
be accessed reliably using any other method. We find clear Fermi liquid behavior at
low temperatures and observe the emergence of a new low energy scale dominating the
low temperature behavior. Analytical as well as numerical arguments show that this
scale is set by the “Kondo temperature” given by the energy difference between ground
state energy and energy of the doublet state in the subspace with one less particle.

Based on this success, we are therefore convinced that the method can be used
to address many of the open problems in the field of strong electronic correlations,
e.g. the breakdown of Fermi liquid theory [118, 119] and superconductivity [61, 40].

Applications of the method to other problems are currently under investigation [120].



We conclude the thesis by proposing a model which enables us to mimic the physics
which results once corrections of order 1/d are considered. In particular, it allows us
to study the competition between Kondo and RKKY interactions. We furthermore
observe that the pinning condition of the infinite dimensional limit gets weakened once
charge fluctuations are considered. Using the techniques developed in this thesis, a

detailed study of the critical behavior of models of this type is within reach.



Appendix A

Effective Low Energy Operators

A.1 Coefficients of the effective F, operators

Defining the matrix elements

M) () = (ulfslo")

M) = (lfolo')
where {|p)} are high energy states of H,¢, and the expressions
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Here we have used the fact that due to the fact that the states
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Analogously, the triplet states { |T—) = \/%E(fﬂ L=l Al L), A1 1) } lead to
the identity
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Since M and A depend on p we have (for notational transparency) ordered them

such that the left matrix element depents on y; and the right one one ps,.

A.2 Coefficients of the effective Hamiltonian # (3"

Using the same definitions as in the previous sections of the Appendix we obtain for

the coefficients entering the effective Hamiltonian (6.63)
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A.3 Coefficients of the transformed number operator N,
The transformed number operator (6.76) is given as
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Appendix B

Determination of the Critical Behavior: A 1+ 1 Site Toy
Anderson Model

Some insights into the Mott transition as well as the transfer of spectral weight in
the Hubbard model in infinite dimensions can be obtained by examining the behavior
of a simple 1+ 1 site toy Anderson model, in which the conduction electron bath is
represented by a single site at the Fermi level.! While this has poles at the Fermi
level, as well as at high energies, implying that we cannot demand self-consistency
rigorously, we can impose self-consistency for the low frequency part. This leads to
a qualitatively correct approximation to the low frequency results, as can be seen by
solving the corresponding projected toy model as done in Appendix D. It therefore
gives a good first-order description of the transfer of spectral weight, whose non trivial
aspects are solely due to the binding of a singlet at low frequencies. This can be seen
from the solution to the insulating toy model given in Appendix C.

The 1+ 1 site toy Hamiltonian is given as
H= Z(V(c:;fa + h.c.) — Hf;rfa> + Ungng,. (B.1)

We want to obtain the low energy contribution to the Green function to order (V/u)*
exactly, i.e. all terms of order V4 are kept, in order to be able to study the critical
region (as we have seen, this implies that we need the non-linear terms).

We will use the following notation for states: |o;0) = f1|0), |0; 0) = ¢f|0) with the

ordering | 1}; 1) = f1/]elc][0).

'If the high energy states are integrated out using the self-consistent projective technique, this
becomes equivalent to the 1 + 1 site projected problem in which the high energy states are the high
energy states of the impurity site only. Consequently, it leads to the same low energy behavior. The
corresponding projected problem is worked out in Appendix D and agrees with the solution to this
problem when expanded to order V*. This provides a non-trivial check on the higher order contributions
to the effective Hamiltonian.



Ground State
Since we are interested in contributions to order V*/u?, the best way to proceed is
to solve the problem exactly and expand to the order desired at the end. We diagonalize

exactly the lowest energy singlet state

152) = %u 11— 1 41) (B.2)

and the “empty” state |0; 1)), yielding the zeroth order ground state
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We can easily obtain the first order ground state energy as

1 4Vv'2
B = —Z(u4/pu? +8V2) + B.7
s = gtV ) Ny (U = 2= E(g)-) (B1)

and the ground state wave function to the order necessary as

|95) . ( + il )152)
S =
’ NN AEF) Ny (U =3/2n+ A/2)

