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ABSTRACT OF THE DISSERTATION

Correlated Electron Systems in the Limit of Infinite

Dimensions

by Marcelo J. Rozenberg

Dissertation Director: Professor Gabriel Kotliar

The limit of large dimensionality is considered for the study of strongly correlated
electron systems. Different numerical techniques are developed, and applied to the
solution of model hamiltonians. The solution of the Hubbard model is presented in
detail. The results are discussed in regard to the experiments in transition metal oxide

and heavy fermion compounds.
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Preface

This thesis is organized as follows: Chapter 1 contains a brief introduction to the sub-
ject. In Chapter 2 we derive the basic equations and introduce the numerical methods
developed for the study of the model hamiltonians. In chapters 3 to 6 we present in
detail the solution of the Hubbard model and discuss the results with respect to ex-
perimental data on transition metal oxides. Chapters 7 is devoted to the study of the
optical conductivity in the Hubbard and Anderson lattice model. This issue is consid-
ered in regard of the experimental results on various correlated electron compounds. A
certain amount of overlap between chapters has been allowed in order to make each of

them essentially self-contained units.
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Chapter 1

Introduction

1.1 The problem of strong correlations

The discovery of exciting new materials like the high temperature superconductors and
heavy fermion systems has revived the interest in the strong correlation problem in
condensed matter physics.

At the heart of this problem lies the interplay between the localized and itinerant
character of the d and f-electrons in the transition metal oxide compounds. This fasci-
nating issue has been actively studied and debated since the late forties with the early
ideas of Mott on the metal-insulator transition [1].

The model hamiltonians that we consider here for the study of the effect of corre-
lations, are variations of the one originally introduced by Hubbard in a series of three
papers in the sixties [2]. Their solution and the extent to which they are able to account
for the rich phenomena that are experimentally observed, mostly remains a standing
challenge to theoretical solid state physicists.

A crucial aspect of this class of problems is that perturbation theory cannot be
applied straightforwardly. It is usually the relevant physical case the one where the
interaction term is not small. We are thus in a situation where we lack of a natural
small parameter for a controlled expansion, and the validity of the procedure becomes
unclear.

One can attempt different alternatives to go beyond the traditional perturbative
approaches [3]. The underlying idea is to modify the formulation of the model in such a
manner that, although a priori may seem unjustified, will allow us to get new physical

insights and possibly obtain a solution that can shed some light on realistic situations.



These alternatives include the change of the representation of the spin group, from
the fundamental two dimensional representation to a larger one, but keeping the sym-
metry group to be SU(2). In particular the case where the size goes to infinity can
be studied and corresponds to a semi-classical limit. Another possibility is to modify
the symmetry of the group. For instance, one can extend the spin SU(2) symmetry to
SU(N), and consider the limit where N is large.

A third option is to modify the dimensionality. Actually, most of the exact results
that are available for the kind of models that we are considering, were obtained from
their one dimensional formulation. The Bethe Ansatz technique is very successful in
the consideration of this class of problems. Although relevant to real physical systems
such as one dimensional organic compounds, the results do not seem to be particularly
enlightening for the case of the regular three dimensional systems, or even the high T,
superconductors whose basic physics is generally considered to be two dimensional.

On the other hand, one can consider the opposite limit, i.e., the one where the di-
mensionality goes to infinity, which was originally proposed by Metzner and Vollhardt
[4]. The interest in the formulation of the many body problem in this limit, has conse-
quently led to a novel mean field theory of the strong correlation problem [5, 6, 7, 8].
This theory is similar in spirit to the familiar Weiss mean field theory of spin systems.

The subject of this thesis is a detailed investigation of the results of this last approach
to the study of the Hubbard model and some of its variations. We will see that a full
solution of the model is possible in this limit, and in the latter chapters we will address

the question of its relevance in the light of recent experimental results.
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Chapter 2

Methodology

2.1 Derivation of the Mean Field Equations

Here, we derive the set of self-consistent equations that define the mean field theory that
results from the co — d formulation of the model. They follow from the mapping of the
lattice model onto an impurity problem (i.e. a 0+ 1 dimensional model), supplemented
by a self-consistency condition. For definiteness we consider here the Hubbard model.
Generalization of the mapping procedure to other models is straightforward [4].

The Hubbard hamiltonian reads,

e e Dy~ ) (2.1)
i\ i

where c} is the creation operator on the site ¢, (¢,7) means summation over nearest

neighboring sites, and summation over repeated spin indices is understood. The pa-

rameter ¢, ; corresponds to the hopping between sites ¢ and j, U is the local repulsion

between electrons on the same site, and u is the chemical potential (x = 0 in the

particle-hole symmetric case). In the limit of large dimensionality (d — o0), as was

first noticed by Metzner and Vollhardt, the hopping parameter ¢ is rescaled as ¢t — ﬁ

for the kinetic and potential energy to be of the same order and obtain a non-trivial
limit [1].

The mapping procedure is most conveniently carried out in the Path Integral for-

malism. We begin by writing the partition function of the lattice model and singling

out a particular site that we call 0.



1 1
L = (0 = p)eos +U(nor = 5)(no, — 5) +
1 1
 2ltochotir + tioclyeos 1 elo(d: — pei + Ulmig = 5)(my = )} +
i#0
+ Y tijel,e, (22)
(i70,5#0)

Now, we have to integrate out all the degrees of freedom of the sites other than
0. The partition function can then be factorized and the formal integration can be

performed to obtain,

ZO = /D[Co] e_SD
So = -— Z//deT' el {0, —p+ Z toiéijth} co +
- )

(i#0,j#0
1 1
+ U [ dr(nog - 5)(mor - ) (2.3)
G is generated in this process and corresponds to the Green function of the lattice

model with site 0 removed (“cavity” Green function). We can relate G, to the full Gy,

by subtracting those paths that visit the origin,

. Gi0Go;
Gij = Gij — ﬁ’ (2.4)

where G is the local Green function of the site 0, and its presence in the denomina-
tor avoids double counting. This expression is similar to one derived in Hubbard-III,
establishing an interesting connection to that work [3].

To proceed further we should now define the particular type of lattice where the
model is defined. A natural choice would be, perhaps, a hyper-cubic lattice which is
the natural extension of a cubic lattice to the case of high number of dimensions. The
free density of states that corresponds to that lattice is of gaussian form [1]. This has
the implication of the presence of arbitrary high energy states in the exponential tails
of the density of states, which is obviously unphysical. Another possible choice is the
Bethe lattice of connectivity d. A schematic representation of this lattice is shown in
figure 2.1. In this case, the free density of states results a semicircle, which not only is
bounded but also correctly captures the square root edges of the free density of states

of the realistic three-dimensional cubic lattice [2]. This density of states is also the



Figure 2.1: Bethe lattice (Cayley tree) with connectivity d = 2. The effective action is
obtained by integrating out the d.o.f. of sites other than 0. When this site is removed
the Cayley trees branching from the n.n. become decoupled.

same one considered in Hubbard’s classical works [3]. Here, we will consider this type
of lattice, which we believe can better capture important features of finite dimensional
situation.

Therefore, we immediately realize that in a Bethe lattice the Green function between

the sites 7, j with the site 0 removed G;;, becomes diagonal and consequently identical

ijs
to Goo. This is because removing the site 0, has the effect of decoupling the Cayley
trees that branch out from sites ¢ and j (see figure 2.1).

Thus,
Gij = Gijbiy; = Gisbiy = Goolyy. (2.5)

Replacing (2.5) into (2.3) and taking to; = t, we finally obtain the effective action

at the site 0,

Zy = /D[co} e~ e
So = Z/Oﬂ /(:j drdr'cl(T)G5 (T — m)eo(T) +
B
+ U [ drtno(r) - () - 3) (26)

with,

Gy (iwy) = iw, — p + *G(iw,). (2.7)

These last two expressions represent the mapping of our original lattice model,



onto an single impurity problem (2.6) with a self-consistency condition (2.7) (note
the to simplied notation Gy = Goo). In the derivation, we have implicitly assumed
a magnetically disordered state and accordingly the spin indices were dropped. The
extension of these equations to state with magnetic long range order is straightforward
and will be considered in later chapters.

Notice that the central object in the present scheme is a quantity G, which plays
the role of the effective field in an analogy to mean field theories of magnetic systems
[6]. Another important point to note is the similarity of the local effective action to
the corresponding one for the f-electrons in the Anderson single impurity model. In
particular it is interesting to see that the role of the hybridization function that describes
the conduction band in that model, is played in this case by the local Green function
itself. This analogy will be essential for the development of practical methods for the
solution of the problem. Also, and equally important, the vast preexistent knowledge
of the physics of impurity models will be a continuous source of physical insights.

The system of equations (2.6-2.7) has to be solved for the unknown G itera-
tively. As we demonstrate below, the Green function of the impurity model G(iw,) =
- foﬁ e“r(T,¢(7)c(0))s.,, becomes the local Green function of the Hubbard model only
once self-consistency is attained. We should think of the local Green function G as a
functional of Gy. Therefore, one has to look for of an infinite number of self-consistent
solutions, one for each of the frequencies (modes) of G,.

From the impurity problem (2.6), an impurity self-energy can be defined through
the Dyson’s equation

Simp = Gyt =GN (2.8)
Combining this expression with the self-consistency condition (2.7) gives,

G(iw,) =

(2.9)

2
iwn = Bimy + 1 5gn(w,)/D? + (n + iZiny )
where D = t/2 is the half-bandwidth of the semicircular free density of states of the
lattice.
We can easily check that at the self-consistent point, the impurity self-energy co-

incides with the Hubbard model self-energy [5]. This follows from the locality of the



self-energy in the limit of d — oo [1].
By definition, the & dependent Green function reads,

Gk, iwn) = - ! (2.10)

Wy — € — 2local(i"‘-)n) ‘

We can obtain the local Green function performing the integration over momenta.
This is easy to do in the limit of infinite dimensionality. The multidimensional integra-

tion becomes the one-dimensional integral over the variable € [1],

Groalion) = [ 9 g (2.11)

—00 an — €— 2local(i"‘-)n)

Using the Bethe lattice free density of states p°(¢) = %5 /1 — (5)? we obtain,

Grecan (i) & (212)
ocal\?Wn ) = 7 A = . .
: : Wy — 2local ‘I’ 1 Sgn(wn)\/Dz ‘I’ (wn ‘I’ ZE]local)Z

Comparing (2.12) with (2.9), it follows that at the self-consistent point,
2local = 2z'mpa (213)

and,

Glocal == G,'mp. (214)

We can now solve for G to obtain,

2
i, + 2(Go) + 1 sgn(w@n) /D + (@n T 2(Go))

Goliw,) = (2.15)

which can be used as an alternative self-consistency equation that relates Gq with X
and does not require the explicit calculation of the Green function during the iteration
process.

In the the next section we will present various schemes for the solution of the mean
field equations. Depending on the particular one, we will need to consider equation
(2.7) or (2.15).

It should be clear that the problem is composed of two parts: an easy one —
the self-consistency condition—, and a harder one —the impurity problem—. Dealing
with the first is mostly straight forward. For the second, we will introduce in what

follows three different numerical procedures. Lets emphasize here that there is no single



"most appropriate” method. Each one, as it turns out, is more suitable for the study
of different aspects of the problem and, more importantly, provide different physical
insights.

The methods we use to solve the impurity problem are quantum Monte Carlo
(QMC), second order perturbation theory (20PT), and a novel algorithm based in
the exact diagonalization of an effective cluster hamiltonian that is defined from a

parametrization of the Green function Gj.

2.2 Numerical methods

In this section we describe the numerical procedures. We will consider here the al-
gorithms at a formal level, indicating where the technical difficulties are. The source

codes can be found in the appendix.

2.2.1 Quantum Monte Carlo

This method for the solution of the impurity problem basically follows the work of
Hirsch and Fye [6]. It is implemented in the subroutine impurity in the code in the
appendix. This is a finite temperature calculation with the Green functions being

antiperiodic functions of the imaginary time 7
G(r+8)=-G(7) (2.16)

with (8 being the inverse temperature (kg = 1).
The starting point is the Functional Integral formulation of the problem. The par-

tition function reads,
7 = / Dle,clle” Yo DG (i )ea (F)HU YD ny(m)n(7) (2.17)

where the imaginary time is discretized in L “slices” of size A7, and the inverse tem-
perature is § = LAT.

To deal with the quartic term, we use a discrete Hubbard-Stratanovich transforma-
tion [7]

- ATUn i +(ATU/2)(ny4my) _ L 3 erstnmm) (2.18)
S=+1
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where A = arccosh(e®7V?). Performing this transformation at every time-slice, we are
led to a quadratic action, and the partition function becomes
7 = Z / Dle, cT]e_ Yo MG (T e (tHHA Y S(R)(ny(r)—n (7)) (2.19)
S=+1
with

G (r, ) = G, ™) + oAS(7)b; 1141 (2.20)

g

being the inverse propagator for a particular realization of the pseudo-spin field s =
(S(m1), ..., S(rz)). The origin of the 4, ./ is in the proper time ordering of the creation
and destruction operators [8, 9]. The process of discretization involves the introduction
of systematic errors of order A72U due to the Trotter break-up. As a working rule, one
should keep A72U < 1 to maintain their effect under control.

The trade of a quartic term for an extra summation on the auxiliary field s, makes
the action quadratic and allow us to apply Wick’s theorem at each time slice. We can

now perform the gaussian integration of the Grassman variables, to obtain
Z = Zdet[GT_l(s)} det[G[(s)] (2.21)
{s}

were {s} denotes the set of all possible field configurations.

In principle, the trace over the auxiliary field, would give the full interacting Green

function
Gy =Y G,(s) (2.22)
{s}

in practice, this involves a sum over 27 configurations, and more importantly each term
involves the inversion of an LxL matrix as follows from expression (2.20).

We can deal with the first problem by performing the sum over a smaller set N <<
2L of configurations, chosen with a probability distribution given by the Metropolis

algorithm.

(Go) = D Golss) (2.23)

The set of s; is obtained by starting with a randomly chosen configuration, and

attempting successive flips of the auxiliary field. The probability of accepting a new
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configuration is obtained from the change in the action produced by the flip of a single

pseudo-spin. We attempt a change
s=(5(m), ..., S(15), ..., S(m)) — &' = (S(m1), ..., =S(73), ..., S(7L)) (2.24)

and accept the new configuration with a probability R, given by

R = A5 _ det[GT(S)Gl(SI)]

= 3et[Gy ()G (5] (2.25)

The remaining problem is now the calculation of both a determinant and the inverse
of a matrix that differs in one element from a matrix for which these quantities are
known (c.f. eq. (2.20)). Following references [6, 8], we take the difference in the inverse
propagator produced by a single spin flip at time slice j to be 1 — e*5'(G)=5G), This
expression differs from the one that would follow from (2.20) in terms of order At?,
and we check that decreases the errors introduced by the Trotter break-up.

It is not difficult to see that the new determinant is obtained in terms of the old

one as

det[Go (5] = {1+ (1 = G(j,))(eM5D=5G) _ 1)} det[G, (s)]. (2.26)

The calculation of the inverse of a matrix, which regularly demands O(L?) operations,
can be efficiently obtained using the Shermann-Morrison formula [10]. The new inverse

can be thus calculated in O(L?) operations by

i — &, AS'-51) _
L)~ uulte D G, (2.27)

l
(1~ G(l, D) (0501 —1)

The obvious change of notation 7; = j is used to simplify the expression. This fast

G'(4, k) = GG k) + 3 1(f

matrix inversion is implemented in the subroutine gnew.

We typically perform 5,000 sweeps to the set of L spins, and store measurements
every other sweep to avoid auto-correlation. It is necessary to consider a number of
“warm-up” sweeps at the beginning of the procedure to thermalize the initial randomly
chosen spin configuration. We regularly make 500 warm-up sweeps. To prevent nu-
merical instabilities produced by the error build-up, a regular matrix inversion (O(L?)
operations) has to be performed about every hundred fast inversions. This regular

inversion is implemented in the subroutine gnewclean.
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Figure 2.2: The only diagram that contributes to the self-energy ¥ to second order.

Finally, the spin-spin correlation functions can be easily obtained from the auxiliary

fields by means of the identity [7]

(5:(1)5:(0)) = ((n(7) = n.(7))(n1(0) = m,(0))) = 1_@%@(7)5(0» (2.28)

which is valid for 7 # 0.

2.2.2 Second Order Perturbation Theory

This method basically follows the work of Yamada and Yosida [11]. The perturbation
expansion is generated by H; = U(n;—1/2)(n;—1/2), which causes all the contributions
from “tadpole” diagrams to vanish. Therefore, to second-order, only the bubble diagram
survives for the evaluation of the self-energy (figure 2.2). This diagram involves the

convolution of three GGy in Matsubara frequency representation

N(w) = -0 ) Go(w — w')Go(w + w")Go(w") (2.29)

w! oW

therefore, is numerically most convenient to perform a Fourier transformation of this
expression. We are, thus, left with a simple multiplication of three Go expressed in

imaginary time representation.

X(1) = —U*Go(1)Go(T)Go(~T) (2.30)
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It is worth noting here that the same expressions for the self-energy hold both in the
Matsubara and in the real frequency, T' = 0, formalism (with sums turning to integrals).

We typically need to consider 32,000 points for the frequency discretization of the
Green functions. This follows from the requirement of a high frequency cut-off of at
least a few times U, and the need to deal at the same time with the small energy scales
that are characteristic of the impurity problem. The emergence of small energy scales
is characteristic of impurity problems. Nevertheless, the change of representation (from
time to frequency and vice versa) can be very efficiently implemented using a Fast
Fourier Transform algorithm. In practice the computational limitation is not given by
the speed, but by the memory capacity of the platform.

A relevant point is the choice of an appropriate seed to start the iterative procedure.
A regular G, should be used to flow to the metallic solution. On the other hand, a
singular Gg ~ i (atomic limit solution) is an appropriate choice for the insulating case.
An other technical detail arises from the unavoidable need to use equation (2.15), since
in the perturbative approach the self-energy ¥ is a central quantity. A careful consid-
eration of the branch cut of the square root is essential. This is especially relevant in
the real frequency calculation. We were able to successfully overcome this problem by
requiring the numerical continuity of the first derivative of the Gy obtained from equa-
tion (2.15). In the Matsubara frequency case, it was enough to require the imaginary
part of the square root to have the same sign as imaginary part of the other term in
the denominator.

Another issue worth mentioning is that in the real time representation, the function
Go(t) decays, for long times, as ¢~*. Therefore, £(t) has long tails. Miiller-Hartmann
has proposed a clever procedure to avoid this problem. We have also implemented
it finding that the results remain basically unchanged respect to calculation with the
familiar causal Green function representation, that is implemented in the appendix, pro-
vided a large number of points in time/frequency are used. In general, when the Fourier
transformation of functions with long tails are involved, a more precise implementation
can be made with the consideration of “attenuation coefficients” [10]. However, since

their use will not produce any fundamental change in the results, we have chosen not
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to include it in our codes, to avoid any loss of performance.

The zero temperature (real frequency) calculation can be extended to finite tem-
perature by the Keldysh formalism. The implementation is straight forward, it merely
involves the consideration of an extended class of diagrams. Therefore, here, we just
give a useful reference [13].

The source codes for the real and Matsubara frequency perturbative calculation can

be found in the appendix.

2.2.3 Exact Diagonalization

Let us now finally turn to the novel exact diagonalization algorithm. We will consider
it in greater detail since it has especially been developed for application to models in
the limit of large dimensionality.

The basic idea is as follows. The initial insight is that the Green function G, can be
well represented by a finite number of parameters in a continued fraction representation.
We can then think of the parametrization of Gy as the definition of an effective non-
interacting hamiltonian H°. This hamiltonian consists basically of an impurity site
connected to an effective bath with hopping amplitudes given by the elements of the
parametrization. The iteration now proceeds by switching on the local repulsion Unn)
and then the interacting Green function G is calculated as as a continued fraction
expansion. As a result we obtained a parametrization of G that can be easily related to
anew parametrization of G through the self-consistency condition (2.7). The procedure
is iterated until convergence is attained.

Let us now consider the algorithm in more detail. A local Green function G(z), at
T = 0, of a cluster Hamiltonian can be obtained as a continued fraction expansion. To

do this, we first decompose G(z) into “particle” and “hole” contributions
G(z) = G7(z) + G<(2) (2.31)

with,
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G<(z) = (gs|c! )c|gs>. (2.32)

1
z+ (H — EO
where H is the Hamiltonian, E, is its ground state energy, and ¢ and c' are the de-

struction and creation operators at the local site.

The respective contributions can be obtained as the continued fraction expansions

1 (folfs)
P S I > 6 176
<f0 |Z_(H—E0)|f0> Z_I_Eo_ag— b1>2 -
Z+ED_G>_;+ED—¢12>—...
1 (folfs)
(fol f5) = : (2.33)
* 2+ (H - Eo) " z—Ey—a§ — b s

z—Bg—alf - —2——

— —a< =
s—Eg-al —...

where
f7) =clgs),  |f5) =clgs) (2.34)

and the coeflicients are determined recursively by

‘fn+1> = H‘fn>_an‘fn>_bi‘fn—1>a

a, = <fn‘H‘fn>a
b SELLIV LY R 2.35
" <fn—1‘fn—1> ( )

This procedure is implemented in the subroutines getfn and getabd in the code “exact
diagonalization” that is included in the appendix.
We combine this representation of the local Green function, with the self-consistency

condition (2.7) to obtain,

1
G = TR () - rG(a) (2.36)

Therefore, we can think of the G, as the impurity Green function of the Hamiltonian
of an impurity site in an effective bath Heff (figure 2.3). The bath is composed of two
chains of fictitious atomic sites with energies given by the als, and hopping elements
given by the bls. Explicitly, the effective hamiltonian reads

eff - Z Z Zaf f; fo bP z 10 za+hc) (237)

o p=>,<i=1

with {co,cl} = {c,c'} the destruction and creation operators at the impurity site,

by = %, and N the number of atomic sites on each chain. The construction of the

hamiltonian matrix is implemented in the subroutine geth.
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Figure 2.3: The cluster hamiltonian with the impurity site (black), and the effective
bath represented by 2 chains of atomic sites (white). The site energies and hopping
amplitudes are given by the parametrization of G.

The next step, is to switch on the local interaction term at the impurity site of the

hamiltonian
Heff = Hgff+HI
1 1
Hy = Ul =) = 3) (2.38)

and calculate a new interacting Green function at the impurity site. This Green func-
tion, of course, will be obtained as a new continued fraction expansion, and the whole
process is then iterated. As should be clear from (2.35), this procedure only requires to
compute the ground state and ground state energy from the hamiltonian (2.38). Since
H, 4 is a large sparse matrix, we have implemented a modified Lanczos procedure for
the calculation of the ground state and ground state energy [14]. This can be found in
the subroutine lanczos in the code in the appendix. It is possible that there is more
than a single ground state. In that case, some knowledge about the effective impurity
model is of great help. For instance in the case of an impurity in an insulating bath,
there will be two degenerate ground states in the sectors with spin +1. Therefore we
have to performed the Lanczos procedure twice, and then take the linear combination
of the degenerate ground states according to the symmetries of the particular model.
In general the ground state or states that are obtained from it by the action of
operators such as ¢, ¢, cfe, and H, will belong to a sector with a particular number of
particles and spin projection. Therefore, it is numerically advantageous to restrict the
corresponding matrix operations to the block that correspond to that particular sector

of the Hilbert space. The restriction to a specific sector is conveniently implemented
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by the construction of “pointers” that define the reordering of the basis within the
different sectors and “masks” that allow to restrict the matrix operation to only the
components that belong to the sector of interest. An implementation can be found in
the subroutine sector that defines the sub-basis within the sectors, the subroutine mask
that creates a “mask” given a particular sector and the subroutine hzvm which applies
the hamiltonian to a state using the corresponding “mask”.

We thus see that this numerical algorithm consists in the solution of the mean
field equations (2.6-2.7), through the self-consistent iteration of a set of parameters
{a7,b;, a7, b5} that define an effective hamiltonian H.,;; or, equivalently, the parametriza-
tion of G.

At this point it is worth noting the following remarks. The kinetic and potential
of energies can be easily and accurately obtained. To obtain their corresponding ex-
pressions, we first note that the effective hamiltonian is formally similar to the one
for the Anderson impurity model. Using relations valid for that model in combination
with equation (2.7), we can obtain the energy of the Hubbard model directly without

frequency summations. The kinetic energy per site of the Hubbard model is given as

Z 3 Gji(iw, e (2.39)

) twn

Taking the limit of infinite coordination number this reduces to

ot
ZG (iwy) 20", (2.40)

Wy

Using the self-consistency condition and the the fact that in the Anderson model

B - Z > o e (ealiwn)ey (wn) = Y balcheas + hec) (2.41)

o

where ¢! creates a particle at the impurity site and ¢/, creates a particle on a site
neighbor to the impurity. We can finally express the kinetic energy in terms of an

expectation value on the ground state

T = ZbaRe<gs|cf7cw|gs>, (2.42)

ao

The potential energy of the Hubbard model is simply obtained as

V =U(gs|nin|gs) (2.43)
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which also amounts to calculate an expectation value on the groundstate.

The local correlation functions can be easily obtained. One just has to construct the
corresponding | fy) similar to equation (2.34), and follow the same procedure as for the
Green functions (2.35). For example the local spin-spin correlation function is obtained

by acting on the ground state with the local spin operator

|fo) = (ny —my)lgs) (2.44)

and obtaining the corresponding continued fraction expansion for the correlation func-
tion, analogous to equation (2.33). The implementation of this calculation can be found
in subroutine getcorr.

Let us now make some final remarks. The number of poles in the calculated Green
function is in general larger than the number of sites in the chains of the effective
hamiltonian (N¢ + N¢). Therefore, in order to close the self-consistency, we make
the approximation of truncating the continued fraction expansion to length No. That
is, only the set {a;,b7,a7,b5} with ¢ = 1,..., No of parameters is iterated. This
approximation turns out to be well behaved, and the extrapolation to an infinite system
is possible, as will be shown in latter chapters. The numerical algorithm relies on the
fact that the continued fraction representation captures exactly the moments of the
energy of the hamiltonian, up to the order retained in the continued fraction (equal to
the length of the chains N¢). It can thus be thought of as a “moment by moment”
fitting procedure. The scheme has the advantage, respect to a similar one introduced
independently [15], that avoids the need for a multidimensional fit of the Green function
on the imaginary axis (see chapter 6). On the other hand, it presents the disadvantage
that it can be implemented practically only in the case of a semi-circular density of
states (Bethe lattice).

From a numerical point of view, a basic problem is to efficiently deal with large
sparse matrices, a compressed matrix storage procedure is needed. The particular
implementation used here consists in simply compressing the rows of a matrix in the
following form: we take, for instance, a row of the hamiltonian that is composed of

mostly zeros except for a few entries, and construct a new shorter row that will only
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consist of the non-zero entries in the same order as they appear. To keep note of the
actual position of the elements we also construct a “pointer matrix”, that is, a matrix of
integers that will have in each row, the original row index of the corresponding elements.
In the last component of the rows of the “pointer matrix” we write the number of non-
zero stored entries of the row. With this information, we are then able to perform fast
matrix multiplications, and equally important we save memory space. This procedure
is directly implemented in the construction of the hamiltonian in the subroutine geth,
getep and getcd. The matrix multiplications are performed by the subroutines czv, hzvl
and hzvm.

As mentioned before, the problem of the calculation of the ground state energy
(lowest eigenvalue) and the ground state (corresponding eigenvector) of a large sparse
matrix, can be effectively solved by the modified Lanczos technique [14]. The compu-
tational limitation is not speed, but the memory capacity of the particular platform.

Clusters of up to 10 sites can be considered in a workstation.

2.2.4 Comparison of the methods

To end this chapter, we illustrate how the solutions that are obtained from the different
methods compare. In figure 2.4, we plot the self-energy ¥(iw) calculated at the value
of the interaction U = 2.4D, that places the system in its metallic state (chapter 3).
Figure 2.5 shows similar results for U = 3.6.D, in the insulator state. A more thorough
comparison will emerge from the following chapters were the results of the model will

be presented in detail.
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Figure 2.4: The metallic solution self-energy 3., as obtained from the different methods
presented in the text.
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Figure 2.5: The insulator solution self-energy ¥, as obtained from the different methods
presented in the text.
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Chapter 3

The Mott-Hubbard transition

3.1 Introduction

Strongly correlated Fermi systems in infinite dimensions were introduced by Metzner
and Vollhardt [1]. They have received intensive recent attention because they are simple
enough that are amenable to exact treatment and at the same time retain some of the
essential features of finite dimensional models [2]. In this paper we will focus on the
Hubbard model :
H = —Ztijc;':,cja ‘|‘ZU”iTnil —,uan (3.1)
ijo i io

-2 tijei’;(i_j) — pt = €, is the unperturbed one particle energy and u is the chemical

U
>

potential which at half filling equals

In ref. [3], Georges and Kotliar constructed a mean field theory of the Hubbard
model which becomes exact in the limit of infinite dimensionality. Independently Ja-
nis and Vollhardt [4] arrived at the same mean field equations using a very different
approach. Georges and Kotliar also analyzed qualitatively a class of solutions of these
equations which describe the Fermi liquid regime of this model using a mapping onto
the single impurity Anderson model. These ideas have been extended to other strongly
correlated electron systems [5].