V2V 212

+ 1-— 0;
E(o)- ( ANy (U = 3/2u + a2l
V2v 2V2

U—3/2u+A/2(1_ (U_3/2H+A/2)2)IN,O>) (B-8)

where N2 =14 2V

(U—3/2utA/2)7"



Excited States

The determination of the Green function using the Lehmann representation now
requires the states in which one particle has added to the ground state (particle exci-
tations) and the states in which one particle has been removed from the ground state
(hole excitations). Since the system is rotationally invariant, we can focus on the up

Green function defined as

n | s)|? n s)|?
Giliw) = Y — ¢ @g—ggs) - |J<r !glg—>]|5gs)' (B.9)

We thus need the states having overlap with fTT|gs> and fy|gs)
N=1 particle, S, = —1 subspace
The only two states in this subspace, | |;0),]0;{), can be diagonalized exactly, giving

the exact eigenstates

14 = 000 - 51 L0 (B.10)
1) = 0+ 10 (B.11)

where N? = 1+ 1= and Fiz = L(—p+ /32 + 4V72).
1_
N=3 particle, S, = 1 subspace

The two states | T;11),| T1,1) can be diagonalized exactly giving the exact eigen-

states
1 Vv
3,20 = B+ g 11D (B.12)
1 Vv
3,4 = 0N - g I ) (B.13)

where N2 =1+ % and Fzy = $(U = 3pu+ /(U — p)? +4V?2).
Green Function

We can now determine the Green function, which is found to be

1 2 (1_ 2V?2 ) 2
G ] _ V2 (U—QM—ES—)2 E(O)— AN(20) (U—3/2u+A/2)
(iw) = 2N2N§N(20) iw — (F3- — Eys)

(L . 2 (1 _ 2V?2 ))2
V2 Ei_ U-3/2u+A/2 (U-3/2u+A/2)2

QNQNIZN(ZO) iw~+ (Eh- — Eyy)

+ (B.14)



1 2v? 2 1 2v? 2
2N2N§N2 (1 + E(O)_(U—2;L—E(0)_)) 2N2N12N2 (1 + El_(U—Z#—E(O)_))

(0) (0)
+ . + -
iw— (Esp — Eys) iw+ (Evg — Eys)

The poles and weight can be read of readily using the expressions for the energies
obtained in this section.

The lowest excitation energy within the N = 2 partice subspace is given as

AFtrivlet=singlet — /2 — 8V2 ~ ;. The lowest hole and partice excitation are re-

spectively given as AE™"® = 1(—\/u2 +4V2 + /2 + 8V?) =~ V72 and ARporticle —

LU =2u—/(U—=p)? +4V2+/p? +8V?2) = % (Here the expansions are only valid
near the critical point, i.e. for vanishing V.) We see that F3_ — E,; and Fyj_ — Eg;
are of order V2/u which sets the low energy scale of the problem determining the low

temperature behavior. This is elaborated in Chapter 9.

To determine the critical behavior we impose self-consistency, i.e. require G = ‘Z/—j
Close to the critical point, we can expand in V/u and obtain, using {2 = 1/4 and

omitting the high energy bands, the condition

1 = E[LJFEJFL
8L(U—p)?  p? (U —p)
o 29 29 48 48 44
- <(U—u)4+u4+u3(U—u)+M(U—u)3+u2(U—u)2)]' (B.15)

As mentioned before the same condition is obtained from the projected 141 site problem

analyzed in Appendix D, if the only excited states entering the “Kondo coupling” are
the high energy impurity states.

Limiting Cases

In the half-filled case in which g = U/2 we immediately obtain the critical U
for which the weight of the quasiparticle resonance V2 goes to zero. Setting V = 0 in

Equation (B.15) implies that U, = 3. The quasiparticle weight close to the transition is

obtained from (1 — 4‘%2)% =lasV?= %UC(UC — U). We see that the quasiparticle
weight vanishes linearly with a slope s = —2U./(11D) = —0.55. This compares rather
well with the exact value sc;qc: = —0.34 obtained in Chapter 7, if one considers the
drastic nature of the approximation.