In this chapter we introduce a different class of solutions which describe a Mott
insulating phase. We then discuss how the transition between the Fermi liquid and the
Mott insulating phase takes place within the mean field theory. We will show that one
can obtain substantial analytic insights from the mean field equations. In addition we

have obtained an exact, numerical solution of these equations, which we use to check

our considerations.
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3.2 The mean field equations

A basic observation in ref. [3] is that for the purpose of calculating local quantities the
information about all intersite processes is contained in a single function of frequency
Go(iw,) which plays the role of the Weiss field in conventional mean field theories.
Given the Weiss field, the local Green’s function G (iw,) = — (¢, (iw, )c} (iwn))s(c,) is

calculated from the single site action

S[Go) = 20: — /j /j drdr’ ¢tGyte, + U/j dr ny(t)n (7). (3.2)

(G, is related to the Green’s function of the Hubbard model in infinite dimension via

— (ex(twy ) ek (fwy)) = - (3.3)

so that,
1

iw, — €x — B(iw,)

Gr(iw,) = Z

K

(3.4)

To solve the model we have to compute the Weiss field G(iw,, ) from the self-consistency

condition equation

p(e)de
tw, — € — (G, 1w,)

(G5 (iw) — £(Go, iy )] :/ (3.5)

where,

Y(Go,iw,) = Gt — <c+c>§[1GU1 (3.6)

is the self-energy of the impurity model (3.2). After solving for Gy, the self-energy of
the Hubbard model is obtained by evaluating ¥ at the self-consistent Gj.

The only place where the precise nature of the lattice enters the mean field equations
is in the density of states p(€) = Y. 6(e — ex). We view p(€) as a parameter in the
mean field equations. The hypercubic lattice in infinite dimensions gives a Gaussian
density of states [6]. We use a bounded density of states, which captures an essential
features of the band structures in finite dimensions. At half filling the model is particle

hole symmetric and it is convenient to define quantities which are odd functions of

Matsubara frequency: Ggl =Gy' - Y and E(Go) =%(Go) - &.

2 2
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3.3 The metal-insulator transition

In ref. [3] Georges and Kotliar analyzed the qualitative behavior of the solutions of (3.2)
under the assumption that Gy is finite at zero frequency and ImGo(iw, = Q + i§) # 0,
which they showed, implies Fermi liquid behavior. Here we would like to point out
that the system of equations (3.2)-(3.5) can have a different class of solutions which
describe a Mott Hubbard insulator. They are characterized by a Gy which diverges at
zero Matsubara frequency. This behavior is very natural if we think in terms of the
mapping onto the Anderson model proposed in ref. [3]. In that picture the original
electron is split into a local degree of freedom which captures the localized aspect and a
conduction band which reflects the itinerant aspect of the strong correlation problem.
The local degree of freedom hybridizes with the conduction band. G, is parametrized
by the hybridization function A(€) of the Anderson model [3],

Gol = iw, + (1 - %) - %/ 7(2016)_‘12). (3.7)
The Fermi liquid regime has A(0) # 0 which binds the conduction electrons and the

local moment to form quasiparticles. The insulating behavior that we find at half

u
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filling, u = corresponds to a hybridization function which vanishes as we approach
zero energy, i.e. A(0) = 0.

When the hybridization function vanishes at zero frequency the Kondo model ob-
tained from the Anderson model by eliminating the charge degree of freedom scales to
weak coupling as shown by Whittoff and Fradkin [7]. We then have a realization of the
paramagnetic insulating solution , the charge degrees of freedom are frozen while the

spin degrees of freedom are free to fluctuate.

To exhibit our new type of solution analytically we take a semi-circular density of

states p(€) = —27v/D? — 2. We work in the limit U >> D, and start with the assumption
(which we will show is self-consistent) that Gy*(iw,) ~ iw, that is A(iw,) — 0 as
iw, — 0. Substituting this into (3.2), one finds that the action becomes almost local

(in imaginary time) at low energies, or in the language of the Anderson model, it

reaches the atomic limit. The local Green’s function and %(G, iw,,) are then evaluated
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by taking an average of the two magnetic Hartree Fock solutions,

1/2 . 1/2
Gy'(iw,) - U Gy'(iw,)

Gyp(iw) = (3.8)

which gives,
- U\? -
$— <5> Go(iwn). (3.9)
Once more we emphasize that while the magnetic HF solution of the Anderson
model is invalid when A(0) # 0, the results of ref. [7] imply that the magnetic Hartree
Fock solution is qualitatively correct for large U, since A(0) = 0, and in this case the
Kondo coupling renormalizes to zero at low energies.
Now we show that the Ansatz A(iw,) — 0 as iw, — 0 is indeed self-consistent. The
Hilbert transform of the semi-circular density of states [ (AZE_dL;), is given by ﬁ

and the self-consistency equation becomes

- - 2
(G5! = E(Go)] ™' = - . (3.10)
iw, — £(Go) + isgn(w,)y/D? + (w, + i5(Go))?
which, in combination with (3.9), leads to
4957 — U’goz — 495’2 + (U* = D*) =0 (3.11)
where for convenience, we define 2 = w, and, Gy = —igo 5 = —ic so that g, and

o are positive when w, > 0. This is a cubic equation in g;' which can be solved in
closed form. Only one of the three roots corresponds to the physical solution. For small
frequencies, the solution has a simple form g;' = %m, (which requires U > D),
for large frequencies g;' = 2. When U > D which is the region where the expansion

around the atomic limit is valid, it is possible to approximate the solution of the equation

(analytically continued to real frequencies) as

i 4w? — U? — \/(4w? — U?)? — 4(4w? + U?)D?
Gil=w-w (2(4w2+)Uz) ( ) (3.12)

The spectral function consists of two features centered around w = +U/2 with width
2D, arising from the finite imaginary part of the square root. The hybridization function

can be estimated,

- D?

A(an) = Ggl(zwn) - iwn ~ iwnm, (313)
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as w, — 0.

Thus we have shown that G — iw, Gy — (iw) ™! and ¥ — (iw)~! in the low
frequency limit is a solution of the infinite dimensional Hubbard model. This solution
describes a Mott-Hubbard insulator characterized by a divergent self-energy and a gap
in the single particle spectrum of order U-2D.

A crucial question is how one goes from the Fermi liquid solutions characterized by
Fermi liquid low frequency behavior, f](zwn) ~ —iw, to the Mott-Hubbard insulator
regime described in this chapter. To answer this question, we go back to the metallic
solution and gradually increase the interaction U. As described in ref. [5], the Fermi
liquid regime at half filling corresponds to the formation of the Abrikosov-Suhl Kondo
resonance in Anderson model. Equations (3.2)-(3.5) constitutes a system of functional
equations for the Weiss field Gg'(iw,) which cannot be solved analytically, (we will
turn to its numerical solution below).

To gain insight into the mechanism that destroys the Fermi liquid resonance peak
one would like to project the functional equation on a small space of “relevant variables”.
Here we present a simple argument for the vanishing of the resonance, in a later chapter
this issue will be revisited in greater detail. Since A(0) is unrenormalized in the Fermi
liquid regime, we focus on a variable W, which describes the region over which the
effective hybridization is nonzero at low energies. In the Anderson model analogy it
is the effective bandwidth of the conduction electrons. We envision an approximate
parametrization of the exact solution of the system, at low frequencies, of the form
Gyt = —isgn(w,)D/2 + O(iw,) for |w,| < W, and G5 = iw, for |w,| > W. Imagine
solving the system (3.2)-(3.10) by iteration. At the n'® step we have some finite value
of W = W®, and obtain from the impurity model a self-energy, ¥ = (1- ﬁ)w +
O(w?). For a large U/D, Z is just the inverse of the Kondo temperature, Z(G,) =

4@ exp %. The next step in the iteration, is to solve equation (3.10), which gives,

—rU
WD — 4™ exp %. (3.14)

It is clear that for large U the effective bandwidth iterates to zero, reaching the

U

o> solving the impurity model gives a Z of order unity.

insulating regime. For small
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The iteration step then gives W ~ D. This is the Fermi liquid regime. Separating
these two regimes, is the critical U.. In this scenario the Mott transition is driven
by the shrinking of the dynamical range of the Fermi-liquid regime, the height of the
quasi-particle peak remains unrenormalized. Related ideas have been put forward by
Khurana [8].

To confirm these qualitative arguments, we solve equations (3.2)-(3.5) numerically
using quantum Monte Carlo simulations. The procedure to compute %(Gy) is based
on the algorithm of Hirsch and Fye, and of Gubernatis, Hirsch and Scalapino [9] who
studied the single impurity Anderson model. The functional equation is solved using
an iterative procedure. The technical details of the simulations are discussed in the
previous chapter. The Mott-Hubbard transition with the semi-circular density of states
is found at U =~ 3.1 for D = 1 (all energy scales are renormalized by D), which is
slightly lower than the result obtained from the Gutzwiller approximation, where U, is
calculated to be 32D/3x [10, 11]. In figure 3.1 we show plots of (ImGo)~! vs w, for
U=2,U=3and U = 3.6.

Figure 3.2 shows the self-energy for the same values of the interaction. Below U.,
we distinguish two Fermi liquid sub-regimes characterized by small and large slopes
of the self-energies respectively. The plot for U = 2 is characteristic of the weakly
correlated Fermi liquid regime where the Weiss field G5! decreases monotonically with
frequency. The plot for U = 3.0 is representative of the strongly correlated Fermi liquid

regime characterized by a small dip in G§!, making it to increase towards its zero

D

> as we reduce the frequency. The behavior for U > U, is completely

frequency value
consistent with our analytic arguments. The numerical results are obtained at an inverse
temperature § = 64. The agreement of the numerical data with our analytic arguments
gives us confidence that no new features will appear as we take the § — oo limit.

To further confirm the opening of a gap, we also measured the discontinuity in the
chemical potential vs. occupation number as shown in figure 3.3. At finite temperatures
the metal insulator transition we obtained , becomes a crossover. However this crossover

is quite sharp. For example, at finite temperatures for U > U, the g vs n curve should

be continuous because there is always activation from the lower to the upper Hubbard
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Figure 3.1: The imaginary part of the Weiss field Gg! as a function of Matsubara
frequency for U = 2 (solid line), U = 3 (dotted line), and U = 3.6 (dashed line), at
B = 64. All energy scales are renormalized by the half-bandwidth D = 1. For U < U,
the Weiss field approaches its unrenormalized zero frequency value D/2. For U > U, it
matches the analytical solution of equation (11) in the text, Im(Gg') = —w,, w, — oo,

2

and Im(Gg') = — 5555 Wa, wa — 0.
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Figure 3.2: The self-energy % as a function of Matsubara frequency for U = 2 (solid
line), U = 3 (dotted line), and U = 3.6 (dashed line), at § = 64. For U < U, the
self-energy is linear at low frequencies with a slope increasing with U. The noise of the
plot at U = 3 is due to the proximity to the critical U.
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Figure 3.3: The particle occupation as a function of the chemical potential yu — % for
(top to bottom) U = 2,3,4,6 at 8 = 4.

band. Nevertheless the curves in figure 3.3, obtained at finite temperatures are nearly
discontinuous because the temperature is much smaller than the Mott Hubbard gap.
We also measured the local spin spin autocorrelation function of the Hubbard model,
in imaginary time. It is given by the spin spin correlator of the impurity model. Our
measurements are consistent with the following behavior: on the insulating side of the
transition there is long range order in imaginary time lim._, . (m(7)m(0)) = m > 0 for

U > U, and it decays to zero on the metallic side. m = 0, for U < U..

3.4 Discussion

In this chapter we have focused on the paramagnetic one particle Green’s function of
lattice models in infinite dimensions with a bounded density of states. We also studied
the unbounded Gaussian density of states. In this case the numerical results for G and
the self-energy are very similar to that of unbounded ones. However, analytically can
be seen that there is a qualitative difference in the spectral function of the local Green’s
function G: in the unbounded case, above U, the one particle spectral function has a
pseudogap at the Fermi level. The rate at which the density of states decays at zero

energy is simply related to the decay of the Hilbert transform of the density of states
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at infinity. Im(G(w)) ~ p(w — 1/w), w — 0.

We concentrate on the paramagnetic solution in order to bring out the physics of
the charge degrees of freedom. The physics of this phase depends only on the density
of states. Miiller-Hartmann [6] has shown that in infinite dimensions several lattice
dispersions, (some which correspond to non-nested lattices) share the same density of
states. The question on the nature of the magnetic order and the magnetic transition
temperature will be considered in later chapters. It requires to specify more information
on the form of the dispersion than just the density of states. Nonfrustrated lattices have
antiferromagnetic transition temperatures which are exponentially small for small U,
and of order g for large U, with a maximum transition temperature at U of order
t. Frustrated lattices can have much lower transition temperatures. The semi-circular
density of states used in our calculations can be realized in a Cayley tree with infinite
coordination number [12]. This lattice is not frustrated and bipartite. As a result,
at zero temperature it has antiferromagnetic long range order for an arbitrary value
of U. The semi-circular density of states is also realized in a lattice where every site
is connected to every other site, and the hopping matrix elements are independent
Gaussian random variables suitably scaled as the inverse square root of the number of
lattice sites to have a good thermodynamic limit. While this model has randomness ,
the one particle Green’s function is non random, i.e., it is self averaging. This model is
very frustrated and it does not order magnetically. A schematic representation of this

fully-connected lattice is shon in figure 3.4.

3.5 Conclusions

To conclude, we have found a new regime for the infinite dimensional Hubbard model
at half filling. We showed that the large U narrow quasiparticle feature [3] disappears
above a critical value of U. This is due to a divergence in the inverse of the self-consistent
Weiss field G, which allows our d = 0o model to map onto an Anderson model with
vanishing effective hybridization at the Fermi level (A(0) = 0). The Kondo model
obtained from the Anderson model via the Schrieffer-Wolff transformation then flows

to zero coupling at low energies. In this case the self-energy % has a pole singularity
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Figure 3.4: Schematic representation of the fully connected lattice. The hopping ele-
ments are scaled as t;; = e,j# with ¢;; independent Gaussian random variables.

at zero frequency which reflects the opening of a Mott-Hubbard gap in the one particle
spectrum. Qur solution for the case of very large U is essentially the same as that in
Hubbard III [13]. What has been accomplished in this chapter is: (1) to show how
Hubbard-like physics emerge in the limit of large d and large U, (2) to obtain a true
Fermi liquid solution on the metallic side of the transition, and (3) to show how a

transition between the two regimes takes place as we change the value of U.
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Chapter 4

The transition at zero temperature

function and the local spin spin correlation function

4.1 Introduction

In his pioneer work on the metal-insulator transition (MIT) [1], Mott envisioned that
in transition metals, as the Coulomb interaction among the charged carriers increases,
the system will undergo a first order transition from a metal to an insulator. The first
serious attempt using many-body theory to produce this effect is due to Hubbard [2]. He
based his calculation on the atomic limit which naturally leads to a two-band picture,
the lower and upper Hubbard bands separated by the interaction U. He concluded that
the MIT happens at U, ~ D the bandwidth, and a gap opens gradually as a function
of U. Although this treatment provides a good insulating solution for large U, it fails
to capture correctly the low energy physics in the metallic side: the Fermi liquid quasi-
particles are absent [3]. Brinkman and Rice (BR) [4] attacked the problem from the
opposite limit by using a Gutzwiller variational wave function, and found the MIT at a
much higher U.. The Gutzwiller wave function gives a good Fermi liquid description for
the metallic side, but misses the insulating side completely and lacks the high energy
excitations which are the precursors, in the metal, of the upper and lower Hubbard
bands of the insulating sclution.

Until now, it is still not clear what the right picture of the transition is: How is
Hubbard’s solution related to BR’s? Does the gap open continuously or does it jump
at the transition? Behind these questions lies the far more interesting issue, How does
Fermi liquid theory break down when the interactions become strong?

Recently Metzner and Vollhardt [5], recognized a simple but nontrivial limit of the
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Hubbard model: large dimensionality . In that limit, the Gutzwiller approximation used
by BR becomes exact, and a major assumption made in Hubbard-III, the self-energy
being site diagonal, also becomes exact. In fact, a set of self-consistent equations that
describe the paramagnetic phase of the Hubbard model for d — oo [6, 7] is reminiscent
of the Hubbard-III treatment. Therefore, it is natural that a solution in the d = oo
limit should provide a bridge between the Hubbard-IIT and the BR treatments and a
clear picture of the Mott transition.

We have seen in the previous chapter how Quantum Monte Carlo (QMC) simu-
lations were used for solving these equations. They were also independently studied
by two other groups [8]. All found the existence of a metallic-like solution for small
U and insulating-like state for large U, thus providing strong evidence that a metal-
insulator transition indeed exists. But, due to the limitations of QMC, the picture of
the transition is still unclear.

Our strategy here is to combine QMC with a more conventional tocl: the perturba-
tion expansion. QMC, been essentially exact, is used as a benchmark to select among
the various perturbative schemes the one that works. Perturbation is then used in the
low temperature region that QMC fails to reach, to obtain important information like
the density of states. The result is a complete numerical solution of the self-consistent
equations at half-filling and T = 0. The metallic side exhibits aspects of the BR’s
solution, particularly, the divergence of the effective mass of quasi-particles as U — U..
On the other hand, the insulating side is very similar to that of the Hubbard III. The
emergence of a three band picture close to the transition: the two well separated upper
and lower Hubbard bands, and a central narrow quasi-particle band at the Fermi level
provides a bridge between the two approaches. The continuous narrowing of the quasi-
particle peak drives the MIT. Right above the transition, a full gap is already opened,
as predicted by Mott for a different reason. This is valid as long as the density of states
is bounded. We focus in this type of DOS, because we believe it provides the correct
scenario to understand the physics in finite dimensions.

The central object in the self-consistent scheme [6] is a quantity G, which plays the

role of the effective field in magnetic systems. G, is defined in an effective local action
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S obtained by integrating out all the degrees of freedom except for a single site 0,
SiGol = - [ [drar ¢i,G e, + U [dr (= 1/2)(m - 1/2). (1)

The self-consistent equations for the Weiss field G, are written in terms of an im-
purity self-energy %,,,,(Go) =< cte >§(1G0) —Gy*' and the lattice density of states
pl€) = 25 b(er — €)

ple)de
iw+ p—€— Timp(w)

65 = Sy (Go)l ™ = [ (4.2)

The impurity self-energy evaluated at the self-consistent G, [6] gives the self-energy of
the Hubbard model in infinite dimensions.

We use a semi-circle density of states as in Hubbard-III, p(e) = 25,/1—-(5)?,
which corresponds to a Bethe lattice in infinite-d, where Hubbard’s hopping paramenter

t = D/2 [9]. The set of self-consistent equations then becomes:
Gyl = tw, + p— °G(iw,), G =< cc>s56, (4.3)

G(w,) being the local Green function of the Hubbard model. The spin index has
been removed because paramagnetic phase is assumed. Throughout the calculation

the bandwidth D is set to unity.

4.2 Methodology

The key part in solving the above equation is to obtain the self-energy X, given GGy. This
is equivalent to solving the Anderson impurity model with an arbitrary hybridization
function [6]. Although QMC is exact, it has severe limitations: the data collected are
on the imaginary axis and the analytic continuation cannot be always reliably carried
out; a more essential difficulty is that the method does not allow to investigate the
zero temperature limit. In the previous chapter, we have found evidence that at low
temperatures there is a value of the interaction U, where a metal insulator transition
takes place. U, was then determined by the sudden developement of a divergence in
the Matsubara self-energy at low frequencies. This is a strong indication for a metal-

insulator transition that is driven by correlation effects. Nevertheless, it is no conclusive,
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since the divergence of the self-energy is cut-off by the finite temperature (or the lowest
Matsubara frequency). In this chapter with the aid of insights obtained from a very
accurate perturbative scheme, we will be able to unambiguously establish the existance
of a metal-insulator transition from the exact QMC data.

As mentioned in the introduction, we will try to find a perturbative calculation that
enable us to investigate the metal insulator transition in the zero temperature limit. The
perturbative approaches fall into four categories. (a) fully self-consistent perturbation
in G;; [10]; (b) noncrossing approximation (NCA) [11]; (¢) analytic expansion in U as
in Yamada and Yosida [12] (YY); and (d) a fourth approach proposed by Metzner [13]
who systematized the expansion in the kinetic energy. It is discussed in [6] that (a)
does not produce the correct high-energy features, while it is well known that the NCA
becomes inaccurate at low temperatures. We will show below, that approach (c) can
successfully reproduce the QMC data, and argue why it does so.

Figure 4.1 shows a comparison of QMC with perturbation calculations using (c) for
values of U on the metallic side and the insulating side.

With almost point by point fit on the metallic side and the insulating side, a poste-
riori one can rationalize the success of the perturbative calculation as follows: (1) the
transition happens at an intermediate value of U, around which it is known that per-
turbation to second order captures all the important features of the Anderson impurity
model as was shown by YY; (2)the essential ingredient that drives the transition is not
in the self-energy calculation, but rather in the process of enforcing self-consistency.
Higher order corrections to ¥ will only change the exact value of U., but not the nature
of the transition. (3) From the pioneer work of YY and Zlatic, Horvatic, and Sokcevic
[14] we know that the impurity problem is analytic in U. Therefore it is natural to treat
the analytic parts of the problem using a power series expansion while the non-analytic
aspects of the problem are addressed using a self-consistent scheme. (4) It can produce
the atomic solution exactly (see below). Therefore this approximation becomes at least
an interpolation between the two extreme limits (free case U = 0, and atomic ¢ = 0).
The latter is purely accidental, and unfortunately does not apply to the asymmetric

case.
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Figure 4.1: Comparison of Matsubara self-energy obtained from Quantum Monte Carlo
(crosses) to that from perturbation calculation(dots). For U = 2 on the metallic side
and U = 3.6 on the insulating side at a 7' = 1/64. Note that on the insulating side the
growing deviation at low energies is purely due to the w=! divergency, the relative error
remains the same but the absolute error becomes bigger.
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We calculate the self-energy to second order following [6] and [12]. The perturbation
expansion is generated by Hy = U(n;—1/2)(n;—1/2). To second order, only the bubble
diagram survives,

S(t) = U2Go()2Go(—t). (4.4)

It is worth noting here that the same expression for the self-energy holds both in the
zero temperature and in the Matsubara formalism. The zero temperature causal Green

function is then used to obtain the density of states and other quantities.

4.3 Mott transition

An observable that signals the MIT is the density of states (DOS) at the Fermi surface.
Figure 4.2 shows the zero temperature DOS as a function of interaction U. As pointed
out by Miiller Hartmann [10], the height of the peak at zero frequency is unrenormalized
by the interactions in a theory with a k independent self-energy, as long as one is in the
Fermi liquid regime. Therefore the value of the one particle spectral function jumps
discontinuously to zero at the Mott transition. Right after the transition, the structure
of a full gap is already in place.

Since ImG; ! = —DTEImG, the width A of the quasi-particle at the Fermi level is
also the width of the coherent hybridization A(w) in the Anderson model analogy. As
U approaches U,, this scale vanishes in the following way: G, develops a singularity at
an energy wy = V/AD, very near the real axis (~ A?), which then leads to a similar
singularity in the self-energy. The Mott transition happens when the pole collapses to
zero, and ¥ becomes divergent.

A different view of the transition is obtained by measuring the local spin-spin corre-
lator using QMC. On the metallic side, (m(7)m(0)) =~ e~27. Long range order sets in as
A — 0 as shown in figure 4.3. A spin mode whose energy is independent of momentum
(local paramagnon) is softening as U — U..

We now proceed to provide an analytical description of the transition, focusing on

the most important quantity A. Using the relation (4.3), we rewrite G, as,

D? t p(e)d
,_ D% [ ple)de

4 z—¢€’

ROE (4.5)
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Figure 4.2: Density of states -ImG at zero temperature as a function of U. From top
to bottom, U = 1,2,2.5,3,4.
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Figure 4.3: a) Spin-spin correlation function obtained from Monte Carlo for § = 32, and
U=1,2,23,24,2.5,3,4,6.2. The correlation length ~ A~! diverges as we approach
the insulating side. b) Local moment as a function of U for two temperatures: 8 =

16(dots), 32(solid).
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where p(e) is the DOS of the fully interacting system shown in figure 4.3. Its three
peak feature can be represented by a Lorentzian at the center with width A, and two
semi-circles centered at £U/2, with half-width D. The weight of the center Lorentzian
is determined by demanding that ImG5*(0) = D/2. A simple and good approximation

for G, close to the transition can be then obtained:

DA

1
—1 A= —(y— — 2=
Gy (2,4) 2(z z 4 iAsgnz

). (4.6)

We checked numerically, that the parametrized G, and the self-energy calculated from
it are in good agreement with the actual Gy and ¥. The impurity self-energy has an

explicit A dependence when calculated from the parametrized G,.

S(w, A) = UZ/F3()\)e“A‘“‘dw, (4.7)
where
P = / pe)e~de, (4.8)
0
and,
2DA?
mp(w) = —ImG, = (4.9)

(w? — DA)? + A2w?
As A — 0, p(w) peaks sharply at w3 = DA — A?/2, approaching a § function with unit

weight. Thus, for low frequencies, we find the real part of the self-energy,

0w
Y(w,A)= —— . 4.1
(0 8) = 5(0a — A7) (4.10)
On the other hand, the self-consistency equation for Gy in equation (4.2),
1 1
Gyl (w,8) = 5(w+ 2w, 8) + /(@ - Z(w, A)) - D?), (4.11)
requires that to linear order in w, ¥ = %w. Since the self-consistency is an iterative

procedure, we can equate the above two expressions for the self-energy iteratively:

9D

Apyr = W(DA,L —A?/2) (4.12)

There are two fixed points of the iteration, A* = 2D(1 — g—Z) which is stable for

U< U, =3D, and A* = 0. The first one is the Fermi liquid fixed point discussed

in [6], the second one is the insulating fixed point. We focus here on the fate of the
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metallic solution. The destruction of the A = 0 (insulating) solution will be discussed
in a latter chapter. When U = U, the two fixed points merge into one: the unstable
Mott point. We note here that A = 0 is the exact atomic solution, because from the
parametrized G, we have Go(7) = 6(7) — 3, and consequently, X(7) = %2[0(7') — 3], or
Y= UT2G0 (see previous chapter).

Since A/D =~ m/m*, the fixed point solution also provides the critical behavior
of the effective mass close to the tramsition, m*/m o« (1 — (U/U.)?)"! which is the
same as BR. The numerical results are plotted in figure 4.5. The transition occurs at
U. = 3.37TD =~ 8¢, as in BR. However, above the transition in the insulating side, the
two band-features are not quite symmetric around +U/2, meaning there are still some
residual kinetic energies gained from local hoppings [15]. The fact that virtual double
occupancy is present in the insulating side which gives a finite exchange constant is
also clear from QMC measurements of the local spin-spin correlation function, which
shows a reduced moment on the insulating side, (m?2) = 1 — 2(n;;n;|) figure 4.3. QMC
also indicates that the paramagnetic spin susceptibility does not diverge as the effective
mass does [16]. These are the crucial differences between the exact solution in d = oo
and that of BR.

Another important quantity is the occupation number n;. Since ¥ is independent
of k, it is more convenient to label n with the non-interacting energy e,

1 0 dw
ne = —;Im/ioo o e S(@) (4.13)
Figure 4.4 shows, in accordance with the divergence of m*, the jump at the Fermi
level Z continuously shrinking to zero. The monotonic behavior found here should be
contrasted with the results using Gutzwiller wave function in 1 — d [17].

With the new insights obtained from the present perturbative approach, it is worth
revisiting the ezact finite temperature QMC results. In particular we consider the ques-
tion of the existance of a true correlation induced transition at low enough temperatures.
This issue is relevant since the perturbative approach being an approximation, cannot
demonstrate the existence of the transition. The low energy scale of the problem, as the

correlations become important, is set by the width of the central quasiparticle peak in
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Figure 4.4: Particle occupation number vs. noninteracting energy ¢ as a function of
U = 2,2.5,3,4, obtained from perturbative calculations. Inset: m/m* vs. U calculated
from the slope of the real part of the self-energy at the Fermi level.
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the density of states. It is clear that if the temperature is bigger than this energy scale,
for a fixed value of U, the low frequency quasiparticle states cannot be sustained. At
those temperatures we should see a crossover from a metallic-like solution at low U, to
an insulating-like solution as the interaction is increased. This solutions could be char-
acterized by a Green function with an imaginary part that extapolated to zero frequency
results non-zero or zero respectively. Also we should observe that this crossover takes
place at higher values of the temperature as the interaction U is increased, since the
Hubbard bands become more widely separated. On the other hand, if the temperature
of the system is lower than the characteristic low energy scale, the correlated quasi-
particle state is realized. In this case, we should see, unlike in the previous situation,
that as we lower the temperature, the metallic state can be mantained for increasingly
bigger values of the interaction, and eventually sharply disappear into an insulating
one, as a critical value U, is reached. In figure 4.5 we see this whole scenario being
realized. We plot the temperature where the QMC solution changes from metallic-like
to insulating-like as a function of the interaction U. We also plot the value of the
quasiparticle width obtained from the perturbative approach, as a definition of the low
energy scale given a value of U. This is of course justified by the excellent agreement
that we already discussed before. We observe that the results illustrate our previous
discussion, as the change in the slope in the MIT curve changes when the temperature
is smaller than the low energy scale. This is a definite signature of the existence of a
true transition between a metallic and insulating state driven by correlation effects. We
will revisit this issue in later chapters to a greater detail. It will turn out that there is
a whole region where two soloutions, one metallic and the other insulating, are allowed
to coexist. This will lead to the result that the transition is indeed first order at low

enough temperature.

4.4 Conclusion

We have shown in this chapter a simple and reliable perturbative scheme to treat the
impurity model. It enables us to provide a detail analysis ot the Mott transition in

the co — d limit. Our solution connects two very different approaches, the BR and
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Figure 4.5: The temperature where the QMC solution changes from metallic-like to
insulating-like as a function of the interaction U (bold line). The low energy scale
defined as the quasiparticle width obtained from 20PT (dotted line). A true transition
occurs only at the lowest temperatures where the change in the slope is observed in the
metal-insulator boundary line. The transition is driven by the interaction U instead of
the temperature only below this scale. For higher temperatures it becomes a crossover.

the Hubbard-III. In particular it shows a continuous increase of the effective mass as
U — U, from below, and contrary to one’s intuition, this is followed by the discontinu-
ous opening of a gap in the one particle spectrum at U.. On the insulating side, there
is an unsaturated local moment with long range order in the imaginary time indicat-
ing a nonzero double occupancy, and consequently, a finite magnetic exchange and a

nondivergent magnetic susceptibility.
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Chapter 5

The transition at finite temperature

5.1 Introduction

The Mott transition, that is the metal insulator transition induced by the electron
electron interactions in a periodic system, has been investigated theoretically and ex-
perimentally for many years [1]. Experimentally it seems to be realized in three di-
mensional transition metal oxides such as V>,03 and can be driven by varying pressure,
temperature, and composition.

From a theoretical point of view, several ideas have been put forward. Hubbard first
introduced the notion of Hubbard bands, which are formed by the states that describe
propagating empty and doubly occupied sites. For large U these bands split, and as U
is reduced, there is a critical value where the two bands merge again [2]. This is the
Hubbard picture of the metal-insulating transition.

Brinkman and Rice, building on the work of Gutzwiller, started from the metallic
phase which they described as a strongly renormalized Fermi liquid with a characteristic
Fermi energy scale gradually collapsing as the transition is approached [3]. The metal
insulator transition in this view is driven by the disappearance of the Fermi liquid
quasiparticles.

Slater pointed out that the metal insulator transition is always accompanied by long
range antiferromagnetic order, and viewed the doubling of the unit cell which makes
the band structure of the system that of a band-insulator, as the driving force behind
the metal insulator transition [4].

Building on earlier ideas [5, 6, 7, 8, 9], a new mean field theory of strongly correlated

electron systems has been developed. It is based on a mapping of the models of strongly
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correlated electrons onto impurity models supplemented by a self-consistent condition
[10, 11]. This approach becomes exact in the limit of infinite dimensions [5] and can
be investigated using a variety of techniques. In this chapter, we continue our study of
the Mott transition in the Hubbard model in large dimension, expanding on the results
of previous chapters, and those of ref. [12, 13, 14]. In particular, we make comparisons
of our solutions to experimental observations, and find good agreement considering the
relative simplicity of the model. Related work on this problem has been carried out
independently by other groups [15, 16, 17, 18].

The chapter is organized as follows: In section 5.2, we start by briefly reviewing the
general framework of [11] to present the set of self-consistent equations that describe
the Hubbard model in infinite dimensions. We concentrate on the semi-circular density
of states which can be realized on a Bethe lattice, and on other lattices having various
amounts of magnetic frustration. The mean field equations are functional equations
that determine a Weiss field function Gy and involve a mapping of the problem onto
an Anderson impurity model. Two realizations of the Hubbard model, which share the
same density of states but have very different magnetic properties, are introduced later
to shed light into the issue of magnetic ordering. We close the section with a discussion
of the methods used to analyze this problem.

To study the mean field equations we use a combination of exact methods such as
quantum Monte Carlo, exact diagonalization, and analytic arguments exploiting the
well understood structure of the Anderson impurity model. We also rely on an approx-
imate method, which was proposed by Georges and Kotliar, to extract low temperature
information. We stress that, while at high temperature this method [13] gives results
in very good agreement with the quantum Monte Carlo, in principle is only an approx-
imate scheme and we point out some of its limitations. The results obtained with this
method are useful because they provide a concrete analytic realization of the functional
Yimp|Go) defined in section 5.2, and illustrates in a simple example the important role
played by the self-consistency condition [9].

In section 5.3 we describe the thermodynamics and present the finite temperature

phase diagram of the system of the magnetically disordered state. In frustrated lattices,
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where magnetic order is not possible, the phase diagram features a region bounded by
two values of the interaction U.; and U,,, where a metallic and an insulating solutions
coexist. We demonstrate that at finite 7', the actual transition takes place at an in-
termediate value U, where the free energy of the two solutions cross. We further show
that U.; < U. < U.s, and the metal-insulator transition is of first-order like a liquid-gas
transition. While the region of stability of the two phases are model dependent and
will vary upon changing the density of states or adding more general interactions to
the Hamiltonian, there are some general lessons that can be drawn by studying the
disappearance of the metallic and the insulating solution. These are general scenarios
for describing a strongly correlated metal and a Mott insulator.

In section 5.4 we study the behavior of the system close to the critical value of the
interaction U5, where the metallic state disappears. We consider the results in relation
to the Brinkman Rice scenario for the metal-insulator transition.

In section 5.5 we analyze the disappearance of the insulating solution, and relate it
to Hubbard’s early ideas.

Section 5.6 is devoted to the study of the correlation functions. In particular, we
address the question of how they behave as the transition takes place. We relay on a
combination of analytical arguments and QMC simulations to discuss these points.

In section 5.7, we address the important question of solutions with magnetic long
range order. We verify that in a bipartite lattice, Slater’s ideas for the metal-insulator
transition become relevant. On the other hand, when a partial degree of magnetic
frustration in allowed, a rich phase diagram is obtained. The results are considered in
regard to the experimental phase diagram of V;0;.

Finally, in section 5.8, we study the transition as a function of doping. On the way,
we make qualitative comparisons to existing experimental data, in La;_,S57r,T:03.

We conclude by arguing that the Hubbard model and its extended version is at least
a qualitatively correct model for the description of some basic features of these systems.

We also present various theoretical questions raised by our work.
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5.2 The self-consistent equations

Our starting point is the Hubbard Model:
1 1
H== 3 (t+p)eloejo+ U (mr = 5)(ma = 3), (5.1)
<iyg> i
where summation over repeated spin indices is assumed.

In the limit of the coordination number d going to infinity, the hopping matrix
elements can be chosen to give a semi-circular density of states of width 4¢, and are
scaled as ¢;; ~ ﬁ [6] to provide a well defined and non trivial limit. This density
of states is realized on lattices with different amounts of magnetic frustration such as
the Bethe lattice (no frustration), the fully-connected fully-frustrated lattice (FF) [13],
and the two sublattice fully-frustrated model (TSFF), which allows to mimic a varying
degree of frustration [14].

Now we proceed to briefly review the the self-consistent equations which give the
paramagnetic solution in large d following the scheme of [9]. The central object in this
approach is a quantity G, which plays the role of the effective field in magnetic systems.

Gy is defined in an effective local action S.ss obtained by integrating out all the degrees

of freedom except for a single site 0,

Suslee]= X [ drarel (G r—r)en(w) 40 [ dr(na(r)-D(na(r)-3). (52

This action is identical to the one of an Anderson impurity model with arbitrary hy-
bridization. The self-consistent equations for the Weiss field G, are written in terms of
an impurity self-energy %,,,,(Go) = <cic>§(1GD) + G5! and the lattice density of states
pl€) = 25 b(er — €)

(G = Bimp(Go)] ™ = / o ep_(e);f;(GO)- (5.3)

The impurity self-energy evaluated at the self-consistent G, gives the self-energy of the

Hubbard model in infinite dimensions [9].

We use a semi-circle density of states, p(¢) = 5,/1—(5)% The set of self-

consistent equations then becomes

Gyl = iw, — t°G(iw,), G = —<CTC>S(GD) (5.4)
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G(iw,) being the local Green function of the Hubbard model. The spin index has been
removed, since magnetic disorder is implicitly assumed. This last equation, which does
not require the explicit calculation of ¥;,,,, and can be used as an alternative to (5.3).
The semi-circular density of states is realized in the Bethe lattice with coordination d,
in the limit that d becomes infinite, and with Hubbard’s hopping parameter equal to
ﬁ. In this case t = D/2. This lattice with nearest neighbor hopping, if not frustrated,
will strongly favor a Néel ordered state at low temperatures.

The semi-circular density of states is also realized in the fully-frustrated model [12]
[19].
Hpp = —t Z €iiCis Cjo + UZ(n,-T - %)(n,-l - %) (5.5)

ij=1,d i

Summation over repeated spin indices is assumed. Here ¢;; are quenched independently
distributed Gaussian random variables with zero mean and a variance (€};) = +. This
model has a semi-circular density of states with a half-bandwidth equal to 2¢ and
therefore shares the same local properties as the Bethe lattice but of course is not
expected to display Néel order at any finite temperature. Finally, we can vary the
degree of frustration by studying a two sublattice version of the fully-frustrated model
(TSFF). The Hamiltonian is given by

Hrspr = —14 Z Eijcz'oicjo -t Z eijciaicjo +U Z (ni — %)( il — %) (5.6)

i,jeAorB icAjeB icAUB

This model interpolates between the fully-frustrated lattice and the Bethe lattice in
the antiferromagnetic phase while still sharing a semi-circular local density of states.
In this case D = @ Figure 5.1 contains a schematic representation of the TSFF
model. Notice that while the hamiltonians (5.5) and (5.6) contain randomness, the
single particle properties are self-averageing. The single particle Green functions are
the same for any typical realization of the random variables ¢;;.

Let us mention in passing that there are other lattices that lead to the same mean
field theory in the limit of large dimensionality. One is obtained from the TSFF model
by considering the interlattice hopping parameter ¢, as a gaussian variable (in the same
manner as t; was defined). This model is fully random and has a variable degree of

frustration. Another possibility is a lattice with n.n. constant hopping parameter ¢,,
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cococe e

Figure 5.1: Schematic representation of the two sublattice fully frustrated model
(TSFF). The fully-connected fully-frustrated sublattices A (white dots) and B (black

dots) at the top of the figure, are combined into a single lattice through the interlattice
hopping elements t.
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Figure 5.2: Schematic representation of the Bethe lattice with next nearest neighbor
hopping. This model has the same mean field equation as the TSFF but does not have
randomness.

and n.n.n. constant hopping parameter ¢,. This model does not contain randomness
and is schematically shown in figure 5.2.

As in a previous chapter we have studied the semi-circular density of states instead
of the Gaussian density of states which is realized in the large dimension limit of a
hypercubic lattice, because the latter has long tails which prevent the development of
a true Hubbard gap. For a study of the hypercubic lattice see [15, 16].

When antiferromagnetism sets in, the Weiss field depends on the sublattice and the
spin. For a general bipartite lattice in the Néel phase G4, = Gp_, the equations were

derived in [11]. For the Bethe lattice, the equations are simplified to

Goi, = iw—t*Gp,

Gyl = iw-1Ga, (5.7)

where A denotes one sublattice and B the other. The two impurity Green functions G4
and Gp are evaluated independently given G4, and Gyp, and the single site action,
Scy4 defined at the beginning of the section.

Finally in the two sublattice fully-frustrated model, which mimics an intermediate

degree of frustration, the mean field equations in a phase where the A and B sublattices
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magnetize in opposite directions are given by

G(;jia = w— tiGAa — t%(;B(7

G(;Bla = w-— tiGBU - tgGAa (58)

In a previous chapter we have discussed that the exact treatment of the problem by a
quantum Monte Carlo solution of the impurity can be reproduced, remarkably well , by
the second-order perturbative calculation proposed in [20]. The perturbative calculation
allows us to investigate the low temperature behavior of the system, including 7' = 0,

which is unattainable by the QMC approach. To second order in perturbation,
[Go)(7) = —UG3(7). (5.9)

We can understand the success of this approximation for the following reasons: 1) It is
good for weak couplings (U << t) by construction, since the expansion is around U = 0.
As shown by Yamada and Yosida (YY), it is able to produce not only the Abrikosov-Suhl
resonance, but also the upper and lower incoherent bands as well. YY showed that the
4% order correction is two orders of magnitude smaller that the 2"¢ order contribution
for the range of the interaction where the MIT occurs. 2) The atomic limit is exactly
captured. When U is very large, and the system is deep in insulating side, Go™" & iw,,

the non-magnetic Hartree-Fock solution of the Green function becomes exact,

1/2 1/2

GL(Z'W) = Ga1(u‘)n) _ U/2 + Gal(zwn) + U/2

(5.10)

therefore, the self-energy reads,

Uz
S =~ Galiw,) (5.11)

which is identical to the self-energy that results from inserting G, in Equation (5.9) and
Fourier transforming. Thus, the second order approximation is at least an interpolation
scheme which becomes exact for both the U — 0 and U — oo limits.

A third numerical technique that we developed for the study of the present type
of models is an exact diagonalization algorithm. It is based on a parametrization of

the function G, with a finite set of parameters that are then used as input for an
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effective Anderson hamiltonian. This technique allows for a non perturbative solution
of the model in all parameter range. It is particularly effective for the investigation of
the insulating phases with and without magnetic order. A detailed description of this
procedure can be found in the second chapter.

The mean field equations are coupled functional equations to be solved for the
Weiss field Gy and the local Green function. The most difficult aspect of the mean
field theory is the solution of the Anderson impurity model in an arbitrary bath. The
essential insight is to use reliable approximations to calculate G[Gy] in eq. (5.2), this
step captures the local aspects of the problem. The self-consistency condition (5.3-5.4)
then brings back the lattice aspect. Several techniques are used in the analysis of the
mean field equations. They range from qualitative arguments and analytic perturbative
schemes to numerical methods based on quantum Monte Carlo (QMC) [12] [15, 16],
exact diagonalization (ED) [21, 22] and second order perturbative calculations (20PT)
[13, 14]. To obtain details of the low energy behavior we have developed the projective
self-consistent method which is the lattice equivalent for large d problems of the Wilson
renormalization group method [23]. An important point here is that no single technique
can be pointed out as the most suitable, but the insights obtained on the Mott transition
problem rely on a combined use of these techniques to elucidate the different aspects
of the physics. We will illustrate the capabilities and the range of applicability of the

different approaches in the following sections where we present the results for the model.

5.3 Phase diagram and thermodynamics

The schematic phase diagram of the Hubbard model at half filling in a fully-frustrated
lattice is shown in figure 5.3 (from 20PT). To determine the phase diagram we proceed
in three steps: a) We first determine the region where the two paramagnetic solutions
coexist. b) We then compare their free energy, their crossing determines the phase
boundary. The study of the magnetically ordered phase and the calculation of the Néel
temperature; along with a discussion on whether the metal insulator transition found
in step b) is preempted by a magnetic ordering transition, will be considered in detail

in a later section.
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Figure 5.3: Phase diagram of the fully-frustrated model. It is possible to continuously
move from one phase to the other since at high T the transition becomes a crossover.
The dashed lines indicate the region where the metallic and the insulating solutions
coexist. The filled square indicates the end of the first-order line in a second-order
point.

At low temperature there are two phases a Fermi liquid metal characterized by a
non zero density of states at zero energy and paramagnetic insulator with a gap in the
one particle excitation spectra. The metallic solution disappears at the dotted line end-
ing at U,,, while the insulating solution persist down to the dotted line ending at U,;.
There is a region enclosed by the lines U,;(T) and U.»(T), where both the metallic and
the insulating solutions are allowed. Within this region, there is a first order bound-
ary where the two very different solutions cross in free energy, and several quantities
experience a jump: the specific heat, the susceptibility, the number of doubly occupied
sites, etc. The first order line has a negative slope indicating that the paramagnetic in-
sulating phase has a higher entropy than the metallic phase. This line ends in a second
order point at Ths;r & 0.05. Above this temperature one can go continuously from the
metal to the insulator via a crossover region which is shaded in the phase diagram. The
first order line has a negative slope indicating that the paramagnetic insulating phase
has a higher entropy than the metallic phase.

At T = 0, the metallic state is lower in energy than the paramagnetic insulator
and therefore the first order line ends in a 7' = 0 second order quantum critical point,

denoted U, in the figure (this point is discussed in detail in the next chapter). In this
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region is where the Brinkman Rice scenario for a metal insulator transition becomes
relevant. In fact, the mean field theory has confirmed the essentials of the Brinkman
Rice picture as applied to the vicinity U., and allowed us to obtain non critical correc-
tions to this picture. We also notice that the paramagnetic insulating solution and the
metallic solution are very close in energy and therefore departures from full frustration
will stabilize the insulating state.

The ED and QMC methods confirmed that the qualitative phase diagram obtained
from 20PT is correct, with only the values of U.; and U., slightly reduced. With
ED we obtained U.; ~ 2.15 and U, =~ 3. For comparison notice that the Hubbard
III approximation gives UHI! = /3 ~ 1.732, and the Brinkman Rice approach gives
UBR = 8¢ ~ 3.37. The metallic state of the system can be well described by a narrow

c

central quasiparticle peak characterized by an effective Fermi energy A = zD where 2

ax
dw

is the quasi-particle weight, z = (1 — 9=)~!, plus two high energy incoherent features at
:t% corresponding to the upper and lower Hubbard bands. The effective Fermi energy
A is found to go to vanish as U., — U. The insulator state consists of incoherent features
only. Notice however that the shapes of the incoherent features of the metallic and the
insulating phase are very different.

At the point U.; the gap between these bands closes continuously realizing the
essential ideas of the Hubbard scenario. While this solution is not the lowest energy
one in the fully-frustrated lattice, as mentioned above, we expect it to be stabilized
in any lattice having finite frustration. If the magnetic frustration is large we expect
the spectral function of the paramagnetic insulator to be rather close to the frustrated
magnetic solution.

To illustrate the nature of the two coexistent solutions, we plot the zero temperature
spectral function of the metallic and the insulating state in figure 5.4, as obtained from
20PT.

We also show in figure 5.5 a metallic and an insulating Green function obtained for
the same value of the parameters U = 2.8 and T = 1/64, as is obtained from both QMC

and the perturbative calculation. This demonstrates that the coexistent solutions is a

genuine feature of the model, and that it is also correctly captured by the approximate
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Figure 5.4: The density of states for the metallic (thin line) and insulating (bold line)
solution at 7" = 0 and the same value of the interaction U = 2.9, obtained with the
self-consistent perturbative calculation.

calculation. In order to select an insulating or a metallic solution one has to choose G,

obeying Go(iw) = -1 or Go(0) # 0 respectively as the initial guess in the substitution

procedure for solving the mean field equations.

The energy is computed from the Green function by

T . .
E = 5 %(zwn + & )G (iw,) (5.12)
The entropy is given by
T
sy = [ %dT’ + 5(0) (5.13)
0

where C, is evaluated numerically by differentiating the energy. S(0) is zero for the
metallic side and In2 for the insulating side reflecting the double degeneracy of the
paramagnetic insulating phase.

The physical critical line where the first order phase transition takes place is deter-

mined by equating the free energies of the two states,
FM—FI:EM—EI—(SM—SI)T. (514)

Figure 5.6 shows the calculated internal energy as a function of the temperature for

two values of the interaction U. For the smaller value of U the temperature dependence
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Matsubara Frequency

Figure 5.5: Comparison of the insulating and metallic Green function obtained using
the quantum Monte Carlo algorithm and the perturbative calculation. The value of the
interaction U = 2.8 and the inverse temperature g = 64.

of the internal energy of the metal displays a characteristic Fermi liquid 7% behavior in
the low temperature region. The characteristic energy scale in this regime is set by the
renormalized Fermi energy. At higher temperatures we see a thermal activation of the
incoherent features. In the case of the insulator we just observe only this last effect at
an energy scale U — 2D.

In figure 5.7 we plot the specific heat C, as a function of the temperature. The curves
are obtained through numerical differentiation of E(T). In the strongly correlated
metallic phase we find a separation of scales since A is much smaller than U — 2D. At
higher T a thermal activation peak appears at a scale U — 2D in both the metallic and
insulating case. As shown in figure 5.8, the linear in 7' Fermi liquid behavior is observed
in the low temperature region, with the slope 4 proportional to m* ~ (U, — U)™ " (see
also section 5.4).

The integral (5.13) gives the entropy as a function of temperature. As expected the

integral over the quasi-particle peak is equal to In2 as shown in figure 5.9. As can be
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Figure 5.6: The energy as a function of the temperature for a value of U = 2 in the
metallic region (solid line), and U = 4 in the insulating phase (dotted line).

seen in figure 5.8, for larger values of U but with U < U,, the metallic solution disap-
pears discontinuously before the entropy reaches In2. Therefore, we define a coherence
temperature T, as the temperature where the entropy reaches the value of ”‘72 The
physical relevance of T, is that it delineates the temperature range where Fermi liquid
theory is valid; see figure 5.10.

The comparison of the kinetic energy T = (3, excier) = 3.1 € Gi(iw,) and the
potential energy V = U Y (nn,|) of the two solutions, is shown in figure 5.11. We find
that the difference in the internal energy of the two states is much smaller than the
corresponding difference in the kinetic and potential energy. The gain in kinetic energy
by delocalization is almost perfectly cancelled by the loss in potential energy due to
the Coulomb repulsion in doubly occupied sites. This makes the higher order correc-
tions from higher order terms in the Yamada Yoshida perturbation theory important
for resolving the relative stability of the metallic and the insulating solution at zero

temperature. The small energy difference between the two states, however, is a general
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Figure 5.7: The specific heat C, as a function of temperature. The solid line is for
U = 2 and the dashed line corresponds to U = 4. In the metallic case (U = 2) it is
apparent the separation of energy scales. The linear part, at low T, ends at 7' ~ A, and
the thermal activation of the incoherent features peaks at the bigger scale '~ U —2D.
This last effect is the only one present in the insulating case.
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Figure 5.8: The specific heat C, as function of temperature for several values of U.
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Figure 5.11: The kinetic, potential and internal energy as function of U for T' = 0.02
(a) and T = 0.03 (b). The hysteresis effect is clearly observed.

feature of the problem. In fact the near degeneracy of the metallic and the insulating
state near U, follows from the bifurcation of two stationary points of the free energy

energy functional at U.,. This issue will be revisited in the next chapter.

5.3.1 The breakdown of the metallic solution

In this section we investigate the fate of the metallic solution. The destruction of the
metallic state is driven by the collapse of the renormalized Fermi energy scale A which
we showed is proportional to U..—U (see also section 5.4). From the mean field equation
(5.4), we realize that this scale is also the bandwidth of the conduction electron bath
which hybridizes with the local impurity in the Anderson model picture. It is easy to

understand then, that for sufficiently large U this scale vanishes. Imagine solving the
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system of equations (5.2), (5.3), and (5.4), by iteration. Consider a conduction electron
bandwidth A", (W™ in the notation of chapter 4) at the n'" iteration step. For large
U, solving the Kondo problem produces a new bandwidth A"*! a~ e=U/t A", Therefore,
this energy scale iterates to zero for n — oo.

In what follows we will make this argument more precise by introducing a parametriza-
tion for the local Green function. Close to U.,, there is a clear separation of energy
scales and the Green function can be written as a sum of a low energy and a high energy
parts: G; and Gj,. The high energy part resembles the solution of an atomic problem
while the low energy part obeys a scaling form.

In terms of a spectral representation:

G = [= eldge (5.15)

Gy = > enle) ge

—0oC fw—¢€

with pi(€) = 1f(£) exhibiting a scaling form as A « U., — U goes to zero. py(€)
describes the high energy non scaling parts (Hubbard bands) centered around +U/2.
A somewhat oversimplified but transparent picture of the spectral function is obtained
by taking p; to be two semi-circles with overall weight 1 — A/D, t = D/2. The
calculation of the scaling function f is an open problem, in the exact solution of the
large d Hubbard model. Here we determine it within the second order perturbation
theory scheme outlined in section 5.2.

Approaching the transition, G, develops a pole at a scale VAt >> A. The pole

can be determined exactly from the relation G5! = iw — t*G. In the frequency range

of A << w << U/2, the Green function can be simplified to:

G=— /:) pi(€)de — 2w /:) pf;@de + i p(w) (5.16)

where particle-hole symmetry p(—e€) = p(¢) has been used to change the integration
limit. In the energy region we are considering, the imaginary part is negligibly small

and we will ignore it in the following calculations.

21°AF

w

Gy'=(142°C)w —

(5.17)
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where, F = 1 [ f(z)de and C = [;° 22(de. The pole results at wy = v/A( 1it22t1:c)1/2'

Notice that the existence of this pole follows from the general scaling argument.
Now, combining this with the second order expression for the self-energy, one can make
further progress and determine the value of U., analytically.

The self-energy is given by, ¥ = —U>G3(7), which can be conveniently expressed in

terms of the density of states of the G,

_ —2wU2/ / / po €1 po €o p0(€3)d€1d€2d€3 (518)

(e1+ €2 + €3) — w?

where po(w) = —2ImGo(w). As A — 0, po develops a § like peak positioned at w
with a weight of m Therefore, the integrals can be performed in closed form to
obtain,
U?w
Y=- 5.19
4(1 + 262C)3(9we? — w?) (5.19)
as A — 0.

Comparing this expression with the one given by its definition, ¥ = Gg' — G~! =

—%, where only the most singular term at small w is kept, at U = U, (i.e. A = 0),
we have

U, =3D(1+ D*/U2) (5.20)
where D = 2t, and the approximations F' ~ % and C =~

parametrization discussed before are used. The value at which the metallic solution
disappears is then U., = 3.28D which is very close to the numerically determined
value UZPPT = 3.37D. From equation (5.19) it is clear that the scaling part of ¥ is
proportional to & and that the scaling function f in this approximation is a semi-circle.
Figure 5.12(a) and (b) contain the numerical solution for the density of states p; and
its scaling form f, as obtained from the second order perturbation theory near U.,. It
demonstrates that the region where scaling holds is actually quite large.

In principle equation (5.18) can be expanded to next order in A, but the coefficient
depends on the scaling function and the high energy part of the Green function and
cannot be calculated analytically. However, it can be determined numerically that close
to the critical point, A = k(U.» — U) with k ~ 0.21. Recalling the definition of A = zD

and that ’% = z~1, this last result implies that within this approximation we find the
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Figure 5.12: The low frequency part of the density of states p(w) as function of the
frequency for values of the interaction U = 3,3.1,3.2,3.3 (a). The four curves of (a)
collapse to one universal form after rescaling: f(%) = tp;(w), where A & U, — U (b).
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same critical behavior for the divergence of the renormalized mass as in the work of

a’s

5o is not

Brinkman and Rice [3]. Notice that within second order perturbation theory
divergent as one would expect on general grounds. This is due to the fact that in this

approach the vertex U is not renormalized.

5.3.2 The breakdown of the insulating solution

In this section we study how the insulating solution disappears as we reduce the value
of U. Our calculations determined that there indeed exists a new boundary U, (T) <
Uea(T), Ua(T = 0) = 2.6D associated with the break down of the insulating solution
[24].

To understand the destruction of the insulating state, we proceed to parametrize

the Green function once more,
Go(7) = a(0(7) — 1/2) + G&*“(7) (5.21)

with 6(7) being the step function. The first term represents an insulating solution at the
atomic limit (t=0). G{" is the “incoherent part” of the insulating solution, which decays
to zero as 7 — oo at zero temperature. Physically, this decomposition is motivated by
viewing the self-consistent equations as describing a Kondo spin in an insulator. The
spin operator S has a low energy part which is responsible for a Curie type of local spin
susceptibility and a high frequency part. We write S = \/aSi, + Shign, @ is a quantity
similar to the “quasi-particle weight”, it describes the weight of a pure free spin in an
interacting system, the impurity + the insulating host. In frequency space, G5 is only
responsible for the details of the shape of the Hubbard bands which are high frequency
features. The step function part gives rise to a divergency in Go(iw,) ~ 1/iw, and is
solely responsible for the existence of a gap. In the atomic limit « approaches to unity,
while on the contrary, the vanishing of a signals the complete screening (or Kondo
quenching) of the spin and the destruction of the insulating phase.