It is amusing to note, that the (wrong) result obtained in this section almost coin-

cides with the result obtained from the four boson approach of Kotliar and Ruckenstein



[32, 81] which can be worked out easily in the Hubbard model. This yields a double
occupancy d? = (1-U/U.) /4, a quasiparticle weight 4V2/D? = 8d%(1—2d?) where on a
Bethe lattice U. = 32/(37). Taken together this implies a slope sa4Boson = 3/167 = 0.59.

In the case of finite doping we obtain the critical u. for which the quasiparticle

weight vanishes. This determines the position of the Kondo resonance at infinitesimal

doping. For V =0 Eq. (B.15) reduces to

5 5 8
U2+ n: T Wr-pr T Rt n0R2-0

=38, (B.16)

where i = p — U/2 such that g2 = L(1 4 U2,/10U% + ). While for interactions
U < 4.3D the resonance is clearly outside the lower or upper Hubbard bands, for
U — oo fio = £(—.874 U/2), i.e. the resonance is found inside the lower band. The
latter is again is in disagreement with the numerical results, which is not surprising,

since the model does not contain any information about the high energy bands.



Appendix C

Solution to the Insulator: A 2+1 Site Toy Model

A minimal model for the insulating state is given by an impurity coupled to an effective
bath consisting of two sites, representing upper and lower Hubbard bands, respectively.
We thus consider a Hamiltonian in which the upper band is given by a pole at and
energy ¢ = U — u, while the lower Hubbard band is represented by a pole at €~ = —pu,
such that the separation of the bands is U. The explicit form of the Hamiltonian

therefore is

Hiet = 3 (Veclo o4 Vel bt (U= )l peso = lel yeo b £102) ) + Uniny,
’ (C.1)
We will use the following notation for states: |impurity; lower band, upper band)
where the ordering of the operators is such that the fully filled system is given by the
state fTTfJCT—TCT—¢CT|-TCT+¢|O> =|1}; 14, T)). Our goal is to self-consistently determine the
Green function of the system to order (V/U)? in perturbation theory. The contributions
of order (V/u)? are treated exactly, such that the results become exact in the limit
U — oo.
Ground State Clearly, the ground state is in the sector with three particles and is
a degenerate doublet. When determining the Green function both ground states con-
tribute with equal weights and have to be traced over. The doublet can be determined

fully in perturbation theory and is given as

1 _
95,0y = 5= (I 1h0) + G5 i) = 101 o) (€2)
2 2 2 2
where Ng25 =1+ % and €, = —3u — %

In order to determine the Green function

n|flgs, o)|? n s, o)|?

277 \wn = (€0 = €g5) i+ (€n — €g5)




we need the states in the N = 2 and N = 4 particle sectors connected to the ground
state through action of f; or f{r

Particle Frcitations: N = 4

The states | 1];1J,0) and |S4) = ﬁﬂ 1,4 — 1414, 1)) are degenerate and have
to be diagonalized exactly before admixing other states perturbatively. This yields the

states
o _ 1 . :
|F4)" = ﬂ(l T¢7T¢,0>¢IS4>> (C.4)

with energies E;zoll) = U — 4 F v/2V,. These admix with the state

240 = 5 (Valostl, 1) - “sien)) (€5)

where Ny = (/VE+ V2/2 and |Sdex) = \/L5(| ) — | 1)), leading to the

Hamiltonian matrix

U —4u—2V, 0 —/VE+V2/2
0 U—dp+2Vy JVE+V2E2 |- (C.6)
—/VE+V2/2 VE+V2/2 2U — 4p

The small energy splitting between the states | F 4)(0) leads to the occurrence of terms

H,

in which Vi appears in the denominator when applying straightforward perturbation
theory. We thus have to be careful when determining the eigenstates to order V2/U?2.
By explicitly solving for the eigenvalues of H4 and expanding to order V3/U?, we obtain

the eigenvalues

VE+VE2 VoV, | VE+VE/2

Bra = U = 4uF V2V - C.7
F4 HF + T ( U WAV, U ) (C.7)
with corresponding eigenstates
L1 V24V2/2  VI4 v2 /2
4 = — — + + + 0
g N4<\/§( Ty T It >:FfU >
1 Vi4VZ2 VE+VE)2 vy
A )I54) + |0;Tm¢>) (C.8)
V2T 22V, U 207
' V24V2/2)  (V24V2/2
with 1\73:1_1_( g;fl_]é) +( +-I[—J2_/)‘