Using the parametrized form of G, we can relate a to the density of states p(¢) of

the local Green function. At half-filling, because of the particle-hole symmetry,

G = 2iw, /OO (p(ﬂ (5.22)

twy)? — €2
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Therefore, using (5.4) and comparing linear terms in iw,

~ p(e)d
-1 1+2tZA p(zg < (5.23)

If the Mott-Hubbard gap collapses, i.e., p(¢) becomes finite at ¢ — 0, a™! diverges.
Alternatively, a finite a at the transition indicates a finite Mott-Hubbard gap. Within
the second order perturbation scheme, we can obtain a closed equation for a. Inserting
the parametrized G into the self-energy expression we obtain:

S(r) = o %2(0(7) ~1/2) + Sine. (5.24)

which determines the low frequency behavior of the local Green function:

G = 5.25
iwn + 2(Go) + isgn(w ¢D2 (@, 1 B(Go)P (5:29)

Considering the most singular terms in the self-consistency condition (5.3) and (5.4),

for small w we have

D2
Gy = iw, + oL (5.26)
and therefore,
D \7!
a = <1 —|— U2a3> (527)

There are two solutions for o for U > U.. The one with a smaller «* is always
unstable and unphysical since it is not connected continuously to a = 1 as U tends to
infinity. At the transition U,;, the unstable fixed point collides with the stable one, and
the fixed point sclution disappears. U, = 3\/§/QD ~ 2.6 D which is the same as the
numerically obtained. Since « is finite at the transition, the Mott-Hubbard gap, within
this approximation, is finite. As was previously noted in section 5.2, we observed using
QMC, that in the exact finite temperature solution the U, vs. T line is shifted to
lower values of U, indicating a further reduction of the minimum gap. In fact, we will
later show using the ED calculation (which is non-perturbative) how the gap indeed

collapses to zero as in Hubbard’s original scenario.
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5.4 U, The Brinkman Rice point

We now turn to the description of the neighborhood of U.,. The quasiparticle residue z
(inverse mass enhancement) as a function of U from the exact diagonalization method
and the 20PT is shown in figure 5.13. For a small value of U the latter becomes exact,
at an intermediate range they coincide and as the critical point is approached the exact
diagonalization method, that treats the interaction non-perturbatively, becomes more
accurate. Using the projective self-consistent method we obtained U, ~ 3. Notice that
the z vs. U line extrapolates towards that value. It is noticeable that a straight line
from U, can be obtained for a big range of the interaction. The mass renormalization in
the limit of infinite dimensionality is identical to the quasiparticle weight. The critical
behavior of the renormalized mass is thus = = 27! ~ 0.92(1 - U%)‘l. These results
can be compared to the Brinkman Rice picture for the transition [3] [25]. Using the

Gutzwiller wavefunction, that variational approach gives UB® = 8¢ ~ 3.37, and z =

(1 —(UgR )?). This last result, close to the critical point reduces to z7* = 0.5(1— U?F )
which is similar to the ones of the present treatment. It is interesting to note that
the value for U, obtained with 20PT is virtually identical to the Brinkman Rice
calculation.

To gain further insight on the nature of the transition, we investigated the behavior
of other quantities as a function of U. We plot in figure 5.14 the double occupation (D)
as a function of U as obtained from the different methods.

There are two branches, corresponding to the metallic and insulating solutions at
T = 0, which merge at U. ~ 3. They show the excellent agreement of the exact
diagonalization algorithm and the 20PT in all parameter range, except very close to
the MIT point. The QMC data being at an inverse temperature 4 = 32, shows that the
effect of the temperature is to reduce the double occupation on the metallic side. In the
insulating side, the effect is negligible since in this case there are no small energy scales.
At this temperature the coexistence region is very small, and the data shows a jump
in (D) at U ~ 2.4. Notice that this result indicates that the Brinkman-Rice approach

captures the singular part of (D), but in addition we observe that this quantity does not
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Figure 5.13: The quasiparticle weight z as a function of the interaction U. The solid
bold line corresponds to ED results with 8 sites. The dotted line is obtained from 20PT.
For comparison we also plot the results using the Gutzwiller variational method.
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Figure 5.14: Double occupation as a function of the interaction U. The data corresponds
to QMC simulations at § = 32 (dots), 8 sites exact diagonalization (bold line) and
20PT at T = 0 (dotted line). For comparison the results for the Gutzwiller variational
wavefunction is also plotted (thin line).
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vanish at the transition due to an additive non-singular part. We can thus parametrize
(D) = 0.235(%=%) + 0.015 Also note that the magnetic moment is obtained from the
double occupation through the identity (m?) = 1 — 2(D). Therefore, we find that the

magnetic moment is not saturated at the transition.

5.5 U.; The Hubbard point

We have just discussed how in the region of the phase diagram around U, the Brinkman
Rice scenario for the destruction of the metal is realized. Surprisingly in the region
around U.; Hubbard’s ideas regarding the closure of the Hubbard bands come to life. In
figure 5.15 we plot the value of the Hubbard gap as a function of U in the paramagnetic
phase. As a definition for the magnitude of the gap we take twice the energy of the lowest
energy pole of the Green function obtained from the exact diagonalization method. We
show data extrapolated for finite size effects from systems of 3,5 and 7 sites. A 1/N ;..
scaling behavior is assumed. The results indicate that, following the insulating solution,
the gap closes at a value U,; ~ 2.15, and that A ,, ~ (U —U,). For comparison, we also
plot the same quantity from the 20PT calculation that gives U2°FT ~ 2.6. These results
can be compared to the corresponding from Hubbard-III. In that case the critical value
for the destruction of the insulating state is UE!!! ~ 1.73, and AFHI ~ (U — UHII)3/2,

Even though the paramagnetic insulating phase is strictly unstable at zero temper-
ature, it is relevant to very frustrated magnetic insulators. Since the energy difference
between the metal and the paramagnetic insulator is very small in the full coexistence
region at 7' = 0, departures from full frustration will stabilize a magnetic solution that

will resemble the paramagnetic insulator solution.

5.6 Susceptibilities and the Mott-Hubbard transition

In what follows we are going to present a combination of theoretical arguments and
numerical results, in order to discuss the behavior of the susceptibilities in the vicinity
of the transition. Unfortunately, we cannot take further advantage of the perturbative

approach. The vanishing of higher order corrections in the self-energy in the atomic
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Figure 5.15: Paramagnetic gap (solid) as function of the interaction U obtained from
ED. For comparison, the corresponding results from 20PT (dotted), and U ~ 1.73
(diamond).

limit does not necessary imply that this will be also true for the calculation of other
quantities. For example, negative compressibilities are obtained for intermediate and
high values of U. Therefore, all the numerical results in this section were obtained
with the QMC method. Although the present computational power does not allow a
detailed quantitative analysis of higher correlation functions at very low temperatures,
our results are sufficient to give support to the theoretical discussion.

Much theoretical insight about the behavior of the spin and charge susceptibilities
can be gained by the fact that the impurity model describing the Hubbard model is an
Anderson impurity model.

In chapter 4 we have already discussed that when the Mott point is approached,
magnetic order of the local spin sets in [13]. In principle x; can be determined in
NMR experiments. However it is the q = 0 susceptibility that is easily accessible to
experimental probes. The q = 0 quantities differ from the local ones because of the
polarization of the Weiss field due to the external perturbation. We will illustrate how
this effect, which is at the heart of the Fermi liquid theory, modifies the low energy

responses near U,,.
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In the presence of a small chemical potential g, away from the particle-hole sym-

metric point, and a small magnetic field h, the mean field equations are
Gyl =iw, + p+oh—t°G, (5.28)

To proceed, we extend the simplified form of the parametrization discussed in section
5.3.1 to account for the magnetic properties. The high frequency part of the Green
function is polarized like a local moment which can be described as a superposition of
Hartree-Fock solutions. It has been demonstrated that when U ~ U, the upper and
lower Hubbard bands are well developed, so that for low frequencies and fields, a good

approximation for G, is

Ng n_g 2A/D

G, = . . 5.29
iw, — S et T iw, +iA(sgnw,) (5:29)
with D = 2t. Inserting (5.29) in (5.28), we have for small frequencies,
1 t’m,
Go; = tw, + p+ ho + 2 o (5.30)

where m, = n, — n;. Equation (5.30) describes an impurity problem in the presence of
an external field h.sy = h— 2%7710. We can compute the magnetization from the theory
of the Anderson impurity model in an effective field h.s;. We know that m = x,h.;y,
with x, ~ and T} being the effective Kondo energy of the problem which in our

aTk 3

case corresponds to A. a is a numerical coefficient of order unity. Solving for m we

find
_ [d_m] - 1 _ 1 (5.31)
A % P TN |
where we have defined the magnetic exchange energy J = 2% = %.

The physical interpretation of this equation is transparent: the exchange arises from
high energy processes which are largely unaffected by the Mott transition. As a result
the susceptibility varies continuously, as U passes through U.. Remarkably equation
(5.31) was also obtained in the large N limit [26]. This findings are consistent with
the QMC results displayed in figures 5.16 and 5.17. For smaller U, an initial fast
increase in Yy, is observed as A rapidly decreases. However, unlike the Brinkman-Rice

approach, this quantity remains finite at the transition due to to the existence of a
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Figure 5.16: Local magnetization m, as function of an external magnetic field, for
different values of the interaction U.

non zero superexchange constant in the uniform response. The numerical result can
be parametrize according to the analytic expression obtained above. We find x=! ~
0.7(1 — &) for the metallic phase, and x~* &~ J in the insulator phase (J is plotted for

comparison). It is intersting to note that this result (metallic case) compares very well

with the Gutzwiller variational approach that gives for the spin susceptibility [25]

U2>‘1<1 _N(O)U 14 U/2Uc>‘1

. = 21\702<1——

i (5.32)

where N (0) denotes the density of states at the Fermi level. Close to the critical point

reduces to xzr = 0.74(1— Ul), in agreement with our results as long as the critical point

is not approached too close. This is because the variational scheme fails to capture the
cut-off in the magnetic response.
We finally also obtained the Wilson ratio as a function of interaction U. This
quantity is displayed in figure 5.18 and is derived from figures 5.13 and 5.17. It is found
1

to vanish at the critical point since while the specific heat diverges as -, the magnetic
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Figure 5.17: Inverse of magnetic susceptibility at q = 0 (solid dots) and the magnetic
exchange J = 2Uﬁ (dashed line) as a function of the interaction U.

susceptibility is cut-off by min{T~1, J~! = 2U/D?}.

Similar considerations apply to the charge susceptibility. Applying a chemical po-
tential does not cause a change (to order én) in the distribution of integrated spectral
weight between the upper and lower Hubbard bands. This can be readily understood
by extending the observation of chapter 4 that the high energy features are correctly
reproduced by an expansion around the atomic limit. In this limit a small particle
hole asymmetry shifts the energies of the atomic levels but does not transfer spectral
weight. The change in the low energy part of the Green function is easily estimated
using Fermi liquid theorems. The change in G(0) as a result of a change in chemical
potential is given by the phase shift, which in turn is given by the shift of the location of
the center of the resonance. Its width does not change to order A/ D because of particle
hole-symmetry. Assuming that at low frequencies the result of applying p is to shift
the center of the resonance by ¢;, the local Green function can be then approximated

by
2A/D
(tw, + €5 + iAsgnw,)

with §n ~ L. We thus find §G(0) ~ 2, and therefore, from (5.28), the effective

A A

Gliwn) = (5.33)

chemical potential of the impurity model becomes dp.;; ~ dp — §5n. The response of

the impurity to this shift in the chemical potential is 07 = Ximp Oftess, With Ximp =~ %
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Wilson Ratio

Figure 5.18: Wilson ratio as function of the interaction U.

the charge susceptibility of the impurity. Combining these results we obtain

dn Xe
A

that implies that the charge susceptibility vanishes as (U. — U) as we approach the
Mott transition. This result is consistent with the Monte Carlo simulations that give
g—z ~ 0.52(1 — U%)/D ~ 0.6A/D?, with U, ~ 2.75 at an inverse temperature 3 = 16.
Thus, the compressibility goes to zero as A, when U approaches U,. It is intersting to
note that this result compares well with corresponding one obtained from the Gutzwiller

variational approach [25]. In that case the compressibility is obtained as

146 41-U/U.
g Lon_ 41-U/U (5.35)
ngdp U 14+U/U.
where ny denotes the particle density. Close to the critical point it reduces to g—ZBR A

0.59(1 - Ul)/D in close agreement with our results.

On the other hand, we have seen in section 5.4, that the doubly occupancy does
not saturates as the transition is crossed. This is consistent with the local charge
susceptibility being finite. In fact, the impurity charge compressibility equals minus the
kinetic energy by virtue of the mean field equations.

Before proceeding with our discussion we illustrate in figure 5.19 the quality of the
fit that is obtained from the parametrization for the local Green functions introduced

above. The data shows a comparison of a Green function obtained at 5 = 64 from
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QMC simulations and the fitting function

G Ny n n_g, n 2A/D (5.36)
7w, 4 op— % iw, + mu + % (w, + €5 + iAsgnw,) '

As is clear from the plot this simple parametrization is able to capture the exact results
in great detail as can be particularly noted from the low frequency behavior of the
real and imaginary parts of the Green functions. The parametrization has three free
parameters: the width A, the position of the low frequency quasiparticle peak €; and the
number of particles in the Hubbard bands n, (n_, becomes fixed by the normalization
condition). The value for the interaction is set to U = 2.5 and the chemical potential is
chosen p = 0.3. This values are consistent with the made assumptions for the validity of
the parametrization, that is, proximity to the critical point where the Hubbard bands
are well developed and small doping. Note that in principle one may use a smaller
number of free parameters by considering available information such as the expectation
value of the particle number operator and the particle number sum rule. However, here
our aim is not to produce the least free parameter fit, but rather to justify the validity
of the parametrization scheme.

We argued before that the local spin susceptibility diverges at the Mott transition
as i while the q = 0 spin susceptibilty stays finite at the transition. This and an
independent estimate of the exchange constant J can be obtained by approaching the

transition from the insulating side by analyzing the fully-frustrated model.

For large U, the fully-frustrated model in equation (5.5) reduces at half filling to

ij
where J;; are independent random variables with an exponential distribution P{J} =
%%lea:p —(JN/J,) with (z) = 1 for > 0 and 8(z) = 0 for z < 0.

An important observation is that J;; = & while the variance jf] - jf] = ]{,—22 so the
randomness is irrelevant in the thermodynamical limit. The solution of Hamiltonian
(5.37) with J;; = £ is elementary.

We exhibit the solution to confirm and interpret the finite susceptibility in the

insulating phase. The eigenstates of equation (5.37) are labeled by the total spin €, =
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Figure 5.19: Comparison of an exact Green function away from half-filling obtained
from QMC at 8 = 64, and the parametrization discussed in the text. The interaction
U=25and . =0.3.
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Z[5(S + 1)]. For simplicity we will take N to be even N = 2N,. For a given value
of the spin the degeneracy of a state with a given value of total spin .5 and projection
Szisds = (3°s) — (»2s_1). The partition function in the presence of a uniform field

reduces to
sinh(Bh(S + 1))
sinh(2)

N,
Z = ds e P55+ (5.38)
S=0

In the thermodynamical limit N, — oo it is convenient to introduce the variable

¢ = S/N, and equation (5.38) reduces to

1 onos2 [ehBNow _ o=hpN,a 1
Z =N, / d Voo = P | © } O(— } 5.39

{ 0 2sinh(%2) * (No) (5.39)

with g(z) = lnm + wln[i;i} being the density of states. This system is peculiar

in that the number of states decreases as the energy (or the spin) increases. g(z) =
2In2 — 2? as @ — 0, therefore it has negative temperature. Equation (5.39) is easily

evaluated when N, is large and we obtain the free energy per particle

F(h,B) h?p 1
= - — =In2 5.40
N 8+287, B (5.40)
and the susceptibility
. o’ f 1
X (@=0) =50 = Ty, (5.41)

which displays Curie law for T >> J, but saturates at the magnetic energy J, at low

temperatures in complete agreement with the discussion of the paramagnetic phase.

_ dlnz

E-F
a8 ? .

we can obtain the entropy S = =5

From the free energy and the energy £ =
Notice that when A = 0,F = 0 and S = 2N,In2. This is the result of the large
degeneracy of the singlet sector. In fact the number of states per particle in the singlet
sector can be estimated directly from equation (5.40).

The prediction that y* remains finite as U — U, is physically sensible and probably
persists in finite dimensions. It reflects the fact that the magnetic energy is finite
when d — oo. The same is true in the limit of large N of the model studied in

[27] in any dimension, provided we identify the Mott transition with the metal charge

transfer insulator transition. This physics is missed by the Gutzwiller approximation
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which ignores the high energy processes thus the magnetic exchange completely. The
divergence of v (cf. section 5.3) as U — U, is consistent with the fact that the entropy
is In2 in the insulator. In the metallic phases S(T") = foT Q”T?—IldT’. Since this quantity
vanishes as 7' — 0 in the insulating phase Q”TZZ diverges at the transition. This is the
result of a large spin ground state degeneracy. It is rooted in the fact that since J;; ~ 5
one needs long range order to gain finite magnetic energy. This is clearly unrealistic and
will not persist in any finite dimension. In fact, in the large N limit in finite dimensions
the specific heat remains finite when the metal insulator transition drives the system

into a resonating valence bond state [28]. It would be interesting to construct a loop

expansion around the d = oo solution to remedy this problem.

5.7 The magnetic solution and frustration

In this section we will consider the solution of the model with magnetic order. In the
absence of magnetic frustration, on a bipartite lattice, one expects to find an antifer-
romagnetically ordered state as the local moments develop when the interaction U is
increased from zero and the temperature is low. This is indicated by finite dimensional
Hartree-Fock and variational calculations [29, 30].

On the other hand, at big values of the interaction, the magnetic moments become
fully developed and the model maps onto the Heisenberg model. It will consequently
also display an antiferromagnetically order state with a Néel temperature that is in-
versely proportional to U.

The low temperature solution of the model, on a bipartite lattice, is therefore ex-
pected to be that of an antiferromagnetic insulating state due to the effective doubling
of the lattice parameter.

We find that this scenario is fully realized in the limit of large dimensions. We solve
the self-consistent equations (5.7) that define the model on a Bethe lattice without
magnetic frustration. As usual in the case of antiferromagnetic order, two sublattices
A and B are introduced. Even though we are at half filling and in the particle-hole

symmetric case, the Matsubara Green functions acquire a non-zero real part as the
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occupation becomes different for the up and down spin functions on either sublattice.

Gt = [-GE)
G4 = [-GAP) (5.42)
and,
ntB = 1-n?P
nt = n®, (5.43)

In figure 5.20 we show the local Green function of spin ¢ as a function of Matsubara
frequency. The figure shows the results obtained by QMC simulations at § = 32 and
the ED calculation with 8 sites. The value of the interaction is U = 1.5. The solutions
are insulating since the imaginary part goes to zero at the origin. On the other hand,
the large real part signals the opening of a gap. Although QMC is at T # 0, the
agreement is excellent since the gap is much bigger than 7. In figure 5.21 we present
the corresponding results for the density of states at the same value of the interaction.
The difference in the occupation of the up and down spin Green functions is apparent.
The gap in the density of states is obtained from the distance between the lowest energy
poles.

To study the behavior of the system at the low temperatures where the QMC
approach becomes inapplicable, we implemented both a Hartree-Fock calculation and
the generalization of the second order perturbation approximation that we introduced
before. To test the reliability of these approaches, we obtained the Néel temperature
for the model. The results are displayed in figure 5.22. We find that none of them in
good agreement with the QMC simulations.

The failure of the perturbative approach, which underestimates the value of the
Néel temperature, can be understood from the following argument.

The local magnetization is defined as m, = (n; — n|), and from particle-hole sym-
metry, m, = 2((ny) — 3) = —2((n;) — 3). On the other hand, the local Green function
for, say the up spin electrons, with the self-energy considered to second order reads,

1
Gt u—Ulny) - 2

Gy (5.44)
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Green Function

Figure 5.20: The local antiferromagnetic Green function of spin o as a function of
Matsubara frequency. The imaginary part is odd and the real part even. Obtained
from QMC at 8 = 32 (full line) and ED of 8 sites (dotted line). The results can hardly
be resolved due to the excellent agreement. The interaction U = 1.5

DOS

Figure 5.21: The density of states for o and —o electrons (full and dotted line) obtained
from ED of 8 sites for U = 1.5. The top plot corresponds to the bipartite Bethe lattice
and the lower plot to the TSFF model with ] = 1#* and ¢} = 2¢°.

1
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Figure 5.22: Comparison of the Néel temperature of the bipartite Bethe lattice model
obtained from QMC (bold line), 20PT (dotted line), and Hartree-Fock (thin line).

At particle-hole symmetry, we set p = %, and the Green function now becomes

1
Gt = Ul(m) ~ 3) - 5

)

G, (5.45)

Now lets imagine that we produce a small magnetization or, equivalently, an increase

of the up spin occupation. Then (n;) — % > 0, and (n;) — = < 0. Therefore the up

2
spin electrons will experience an increase in their effective chemical potential whose
rol is played by the second term in the denominator of equation (5.45). As was noted
in a previous section, one of the failures of 20PT away from half filling is that it
produces negative compressibilities when the interaction becomes of the order of the
bandwidth. Therefore, in the present case this effect is translated into an effective dia-
magnetic response to the original magnetization. This has the consequence of reducing
the tendency of the system to develop a magnetization, and ultimately to reduce the
Néel temperature. We have also check that the region of parameter U where the Néel
temperature is fully suppressed, indeed coincides with the region where the negative
compressibility becomes more pronounced.

Regarding the Hartree-Fock calculation, we find that it fails to accurately reproduce
the Green function obtained by QMC, however, it correctly predicts the existence of

the antiferromagnetic phase.

It is also worthy to note the very close agreement of the Hartree-Fock results with



86

0.5

Figure 5.23: Local staggered magnetic moment as function of temperature obtained
from Hartree-Fock approximation. The interaction U = 0.5,1,2 (thin, dotted, and
bold line).

the similar obtained for a three dimensional cubic lattice [29]. The agreement is very
good not only for the Néel temperature, but also for the local magnetic moment as a
function of U that we show in figure 5.23.

We want to turn now to the intersting case of adding frustration to the model. This
question may be of relevance in the description of the V5,03 compound. Although this
system is found to be antiferromagnetic at low temperatures, experiments show that
the magnetic interaction between neighboring vanadium sites is frustrated [31].

In this case we solve equations (5.8) that apply to the TSFF model introduced
before. Many results are affected when a partial degree of frustration is added to the
model. We see in figure 5.21 that the density of states is modified in a dramatic way.
With the interaction U = 1.5 and the parameters 7 = 1¢* and ¢3 = 2¢?, we find that
the frustration not only clearly reduces the magnetic moment, but more importantly,
is able to close the gap, driving the system to a novel antiferromagnetic metallic phase.
The possibility for this type of solutions has been previously considered by Cyrot [32],
and it has been experimentally observed in V,03 by Carter et al. [33].

In figure 5.24 we show the results for the gap in the density of states as obtained from

the ED calculation. It is clear from the plot how the TSFF represents an interpolation
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Figure 5.24: The gap in the density of states obtained from ED for the bipartite Bethe
lattice (thin line), fully-frustrated lattice (dotted line), and TSFF model (bold line).
The gap is defined as the distance between the lowest poles in the Green function. The
curves correspond to the extrapolated results to an infinite size system from clusters of
Niites = 3,5,7. A 1/N,., scaling behavior is assumed.

between the fully frustrated case where no magnetic order is possible and the case of
a bipartite lattice. It is interesting to note that the frustration lowers the value where
the insulator disappears U,p, respect to U,; introduced before. We find that it is non-
zero (unlike the bipartite case) and its value results Usps &= 1.5 for the above choice of
parameters.

The local staggered magnetization shown in figure 5.25 remains continuous as a
function of U as the antiferromagnetic gap closes. However, its value is decreased by
the frustration. In particular it is driven to zero for a value of the interaction U r; & 0.5,
in contrast to the bipartite lattice case where it remains non-zero when U # 0.

We have, therefore, a situation at 7" = 0 where the solution is a paramagnetic metal
until a value U,p; is reached where the local staggered moment starts to develop and
the system becomes an antiferromagnetic metal. When the interaction U is further

increased, a gap in the density of states eventually opens as Ujp, is reached. From
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Figure 5.25: The local staggered magnetization obtained from ED for the bipartite
Bethe lattice (dotted line), and TSFF model (bold line). The curves correspond to
the extrapolated results to an infinite size system from clusters of N,;., = 3,5,7. A
1/N;te, scaling behavior is assumed.

there on an antiferromagnetic insulating state sets in.

As we increased the temperature with a value of the interaction slightly above U p»,
we observe that the gap closes and we obtain an antiferromagnetic metallic state at
finite temperature. The magnetization of this state rapidly disappears as T is further
increased. This can be observed in figure 5.26 where we show results for the real and
imaginary parts of the local Green function obtained from ED at T = 0 and QMC
simulations at 7' = 1/64. It can be seen clearly how the imaginary part becomes non-
zero at zero frequency in the finite temperature results, while the real part remains
non-zero which signals an antiferromagnetic state.

It is interesting to note that the existence of an antiferromagnetic metallic phase is
also obtained within the Hartree-Fock approximation. This is illustrated by the results
of figure 5.27 that display the Green function obtained at U = 0.95 and 7" = 0.05. The
imaginary part accordingly goes to a finite value at small frequency, while the real part
is non-zero.

Within this approximation, it is possible to solve analytically for U4z;, which is the

value of the interaction where the solution acquires a staggered magnetic moment but
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Figure 5.26: The antiferromagnetic metallic solution of the TSFF model as a function
of Matsubara frequency. The imaginary part is odd and the real part even. Obtained
from QMC at 8 = 64 (full line) and ED of 8 sites (dotted line). The interaction U = 2
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Figure 5.27: The antiferromagnetic metallic solution of the TSFF model as a function
of Matsubara frequency. Obtained from the Hartree-Fock approximation at U = 0.95
and T = 0.05. The bold line corresponds to the imaginary part and the dotted line to
the real part.
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remains metallic.
The self-consistent equations for the TSFF model (5.8) that mimics a partial degree
of frustration in the Hartree-Fock approximation read,

1
N Gg; + cr%mz

Gyl =iw -G, - t2G_, (5.47)

G, (5.46)

where o = 1, —1 for the up and down spin Green function respectively.
We now expand the Green functions arround the non-interacting and non-magnetic

G that corresponds to a semi-circular density of states of half-width 2t = D,

Goliw) = (5.48)

2
w4 /(iw)? — 4¢2

Writing G, = Go + 6G, and replacing in the self-consistency equations we obtain,
—1 -2 . U 2 2 2
Gy —6G1Gy" = w + CXiche t°Go — 170G, — 150G
U
Gyt - 6G,Gy? = iw — 2 t’Go — 316G, — £36G;. (5.49)
Defining 6G T —6G |= §G, we subtract the last equations to get
G;%6G = —Um, + (8 — 13)6G (5.50)
and solving for 4G,
Um,

TG+ (-8
which is the variation of G; — G| when U is small.

0G

(5.51)

We can combine this result with the self-consistent condition for the magnetization
that reads,

1 0
m, = —— / Im|5G] (5.52)
T J-o0
Inserting the expression for G, on the real axis

G;l(w) = ‘5" + isgzﬂ\/uz ~w?, -D<w<D (5.53)

into §G, we obtain, after a few steps of tedious algebra, the following expression for the

critical value of U, p; where a non-zero magnetization appears

3 ! V1-— -t
gHE _ °T </ T A i dm) (5.54)
0o ¢+ z3

2 (1—8a)+ %=
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where a is defined from ¢; — ¢3 = t?a — t*(1 — a) = —t*(1 — 2). Examining equation
(5.54) we realize that for a # 0 the integral converges and a finite U, p; is obtained. For
a = 0.25 we numerically solve the integral to obtain UXE = 0.71 which is consistent
with the value obtained previously from the ED calculation.

For the case @ = 0 which corresponds to the bipartite Bethe lattice, i. e., without
frustration, the integral has a logarithmic divergency. This is signals that the original
assumption that the Green function can be expanded arround the non-interacting non-
magnetic Gy breaks down. This is because in this case Uyps = 0, since an infinitesimal
U immediately drives the system to the antiferromagnetic insulating state.