Other states contributing to order V2/U? are the triplet state

74 = (1 b+ 1 ith) (C.9)



and the S, = 2 state

[ 1511 (C.10)
with energies ey = U — 4p.
Hole Excitations: N =2, 5, =10
The sector consisting of two particles has a structure analogous to the N = 4

subapace. The states |0;71],0) and |S2) = \%O 151,0) — | i;T,O)) are degenerate
and have to be diagonalized exactly before admixing other states perturbatively, which
leads to the states

1720 = 2 (01.0)F152) (€11)

with energies E;zog = —21 F v/2V_. These admix with the state

1B2)) = (V2] 14:0,0) + E[S2ea) (C.12)

where Ny = /V2+V}/2 and |S2ez) = %(|O,T,¢> - |0;¢,T)), resulting in the

Hamiltonian matrix
—2u —V/2V_ 0 —\/V2+V}/2
Hy = 0 —2u+V2Ve  JVE4VE2 |- (C.13)

—V2HVE2 \VEeVE2 U—

By explicitly solving for the eigenvalues of H, and expanding to order V3 /U? we obtain

the approximate eigenvalues

V24V2E2 AV V24VE/2
By = =2uF V2V - (- + C.14
F2 HF i ( - o ) ( )
and eigenstates
Ly V24 V22 V24 VE)2 v
0= m\a § 010514, 0) £ —2—|$2
| :F> JVQ (ﬂ( + 2\/§V_U 2072 )| Ti/ > \/§U| e;z:)
1 VZ4V2/2 V24V2/2 s
V2 B §2) & ——[1;0,0 C.15
i \/5( 2\/§V_U 2072 )| > T | N >) ( )
N

Other states contributing to order V2/U? are again the triplet state

1

V2

72) = 5= (1 54,0+ 4:1,0)) (C.16)



and the S, = —2 state

1434, 0) (C.17)

with energies erg = —2u.



Green Function

We can now determine the Green function, which is found to be

1

G(iwy) = Z( (C.18)
1_ VIHVZ/2 | avy  VE4VE)2 14 VIHVZ/2  avy  VZ4VE)2 3v2

Vv U U U2 V2V U U U2 N i

w4 p— U +2V, iw+p—U =2V, iw—+p—U
1 V24V2/2 | ave | VE4V2)2 14 V24V2/2  ave  VE4V2)2 32

V2v_U v U? Vav_u T U2 yics

w4 p— V2V iw 4+ V2V w+p)

We see that upper and lower Hubbard bands are represented by three poles, respec-
tively, which are located at energies U — 4 +/V; and U — i for the upper band and at
—u +/V_ and —p for the lower band. This is in good agreement with the numerical
results even for larger cluster sizes.

In order to close the self-consistency, we have to collapse the respective three poles
and determine the new Vi. Since Vi << U the approximation involved is small. The

new Green function is then given as

V2—V2 V2—V2
Gliwy) = _< Uz : Uz ) (C.19)
2 w4+ i wH+u—-U
2 2
The self-consistency condition now requires that t2G = Wrﬁ + z:;/;p This can be

fulfilled only for V; = V_, which in turn implies that any transfer of weight is the result
of the presence of states at the chemical potential in the metallic solution.
The insulatinng solution can be used to evaluate the coefficients entering the self-

consistently projected low energy Hamiltonian. This is done in Appendix D.



Appendix D

The Self-Consistent Projective Technique: A 1+ 1 Site
Projected Toy Model

Qualitatively correct insights into the critical behavior of the Hubbard model at half
filling can be obtained by considering the simplest case of the self-consistently projected
effective problem (6.51), in which the low energy bath states are represented by a single
site at the Fermi level, i.e. with ¢ = 0. The high energy contributions in this case enter
solely via the coefficients Jpo; and Jgp;p, .

The case in which the high energy contributions are treated to lowest order, i.e.
consist of the high energy states |0) and 1)) of the impurity only, can be treated easily
to order V4. !