Let us now consider the large U region. The modification of the Néel temperature
cannot be obtained with QMC in this case since U is large and T is low. However, it
can be analytically determined. We have seen in figure 5.25 that even in the presence
of partial frustration, the magnetic moment becomes rapidly saturated for intermediate
values of U. We therefore consider, as we did in the previous section, the extension to
the TSFF model of the spin hamiltonian that we introduced before. The solution is
straightforward and the Néel temperature is found to be reduced as Ty = J, — J; =
2(t3 — t7)/U.

Finally, we combine all the present results with the earlier ones for the fully frus-
trated model, to obtain a new phase diagram for the model with a partial degree of
magnetic frustration. The results are summarized in figure 5.28. It is very intersting
to note that most of the main features experimentally observed in V,0j3 are realized in
this model [34, 35, 33]. In particular if we associate decreasing pressure with increasing
interaction U, we find the correct tilting of the first order line that separates the para-
magnetic metallic to the paramagnetic insulating state. This line ends both, in the our
case and in the experiment, in a second order critical point where a crossover region
starts and which is tilted in the opposite way. The topology of the phase diagram is
also captured in detail, even the small antiferromagnetic metallic region recently found
by Carter et al. [33]. As a last remark, is notable that also the temperature scales are

consistent with the experiments if we set the bandwidth D ~ 0.5¢V.
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Figure 5.28: Approximate phase diagram of the TSFF model. The solid lines indicate
the first-oder lines separating the magnetic phases that correspond to parameters ¢3 =
0.25t%, t3 = 0.75t%. The square indicates a second order critical point. The shaded
region corresponds to a crossover from a paramagnetic metal to an insulator state.
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Figure 5.29: Particle number § = n — % as a function of the chemical potential u. Data
obtained from QMC at § = 16, for different values of the interaction U.

5.8 The transition as a function of doping

It is interesting to investigate the Mott transition as a function of doping in the Hubbard
model. We believe that away from half filling and in the paramagnetic phase there is
only one solution, and then we can investigate the behavior of various quantities as a
function of filling factor.

We first show in figure 5.29, the particle occupation as a function of the chemical
potential as obtained from QMC at 8 = 16. We note that the slope of the curve, i.e.
the compressibility, goes to zero at ¢ = 0 as U, is approached. For bigger values of U,
we have a vanishing compressibility characteristic of an insulating state. It displays a
gap approximately equal to U — 2D which compares very well with the results for the
size of the gap from the exact diagonalization method (figure 5.15). Notice that for
U > U, the § vs. pu curves approach half filling (§ = 0) with a finite slope.

We also calculated the specific heat and spin susceptibility as a function of doping

for the case U = 3. This places the system close to the Mott point, as it seems to be the
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case for compounds as La,Sr;_,Ti03 and the high T¢ cuprates [36]. The specific heat

v = 7r2:,23 po(eF)%, and the spin susceptibility xs = p% [Ccll—’;ll] , with m = n; — n|, are
h=0
displayed in figure 5.30. The plot is in units of v = & :B p°(0) = %”JIZB and x% = 52

respectively, and corresponds to QMC simulations at 3 = 32. This compares rather
well with the experiments of Tokura et al. on La,Sr;_,T703 [37]. The specific heat is

consistent with the parametrization y ~ 0.2876—0. Notice also that for small doping the

renormalized mass behaves as - 2z~ 1

o v o« §~ 1. This quantity is shown in the inset
of the figure.

The Wilson ratio (xs/7)/(x%/7°), plotted as function of doping in figure 5.31, is
derived from these quantities. We note that its value is consistently lower than the
experimental value R ~ 2 that is found in the compound mentioned above. Whether
this is due to a shortcoming of the mean field theory, or it is some interesting effect

of the many orbital character of the experimental system, remains an interesting open

problem.

5.9 Conclusion

The solution of the Hubbard model in the limit of large dimensions has provided a limit
where various early ideas can be put in perspective.

One issue is whether a metal insulator transition can take place in the absence of
magnetic order. The phase diagram presented in figure 5.3 and figure 5.28 answers this
question in the affirmative for a frustrated lattice.

There is a region enclosed by two lines U.;(T') and U.,(T"), where both the metallic
and the insulating solutions are allowed. Within this region, there is a first order bound-
ary where the two very different solutions cross in free energy, and several quantities
experience a jump: the specific heat, the susceptibility, the number of doubly occupied
sites, etc. The first order line has a negative slope indicating that the paramagnetic
insulating phase has a higher entropy than the metallic phase. The line ends in an
interesting second order critical point, above it there is a smooth crossover between a

metallic and an insulating regime.
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Figure 5.30: Specific heat (white dots) and spin susceptibility (black dots) as function
of doping for U = 3 and 3 = 32. The experimental results for the specific heat from
ref. [31] are plotted for comparison (grey dots). The inset shows the renormalized mass
m*/m = Z~! as a function of doping.
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Figure 5.31: The Wilson ratio as function of doping for U = 3.

We also demonstrated that for U < U,,, the one particle Green function of the
model captures some aspects of the Brinkman-Rice scenario. In particular, the mass
renormalization diverges as (U, — U)™' [13]. At the same time, the solution of the
Hubbard model in infinite dimension also allowed us to perform calculations of phys-
ical quantities at finite temperatures, and eliminated some of the shortcomings of the
Brinkman Rice description of the Mott transition. In the actual solution, the number
of doubly occupied sites is finite and changes smoothly at the metal-insulator transition
resulting in a finite exchange constant which gives rise to a finite susceptibility. We also
observed that at U,,, the single particle gap opens discontinuously, which is different
from the predictions of the slave boson method [38], but is not inconsistent with the
experimental observations of Fujimori et al. [36].

We found a natural scenario for the destruction of the insulating solution with the
continuous narrowing of the gap of the insulator. This is a realization of the original
Hubbard scenario for the MIT driven by the closing of the upper and lower Hubbard
bands. In this case, U.; corresponds to the value of the interaction where the gap in
the one particle spectra vanishes, or equivalently, where the divergence of the dielectric
constant is observed. This was demonstrated by the exact diagonalization results.
Although the same was not the case within the second order approximation to the
impurity self-energy, this calculation, nevertheless, provided valuable insights on the

nature of the destruction of the insulating solution.
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On non-frustrated, bipartite lattices, however, we find that the Néel temperature
is much higher than the metal insulator transition temperature, making the transition
between small and large U continuous. In this case, the physics can be understood
in terms of the magnetic long range order and a smooth crossover within the broken
symmetry phase. The Mott transition is irrelevant, vindicating Slater’s point of view.

When a partial degree of frustration is considered, in addition, at low temperatures
there is a first order line between an antiferromagnetic metal and an antiferromagnetic
insulating phase. This is possibly relevant to the experimental results of Carter et al.
[33]. In this case, the phase diagram has the same topology and even the same scale as
the experimentally observed phase diagram of V,03;. We therefore conclude, that the
Hubbard model in large dimensions at half filling on a frustrated lattice can account for
the basic experimental features observed in the V,0; system vindicating Mott’s point
of view.

The experimentally observed phase diagrams of transition metal oxides display in-
commensurate metallic magnetism. This can in principle be studied by extending the
mean field theory to account for incommensurate phases as done by Freericks for the
Falikov Kimball model [39]. For this calculation to be meaningful, however, one should
include the details of a realistic band structure of the transition metal oxide, which is
beyond the scope of our work.

An important open question is what happens to the transition at finite dimensions?
We expect that the Mott transition and the metal charge transfer insulator transition
are in the same universality class. The large N expansion results of [27] indicate that
for N = 2, U.; and U, coincide and that the Mott transition is second order with
continuous disappearance of the Kondo resonance and a gradual closing of the Mott
gap. Similar results were obtained with the slave boson approach to the Hubbard
model. Whether the large N expansion is missing crucial 1/N terms which would split
the two transitions, or whether the 1/d corrections would bring the two transitions to

one, remains an interesting open problem.
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Chapter 6

The coexistent solutions

6.1 Introduction

The correlation induced metal-insulator transition (Mott-Hubbard transition) is one of
the prime examples in which strong correlations dominate the low-energy behavior of
a physical system. A theoretical treatment of the problem requires an approach which
is non-perturbative in the interaction. Recently, new insights into the problem were
gained using the limit of infinite dimensionality [1, 2]. It allows for a mapping of a
variety of lattice models onto impurity problems in a self-consistently determined bath
[3, 4] and is therefore a natural way to formulate a mean-field theory of itinerant systems.
While being simpler than the original problem, the resulting mean-field theory remains
a formidable many-body problem which has to be solved using numerical methods.
Recently the Hubbard model has been investigated by several groups using Quantum
Monte Carlo (QMC) simulations and self-consistent perturbation theory (PT) [5, 6, 7,
8]. While a combination of both methods established the existence of a Mott-Hubbard
transition at a finite value of the interaction U in the paramagnetic phase of the Hubbard
model at half-filling, important questions regarding the nature of the transition remain
unsolved.

In the previous chapter, the coexistence of metallic and insulating solutions over
a finite range of values of U has been demonstrated [9]. While the metallic solution
disappears continuously at a value U,,, the insulating solution disappears abruptly
at a value U,; < U.. At finite temperature, the difference between the free energy
of the solutions is dominated by the entropy term. The large entropy, which is a
result of the degeneracy of the ground state in the insulating case, made it possible to

unambiguously determine the existence of a first order transition line close to U.((T).



101

As the temperature is reduced, the free energy approaches the energy, therefore an
accurate evaluation of the energy is necessary. Depending on which solution is lower in
energy two very different scenarios may take place: If Er,, < Ej.;, the transition will
be close to U.; and the sudden destruction of the metallic state implies a first-order
transition even at T = 0. On the other hand, in the case Ey.; < Frn,, the metallic
solution continuously merges with the insulating one at U.,, and the quasiparticles
display a diverging renormalized mass [9].

While the limit 7' = 0 cannot be attained by QMC simulations, within the second-
order perturbative approach the energies of the two solutions are almost degenerate,
making the consideration of higher-order corrections necessary. An alternative nu-
merical approach to the problem was introduced recently: While the large d mean field
equations are functional equations for the Green function G(iw, ), an approximation can
be obtain by modeling G(iw,) using a finite number N of parameters, which reduces
the functional equations to non-linear algebraic equations in N unknowns. Following
this idea, two different parameterizations were introduced [10, 11]. Both take advan-
tage of a mapping of the lattice problem onto an Anderson impurity model with a
self-consistently determined bath. The N parameters that model G(iw,) define the
hopping amplitudes and energies of the effective electron orbitals of the bath, as will be
discussed in detail in next section. The resulting problem can then be solved at T = 0
by exact diagonalization of the effective Hamiltonian. This is followed by the new de-
termination of the set of parameters, and the procedure is iterated until convergence is
attained. The method is thus non-perturbative in nature and overcomes the problems
of both QMC and PT, allowing for an accurate evaluation of the energies at 7' = 0.

In this paper we apply this approach to the study of the Hubbard model. We
establish the coexistence of metallic and insulating solutions over a finite range of the
interaction parameter U and show that at T = 0 the metallic solution has lower energy
than the insulating one, implying that the metal-insulator transition in the Hubbard
model with semicircular density of states is of second order. This justifies a posteriori
the relevance of the earlier studies [8] of this quantum critical point which captures the

essence of the Brinkman-Rice transition.
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6.2 Methodology

In the limit of infinite dimensionality the Hubbard model, described by the Hamiltonian

H=— Y (b melocio + U Y (g — 5)(miy — 3) (6.1)
<iyg> i

can be reduced to an effective impurity problem, supplemented by a self-consistency

condition [4]. As in the previous work we focus on a Bethe lattice of infinite connectivity

d, which in the non-interacting limit corresponds to a semicircular density of states of

width 4¢, where the hopping parameter t is rescaled in the usual way as t — ﬁ.

Integrating out the degrees of freedom other than the origin, one obtains an effective

local action of the form

Saslee| = Y [ drar'el (G~ )ea(s) + U [ dr(na(r) ~ 3)(na(r) - 3)(62)

In the following we focus on the paramagnetic solution at half filling (# = 0). The
self-consistency condition then reads G§'(iw,) = iw, — t*G(iw,) where G(iw,) =
- foﬁ e“r” < Tre(r)e!(0) >5.,, is the local Green function of the Hubbard model once
self-consistency is attained. As shown in previous chapters an action of the same form
can be obtained from an Anderson impurity model by integrating out the conduction
electrons [4]. Note that the self-consistency condition implies that the role of the hy-
bridization function is played by the local Green function itself. The iterative solution
now proceeds as follows: G(iw,) is modeled by a finite set of parameters. In terms of
the impurity problem, this represents an effective bath for the impurity with a finite
number of poles. This effective impurity model is then solved by exact diagonalization
and a new G(iw,) is calculated. A new set of parameters is then obtained from G(iw,)
by approximating it by a function with a number of poles equal to the number of sites
in the bath (this number is in general smaller than the number of poles of G(iw,)).
Note that this represents a further approximation of the method (beyond the effec-
tive Hamiltonian being finite). The whole process is iterated until convergence of the

parameters is achieved.
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Exploiting these features, two new similar algorithms were proposed recently [10, 11],
differing basically in the way the new set of parameters is obtained, that is, how the
G(iw,) is parametrized by a smaller number of poles. We will consider both schemes
and comment on their respective advantages and limitations.

As mentioned, the number of poles of G(iw,) is in general larger that the number of
sites in the bath, therefore this approximation is an essential ingredient of the scheme.
Caffarel and Krauth [10] proposed to obtain the new parameters by a x? fit of G(iw,).

Starting with an Anderson Hamiltonian of the form

1 1
H =Y €nal, a0, Vaal,co + he)+U(ng — S)(ny — 5 6.3
S Cothatar + S (Vaohae, + e+ Ulmy = )(m — ) (63)
the self-consistency condition becomes #2G(iw) = Y02, MV_E We thus have to mini-
mize
) NQ Nsite V2 )
= G(iw, ) — — 6.4
=[G )~ 3 e (6.4)

where we sum over frequencies w, = (2n 4+ 1)xT with small fictitious temperature (
T = .001) and large cutoff NoAw ~ 2U, to obtain the new set of parameters V,, and «,.
Note that this Hamiltonian effectively describes an impurity surrounded by a “star” of
bath electrons.

An alternative route was introduced in the context of an extended Hubbard model
[11]. This procedure takes advantage of the fact that the Green function G(z) can be
decomposed into “particle” and “hole” contributions as G(z) = G”(z) + G<(z) with
G”(z) =< gs|c ct|gs > and G<(z) =< gs|c clgs > .

1 1
z—(H—Ey) z+(H—-Ey)

The respective contributions can be obtained from a continued fraction expansion

as
/< >/< o < £ >
< fo"7lS | fo = (6.5)
T 24 By — ai/ <~ ”1>< e
ZiED_a?/<_ziED—a2>/<—...

where |f7 >= cllgs >, |fS >=c|gs > and |foy1 >= H|fo > —an|fu > —02|fu1 >,

a, =< fulH|fn >, b2 = %, by = 0. This implies that G> and G< can be

regarded as resulting from a Hamiltonian describing an impurity coupled to two chains
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with site energies a>/< and hopping amplitudes 5>/<. Again the number of poles in
the Green function is in general larger than the number of sites of the Hamiltonian
and in order to close the self-consistency, the continued fraction expansion has to be
truncated. The approximation in this scheme relies on the fact that the continued
fraction representation captures exactly the moments of the energy of the Hamiltonian,
up to the order retained in the continued fraction. It can thus be thought of as a
moment by moment fitting. This scheme has the numerical advantage that it avoids
the multidimensional fit of the Green function, but the disadvantage that it can be
implemented practically only in the case of a semi-circular density of states. In the
metallic case an explicit extra site at the Fermi energy is introduced in order to better
represent the low frequency region and, more importantly, to allow us to feed-back
a metallic bath. The hopping parameter to this extra site is calculated by a single

parameter minimization of the expression

X(@) = Y [Galiwn, @) — Gliw) (6.6)
where now G 4(iw,, @) = ;= + (1 — a)Gy, (iw,). Gy, is the truncated Green function
to length No = Nsii./2 and wy and wy are low and high energy cut-offs defined by the
lowest poles of G and Gy, , respectively. In this case the moments will be modified by

a small factor () which decreases as the system size is increased.

The effective Anderson model therefore reads

Neg—1 Ng—-2

H=3" 3 (X atellel, + > (Bhehchin, + hee))
a=1

o p=>,< a=1

© Y bolcheon + huc). + U(ng — %)(nl _ %) (6.7)

with ¢, being the destruction operator at the impurity site, co, being the destruction
operator at the effective bath site with zero enenergy, and ¢, being the destruction
operator at the chain sites of the effective bath.

In both schemes, ground-state wavefunction and ground-state energy of the An-
derson Hamiltonian are determined by exact diagonalization (up to six sites) and the
modified Lanczos technique [12]. Systems of up to ten sites can be handled on a work-

station. The zero temperature Green function of the local site is finally obtained from
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a continued fraction expansion using the recursion method discussed above.

As mentioned in the introduction, a further advantage of the formulation of the
problem in terms of an Anderson impurity model is the fact that the energy of the
Hubbard model can be obtained directly without frequency summations using Anderson
model relations. The kinetic energy per site of the Hubbard model is given as T =
ﬁLN Dok Qi tG iz (4w, )e™0" . Taking the limit of infinite coordination number this

reduces to T' = 2ﬁj Y. G(iw,)%e°" . Using the self-consistency condition as well as

the the fact that in the Anderson model % Div, Dao Z.wvj: < ¢ (twy )l (fwy,) >
=Y o Va < cleay + h.c. > we obtain
T = ZVQRe < gslclcanlgs >, (6.8)

where a labels the sites neighboring the impurity. The potential energy of the Hubbard
model is obtained as

V =U < gs|nynglgs > . (6.9)

6.3 The two solutions

In our analysis we have focused on two major aspects: the determination of a region
where two solutions are allowed, and the resolution of controversy regarding the low-
est energy solution. The two approaches considered yield a consistent picture of the
transition. We are able to obtain converged metallic and insulating solutions for a
finite range of the interaction U within both schemes. We further demonstrate that
the metallic solution is lower in energy in the whole coexistence region. The energy
difference between the solutions goes to zero as U, is approached, implying that the
transition can be classified as second order. This should be contrasted with the results
from second-order perturbation theory, where the two solutions were found to cross
in energy at an intermediate value of the interaction U. A point worth noticing (as
was already observed within the perturbative approach) is that the energy difference
between the solutions is much smaller than any energy scale of the problem. This is
due to an almost perfect compensation of the gain in delocalization (kinetic) energy, by

the loss of energy through double occupancy (potential energy), in the metallic state
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Figure 6.1: Comparison of the metallic and insulating Matsubara Green functions for
U = 2.7, as obtained from the two variations of the algorithm. Full line “star geometry”
and dotted line “two chain geometry” (10 sites for the metallic case and 8 sites for the
insulating).

compared to the insulator.

Metallic and insulating solutions for U = 2.7 inside the coexistence region are shown
in figure 6.1 (the half-bandwidth 2¢ is set equal to unity). In the first case the Green
function displays a narrow resonance at low frequency (note that the pinning condition
at w = 0 is fulfilled [13]), while the insulator in the second case merely consists of
high energy features (upper and lower Hubbard bands). The figures also illustrate the
consistency of the two schemes considered here. In both, the metallic and insulating,
cases the agreement is very good. We also find that the results of both methods for
the single particle Green function on the imaginary axis compare very well with the
second-order perturbative calculation [8] and QMC [6, 7] (the latter is discussed in
reference [10]).

The kinetic, potential and total energies for the two solutions in the coexistence
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region are displayed in figure 6.2. An interesting feature is the already mentioned
almost perfect cancellation of delocalization and double occupancy energy. Another
important observation is that while a finite size effect is apparent in the results for the
kinetic and potential energy, the convergence of the total energy is much faster [14]. A
few runs for a ten site system show almost no difference to the results for eight sites.

The energy difference of the two solutions is shown in the inset of figure 6.2. As the
critical point U, is approached from below, the finite size effects become relevant for
U = 2.8. This limitation of the scheme is due to the fact that as the low energy scale
associated with the quasiparticle peak goes to zero close to the transition, the discrete
nature of the approximation starts playing an important role and the Kondo resonance
is represented by only a single pole.

The smallness of the difference in energy between the metal and the insulator can
be understood from the picture of a second-order critical point where the metallic and
insulating solutions merge with a vanishing scale A ~ U, — U. The problem can
be formulated from a variational point of view, with the free energy F becoming an

§F_ _ §F

extremum at the metallic and insulating solutions, i.e., -=—

360 = ag; = 0 Since the two

solutions merge at the point Ucs, F' can be expanded in power series of G — G as

62F

As the difference between the metallic and the insulating solution is parameterized by
A, and the second derivative vanishes at the critical point as A, it follows that the
energy difference goes to zero as A3. The critical region cannot be accessed by the
present method. In order to capture the vanishing energy scale, a higher resolution (i.e.
an effective bath with more sites) is needed.

Finally, we would like to comment on the disappearance of the insulating solution
at U,. From the “two chain” scheme, the insulating solution is found to persist all the
way down until the gap closes. This differs from the results of perturbation theory and
resembles the Hubbard III scenario for the destruction of the insulating state [17, 18].
In the case of the “star configuration”, while a converged insulating solution can be

obtained at values of the interaction U well below U,,, the question of the closing of
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Figure 6.2: Kinetic, potential and total energy for the metallic and insulating solu-
tions in the coexistence region. Difference between the metallic and insulating solution
(inset). From the “two chain geometry”.
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the gap cannot be answered conclusively.

6.4 Conclusion

We have resolved the standing questions regarding the metal-to-insulator transition
in the Hubbard model in infinite dimensions, using a powerful algorithm to obtain
Green functions at zero temperature [15]. We were able to demonstrate the existence
of a region in which metallic and insulating solutions coexist, which is in agreement
with previous results, and showed that the metallic solution is always lower in energy.
This implies that while at finite temperature the transition is first order, it becomes
second-order at T' = 0, similar to the work of Brinkman and Rice in the context of the
Gutzwiller approximation [16] [8]. Since the method presented is very general as well
as simple, especially when compared to Monte Carlo simulations, it is an appealing

approach to the study of strongly correlated electron systems.
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Chapter 7

Optical conductivity in correlated electron systems

7.1 Introduction

The question of the transfer of spectral weight in the optical conductivity of correlated
electron systems is a long standing problem. The interest in this issue has been re-
vived by the improvement of the quality of the experimental data in various strongly
correlated systems.

From a theoretical perspective, the calculation of the optical conductivity in models
where the interactions are strong proved to be a difficult task. It has only been studied
by exact diagonalization of very small clusters, by approximate diagrammatic schemes
where the reliability of the results is difficult to determine and by large N methods.
All these treatments have been restricted to zero temperature and have been unable
to account for the interesting transfer of spectral weight that occurs as a function of
temperature in strongly correlated electron systems.

Recently, following the interest in the study of the many body problem in the limit
of infinite dimensions [1], a new mean field theory of the strong correlation problem
was developed [2, 3, 4]. This theory is similar in spirit to the Weiss mean field theory
in classical statistical mechanics. It has provided new insights into the physics of Mott
transition [5, 6, 7], a classical problem of strongly correlated systems.

At the heart of the mean field approach is the exact mapping of the many body
system onto a single site problem (impurity model) in an effective medium which is
solved for self-consistency [2, 3]. The remaining impurity problem can be efficiently
solved by numerical techniques, and a great variety of physical observables of the original

model can be then easily obtained [8, 9].
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In this chapter we address, in the framework of this mean field theory, the question
of the optical conductivity in the the light of the recent experiments on V,0; a system
with a Mott transition [10], and Ce3 Biy Pt3 and FeS¢ which are considered to be Kondo

insulators [11, 12].

7.2 Methodology

As model hamiltonians for these systems we consider respectively, the Hubbard model

and the Anderson lattice.

1 1
<i,j> i
1 1
Hap = (e —p)eh crot d (€5—p)dl,dig+ > V(dl,cio+hc)+> U(nig— 5)(% _ 5)
k : i p
(7.2)

where summation over repeated spin indices is assumed.

7.2.1 Mean field equations

Here we will consider the symmetrical case of the models p = 0, ¢} = 0. For simplicity,
a semi-circular bare density of states for the conduction electrons is assumed, p°(¢) =

S b(e — e)/Nywe = (2/xD)/1 - (¢/D)?, with t = 2. This density of states can be
realized in a Bethe lattice and also on a fully connected fully frustrated version of the
model [13]. In the following we set the half-bandwidth D = 1.

The corresponding impurity problem is defined by an effective action. It follows
from formulating the problem in the Functional Integral formalism, and integrating out

the degrees of freedom of all sites but the one at the origin. We thus obtain for the
Hubbard model [2]:

B B8 B
Sflescll= [ [ drar n)Gate = e+ [ dr Uln(r) = Hma(r) - )

(7.3)
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the self-consistency conditions reads,

Gy (iwy) = iw, + p — t*G(iw,) (7.4)

The corresponding expressions for the Anderson lattice model are [3, 14]:

8 B 8
Sslotl) = [ [ drar i (n)Gs = )ulr)+ [ dr Ui (7) = 3)(mas(7) - ),
(7.5)
and,
(G5 (iwn)]ee = iwn + p — t[G(iwn)]ee (7.6)

with ¢1 = {cf,di}.

The equations are solved by iteration. At the self-consistent point, the impurity
Green function coincides with the local Green function of the lattice problem. Due
to independence of momenta, the same applies to the self-energy. It obeys the Dyson
equation ¥ = G;;! — Gy

We use an exact diagonalization algorithm (ED) [15, 16] and an extension of the
second order perturbative (20PT) calculation around the non-magnetic hamiltonian to
solve the impurity problem [13, 17]. We have already discussed in previous chapters
the remarkable success of this simple approximation to reproduce, for all parameter
range, the essentially exact results that are obtained for these models by use of ED and
quantum Monte Carlo simulations [9, 13]. We consider here the 20PT calculation in

the Keldysh formalism, that allows to obtain finite temperature results directly on the

real axis, with no need of analytic continuation.

7.2.2 Optical conductivity

The optical conductivity is defined as

o(w) = —‘%Im <[i,4]> (7.7)

after a few steps of algebra one obtains the expression for the frequency dependent real

part of o in the limit of large dimensions
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o(w) = iezziz = / de p( / Z_: A(w)Ac(0" + w)(ng (o) — ng (o +w))  (7.8)

with, A.(w) = —2Im(G}(w)) being the spectral representation of the lattice conduction

electrons Green function, e is the electron charge, and a the lattice constant. At T = 0,

the optical conductivity of a correlated electron system can be parametrized by [18]
w}’;z

o(w) =7 (W) + 0rey(w) (7.9)

where the coefficient in front of the §-function is the Drude weight and w} is the renor-
malized plasma frequency. In the presence of disorder §(w) is replaced by a lorentzian

of width T'.

The kinetic energy is related to the conductivity by the sum rule

oc 71'62 UJ2
dw = — T>=-% 7.10
A o(w)dw onta <1 >= 4 (7.10)

The Drude part can be directly obtained in terms of the quasiparticle weight z in

the limit of d — oc. It can be shown that

wp?  2e?
it 3h’a

Dz. (7.11)

7.3 Hubbard model

To apply the Hubbard model to V03 one has to remember that in this compound, in
a range of 2eV from the Fermi level, there are three d-orbitals per vanadium which are
filled with two electrons. However, photoemission spectroscopy indicates that mainly
one band is involved in the metal-insulator transition. This band extends to approx-
imately 0.4eV. Using this value for the bandwidth we find that our model exhibits a
phase diagram with a Ty ;7 &~ 240K, which is within a factor of two of the experimental
result [19]. Therefore, we will consider the results for the optical conductivity, in the
low frequency range of w < leV, within the framework of a single band model. One
should keep in mind, however, that at high frequencies contributions from other bands

will appear, but these are outside the scope of the present treatment.
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Table 7.1: Experimentally determined parameters for the model.

Phase Parameter
D [eV] | U [eV] | A [eV] | wp /47 [eV/Qem]
Insulator (stoich.) 0.33 1.3 0.32 175
Insulator (y=.013) 0.48 0.98 | 0.063 820
Metal (stoich. 170K) | ~ 0.3 | ~ 0.6 - 1400

To make contact with the experiments, we take the lattice constant a =~ 34 the
average vanadium-vanadium distance, and extract the parameters U and D from the
main features of the experimental optical spectra. We then use these as input parame-
ters to the Hubbard model to calculate the lineshape and its temperature dependence.
We also compare interesting information such as the distribution of spectral weight, w5,
wp, and the optical gap. Experimentally one can vary the the parameters U and D, by
modifying the oxigen content y. The parameters extracted for different situations are
summarized in table 7.1. It is not surprising that U and D are very different in the
metal and the insulator, since the lattice parameter and the screening length change
rapidly across the phase diagram. We consider that the role of magnetic frustration
is relevant in the insulating phase of V,03, so we use our two sublattice model in the
limit of strong frustration. This is consistent with the fact that the Néel temperature

is much lower than the T3;7, and with neutron scattering experiments.