The effective low energy Hamiltonian (6.51) derived in Chapter 6 in this case reduces

to

oy) & V2 0
Hiy = —2V2IGEMS s g (g +ny)

— 4V4<#+i+ S )5§
(U—=p? w2 (U—p)  pU—p)?

n V4( g+ ) ()

- - n n
U—p\(U=p? " 2" pU—py)" "
—V4<#—{—i—{— + 2 )nn

U —p? " " 20 —p) (U —p)2) T

(D.1)

"Note that the critical behavior obtained from this approach is determined by the same equation as
the low frequency behavior of the toy 1 + 1 site Anderson model. We will therefore simply show their
equivalence and refer the reader to Appendix B for the consequences of the equation determining the
critical behavior.



The projected operators (6.65) assume the form

o= =V|G = 5 Dt e
1 2 3 2 5 3 .
- <U—,M_L ((U—,u)3+2,u3+21u((]_lu)2+2M2(U_H)))|¢><¢|T
1 1 2 3 2 5 3 .
T <U—u+ﬁ_v((U—u)3+u3+2u(U—u)2+2u2(U—u)))|¢><T|¢

s 1 3 3 5 o
<2(U —0® "o T o = T (U - u))>| A

s 3 1 5 3
-V (2(U — u)3 + 2,17 + 2(U — p)? + 22 (U = N))>| L Inegeq

g+ - ! NetC
-V <(U_H)3+H3+,M(U—,u)2 +H2(U_H))>|\L><T| ct ¢:|- (DQ)

The Hamiltonian can be diagonalized exactly and the low energy Green function is

obtained as

1 1
'ou/ ) n = F FT FT F
Glow (iwn) (g5] Vi = (i = Fo) tlgs) + (gs] "o+ (H = Fo) tlgs)
V2 [ 5 5 8
X oot et D.3
2iw, LU = )2~ p2 (U —p) (D3)
_V2< 29 29 48 48 M >]
U=w* pt " wU =) pU—p)? w2 (U-p)?/))

We thus see immediately that by imposing self-consistency we recover the result ob-
tained in (B.15).
A more accurate treatment can be achieved easily in the half-filled case, in which

Jpot = 0, such that the high energy contributions can be parametrized by Js;m =

2(1 |f“LHat£Eat f;r| 1) only. This can be computed using the 2 4 1 insulator solved in

Appendix C and one obtains

2D 6V2
g2+ - (14 —2ahy, (D.4)

spin - 7 U2

Since g = U/2 at half filling, and Jy,;, = —2% if the high energy states are treated

6V2
to lowest order, we just have to make the replacement % — %(1 + %ﬂ) in the

equations for Hamiltonian and operators.

The modified self consistency equation then reads

9 2D 6V2 . 2D 6V2 .
1=2= 2 1 1gn N2 1-11 2 2 1 1gh\2 ) D.
D0y 4 Bty v 2Py g Dy 023



At half filling the high energy spectral weight and thus V}; ), are given from the sumrule

D?/4 = 2Vh2igh + V2, such that we finally obtain the low energy spectral weight as
w=4V?/D* = 0. 52 - 5 (Ue=U) = 0443 (U U)? +o((U, — U)?). (D.6)

The value of U, is obtained as U, = 3.22, which is too high compared to the correct
value obtained numerically. This can be attributed to the fact that the low energy part
of the 1+ 1 toy model yields a spin-spin coupling of <§ §) =—3 Wthh is considerably

larger than the numerically obtained value at half-filling of -0.46.
(1 24+1) g g2+

spin | a3 obtained from the 241 insulator we can also obtain

By using J;

an approximation to the critical p.. These coefficients are given as

J(1’2+1) . D 2DV2 _ 3DV2
pot - U- (U —p)? 2uU?
DV? V2
) 9<1+ B iy
2\ p= V2V + 5% p+ V2V + 05
D DV? 2DV? 1 1
L L L
U—p 2002 U—-p'U (U —p)

Vo _av®: . _ v _3v?
o — e | 1= 2U2> (D.7)

2 <u—\/§V—I—% p+V2V + 2

The critical g, can then be obtained using Eq. (7.40), i.e. the condition

1= —1<J(1)2(§- - 3/8) — 2j0)2 > (D.8)

2 spin 8 pot

which together with Eq. (D.7) this leads to the asymptotic value of u. for U — oo,
pu = 1.03, i.e. the resonance is just outside the band. Again this is modified, if the

correct spin-spin coupling is used.