7.3.1 The insulator state

We first discuss the insulating state. The experimental optical spectrum of the insulator
is characterized by an excitation gap at low energies, followed by an incoherent feature
that corresponds to charge excitations of mainly vanadium character. In figure 7.1, we
reproduce the experimental results obtained recently by Thomas et al. for the optical
conductivity of V,03 in the insulator phase [10].

In figure 7.2, we plot the optical gap A as a function of the interaction U, for both
the antiferromagnetic and paramagnetic insulator solutions. The gap is defined as twice

the distance to the lowest energy pole obtained from the ED. The curve corresponds
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w [eV]

Figure 7.1: The optical conductivity o(w) in [Q tem™!] for V5_,0;. The top curve
corresponds to y = 0.013,7 = 10K, and the lower curve toy = 0,7 = T0K.
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2.4/ e

Figure 7.2: The optical gap A as a function of the interaction U, for both the antifer-
romagnetic (dotted) and paramagnetic (solid) insulator solutions. The points show the
experimental gap in units of the experimental half-bandwidth.

to the extrapolated data from clusters of 3, 5 and 7 sites. A scaling behavior is

Noir
assumed.

In figure 7.3 we show the corresponding results for the optical spectrum that is
obtained from the 20PT at T" = 0. The shape of the spectrum is found to be in good
agreement with the experimental results [10].

Another quantity that can be compared to the experiment is the integrated spectral
weight. It is related to the kinetic energy by the sum rule in equation (7.10). In figure
7.4 we plot the results for the kinetic energy that are obtained from the ED. The curves
show both the insulator and metallic paramagnetic results along with the antiferromag-

netic insulator. We also include for comparison the experimentally determined spectral

me’
2h%a "

weight. The experimental points are plotted in units of

7.3.2 The metallic state

We now turn to the discussion of the metallic state. Experimental data were obtained
for T = 170K and T = 300K, on stoichiometric samples of Vo035 that become insulating
at T,

4

150K . In figure 7.5, we reproduce the experimental results obtained recently

by Thomas et al. for the optical conductivity of V503 in the metallic phase [10].
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Figure 7.3: The optical conductivity from ED at 7" = 0. Results for the paramag-
netic insulator solution with a value of the interaction U = 2.15D (top) and U = 4D
(bottom). For comparison, the results from 20PT at U = 4D are also shown (dotted).
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Figure 7.4: The kinetic energy as a function of the interaction U, for both the antifer-
romagnetic (dotted) and paramagnetic insulator (thin) and metallic (thick) solutions.

The points show the experimental integrated spectral weight in units of 2’%22(1.
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Figure 7.5: The higher figure contains the optical conductivity o(w) in [Q7*em™?] of
Vo035 for T = 170K (top) and T = 300K (bottom). In the lower figure we plot the

difference Ao (w) of the two spectra.
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Optical Conductivity

Figure 7.6: The optical conductivity from 20PT for U = 2.1D, and T = 0.05D (top)
and 0.083D (bottom). This values correspond to T' ~ 170K and 300K by setting the
half-bandwidth D ~ 0.3eV. A small I" was included in the calculation to mimic a finite
amount of disorder.

The lower and higher temperature spectra look rather featureless. However, upon
considering their difference it becomes apparent an enhancement of the spectrum at
frequencies of the order of 0.5¢V, and more notably, the emergence of a low frequency
feature that extends to ~ 0.15¢V. We will argue below that this behavior can be
accounted by the Hubbard model treated in mean field theory in the metallic state.

In figure 7.6 we present the results for the optical spectrum obtained from 20PT for
two different values of the temperature. The repulsive interaction is set to U = 2.1D
that places the system in the correlated metallic state. The first feature that becomes
clear from this figure is that, at least, the qualitative aspect of the physics is already
captured. As the temperature is lowered, we observe both, the enhancement of the
incoherent structures at frequencies of the order % to U, and the rapid emergence a
feature at the lower end of the frequency spectrum. This behavior is consistent with
the experimental data on V,0; shown in figure 7.5 [10].

The lower temperature optical spectrum displays various contributions: i) A narrow

low frequency feature in the optical spectrum that is due to excitations within the many
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body quasiparticle resonance. ii) At frequencies of order % and U, two broad incoherent
features also emerge due to excitations between the Hubbard bands and the central
resonance, and between the Hubbard bands respectively.

The interesting prediction of the model is the temperature dependence of the low
frequency feature. We expect a transfer of spectral weight to the lower frequencies,
as the temperature is decreased. This should occur at a scale T,,;, ~ 200K which we
have introduced in chapter 5. It has the physical meaning of defining a temperature
below which the Fermi liquid description applies, and the quasiparticle resonance in the
density of states is formed.

As we have done previously for the insulator, we can consider the integrated spectral

weight. We find a value W ~ 110052 which is consistent with the experimental results,
although somewhat lower. We believe that this is possibly due to the presence of higher
energy bands that are not included in the present treatment.

To end the discussion of the metallic state we would like to briefly consider the
question of the slope of the specific heat 7. The experiments show an unusually big value
for this quantity. The need to account for this observation imposes further constraints

for the model. v is related to the Drude part of the conductivity since both quantities

depend on the renormalized mass. The slope of the specific heat, within the present

L?) mJeV
2D ¥ molK?2"

scheme, is given by v = Experimentally, it has been measured as function

of different parameters and a remarkable high value is always found. For 0.08%T'

substitution v = 40#;{2, while for a pressure P = 25Kbar in the stoichiometric
compound v = 30#;{2, and with vanadium deficiency in a range of y = 0.013 to

0.033, the value is v ~ 47-2L_ [20, 21, 22]. We find that the choice U = 2.1D above,

molK?

mJ
molK?

corresponds to z =~ 0.3 and gives v ~ 30 which is in good agreement with the
experimental findings.

Thus, it turns out that this framework naturally incorporates the physics of both
the lower end of the optical conductivity spectrum, and the anomalously big values

of the slope of the specific heat v, as consequence of the appearance of a single small

energy scale, the renormalized Fermi energy €} = zD.
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7.4 Anderson lattice model

We would like now to turn to the second model, the Anderson lattice, and consider its
results in the light of the recent experiments in Kondo insulators [11, 12]. In the non-
interacting limit U = 0, the effect of the localized orbital is to split the conduction band.
The system becomes a hybridization band insulator, with a direct gap proportional to
the magnitude of the hybridization V. In this limit, the optical conductivity exhibits
a sharp gap followed by an incoherent absorption feature of width given also by V,
o(w) = O(w — 2V )(w? — 4V?)/2/w*. This behavior is due to the crossing between the
conduction p-band and the non-dispersive d or f-band.

As the interaction on the localized orbital is switched on, different approaches to

this problem (e.g. perturbation theory, NCA, large N, etc. [23]) indicate that a low

_uD)

Ve The narrow band of

energy scale emerge due to the Kondo effect Tx ~ ezp(
quasiparticles, characterized by T, also opens a gap due to the hybridization. Thus,
the physics remains basically identical to the non-interacting case, with the exception
that the hybridization is renormalized to a smaller value V* and VT*E ~ Tgk.

The consequences for the optical conductivity, are that as the temperature becomes
of the order of Tx <« V* <« D, the Kondo quasiparticles are destroyed and the gap
is filled by spectral weight which comes mainly from the higher frequency part of the
incoherent spectrum. This picture is consistent with the experimental results [11, 12,
24].

The present mean field theory approach is in agreement with this basic picture but
contains in addition the incoherent part of the excitation spectrum which cannot be
described in terms of quasiparticles [14]. In addition it allows us to study quantitatively
the evolution of the spectra as a function of temperature. Here we apply this method
to the optical conductivity of heavy fermions.

In figure 7.7 we plot the results for the optical conductivity spectra of the Anderson
lattice for different values of the interaction U, keeping the hybridization V fixed.
We clearly observe how the optical gap is renormalized by the correlation effects in

agreement with the previous discussion. The inset shows that the result VT” ~ Tk is
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Figure 7.7: The optical conductivity spectra of the Anderson lattice for values of the
interaction U = 0.5, 1,2, 3 (right to left), keeping the hybridization V' = 0.25 fixed. The
inset shows the gap A, &~ V* and the indirect gap from the local density of states ~ Tk
for V' = 0.6. The slopes of these curves give V*?/D a Ty in the strong correlation
region.

indeed valid in the region where the correlations are strong. However, the exponential
dependence of V* and Ty with U, becomes power-law with exponents —1 and —2
respectively. The results are obtained at T' = 0 by the 20PT calculation. As mentioned
above this approximation reproduces remarkably well the essentially exact results of the
ED method. A detailed comparison will be presented elsewhere.

A point worth mentioning is that the size of the gap A., within the present ap-
proach, is basically given by V* (the direct gap). This is in contradiction to the results
that are expected in a large N calculation if contributions beyond the mean field are
considered [25]. In that case, it is argued that higher order terms would produce optical
excitations down to the scale of the indirect gap 7. The argument follows from the
assumption that the results for the metallic phase can be extended into the insulating
one. The validity of this assumption is unclear. In the case considered here, however,

the contributions to the spectral weight at the scale of the indirect gap seem to be
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strongly suppressed.

We would like to consider now the effect of the temperature in the transfer of optical
weight. In the experimental results for the optical conductivity on Ce; Biy Pt; and FeSi
[11, 12] that we reproduce in figure 7.8, charge-gaps of size A, ~ 400K and 1500K are
observed. However, they start to form at the much lower temperatures Tx =~ 100K
and 200K respectively. They finally become depleted at T ~ 25K with most of the
spectral weight being transferred to frequencies much bigger than A,.. Thus, we see
that in these materials, T is roughly five times smaller than A, and the temperature
were the gap is depleted is roughly five times smaller that T .

Figure 7.9 show that the Anderson lattice in mean field theory can account for
some aspects of the experimental observations. The results are obtained for U = 3 and
V = 0.25. The charge-gap indeed starts to form at a temperature much lower than its
size (5= ~ 4), and it becomes depleted at an even much lower temperature (2= ~ 20).

The only aspect that is not fully consistent with the observation is that this model
shows that most of the spectral weight is being transfer to frequencies just of the order
of the charge gap. In the experiments the transfer of weight to this energy range is
smaller.

affected by surface defects, especially strain

To make a meaningful comparison with the experimental data we have added the
effects of disorder by putting a lorentzian distributed random site energy on the con-
duction electron band with width I' = 0.05. The results are shown in the inset of figure
7.9. It is clear from the figure that the addition of disorder brings our results to a much
closer agreement with the experimental results. It is also worth mentioning that we
observe that increasing the disorder reduces the temperature T*.

Although the dependence of the these results on the details of the density of states
of the conduction band is a priori an important issue, our results seem to indicate that
it is possibly a minor effect. This is mostly due to the observation that the shape of
the optical spectra remain basically invariant (up to a rescaling) as the interaction U
is increased, even to very high values. In that case the model approaches the atomic

limit and the details of the shape of the conduction band should become irrelevant.
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Figure 7.8: The optical conductivity spectra o(w) in [Q 'em™!] for the Kondo in-
sulators Ce3BiyPt; and FeSi. The higher figure corresponds to CezBiyPt; at
T = 25,50,75,100,300K (from below). The lower figure corresponds to FeSi at
T = 20,100,150,200,250K (from below).
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Figure 7.9: The optical conductivity for the Anderson model at 7' = 0.001 (bold),
0.005,0.01,0.02 (dotted), 0.03 (thin). The interaction U = 3 and V' = 0.25. Inset: The
same quantity at 7 = 0.001 (bold), 0.005,0.01,0.02 (dotted), 0.03 (thin) with lorentzian
random site disorder of width I' = 0.005.

Finally we would like to consider a last but important issue, the magnetic response.
Since the localized spins dynamics is solely controlled by the Kondo scale Tk and
magnetic susceptibility data is available, it is interesting to consider it under the light
of the results of the present approach. It is currently argued from experiments [24] that
the fact that the spin and charge-gap are generally found to be of the same order of
magnitude can be understood in terms of a simple hybridization band insulator with a
single small energy scale T . However, a closer look to the experimental data indicates
that the spin-gap is consistently smaller than the charge-gap. In particular, for the
compounds that we are considering above we see that the charge-gap is at least two
times bigger than the spin-gap in Ce; Biy Pt;, while for FeSi it differs by as much as
approximately a factor of four [11, 24]. This observation may be an indication that the
interpretation mentioned above is, perhaps, not correct.

The mean field results for the frequency dependent local spin-spin correlation func-
tion suggest a different interpretation of the energy scale controlling the optical gap. We
find that the spin-gap is greater than the indirect charge gap (which is also controlled

by T ), by afactor of order unity. The size of the indirect gap is obtained from the local
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Green Functions, and the spin-gap is measured from the position of the lowest energy
pole on the spin-spin correlation function obtained in the ED procedure. This result,
when considered in regard to the observation made before, seems to be in conflict with
the interpretation that the lowest frequency feature in the optical conductivity spectra
is controlled by the Kondo scale (indirect gap). On the other hand, the experimen-
tal situation can be consistently accommodated within the present theory since the
charge-gap in the optical spectra is given by the direct gap (A, ~ V*, V* > Tk).
Figure 7.10 shows the local spin-spin and density-density correlation function of both
the conduction and the localized electrons. As expected, the f-electron contribution to
the magnetic response bigger and correspondingly will make up for most of the signal
experimentally measured. The optical conductivity is also plotted for the same value
of the parameters, this results should be compared to the corresponding in ref. [11].
In the inset we plot A,, the indirect gap A;,; and A, as a function of the interaction
U for a fixed value of the hybridization. The first corresponds to the position of the
lowest pole of the correlation function and the second to the gap in the single particle
spectrum, obtained from the ED calculation with 8 sites. The latter corresponds to
the the frequency where the sharp edge in the optical spectrum calculated by 20PT
reaches half-height. We find that A, is consistently larger than A,, and that A, is
somewhat smaller than A;,;. As expected when U = 0, A, = A;,4, but as U increases
A—A“: becomes smaller than unity and approaches the value 0.5 at U =~ 2. We emphasize,
once more, that both the indirect and direct gaps are small energy scales that go to

zero as the interaction U is increased. They are correspondingly given by the Kondo

V*z, thus they do not vanish in the same

scale Tx and V', and are related by Tx ~ 5

manner.

7.5 Conclusions

In this chapter we have illustrated how the mean field theory, that becomes exact in
the limit of large dimensions, can be used to study the physics of systems where the
local interactions are strong and play a major role. In particular we have demonstrated

that the Hubbard and the Anderson lattice treated in the mean field approximation can
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Figure 7.10: The local spin-spin (bold) and density-density (thin) susceptibility from
8 sites ED. The optical conductivity from 20PT (dotted). The parameters are U = 1
and V = 0.2. The inset shows the direct gap as obtained form 20PT (upper dotted
line), the indirect gap (lower dotted line) and the spin gap (solid line) from 8 sites ED.

The hybridization is V' = 0.2.
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account for the main features of the temperature dependent transfer of spectral weight
in the optical conductivity spectra. In the case of V,0; we found that the theory is
able to account semi-quantitatively for the conductivity results in both the metallic
and insulating states. In the latter, the theory seems to provide further insights in the
role of the magnetic frustration. For the Kondo insulators, although the comparison
was not carried to such detail, we have seen most of the qualitative features of the
experimental results been naturally realized within the present approach. The remain-
ing discrepancies would probably have to wait until a systematic expansion around the
mean field theory is developed.

We also stress that this approach can easily incorporate more realistic band structure
density of states and more complicated unit cells. This extensions would allow for a

more precise quantitative description of the physical systems.
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Chapter 8

Conclusions

In this thesis we have consider at length the behavior of systems of correlated electrons
in the limit of large dimensionality. We have seen how the physics that results from the
considered models not only retains most of the features commonly encounter in finite
dimensional formulations, but has provided us with valuable new insights that were not
possible to obtained before.

We have been able to take full advantage from the mapping to lattice models onto
impurity problems to develop a set of powerful numerical tools that enabled us to solve
the models in great detail.

We have combined the numerical results with analytic arguments to present a de-
tailed solution of the Hubbard model and considered its relevance in regard of the
experimental results on transition metal oxides. In particular, we have found that
the model is able to capture some fundamental aspects of the physics observed in the
compound V503, which is considered as a prototype of system with a Mott transition.

In chapters 3 and 4, we demonstrated the existence of a metal-insulator transition in
the Hubbard model at an intermediate value of the interaction U in the half-filled case
and in the absence of magnetic order. One most intersting aspect that the solution dis-
played is that it was able to make contact within a single framework with two important
classical results for the model: the work of Hubbard that starts from the atomic limit,
and the Brinkman Rice approach from the metallic side considering the Gutzwiller vari-
ational wavefunction. These traditional approaches hinted towards the existence of a
Mott transition at an intermediate value of the Coulomb repulsion, which became fully

realized in the large dimensional limit. From the mapping of the lattice model onto an
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Anderson impurity model we obtained interesting insights on the nature of the tran-
sition. In particular, we showed that as the the interaction U reaches a critical value,
the narrow quasiparticle feature at the Fermi energy that defined the metallic state
disappears. This was due to a divergence in the inverse of the self-consistent Weiss field
Gy, which translated into the vanishing of the effective hybridization of the impurity
model. The Kondo model obtained from the Anderson model via the Schrieffer-Wolff
transformation then flows to zero coupling at low energies, and the self-energy corre-
spondingly develops a pole singularity at zero frequency. This has as a consequence the
opening of a Mott-Hubbard gap in the one particle spectrum.

In chapter 5 and 6 we consider the solution of the Hubbard model in a greater
perspective. Various early ideas could be put in perspective. In particular, for the
frustrated lattice, we established the coexistence of a metallic and insulating solution
in a finite region of the (U, T') plane. Within this region, there is a first order bound-
ary where the two very different solutions cross in free energy, and several quantities
experience a jump: the specific heat, the susceptibility, the number of doubly occupied
sites, etc. The first order line has a negative slope indicating that the paramagnetic
insulating phase has a higher entropy than the metallic phase. The line ends in an
interesting second order critical point, above it there is a smooth crossover between a
metallic and an insulating regime.

We also made more precise the connection between our approach and the Brinkman
Rice scenario for the metal insulator transition, as well as with the complementary work
of Hubbard.

In particular, regarding the first, we found similar behavior of the quasiparticle
weight and the compressibility that vanish as (1 — U%) close to the transition. How-
ever, the study of the double occupation and the spin susceptibility revealed that the
variational approached fails to produce non-singular corrections. In the actual solution,
these quantities are finite and change smoothly at the metal-insulator transition.

In respect to the second, we found a natural scenario for the destruction of the
insulating solution with the continuous narrowing of the gap of the insulator. This is

a realization of the original Hubbard scenario for the metal insulator transition driven
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by the closing of the upper and lower Hubbard bands.

The question of the magnetic phases was also considered. On non-frustrated, bi-
partite lattices, we found that the Néel temperature is much higher than the metal
insulator transition temperature, making the transition between small and large U con-
tinuous. In this case, the physics can be understood in terms of the magnetic long range
order and a smooth crossover within the broken symmetry phase. The Mott transition
is irrelevant, vindicating Slater’s point of view of a transition driven by the doubling of
the lattice parameter.

Upon consideration of a partial degree of frustration, in addition, at low temper-
atures there is a first order line between an antiferromagnetic metal and an antifer-
romagnetic insulating phase. This is possibly relevant to the experimental results of
Carter et al. [1]. In this case, the phase diagram has the same topology and even the
same scale as the experimentally observed phase diagram of V,0; [2, 3, 1].

In the last chapter we consider the important issue of the optical conductivity.
This subject has acquired renewed relevance in regard of the recent improvement of
the quality of the experimental data in various strongly correlated systems [4] [5, 6].
We have demonstrated that the Hubbard and the Anderson lattice models, treated
in the present mean field approximation, can account for the main features of the
temperature dependent transfer of spectral weight in the optical conductivity spectra.
In the case of V5,03 we found that the theory is able to account semi-quantitatively for
the conductivity results in both the metallic and insulating states. In the latter, the
theory seems to provide further insights in the role of the magnetic frustration. For
the Kondo insulators, although the comparison was not carried to such detail, we have
seen most of the qualitative features of the experimental results been naturally realized
within the our approach.

In closing we would like to point out that the mapping of lattice models onto impu-
rity problems was a key ingredient in paving the way for the development of an arsenal of
numerical tools. This, in combination with the ever increasing computational power of
today’s machines allowed for a new assault to the strongly correlated electron problem.

As aresult of our study we learned important lessons. The limit of large dimensionality
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has revealed itself as a very physical one providing fresh new insights into relatively old
questions. In particular, the results presented in this thesis lead us to conclude that
the Hubbard model in this limit is able to account for some fundamental basic features
that are experimentally observed in the V03 system. A further degree of quantitative
agreement will probably have to wait until a systematic expansion around the mean

field theory is developed.
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Appendix A

Source codes

Quantum Monte Carlo

Quantum Monte Carlo simulation for the oo-d Hubbard
Model on a Bethe lattice.

This

code accepts any chemical potential.

Produces the local Green functions, the Selfenergy,

and the local spin-spin correlation function.
Has to be linked to IMSL
CHHFFFHR AR H AR AR H R R R R

parameter (L=16384,LI=32)

implicit real*8(a-h,o-z)

double complex xi,d2,one,ome

double complex fg0(2*L),fg0f (2*L),fg0b(2*L)

double complex fgOt(2*L)

double complex fgb(2*L),fgf(2%L),self(2*L),self0(2*L)
double precision gO(-L:L),g(-L:L),dumg(2*L) ,dumg0(2*L)
double precision dumgl(2*L),dumg01(2+L)

double precision gOO(-LI:LI),gtmp(-LI:LI)

cHRrkrkkk output data Fkkkkdkkikkkkkkkskokkokkkokkokokokkokkokokkokkokkokkokokkokkokkokk

o o0 0 0 0 0 0 0 0 00

fort
fort

fort.

fort
fort
fort
fort

fort.

fort

fort.

fort

.10=G0 in imaginary time

.11=G in imaginary time

30=Imaginary part of Selfenergy
.31=Real part of Selfenergy
.40=Imaginary part of GO

.41=Real part of GO

.60=Imaginary part of G

61=Real part of G

.90=particle occupation

91=local spin-spin correlation function
.92=acceptance rate and number of negative determinants found

ckxkxkxk input data (fort.B50) Fkkskkoksokkkskkskskokkokkokskkokkkkokkokskkokkokkokkok

C

C
C
C

LI=the number of time slices for the impurity subroutine
dtaul=the imaginary time slice step for the impurity subroutine
L=the number of time slices for the self-consistency part
dtau=the imaginary time slice step for the self-consistency part
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u=interaction strength

d=half-bandwidth

nloop=number of iteration loops

dmu=increment for the mu loop

nmu=number of mu loops

xmuO0=initial mu (chemical potential, mu=0 at half-filling)
NOTE: we introduce a thinner time discretization to improve the
high frequency cut-off. dtau and L are defined such that:
dtau*L=dtaul*LI=beta

this is equivalent to the introduction of attenuation coefficients
in the Fourier transforms.

L must be multiple of LI

if1=0 calculates the spin-spin correlation function

if1=1 does not

O 0O 0 0 0 0 0 0 0 0 0 0 00

read(50,*)dtaul ,u
read(50,#*)d,nloop,dmu,nmu,xmu0,if1

ck*k*kkkkkdefine some constantskkkkkkk

d2=d**2*(1.,0.)
dtau=dtauI*float (LI)/float(L)
pi=3.141592653589793
xi=(0.,1.)
one=(1.,0.)
beta=dtauxfloat (L)
plt=pi/float(L)/dtau
dli=1.d0/float(L)/dtau
dth=dtau/2.40

do 301 i=1,2*L

£g0(i)=(0.,0.)
301 continue

C %%k Kk K Kk K K ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok 3k 3k 3k sk ok ok ok ok k3K 3k 3k 3k 3k ok ok ok ok ok ok ok Kk ok ok ok ok ok ok %k %k %k koK ok ok ok Kk ok ok ok ok %k

cHkrkrkrkkx MU loop starts here *kkkkkkikkkskkkkkikkkkskkskkkkokkkkkkkk

do 432 imu=1,nmu
xmu=xmuO+dmu*float (imu-1)

ckkkkkkk here starts the iteration kkskskskskskskskokskskskskokokokskokd sk k dokkkkkok

do 103 iloop=1,nloop

CoRkak kR ks ok sk sk ook ko ko skok Kok sk ko sk koK ok ok ok ok ok K
c £g0(i) is g0 in Matsubara space

c fgf(i) is g in Matsubara space

c self(i) is the selfenergy in Matsubara space
CoRkak sk koo ok ok koK ok sk sk ok ook ok ok sk sk ok ook ok ok ok sk o ok ok o ok ok
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cx*set a flag for the final loop for the impurity subroutine**
ifo=1
if(iloop.eq.nloop)if0=0

cxxin first loop g0 is initialized**
if(imu.eq.1.and.iloop.eq.1)then

¢ use mu-mu/4 to construct a seed with a non-zero particle number
¢ (is a trick to have a reasonable starting seed)
do 101 i=1,L
ome=xi*plt*(2.*float(i)-1.-float (L))
ome=ome-xmu/4.
sq=dimag(zsqrt((ome)**x2-d**2))
w=dimag(ome)
sig=sq*w/dabs (sq*w)
fg0(2%1)=2./(ome+sig*(zsqrt ((ome)**2-d**2)))
101 continue

else

do 102 i=1,L
ome=xi*plt*(2.*float(i)-1.-float (L))
ome=ome-self (2*i)-xmu
sq=dimag(zsqrt((ome)**x2-d**2))
w=dimag(ome)
sig=wxsq/dabs (w*sq)
fgf(2%1)=2./(ome+sigx(zsqrt((ome)**2-d**2)))

102 continue

do 303 i=1,2%L
£g0(i)=(0.,0.)
303 continue

do 104 i=1,L
fg0(2*i)=one/(one/fgf (2*i)+self (2%i))
104 continue

endif

call dfftcb(2*L,fg0,fg0t)

sg=-1.
do 82 i=1,2*L
sg=sgx(-1.)
fgot(i)=sg*dli*fg0t (i)
82 continue

do 83 i=1,L
£g0b(i)=fg0t (i+L)
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83 continue

do 84 i=L+1,2*L
fgob(i)=£fg0t (i-L)
84 continue

CoRkk kK ko ko ko ok ok kb ok ko ok ok ok
c fgob(i) is g0 in time space
CoRkk kK ko ko ko ok ok kb ok ko ok ok ok

¢ take the real part for the impurity subroutine input

do 811 i=1,2%L
g0(i-L-1)=real(fg0b(i))
811 continue

CoRkkkk Rk ok skok ok kK skok Kk kK ok ok
¢ trick for the discontinuity in g(tau)
g0(0)=g0(0)+.5
g0(-L)=-g0(0)
CoRkkkk Rk ok skok ok kK skok Kk kK ok ok

¢ extract LI points from the L point GF
call extract(g0,g00,L,LI)

Ckskokstok s ks ok sk ke kol sk stk s ok stk o skskok sk sk s kol ks stk sk ok sk ok sk o
¢ do the QMC impurity simulation

¢ g00 is the input non-interacting GF

c gtmp is the output interacting GF

call impurity(g00,gtmp,dtaul,u,if0,if1,xmu)
C sk s ks ok ok sk sk o ok stk s ok ok stk s ok koo s o ks o o s ek sk o s ek sk o s ke

c get the L point GF from the L point one by interpolation

call interp(gtmp,g,L)
call interp(g00,g0,L)

CoRkk sk ko ko sk ok ko ok ok skok ok ok ok ko skok ok Kok kK ok ok ok
¢ "undoes" the trick for the discontinuity of g(tau)
g(0)=g(0)-.5
g0(0)=g0(0)-.5
g(-L)=-g(0)
g0(-L)=-g0(0)
CoRkk sk ko ko sk ok ko ok ok skok ok ok ok ko skok ok Kok kK ok ok ok
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SRk Kk ko koK kK ook ok koK ok ok
c fgb(i) is g in time space
SRk Kk ko koK kK ook ok koK ok ok

do 812 i=1,2%L
fgb(i)=g(i-L-1)*(1.,0.)
fgob(i)=g0(i-L-1)*(1.,0.)
812 continue

call dfftcf(2*L,fg0b,fg0L)
call dfftcf(2*L,fgb,fgf)

c** get the selfenergy *x*

do 304 i=1,2%L
self0(i)=(0.,0.)
304 continue

sg=-1.