Appendix E

From Continued Fraction to Partial Fraction —
Determining the Poles and Weights of G

As shown in Chapter 2 the single particle Green function can be computed easily using

a continued fraction representation, leading to particle and hole contributions of the

form
h h
Tk —— L S (5.1)
H-F N b/ '
w+ ( 0) 5 — ag/h + EO _ 1 T2
z—a?/ Mt Ep- ——2——
1 —ap/hiEO—

where p (h) denotes particle (hole) contributions. In order to obtain information about
the position of the poles of the Green function, we would like write this in form of a

spectral representation as

ity = 5 Gl 87 E£2)

(o
0 w:F(En_EO) 7

1
0 w:F(H—E0)|

i.e. we would like to determine the £, and the weights <fg/h|n><n|f§/h).
This goal can be achieved easily be noticing that the continued fraction representa-
tion of the Green function corresponds to a basis in which the Hamiltonian is tridiagonal,

i.e. has the form

PPy A Y 0
AT 3 o
0 A e <y N A .
Hrp = : 2 The D (E.3)

bp/"

o o2/ xR,
where the states |f,,) are arranged in the order n = 0,...n and where (f,,|f;) = 0 for

t < n, i.e. the a given state is othogonal to all previous states.



We can now diagonalize the tridiagonal Hamiltonian, i.e. find a basis transformation
m) = 3 el ) (5.4
j

(If;) = ——==—=|f;)) such that the |7,) are eigenstates of the Hamiltonian with corre-

VA1)

sponding eigenvalues F/,. This enables us to obtain the Lehmann representation of &

as

orh = 2 ) (22
Gt =37 iz}jF(%uiEoo) (E.5)

using (E.4) and using the fact that (f,|f;) = 0 for ¢ < n we thus obtain

[hy gp/h
vp/h: Oéu0|< g |f0 >| E
R Doy oy o (E6)

1w

We thus see that poles and weights are simply determined by diagonalizing the tridiag-
onal matrix, which is accomplished easily numerically, using i.e. the Numerical Recipes

routine TQLI [68].



Appendix F

Stability of d = oo Solutions

In this appendix, we describe a method that can be used to examine the local stability
of the d = oo self-consistency equations, Eqgs. (9.2)-(9.5). The method is based on the
observation that these equations can be derived using a variational approach, by ex-
tremizing a certain functional, in analogy with standard Landau-Ginsburg formulations
of mean-field theory.

In the present case, this functional takes a form

FIG, {iwn)] = =35 32 3 tr[GE wn)] + Finpl G ()] (F.1)

where Fi;,,, |Gy (iw,,)] is the free energy of the two-impurity model as defined by the
action of Egs. (9.4) and (9.5)

1 .
Fimp[Go(iw,)] = —Eln / De* Dee™Sess[Galivn)], (F.2)

Here, we consider Eqs. (9.4)-(9.5) as a definition of the effective action, so that
F[G, (iwy,)] is a functional of a arbitrary, yet unspecified function G, (iw,).

In analogy with conventional Landau-Ginsburg formulation, we think of G, (iw,)
as an order parameter (function), and the mean-field equations are then obtained by
extremizing the above functional with respect to variations in the form of G, (iwy,).

The extremum condition reads

SF[G]
m = O7 (F3)
giving
G, (iwn) = G (iwy,). (F.4)

Here, Gf,mp(mn) is the local Green function of the impurity model corresponding to a

fized “bath” Green’s function Gy, (iw,,)

G (jwn) = (65 (i) €0 (i0n))s., () (F.5)



Note that Gi™? (iw,,) is also a functional of G, (iw,).

Obviously, Eq. (F.5) is identical to Eq. (9.3), so that we recover the d = oo the
self-consistency conditions Eq. (9.2)-(9.5).

Before going further, it is worthwhile to comment on the physical interpretation
of the functional of Egs. (F.1)-(F.2). Using the expressions for the free energy of
d = oo models [53], it is not difficult to show that our functional reduces to the free
energy, when evaluated for the value of G, (iw,) corresponding to the solutions of the
self-consistency conditions, Egs. (9.2)-(9.5). We conclude that F[G] represents a free
energy functional, in the usual Landau-Ginsburg sense.