do 85 i=1,2+L

sg=sgx(-1.)
fg0f (i)=dth*sg*fg0f (i)
fgf(i)=dth*sg*fgf (i)
if (mod(i,2).eq.0)then

self0(i)=one/(£g0f (i))-one/(fgf (1))
end if
85 continue

do 409 i=1,L
self(i)=self0(i+L)
dumg(i)=dimag(fgf (i+L))
dumgO(i)=dimag(£g0f (i+L))
dumgl(i)=real(fgf (i+L))
dumg01(i)=real (£g0f (i+L))
409 continue

do 410 i=L+1,2%L
self(i)=self0(i-L)
dumg(i)=dimag(fgf (i-L))
dumgO(i)=dimag(£g0f (i-L))
dumgl(i)=real(fgf(i-L))
dumg01(i)=real (£g0f (i-L))
410 continue

c******print output************
if(iloop.eq.nloop)then

cx* g0, g, and selfenergy in Matsubara space **

write(30,*)’"mu=’,real(xmu),’"’
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write(31,*)’"mu=’,real(xmu),’"’

write(40,*)’"mu=’,real(xmu),’"’

write(41,*)’"mu=’,real(xmu),’"’

write(60,*)’"mu=’,real(xmu),’"’

write(61,*)’"mu=’,real(xmu),’"’

do 106 i=L-LI*2,L+LI*2,2
si=dimag(self(i))
sil=real(self(i))
xa=real (pi/beta*float(i-L-1))

write(30,*)real(xa),real(si)
write(31,*)real(xa),real(sil)
write(40,*)real(xa),real(dumg0(i))
write(41,*)real(xa),real(dumg01(i))
write(60,*)real(xa),real(dumg(i))
write(61,*)real(xa),real(dumgl(i))

106 continue

write(30,*)’

write(31,*)’

write(40,*)’

write(41,*)’

write(80,*)’

write(81,*)’

c** g0 and g in imaginary time **

write(10,*)’"mu=’,real(xmu),’"’

write(11,*)’"mu=’,real(xmu),’"’
do 10 i=-LI,LI
write(10,*)real(i*dtaul),real(g00(i))
write(11,*)real(i*dtaul),real(gtmp(i))
10 continue
write(10,*)’
write(11,*)’

c** occupation **

write(90,*)real(xmu),real(-gtmp(0))+.5
endif

cHkxkrkrkclose iteration loopkkkkkkkskkskkkkkkkkkkkkkkkkkkkkkkkk
103 continue

cRkkkkkkclose MU Loopkkkskkskskkskkskkkksokksbkskdkkskkskkskkkdkkskhokkkkkkk
432 continue

stop

end

O i R
O i R

¢ this subroutine takes a GF in time with L points spaced
¢ at dtau, and extracts LI points spaced at dtaul for the



¢ impurity subroutine. Is the inverse of the subroutine
¢ interp

subroutine extract(g0,g00,L,LI)
implicit real*8(a-h,o-z)
double precision gO(-L:L),g00(-LI:LI)

g00(0)=g0(0)

nrat=L/LI
do 20 i=1,LI
g00(i)=g0(i*nrat)
20 continue

do 21 i=1,LI
g00(-1i)=-g00(LI-1i)
21 continue

return
end

(O R S R i S A R

¢ this subroutine takes a GF in time with LI points spaced
¢ at dtaul, and interpolates to produce L points spaced at

¢ dtau. Is the inverse of the subroutine extract

subroutine interp(gtmp,g,L)

implicit real*8(a-h,o-z)
parameter(LI=32,LI1=32+1)

integer nintv

double precision gtmp(-LI:LI),g(-L:L)
double precision xa(LI1),ya(LI1)

double precision break(LI1),cscoef(4,LI1)
external dcsint,dcsval

ckkkLT1=LI+1%k%k%kkk%

do 10 i=1,LI1
xa(i)=float(i-1)/float(LI)
ya(i)=gtmp(i-1)
10 continue

call dcsint(LIl,xa,ya,break,cscoef)
ckxkassign g(i)***xkx

nintv=LI
do 20 i=1,L
x=float(i)/float(L)
g(i)=dcsval(x,nintv,break,cscoef)
20 continue

143
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g(0)=gtmp(0)

do 40 i=1,L
g(-1)=-g(L-1)
40 continue
return
end

O R S R R i R R i A S

¢ this subroutine takes a non-interacting GF and solves the
¢ impurity problem producing the interacting GF on output

subroutine impurity(g0,g,dtau,u,if0,ifl,xmu)

implicit real*8(a-h,o-z)

parameter(L=32)

double precision gup(L,L),gdw(L,L),v(L)

double precision gO(-L:L),del(L,L),g(-L:L)

double precision gstup(L,L),gstdw(L,L)

double precision xgu(-L:L),xgd(-L:L),xg(-L:L),xga(-L:L)
dimension xs(0:L)
dimension s(2*L,3000)

Gk koo ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ko ok ok ok ok ok o o ok ok ok sk sk skok sk sk sk sk sk ok ok sk ok ok ok ok
real rnunf
external rnset,rnunf

cx*¥*parameterskikkkk

nsweep=number of sweeps of the L spins

ndirty=number of dirty updates (L**2 operations) between
clean updates (L**3 operations)

ncor=autocorrelation length

nwarm=number of warm-up sweeps

iseed=seed for the RNG

polar= average polarization of the initial spins
Crokok ok sk sk ko ok sk skok sk kkok

O o0 0 0 0 00

iseed=123457
polar=.5
nsweep=3500
ndirty=50
ncor=2
nwarm=500
do 11 i=1,L
do 12 j=1,L
del(i,j)=0.
12 continue
del(i,i)=1.
11 continue
do 800 i=1,L
do 800 j=1,L
gstup(i,j)=0.
gstdw(i,j)=0.
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800 continue

z=dtau*u/2

z=exp(z)

xlam=log(z+sqrt(z**2-1.))
if(u.eq.0.)u=.001
xxx=1./(1.-exp(-dtau*u))

call rnset(iseed)

g0(-L)=-g0(0)

cxxgenerates the initial spin configuration with**
c**average polarization = pol *%

call initial(xlam,v,polar,L)

call gnewclean(gup,v,g0,del,1.d0)
call gnewclean(gdw,v,g0,del,-1.40)

c***parameters*************

¢ kx= counts # of measurements

¢ irr= counts # of accepted flips (after the warm-up)
¢ nrat= counts # of negative determinants encountered

kx=0
irr=0
nrat=0
Gk ok ok ok ok ok ok ok ok o oK ok ok ok ok ok ok ok ok ok Kok K

ck*k*kxk*kxk*kkgtart measurement 1oop***************************

CoRskok ok ok ok ok ok kok ok ok ok ok sk sk sk ko ok ok ok ok ok ok
¢ does a total of nsweeps

¢ a clean update comes after
¢ ndirty dirty updates

CoRskok ok ok ok ok ok kok ok ok ok ok sk sk sk ko ok ok ok ok ok ok

do 2 k=1,nsweep
kk=mod (k,ndirty)
kcor=mod(k,ncor)
do 5 j=1,L
dv=2.*v(j)

ckk*kcalculates the determinant ratiokkkkkkkkkkk
ratup=1.+(1.-gup(j,j))*(exp(-dv)-1.)
ratdw=1.+(1.-gdw(j,j))*(exp(dv)-1.)
rat=ratup*ratdw

if(rat.1t.0.)then
nrat=nrat+1

end if

rat=rat/(1.+rat)



r=rnunf ()
if(rat.gt.r)then
if(k.gt.nwarm)then
irr=irr+1
end if
v(j)=-v(j)
if(kk.eq.0)then

c makes a clean calculation of g
call gnewclean(gup,v,g0,del,1.40)
call gnewclean(gdw,v,g0,del,-1.d40)
goto 100
endif

c makes a dirty calculation of g
call gnew(gup,v,j,del,1.d40)
call gnew(gdw,v,j,del,-1.d0)
endif
100 continue
5 continue

ck¥**% gstore the measurements*kk*kkkkkkkkkkkkkk

if(kcor.eq.0.and.k.gt.nwarm)then
kx=kx+1

if(kx.ge.3000.and.ifl1.eq.0)then

print*,’increase the size of the spin measurement storage!!’
print*,’is the size of the matrix xs in the impurity routine’
stop

endif

ckkxkxkkkgtore the GFkkkkkkkkk
do 333 ix=1,L
do 333 jx=1,L
gstup(ix,jx)=gstup(ix,jx)+gup(ix,jx)
gstdw(ix,jx)=gstdw(ix,jx)+gdw(ix,jx)
333 continue

if(if0.eq.0.and.ifl.eq.0)then
c***store the Ising spins*¥k**
do 557 ig=1,L
s(iq,kx)=v(iq)/abs(v(iq))
s(ig+L,kx)=s(iq,kx)
557 continue
endif

endif
Cokokok ko sk sk ook skok ok ok ok ok dkokok ok sk ok sk ok ok ok skokokskok sk kok sk ok ok

ckxkxkxkx*x*x*end measurement 1oop*****************************
2 continue

146
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¢ statistics for the acceptance rate

write(92,*)’acc. rate:’,real(float(irr)/float((nsweep—nwarm)*L))
¢ number of negative determinants

write(92,*%)’# of neg det:’,nrat

c**** get g(-L:L) by wrapping-around and Kok ke kok ok
c*k*** averaging the matrices up & dw (PM case) *k¥kk*x

kxmax=kx
c*x** normalize the sum of the matrices ***

do 334 ix=1,L
do 334 jx=1,L
gstup(ix,jx)=gstup(ix, jx)/float (kxmax)
gstdw(ix,jx)=gstdw(ix, jx)/float (kxmax)
334 continue

Ckk*kk Wrap—around sk kkkkkk

do 601 j=0,L-1
xgd(-j)=0.
xgu(-3j)=0.
do 602 i=1,L-j
xgd(-j)=xgd(-j)+gstdwu(i,i+]j)
xgu(-j)=xgu(-j)+gstup(i,i+j)

602 continue
xga(-j)=.5%(xgu(-j)+xgd(-3))
601 continue

do 604 j=1,L-1
xgd(j)=0.
xgu(j)=0.
do 605 i=1,L-j
xgd(j)=xgd(j)+gstdw(i+j,i)
xgu(j)=xgu(j)+gstup(i+j,i)

605 continue
xga(j)=.5*%(xgu(j)+xgd(j))
604 continue

do 606 i=1,L-1
xg(i)=(xga(i)-xga(i-L))/float(L)
xg(i-L)=-xg(i)
606 continue
xg(0)=xga(0)/float (L)
xg(-L)=-xg(0)

c**the end point for the interpolation routine**
xg(L)=1.-xg(0)
go(L)=1.-g0(0)

Ckkoke ok sk sk ko ok sk skoke s ok sk skoke sk sk skt e s ksl e s ok sk o s sk sk ok o sk sk ok ok



148

do 556 i=-L,L
g(i)=xg(i)

556 continue

if(if0.eq.0.and.ifl1.eq.0)then

ck*x*x*xget the spin susceptibilitykkkkkkkkkkkkksksk
c***xfrom the ising fields***x*

xsa=0.
xs52=0.
do 587 ii=0,L
xs(ii)=0.

587 continue
do 558 iq=1,kxmax
do 559 itqg=0,L-1
do 560 il=1,L
itk=il+itq
xs(itq)=xs(itq)+s(itk,iq)*s(il,iq)
xsa=xsa+s(il,iq)
xs2=xs2+s(il,iq)**2

560 continue
559 continue
558 continue

write(91,*)’"xmu=’,real(xmu),’"’
do 561 ii=1,L-1
xs(ii)=xxx*xs(ii)/float (kxmax*L)
write(91,*)float(ii)/dtau/float(L),xs(ii)
561 continue
write(91,*)’ ’

endif

C %% Kk 3k ok ok ok ok ok ok 3k 3k ok %k ok ok ok sk 3k ok 3k 3k 3k ok %k ok ok ok ok ok ok ok ok ok ok ok %k %k %k %k sk ok ok ok Kok ok ok ok %k

return
end

CHEFHHHR MR T R R R Y
¢ dirty update

¢ this subroutine calculates the new inverse matrix in L**2 operations
¢ using the Sherman-Morrison formula
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subroutine gnew(g,v,j,del,xflag)

implicit real*8(a-h,o-z)

parameter(L=32)

double precision g(L,L),v(L),del(L,L),d(L,L)

do 1 i1=1,L
do 2 i2=1,L
dv=xflag*2.*v(j)
a=1.+(1.-g(j,j))*(exp(dv)-1.)
b=(g(i1l,j)-del(il,j))*(exp(dv)-1.)
d(i1,i2)=g(i1,i2)+b/a*g(j,i2)

2 continue
1 continue

do 3 ii=1,L

do 4 i2=1,L
g(i1,i2)=4(i1,i2)

4 continue
3 continue

return

end

O i R i R R A S

¢ clean update
¢ this subroutine calculates the new inverse matrix in L**3 operations
¢ by standard method

subroutine gnewclean(g,v,g0,del,xflag)

implicit real*8(a-h,o-z)

parameter(L=32)

double precision g(L,L),v(L),b(L,L),binv(L,L)

double precision gO(-L:L),del(L,L)

do 1 i=1,L

do 2 j=1,L

dv=xflagxv(j)
b(i,j)=del(i,j)-(g0(i-j)-del(i,j))*(exp(dv)-1.)

2 continue
1 continue
call dlinrg(l,b,L,binv,L)
do 3 ii=1,L
do 4 i2=1,L
xdum=0.
do 5 i=1,L
xdum=xdum+binv(il,i)*g0(i-i2)
5 continue
g(i1,i2)=xdum
4 continue
3 continue
return
end

O S R A

¢ this subroutine initialize the vector v of Ising fields
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¢ with an average polarization given by polar

subroutine initial(xlam,v,polar,L)
implicit real*8(a-h,o-z)

double precision v(L)

real rnunf

external rnset,rnunf

iseed=765437

call rnset(iseed)

do 1 i=1,L
s=1.
r=rnunf ()
if(r.gt.polar) s=-1.
v(i)=xlam*s

1 continue
return
end

O R i R R R i R S i A S
O R i R R R i R S i A S
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A.2 2" Order Perturbation Theory (Matsubara space)

2nd Order Perturbation Theory (a la Yamada Yosida)

for the oo-d Hubard Model in Matsubara space.

Produces the local Green function and the Selfenergy.
Also calculates the kinetic T, potential V,

and total E energies, and the double occupation.

Has to be linked to IMSL
I S S

O 0O 0 0 00

parameter(L=16384)
implicit real*8(a-h,o-z)

double complex xi,ep,om,oml,om2,d2,one,root
double complex fgO(2*L),fg0b(2*L)
double complex fgOt(2+L),fg(2*L)
double complex sefb(2*L),seff(2*L),self (2*L)

CHRkkkkkk OULPUL data *kkkkikkkkskkkkskkkskkskkokiokksk ok kokkk ok kkok ok kkok
fort.30=Imaginary part of Selfenergy

fort.60=Imaginary part of G

fort.80=kinetic energy T as a function of temperature
fort.81=potential energy V as a function of temperature
fort.82=total energy E as a function of temperature
fort.83=double occupation as a function of temperature
fort.90=kinetic energy T as a function of U
fort.91=potential energy V as a function of U
fort.92=total energy E as a function of U
fort.93=double occupation as a function of U

o o0 o0 0 0 0 0 0 00

ckkkkxkk input data (Fort.70) skskskkskkskkskkskkkkskkskkkokkokksk ok kkokkkkk ok
L=number of frequency points

t0=initial temperature

u0=initial interaction strength

dt=step for the temperature loop

du=step for the interaction loop

nl=number of temperature/interaction loops

d=half-bandwidth

nloop=number of iteration loops

nl0=number of final loops to be printed-out

imet=selects initial seed (1=metallic, O=insulating)

isie=flag for computation of energies (isie=1 does it, isie=0 does not)
itu=selects type of loop (itu=0 U loop, itu=1 temperature loop)

O 0O 0O 0 0 0 0 0 0 0 00

read(70,*)t0,u0,dt,du,nl
read(70,*)d,nloop,nl0,imet,isie,itu

ck*k*xk*kkkdefine some constantskkkkkkk



ep=.0001%(1.,0.)

d2=d*(1.,0.)
d2=d2%*2
pi=3.141592653589793
xi=(0.,1.)
one=(1.,0.)
u=ul
t=t0

do 301 i=1,2%L
£g0(i)=(0.,0.)
fg(i)=(0.,0.)
301 continue
Cokokok ks sk ok sk ok skok ok ok ok ook ok ok ok sk ok sk ok ok ok sk ko koo skok ok ok sk ok skokok ok skokok ok ok kokosk ok ok ok ok

c*******temperature/U loop starts her ekkkkokkskskkkkkkkkkokkkkkkk

do 222 il=1,nl
if(itu.eq.1)then
t=t0+dt*(float (il-1))
else

u=ul0+du*float(il-1)
endif

dtau=1./t/float(L)
binv=1./dtau/float (L)

ckkk*x*k*k** the iteration loop starts here X xkkkkkkkkkkkikokkkkkkkkkk

do 103 iloop=1,nloop

c***x*xg0 is the non interacting GF in real frequency space¥¥¥***
ck*xon first loop compute a seed (imet=1 metallic, imet=0 insulating)

if (iloop*iu*it.eq.1)then

do 101 i=1,L
om=xi*(2.*float(i)-1.-float(L))*pi*binv
fg0(2#*i)=one/om

if (imet.eq.1)then
root=cdsqrt ( (om+ep)**2-d2)
sig=1.
if (dimag(om)*dimag(root).1t.0.)sig=-1.
fg0(2%1i)=2.*one/(om+(cdsqrt ((om+ep)**2-d2)))

endif

101 continue

else

do 102 i=1,L
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om=xi*(2.*float(i)-1.-float(L))*pi*binv
omi=om+self (2%i)
om2=om-self (2*i)
root=cdsqrt ((om2+ep)**2-d2)
sig=1.
if (dimag(om)*dimag(root).1t.0.)sig=-1.
fg0(2*1i)=2.*one/(omi+sig*root)
fg(2*i)=2.%one/(om2+sig*root)
102 continue

endif
ck* £g0(i) is the non interacting GF in Matsubara space **

call dfftcb(2*L,fg0,fg0t)

ex=-1.
do 82 i=1,2%L
ex=—ex
fg0t (i)=binv*fg0t (i)*ex
82 continue
do 83 i=1,L
fgob(i)=£fg0t (i+L)
83 continue

do 84 i=L+1,2*L
fgob(i)=£fg0t (i-L)
84 continue

ck* fgOb(i) is the non interacting GF in time **

ckx*xkxcalculate the selfenergy in 20PTHkkkkkkkokskskskskokkk

do 520 i=1,L
sefb(i+L)=u**2*xfgOb(1+L)**3
520 continue

do 525 i=1,L
sefb(L+1-i)=-sefb(i+L)

525 continue

call dfftcf(2*L,sefb,seff)

ex=-1.
do 530 i=1,2%L
ex=-ex
seff(i)=.5xdtau*ex*seff(i)
530 continue

do 540 i=1,L
self(i)=seff(i+L)
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540 continue

do 550 i=L+1,2x*L
self(i)=seff(i-L)
550 continue

cx*x*xself is the self-energy in Matsubara space***k**

CHRRFFAKAK AR RIDPIINtG OUTPUL R kkkokkokkokskokskohokkokkokok ook kokokkok Kok ok

x=pi/(L*dtau)
if(iloop.ge.nloop-nl0+1)then

do 106 i=L-300,L+300,2

si=dimag(self(i))
gl=dimag(fg(i))

write(30,*)real(x*(i-L-1)),real(si)
write(60,*)real (x*(i-L-1)),real(gl)

106 continue

write(30,%*)’ ’

write(80,%*)’ ’

endif

C %%k K K K ok ok ok ok 3k 3k ok ok ok ok ok ok sk ok ok ok ok ke ok 3k ok ok ok %k %k %k Kok ok ok ok ok %k %k ok ok skok ok ok ok kok ok ok ok ok sk k %k

cHkxkrkrkclose iteration loopkkkkkkkskkskkkkkkkkkkkkkkkkkkkkkkkk

103 continue

CHRRFRFRRRFRRR IR kR kgt the energleskdkksksksksksihkskshksihtihkkkkhk
c** E=tum,T=tuma,V=tum-tuma***
if(isie.eq.1)then

sum=0.
tum=0.
tuma=0.
do 111 i=1,L
oma=(2.*float(i)-1.-float(L))*pi*binv
sg=1.
if(oma.lt.0.)sg=-1.
omb=oma*2.
tum=tum+.5*dimag(fg(2*1i))*dimag(self (2*i))

$ -(dimag(fg(2*i))+2./(omatsgxdsqrt (oma**2+d**2)))*oma
tuma=tuma+dimag(fg(2*i))*dimag(self (2*i))

$ -(dimag(fg(2*i))+2./(omatsgxdsqrt (oma**2+d**2)))*oma

111 continue
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free=0.

e=—d

de=d/1000.

do 666 i=1,2000

free=freetdexe*dsqrt(1.-(e/d)**2)/(dexp(e/t)+1.)

e=etde

666 continue

free=freex*2./(pi*d)

tum=t*tumt+free
tuma=t*tumatfree

if(itu.eq.1)then
ck***print-out energies as function of temperature***

ckk¥kinetic*x*
write(80,*)real(binv),real (tuma)

ck*potentialx**
write(81,*)real(binv),real (tum-tuma)

ckxktotal**

write(82,*)real(binv),real(tum)

ck*<Nup*Ndw>=<D> double ocupation**
write(83,*)real(binv),real ((tum-tuma)*2./u+.25)

else
ck***print-out energies as function of Uk*x*
ckk¥kinetic*x*
write(90,*)real(u),real(tuma)
ck*potentialx**
write(91,*)real(u),real(tum-tuma)
ckxktotal**
write(92,*)real(u),real(tum)
ck*<Nup*Ndw>=<D> double ocupation**
write(93,*)real(u),real((tum-tuma)*2./u+.25)
endif

C %%k Kk K K K ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok 3k 3k ok sk ok ok ok ok sk ok 3k 3k 3k 3k %k %k %k %k ok ok ok ok ok ok ok ok ok ok %k %k sk kok ok kK ok

endif

Ckkkkk*k*kCclose temperature/U loop********************************

222 continue
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stop
end
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A.3 2" Order Perturbation Theory (Real space T = 0)

O o0 0 00

2nd Order Perturbation Theory (a la Yamada Yosida)

for the oo-d Hubard Model in real frequency space.

Produces the local Green functions, the Selfenergy,
and the local spin-spin correlation function.

Has to be linked to IMSL

O i R

parameter (L=16384)

implicit real*8(a-h,o-z)

double complex one,xi,xs,sq,g

double complex gO(2#L),tg0(2*L),fg0(-L:L)

double complex sft2(2x*L),sf2(2*L),sft(-L:L),sf(-L:L)
double precision dns(2*L)

cHRrkrkkk output data Fkkkkdkkikkkkkkkskokkokkkokkokokokkokkokokkokkokkokkokokkokkokkokk

C

o o0 00

fort.10=Real part of GO

fort.11=Imaginary part of GO

fort.23=Real part of Selfenergy
fort.24=Imaginary part of Selfenergy
fort.25=Imaginary part of G (density of states)

ckxkrkrk input data (fort.20) Fkkkkskkkkkkkkkkkskkkkkkokkkkkkkkkkkkkkk

o o0 o0 o0 o0 0 0 0 0 0 0 00

L=number of frequency points

f=frequency discretization step

dO=half-bandwidth

uO=initial interaction strength

nloop=number of iteration loops

du=step for the interaction loop

nu=number of interaction loops

i0l=interval between points for output (from -imaxl to imax1)

imax1=1imit for low frequency printout

i02=interval between points for output (from -imax2 to -imax1i)
and (from imaxl to imax2)

nl0=number of final loops to be printed-out

imet=selects initial seed (1=metallic, O=insulating)

read(20,#*)f,d0,u0,nloop,du,nu
read(20,*)i01,imax1,i02,imax2,nl0,imet

ck*k*xk*kkkdefine some constantskkkkkkk

pi=3.141592653589793

dtau=2.*pi/f/dfloat (2%*L)
f2=f*%*2

one=(1.,0.)

xi=(0.,1.)

XL=float (L)
epsilon=1./100000.
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C %%k Kk K Kk K K ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok 3k 3k 3k sk ok ok ok ok k3K 3k 3k 3k 3k ok ok ok ok ok ok ok Kk ok ok ok ok ok ok %k %k %k koK ok ok ok Kk ok ok ok ok %k

ckxkrkrkkx U Loop starts here xkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

do 121 iu=1,nu
u=u0+du*dfloat(iu-1)

xn=1./(u**2/pi/do)

ckkk*x*k*k** the iteration loop starts here X xkkkkkkkkkkkikokkkkkkkkkk

do 100 iloop=1,nloop

c***x*xg0 is the non interacting GF in real frequency space¥¥¥***
ck*xx*xconstructs g0 using the continuity of the derivatives¥****
cx*x*x*xfor choosing the correct brunch-cutkkkkkkskkakskskskskskkkkkkkkkk

do 2 i=L+1,2+L
om=(float (i)-XL-1.)x*f
sig=1.d0

ome=om*one

ckx*on first loop compute a seed (imet=1 metallic, imet=0 insulating)
if(iloop.eq.1)then
if(dabs(om).1t.1.d-9)then
g0(1)=0.*one
else
g0(i)=1./(ome+float (imet)*d0*xi/2.)
endif
else
xs=sf(i-L-1)
sq=cdsqrt ((ome-xs)**2-d0**2%one)
sqim=dimag(sq)
sqre=real(sq)
if(i.le.L+5)then
c get the first 5 points right to define the branch-cut

if(sqre.gt.0..and.imet.eq.0)sig=-1.4d0

else



benpr=real(2./(ome+xs+sq))
benmr=real(2./(ome+xs-sq))
benpi=dimag(2./(ome+xs+sq))

benmi=dimag(2./(ome+xs-sq))

xp=((benpr+benchr0-2. *benchr)**2

$ +(benpi+benchiO-2.*benchi)**2)
xm=( (benmr+benchr0-2.*benchr) **2
$ +(benmi+benchiO-2.*benchi) **2)

if(xp.gt.xm)sig=-1.d0
g=(2./(ome+xs+sq))
di=dimag(one/g)-dimag(sf(i-L-1))
d2=real(one/g)-real(sf(i-L-1))
d2=42**2
d3=d41**2
dn=d1/(d2+d43)

if(dn.1t.0)sig=-1.

end if
g0(1)=2./(ome+xs+sig*sq)
endif

benchr=real(g0(i))
benchi=dimag(g0(i))
benchrO=real(g0(i-1))
benchiO=dimag(g0(i-1))

2 continue

cxxget the negative frequency part by symmetry**
do 222 i=1,L-1
gO(L+1-1)=-gO(L+1+1i)
222 continue
g0(1)=g0(2)
g0(L+1)=0.*one

Cok ke ks e ks sk s o ok sk sk s ek ok ke sk ok ks s ok s o ke sk sk s ek ok e sk ke s ok ok ek ok e sk ook ok

call dfftcb(2*L,g0,tg0)

ex=-1.

do 3 i=1,2+*L

ex=—ex

tg0(i)=ex*f/2./pi*tg0(i)
continue

do 4 i=1,L

fg0(i-1)=tg0(i)
continue

do 5 i=L+1,2+*L
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fg0(-2*L-1+1)=tg0(i)
5 continue

c***xfg0 is the non interacting GF in real time******

ckx*xkxcalculate the selfenergy in 20PTHkkkkkkkokskskskskokkk

do 7 i=-L+1,L-1
sTt(1)=—u**2xfg0(i)**2*fg0(-1)

7 continue

sft (-L)=—ux*2*fg0(-L)**2xfg0(L-1)

do 24 i=-L,L-1
sft2(i+L+1)=sft (i)
24 continue

call dfftcf(2*L,sft2,sf2)

ex=-1.
do 8 i=1,2*L
ex=—-ex

sf2(i)=—ex*dtauxsf2(i)
8 continue

do 34 i=1,L
sf(i-1)=sf2(1)
34 continue

do 35 i=L+1,2*L
sf(-2*L-1+1)=sf2(i)
35 continue

cx*xxsf is the self-energy in real frequency spacekkkk**

Cookkskkkokkk kR PTINT OUTPUT Hkskseskskskok ks sk skskok ook sk e ok ook ks e ok ok
if(iloop.ge.nloop-nl0+1)then

cxx*xget the final interacting GF***
do 111 i=1,2%L

if(i.eq.L+1)then

dns(i)=2./d0

else
di=dimag(one/g0(i))-dimag(sf(i-L-1))
d2=real(one/g0(i))-real(sf(i-L-1))
d2=42**2

160
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d3=d1**2
dns(i)=d1/(d2+d3)

endif

111 continue

if (imet.eq.0)dns(L+1)=0.

do i=imax2,imax1,-i02
write(25,*)-real(f*float(i)),real(dns(i+L+1))
enddo
do i=imax1,0,-i01
write(25,*)-real(f*float(i)),real(dns(i+L+1))
enddo

do 118 i=0,imax1,i01
write(25,*)real (f*float(i)),real(dns(i+L+1))
write(11,*)real(f*float(i)),real(real(g0o(i+L+1)))
write(12,*)real(f*float(i)),real(dimag(g0(i+L+1)))
write(24,*)real(f*float(i)),real(dimag(sf(i)))
write(23,*)real(f*float(i)) ,real(real(sf(i)))

118 continue
do 116 i=imax1,imax2,i02
write(25,*)real (f*float(i)),real(dns(i+L+1))
write(11,*)real(f*float(i)),real(real(g0o(i+L+1)))
write(12,*)real(f*float(i)),real(dimag(g0(i+L+1)))
write(24,*)real(f*float(i)),real(dimag(sf(i)))
write(23,*)real(f*float(i)),real(real(sf(i)))

116 continue
write(25,%*)’

write(11,*)?

write(12,%)? ?

write(24,%)’
write(23,%*)?
endif

cHkxkrkrkclose iteration loopkkkkkkkskkskkkkkkkkkkkkkkkkkkkkkkkk

100 continue

ckxkrkrkclose U Loophkkkkkskkkkskkskkkkokkohkkokkkkkkokkkkkkkkkokrkkk

121 continue
stop
end

O B R R i R R i S i
O B R R i R R i S i
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A.4 Exact Diagonalization

Exact diagonalization for the oo-d Anderson model

on a Bethe lattice.