When the self-consistency conditions are solved numerically, one typically makes an
initial guess for G, (iwy,), defining the effective action of the impurity model using Eq.
(9.5). The impurity model is then solved by any method available, and a new value
of G, (iw,) obtained from Eq. (9.3). In numerical analysis, this iterative procedure is
known as the “substitution-iteration method”, which is repeated until convergence is
reached. In the following, we prove a general theorem that such an iterative procedure
converges towards a local (nearest) minimum of the free energy functional. We note
that the set of all possible functions G, (iw,) form a vector space (more precisely an
infinite dimensional Hilbert space), and for notational simplicity, denote these vectors
by x.

We define the gradient vector field g(x) as
g(x) = Ox F[x], (F.6)
so that Eq. (F.3) can be written as
g(x)|x=x, = 0. (F.7)

Here, x, corresponds to the solution of the self-consistency condition, i. e. a local

stationary point of F[x]. If we define further the quantity
£ =x—g(x), (F.5)
we find that at the stationary point

X0 = £(%,)- (F.9)



In this language, the “substitution-iteration’ search for the solution can be written

as
x(n+1) = f(x(n)), (F.10)
and the solution corresponds to
X, = nll)ngo x(n). (F.11)

Note that the increment of x(n) can be also written as
Ax(n) =x(n+1) —x(n) = —g(x(n)). (F.12)

As we can see, the iteration takes the vector x in the direction opposite to the gradient,
i. e. “down the hill” | so that the iteration converges only in the vicinity of a local
On general grounds, we expect the physical solutions near first-order transitions to
be locally stable. We can check this stability, by making a small modification in the
initial conditions that produce the respective solutions. More precisely, we should first
find the convergent metallic and insulating solutions x and x!. We can then examine
the stability of, for example, the insulating solution by re-starting the iteration search
from a new initial guess
xi(n =0)=(1- c)xg +exM (F.13)

o *

The solution is locally stable if for ¢ sufficiently small the iteration procedure converges

I

to x = x,. We can similarly check the stability of the metallic solution by choosing
c= 1.

In order to apply these ideas, we first test them in the well examined limit cor-
responding to ¢, = 0. We find that the metallic solution is stable throughout the
coexistence region, but that the insulating solution becomes unstable as T — 0. These
findings are in complete agreement with the well established fact [69] that U, isaT =0
critical point at which (upon reducing U) the insulating solution becomes unstable, and

a new metallic solution emerges. We can apply these ideas for ¢, # 0, in which case

both solutions are found to be locally stable, in agreement with a first-order scenario.



We conclude this discussion by an explicit construction of the “Landau-Ginsburg”
functional, which represents a nice illustration of the above stability considerations. To
do this, we note that in the case of the d = co equations, the gradient vector takes the

form

g = G"?[G] - G, (F.14)

which can be calculated by any method that solves the Anderson impurity model,
e.g. the YY approach [58]. Once the gradient is available, it is possible to determine
the evolution of F[x] along any particular direction in the x space. In particular, we
expect the physical solutions to be local minima, separated by an unstable solution
(local maximum or a saddle-point). It is thus useful to consider the direction (vector)

connecting the two solutions, which can be parametrized as
x(f) = (1 —O)x! +xM, (F.15)
The increment of F[x({)] can be expressed as a line integral
AF(f) = F[x(0)] - F[xI] = /01 det-g(x(0)). (F.16)

We can numerically compute this line integral by an appropriate discretization proce-
dure, and typical results in the #,; = 0 limit are plotted in Fig. (F.1). Here, we show
AF() for U = 2.5 and for several different temperatures. As we can see, at T' # 0 both
the metallic and the insulating solution are locally stable, but the insulating one be-
comes unstable as T'— 0, in agreement with our stability considerations. We also note
that as the temperature is increased, the free energy of the metallic solution (¢ = 1)
increases, until the spinodal is reached, where the local minimum becomes an inflection
point and becomes even locally unstable. Of course, this instability is preempted by

a first order transition, which in this case happens at finite temperature, in agreement

with findings of Refs. [12, 56].
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in steps of AT = 0.006. The inset shows the free energy difference between the two
minima as a function of temperature.
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