This code accepts general values of the input parameters.
Produces the local Green functions and the local
spin-spin and charge-charge correlation functions.

Notel: it may get trapped into cycles in the

non particle-hole symmetric case.

Note2: setting tpd and v to zero corresponds to the
Hubbard model (with upp the Hubbard repulsion)

Coksksk ok ok ok sk ok skok ok ok sk sk s s sk sk ok ok ok okesk sk sk skl s s s sk ok e ke e ke sk sk sk sk skl sk sk sk sk sk sk sk sk ok ok ok

O o0 0 0 0 0 0 00

parameter (N=16 ,NN=2**N ,NP=4900)

parameter (1m=400)

implicit real*8(a-h,o-z)

double precision h(NN,2x*N)

double precision anr(0:NP),bnr(0:NP)

double precision anl(0:NP),bnl(0:NP)

double precision cnr(0:NP),dnr(0:NP)

double precision ¢nl(0:NP),dnl(0:NP)

double precision snr(0:NP),tnr(0:NP)

double precision snl(0:NP),tnl(0:NP)

double precision gs(NN)

double precision cp(NN),cpdg(NN)

double precision cd(NN),cddg(NN)

dimension icp(NN),icpdg(NN)

dimension icd(NN),icddg(lN)

dimension ih(NN,2*N)

double complex zr,zl,xi,xr,x1,gg(-1m:1m),gx(-1m:1m),s(~-1m:1m)
double complex zw,zy

double complex dr,dl,ggd(-1lm:1m),gxd(-1m:1lm)
double complex dw,dy

double complex sr,sl,sch(-lm:1m),ssp(-1m:1m)
dimension inO(N),isO0(N)

Crkkikkk OULPUL data dkksksdkksdokskokskkokddkokodokkohkkdd ok ok ok koo kok ok ko
fort.7 a’s of the Gpp> CF
fort.8 a’s of the Gpp< CF
fort.17 b’s of the Gpp> CF
fort.18 b’s of the Gpp< CF
fort.27 a’s of the Gdd> CF
fort.28 a’s of the Gdd< CF
fort.37 b’s of the Gdd> CF
fort.38 b’s of the Gdd< CF
fort.60 Im(Gpp) Real frequency
fort.61 Re(Gpp) Real frequency
fort.70 Im(Gpp) Matsubara
fort.71 Re(Gpp) Matsubara
fort.80 Im(Gdd) Real frequency
fort.81 Re(Gdd) Real frequency

O 0O 0O 0O 0 0 0 0 0O 0 0 0 00
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fort.90 Im(Gdd) Matsubara

fort.91 Re(Gdd) Matsubara

fort.92 spin-spin correlation function

fort.93 charge-charge correlation function

fort.96 poles & weights for spin and charge susceptibilities
fort.97 poles & weights for d site

fort.98 poles & weights for p site

fort.99 poles & weights for effective bath

O o0 0 o0 o0 o0 o0 o0

ckkkkxdkk input data (Fort.B50) Hkkskkskskkskskkskskiskkskkskdkskkokkskkkdkkskkkkhk
N=number of sites (impurity + chains)
lm=size of the output files (2*1m)
tem=spacing of Matsubara points (\delta\omega=\pi*tem)
uO=initial interaction strength
du=increment for the u loop
nu=number of u loops
tpd=hybridization between p & d sites
v=charge repulsion between p & d sites
edO=atomic energy of d site
upp=p site repulsion
d=half-bandwidth
xmO=initial chemical potential (=0 at the symmetrical point)
nloop=number of iterations loops
eps=broadening for the poles
dmu=increment for the mu loop
nmu=number of mu loops
NB=number of poles to be evaluated in the last iteration (2NG+2)
nlast=number of final iterations that are written on output
iall=number of initial iterations where the gs is searched
in all sectors
ird=1 reads input parameters for Gpp (=0 generates new set)
ifast=0 searches for gs in all sectors in the final (nloop-nlast)
iterations (=1 does not)

O 0O 0O 0O 0O 0 0O 0O O O 0 O 0 O O 0 O 0 O O 0 O 0

read(50,*)tem,u0,du,nu

read(50,*)tpd,v,ed0,upp

read(50,#*)d,xmul0,nloop,eps,dmu ,nmu
read(50,*)NB,nlast
read(50,*)iall,ird,ifast

ck*k*xk*kkkdefine some constantskkkkkkk

u=u0l
pi=3.141592653589793
xi=(0.,1.)
Xr=-eps*xi
xl=-eps*xi
one=(1.,0.)
pt=pi*tem

c 1=p site down
c 2=p site up
¢ lep=d site up



NR

o o0 00

NC

ied=

d site down
=last site of up chain

NR+1=first site of down chain
=length of each side of the chains

NR=((N-2)/2-1)/2+2

NC=NR-
nhalf=
iep=N-

ied=N

C %%k Kk K Kk K K ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok 3k 3k 3k sk ok ok ok ok k3K 3k 3k 3k 3k ok ok ok ok ok ok ok Kk ok ok ok ok ok ok %k %k %k koK ok ok ok Kk ok ok ok ok %k

c**xget creation and destruction operators in matrix form**

call getcp(cp,icp,cpdg,icpdg)
call getcd(cd,icd,cddg,icddg)

ck*k¥kkkkkconstructs the initial seedk*kkkkkkkkkkk

2
/2
1

if(ird.eq.1)then

¢ reads-in parameters

do 1=0,NC

read(7,*)x,anr(i)
read(17,*)x,bnr(i)
read(8,*)x,anl(i)
read(18,*)x,bnl(i)

enddo

close(7)
close(8)
close(17)
close(18)

else

¢ generates new parameters

do 1 i=0,N

anr(i)=d4/2.d0

bnr(i)=d*x2/4.
1 continue

do 2 i=0,N

anl(i)=-d/2.d0

bnl(i)=d**2/4.
2 continue

endif

egs=0.

do
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crkkkkkkk U Loop starts here s kkkskdkkkikokkdikkdkiokkkdkdokdkokfkdkk
do 300 iu=1,nu

u=u0+du*dfloat(iu-1)

crkkkkkkk MU 10Op Starts here skkskikksksdkkkdskokkokiohkdokdkodokkkokdokdokfodk
do 200 imu=1,nmu

xmu=xmuO+dmu*float (imu-1)

Ckkkkkk* here starts the iteration Hkkkkkkkkkskskskskokskokskokskkkkkkkkkk
do 100 iloop=1,nloop

do 121 i=1,NN

gs(1)=0.40

do 121 j=1,2*N

h(i,3)=0.d0

ih(i,j)=0
121 continue

¢ constructs the Hamiltonian h in the full hilbert space
¢ in compressed form. The matrix ih is the pointer
print*,’getting the new hamiltonian...’

call geth(ih,h,d,u,xmu,edo,v,tpd,upp,
$ anr,bnr,anl,bnl,egs)

print*,’done!’

¢ iflag=0 searches in all sectors, iflag=1 doesn’t
iflag=1

if(iloop.le.iall.or.iloop.ge.nloop-nlast) iflag=0
if(ifast.eq.1.and.iloop.ge.nloop-nlast) iflag=1
print*,’calculating the new gs...’

call getgs(ih,h,egs,gs,iloop,iflag,in0,is0,igs)

print*,’done!’

c** print the groundstate energy **

write(3,*)iloop,real(egs)



¢ adjust the size of the chains that need to be obtained
NG=NC
if(iloop.ge.nloop-nlast)NG=NB

print*,’getting Gpp...’
call getgf(h,ih,anr,bnr,anl,bnl,gs,igs,cp,icp,cpdg,icpdg,
$ NG,in0,is0)

c renormalize the bn’s, multiplying by t~2
¢ (up to here bnr(0)=yr, bnl(0)=yl)

yr=bnr(0)
y1=bnl(0)
bnr (0)=bnr(0)*d**2/4.
bnl(0)=bnl(0)*d**2/4.

c**xin final loops get the Gdd continued fraction and**
c**the susceptibilities *%

if(iloop.ge.nloop-nlast)then

print*,’getting Gdd...’
call getgf(h,ih,cnr,dnr,cnl,dnl,gs,igs,cd,icd,cddg,icddg,
$ NG,in0,is0)

print*,’getting susceptibilities...’
call getcorr(h,ih,snr,tnr,snl,tnl,gs,igs,NG,in0,is0)

endif

c**xin last loop calculate the poles and the weights****

¢ iwr=1 writes output files (=0 does not)
iwr=1
if(iloop.ge.nloop)then

print*,’getting poles and weights...’
call getpole(egs,snr,tnr,snl,tnl,NG,iwr,-1)
call getpole(egs,cnr,dnr,cnl,dnl,NG,iwr,0)
call getpole(egs,anr,bnr,anl,bnl,NG,iwr,1)

print*,’done!’

endif
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c******print output************

cut=2.d0*u
if(cut.lt.2.)cut=2.d0
if(cut.gt.4.)cut=u
if(iloop.ge.nloop-nlast)then
print*,’writting the output...’

c** Gpp, Gdd, and the susceptibilities**x*

do 24 i=-1lm,1lm
ome=pt*(2.*¥float(i)-1.)
if(dabs(ome) .gt.cut)goto 24
zr=xr+ome+egs—anr (NG)
zl=x1l+ome-egs-anl (NG)
zw=xi*ome-(anr(NG)-egs)
zy=xi*ome-(anl(NG)+egs)

dr=xr+ome+egs—cnr (NG)
dl=xl+ome-egs-cnl(NG)
dw=xi*ome+egs—cnr(NG)
dy=xi*ome-egs-cnl(NG)

sr=xr+ome+egs-snr (NG)
sl=xl+ome+egs-snl(NG)
if(NG.ge.1)then

do 25 in=NG,1,-1

zr=xr+ome+egs-anr (in-1)-bnr(in)/zr
zl=xl+ome-egs-anl(in-1)-bnl(in)/z1
zw=xi*ome+egs-anr(in-1)-bnr(in)/zw
zy=xi*ome-egs-anl(in-1)-bnl(in)/zy

dr=xr+ome+egs-cnr(in-1)-dnr(in)/dr
dl=xl+ome-egs-cnl(in-1)-dnl(in)/dl
dw=xi*ome+egs-cnr(in-1)-dnr(in)/dw
dy=xi*ome-egs-cnl(in-1)-dnl(in)/dy

sr=xr+ometegs—snr(in-1)-tnr(in)/sr
sl=xl+ome+egs-snl(in-1)-tnl(in)/sl
25 continue

endif

gg(i)=yr/zr+yl/z1l
gx(i)=yr/zu+yl/zy

ggd(i)=dnr(0)/dr+dnl(0)/dl
gxd(i)=dnr(0)/dw+dnl(0)/dy

s(i)=xi*ome-d**2/4.*gx(i)-1./gx(i)
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ssp(i)=tnr(0)/sr
sch(i)=tnl(0)/sl

c**the minus sign is to match the QMC code convention**

write(60,*)real(ome),real(dimag(gg(i)))
write(61,*)real(ome),real(real(gg(i)))
write(70,*)real(ome),real(dimag(-gx(i)))
write(71,*)real(ome),real(real(-gx(i)))

write(80,*)real(ome),real(dimag(ggd(i)))
write(81,*)real(ome) ,real(real(ggd(i)))
write(90,*)real(ome) ,real(dimag(-gxd(i)))
write(91,*)real(ome),real(real(-gxd(i)))

if(i.ge.0)then
write(92,*)real(ome),real(dimag(ssp(i)))
write(93,*)real(ome),real(dimag(sch(i)))
endif
24 continue
write(80,*)’
write(81,%)’
write(70,%*)’
write(71,%)?

write(80,%)’
write(81,%)’
write(90,*)’
write(91,%)’
write(92,%)’
write(93,*)’

c** chopped Gpp to the size of the chains *x*

do 28 i=-1lm,1lm
ome=pt*(2.*float(i)-1.)
if(dabs(ome).gt.2.%u)goto 28
zr=xr+ome+egs-anr(NC-1)
zl=xl+ome-egs-anl(NC-1)
zw=xi*ome-(anr(NC-1)-egs)
zy=xi*ome-(anl(NC-1)+egs)

if(NC-1.ge.1)then
do 29 in=NC-1,1,-1
zr=xr+ome+egs-anr(in-1)-bnr(in)/zr
zl=xl+ome-egs-anl(in-1)-bnl(in)/z1
zw=xi*ome+egs-anr(in-1)-bnr(in)/zw
zy=xi*ome-egs-anl(in-1)-bnl(in)/zy

29 continue
endif
gg(i)=yr/zr+yl/zl
gx(i)=yr/zu+yl/zy



c**the minus sign is to match the QMC convention**
write(160,*)real(ome) ,real(dimag(gg(i)))
write(161,*)real(ome),real(real(gg(i)))
write(170,*)real(ome) ,real(dimag(-gx(i)))
write(171,*)real(ome) ,real(real(-gx(i)))

28 continue
write(160,*)?
write(161,*)’
write(170,%*)?
write(171,*)?

print*,’done!’

endif

if(iloop.ge.nloop-nlast)then

ck*continued fraction parameters**
do 26 i=0,NG

write(7,%)1i, (anr(i)-egs)
write(8,*)1i, (anl(i)+egs)

write(27,*)1i, (cnr(i)-egs)
write(28,*)i,(cnl(i)+egs)
26 continue
write(7,*)’
write(8,*)’
write(27,%)’
write(28,*)’
do 27 i=0,NG
write(17,*)i,(bnr(i))
write(18,*)i,(bnl(i))

write(37,*)i,(dnr(i))
write(38,*)i,(dnl(i))
27 continue
write(17,%)?
write(18,*)’
write(37,%)’
write(38,*)’

endif

cHkxkrkrkclose iteration loopkkkkkkkskkskkkkkkkkkkkkkkkkkkkkkkkk

100 continue

cHkrkrkrkclose Mu Loophkkkkkkkkkkskkkkokkodkkkokkkkkkokkkkkkkkkokrkkk

200 continue
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ckrkrkrkclose U Loopkkkkkkskkskkkkokkkskkokkokkokkokkkokkkkokkokkokkkkkok

300 continue

end

CHAMBH AR UAH AR H AR AR HRR U H AR HRHH R RH AR RBR R R R AR R B UL R G R AR H R R RER Y
CHAMBH AR UAH AR H AR AR HRR U H AR HRHH R RH AR RBR R R R AR R B UL R G R AR H R R RER Y

CHARAAA AR AR R R R RHHHHHHHHHH R R R RR R R R RB R R R R R R R R R R R R R RR B R R R R R B RERERRRY
¢ multiplication of H times a vector of size M
¢ used by the lanczos subroutine

subroutine hxvl(h,ih,v,w,M)
parameter (N=16 ,NP=4900)

implicit real*8(a-h,o-z)

double precision h(NP,2*N),v(NP),w(NP)
double precision t(0:NP)

dimension ih(NP,2*N)

t(0)=0.40
do i=1,NP
t(i)=v(i)
enddo
do 1 i=1,M
w(i)=0.40
MM=ih(i,N)
do 2 j=1,MM
w(i)=w(i)+h(i,j)*t(ih(i,j))
2 continue
1 continue

return
end
CHUMIHHR BRI R IR R R R R R R
¢ multiplication of H times a vector using the mask
¢ to avoid multiplication by O
¢ used by the getcorr subroutine

subroutine hxvm(h,ih,v,w,imk)
parameter (N=16 ,NN=2**I)

implicit real*8(a-h,o-z)

double precision h(NN,2*N),v(NN),w(NN)
double precision t(0:NN)

dimension ih(NN,2*N)

dimension imk(NN)

t(0)=0.40
do i=1,NN
t(i)=v(i)
enddo
do 1 i=1,NN
w(i)=0.40
if(imk(i).eq.1)then
MM=ih(i,N)
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endif

do 2 j=1,MM
w(i)=w(i)+h(i,j)*t(ih(i,j))
continue

continue

return
end

CHARAAA AR AR R R R RHHHHHHHHHH R R R RR R R R RB R R R R R R R R R R R R R RR B R R R R R B RERERRRY
¢ action of operator ¢ on a vector state v
¢ ¢ is in compressed form and ic are the pointers

subroutine cxv(c,ic,v,w)
parameter (N=16 ,NN=2**I)

implicit real*8(a-h,o-z)

double precision c(NN),v(NN),w(NN)
double precision t(0:NN)
dimension ic(NN)

£(0)=0.d0
do i=1,NN
t(i)=v(i)

enddo

do 1 i=1,NN
w(i)=c(i)*v(ic(i))
w(i)=c(i)*t(ic(i))
continue

return
end

CHUMIHHR BRI R IR R R R R R R
¢ calculates the recursive orthogonal basis for the
¢ continued fraction expansion

subroutine getfn(ih,h,f,f1,f2,a,b,imk)
parameter (N=16 ,NN=2**I)

implicit real*8(a-h,o-z)
double precision h(NN,2*N),f(NN),f1(NN),f2(NN)
double precision x(INN)

dimension ih(NN,2*N)
dimension imk(NN)

call hxvm(h,ih,f1,x,imk)
do 1 i=1,NN

£(i)=0.40
if(imk(i).eq.1)then
f(i)=x(i)-a*f1(i)-b*f2(i)

endif

1 continue
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return
end

ctftititi it R R
¢ calculates the recursive coefficients of the
¢ continued fraction expansion

subroutine getab(ih,h,f,f1,a,b,imk)
parameter (N=16 ,NN=2**I)
implicit real*8(a-h,o-z)
double precision h(NN,2*N),f(NN),f1(NN)
double precision x(INN)
dimension ih(NN,2*N)
dimension imk(NN)

call hxvm(h,ih,f,x,imk)
a=0.
y=0.
z=0.
do 5 i=1,NN
if(imk(i).eq.1)then
aza+f(1i)*x(i)
y=y+f(i)**2
z=z+f1(1i)**2

endif

5 continue

if(y.ne.0.)then
a=a/y

else

print*,’warning! the CF has ended unexpectedly’
print*,’but tried to continue anyway...’
a=.0000001

endif

b=y/z

return
end

CHHHH IR R R R R
¢ input a state |i> and output a vector ib(N)

¢ with its binary decomposition

¢ (corresponds to the decomposition of the number i-1)

subroutine b2(i,ib)
parameter (N=16)

implicit real*8(a-h,o-z)
dimension ib(N)

do 1 ia=1,N
ib(ia)=0

1 continue
ii=i-1

j=1

10 continue



ib(j)=1ii-int(ii/2)*2
ii=int(ii/2)

j=j+
if(ii.gt.1)goto 10
ib(j)=1i

return

end

CHHHH IR R R R R
¢ input state |i> of the basis and calculates |j>=Cm|i>
c the sign of j has the phase convention

¢ m labels the sites

subroutine c(m,i,j)
parameter (N=16)

implicit real*8(a-h,o-z)

dimension ib(N)

¢ convention:

c
cC C C C |o>
c 1 2 3 4

call b2(i,ib)
if (ib(m).eq.0)then

j=0
else
if(m.eq.1)then
j=i-1
else
km=0

do 1 k=1,m-1
km=km+ib (k)

1 continue
isg=(-1)**km
j=isg*(i-2%*(m-1))

endif

endif
return

end

CHHHH IR R R R R
¢ input state |i> of the basis and calculates |j>=Cm+|i>
c the sign of j has the phase convention

¢ m labels the sites

subroutine cdg(m,i,j)

parameter (N=16)

implicit real*8(a-h,o-z)

dimension ib(N)
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¢ convention:

c + + + +
cC C C C |o>
c 1 2 3 4

call b2(i,ib)
if (ib(m).eq.1)then
j=0

else

if(m.eq.1)then

j=i+1

else
km=0
do 1 k=1,m-1
km=km+ib (k)

1 continue
isg=(-1)**km
j=isg*(i+2%*(m-1))

endif

endif

return
end

CHHHH IR R R R R
¢ calculates the new effective Hamiltonian

c it is stored in matrix h in compressed form (compressed columns)
¢ the true column position is stored in ih (pointers)

subroutine geth(ih,h,d,u,xmu,ed0,v,tpd,upp,

$ anr,bnr,anl,bnl,egs)
parameter (N=16 ,NN=2**N ,NP=4900)
implicit real*8(a-h,o-z)
double precision h(NN,2*N),anr(0:NP),bnr(0:NP)
double precision anl(0:NP),bnl(0:NP)
dimension ib(N),ih(NN,2*N)

O

NR =last site of up right chain

¢ NR+1=first site of up left chain

NC =length of each side of the chains
NR=((N-2)/2-1)/2+2
NC=NR-2

¢ ilep position of d site up spin

¢ ied position of d site down spin

iep=N-1

ied=N

O

ckxxkxdiagonal entriesk¥kkkkx*
do 1 k=1,NN
call b2(k,ib)
ec=0.
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do 2 kp=3,NR
ec=ec+(anr(kp-3)-egs)*(dfloat (ib(kp)+ib(kp+2*NC)))
2 continue
do 10 kp=NR+1,NR+NC
ec=ec+(anl(kp-NR-1)+egs)*(dfloat (ib(kp)+ib(kp+2*NC)))
10 continue
h(k,1)=(-xmu)*dfloat(ib(1))+(—xmu)*dfloat(ib(2))+
$(-xmu+ed0)*dfloat(ib(iep))+(~xmu+ted0)*dfloat (ib(ied))
$+ ec + u*(dfloat(ib(iep))-.5d0)*(dfloat(ib(ied))-.5d0)
$+ vxdfloat(ib(iep)+ib(ied))*dfloat(ib(1)+ib(2))
$+ upp*(dfloat(ib(1))-.5d0)*(dfloat(ib(2))-.5d0)
ih(k,1)=k
1 continue

c start the big j loop
do j=1,NN

cx*index counts the number of non-zero entries of each row**

index=0
index=index+1

c**xhopping to the right chain

do 4 m1=2,NR-1
call c(mi,j,k)
if (k.eq.0) goto 6
ki=abs (k)
call cdg(mi+1,k1,i1)
if (il.eq.0) goto 6
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i
endif
sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt(bnr(mi-2))
index=index+1
h(j,index)=tef*sg
ih(j,index)=1
6 continue
4 continue

do 84 m1=2,NR-1

call cdg(mi,j,k)

if (k.eq.0) goto 86
ki=abs (k)

call c(mi+1,k1,i1)
if (il.eq.0) goto 86
i=abs(il)



86
84

c*** note: the (-) comes from C+iCj + h.c.
C+iCj + C+jCi

e

¢ hopping from the p site to the first

if(i.eq.0.or.k.eq.0)then
print*,k,i
endif
sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt(bnr(mi-2))
index=index+1
h(j,index)=-tef*sg
ih(j,index)=1
continue
continue

¢ neighbour on the left side

¢ the left chain starts at NR+1 site

call c(2,j,k)

if (k.eq.0) goto 9
ki=abs (k)

call cdg(NR+1,k1,i1)
if (il.eq.0) goto 9
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i

endif

sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt(bnl(0))
index=index+1
h(j,index)=tef*sg

ih(j,index)=1

9

continue

call cdg(2,j,k)

if (k.eq.0) goto 89
ki=abs (k)

call c(NR+1,k1,i1)
if (il.eq.0) goto 89
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i

endif

sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt(bnl(0))
index=index+1
h(j,index)=-tef*sg

C+iCj + (C+iCj)+
C+iCj — CiC+j
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89

¢ hopping to the rest of the left chain

ih(j,index)=1
continue

if (NR+1.le.NR+NC-1)then

do 7 mi=NR+1,NR+NC-1
call c(mi,j,k)

if (k.eq.0) goto 8
ki=abs (k)

call cdg(mi+1,k1,i1)
if (il.eq.0) goto 8
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i

endif

sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt(bnl(mi-NR))
index=index+1
h(j,index)=tef*sg

ih(j,index)=1

8
7

88
87

endif

¢ hopping to the d site of spin up

continue
continue

do 87 m1=NR+1,NR+NC-1
call cdg(mi,j,k)
if (k.eq.0) goto 88
ki=abs (k)
call c(mi+1,k1,i1)
if (il.eq.0) goto 88
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i
endif
sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt(bnl(mi-NR))
index=index+1
h(j,index)=-tef*sg
ih(j,index)=1
continue
continue

call c(2,j,k)
if (k.eq.0) goto 26
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ki=abs (k)
call cdg(iep,k1,il)
if (il.eq.0) goto 26
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i
endif
sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=tpd
index=index+1
h(j,index)=tef*sg
ih(j,index)=1

26 continue

call cdg(2,j,k)
if (k.eq.0) goto 28
ki=abs (k)
call c(iep,k1,il)
if (il.eq.0) goto 28
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i
endif
sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=tpd
index=index+1
h(j,index)=-tef*sg
ih(j,index)=1

28 continue

cx**x*xright down spin chain¥kkkkx*

c**xhopping to the right down chain
c**the right down chain starts at NR+NC+1 site

ck*x*xhopping from the down site (1) to the first
c**x*neighbour on the right side

call c(1,j,k)

if (k.eq.0) goto b1
ki=abs (k)

call cdg(NR+NC+1,k1,i1)
if (il.eq.0) goto 51
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i

endif

sg=1.d0
if(k.1t.0)sg=-1.d0
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if(i1.1t.0)sg=-sg
tef=dsqrt(bnr(0))
index=index+1
h(j,index)=tef*sg
ih(j,index)=1
51 continue

call cdg(1,j,k)
if (k.eq.0) goto 71
ki=abs (k)
call c(NR+NC+1,k1,i1)
if (il.eq.0) goto 71
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i
endif
sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt(bnr(0))
index=index+1
h(j,index)=-tef*sg
ih(j,index)=1

71 continue

c**xhopping of the rest of the right down chain
if (WR+NC+1.le.NR+2#NC-1)then

do 52 m1=NR+NC+1,NR+2*NC-1
call c(mi,j,k)
if (k.eq.0) goto 53
ki=abs (k)
call cdg(mi+1,k1,i1)
if (il.eq.0) goto 53
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i
endif
sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt (bnr(m1-NR-NC))
index=index+1
h(j,index)=tef*sg
ih(j,index)=1
53 continue
52 continue

do 72 m1=NR+NC+1,NR+2*NC-1
call cdg(mi,j,k)

if (k.eq.0) goto 73

ki=abs (k)



call c(mi+1,k1,i1)

if (il.eq.0) goto 73
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i

endif

sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt (bnr(m1-NR-NC))
index=index+1
h(j,index)=-tef*sg
ih(j,index)=1

73 continue
72 continue
endif

ck*¥*xleft down spin chainkkkkkkk*
cx*the left down chain starts at NR+2*NC+1 site

ck*x*xhopping from the down site (1) to the first
c***neighbour on the left side

call c(1,j,k)
if (k.eq.0) goto 55
ki=abs (k)
call cdg(NR+2#NC+1,k1,i1)
if (il.eq.0) goto 55
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i
endif
sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt(bnl(0))
index=index+1
h(j,index)=tef*sg
ih(j,index)=1
55 continue

call cdg(1,j,k)

if (k.eq.0) goto 75
ki=abs (k)

call c(NR+2*NC+1,k1,i1)
if (il.eq.0) goto 75
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i

endif

sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
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tef=dsqrt(bnl(0))
index=index+1
h(j,index)=-tef*sg
ih(j,index)=1

75 continue

c**xhopping of the rest of the left down chain
if (NR+2#NC+1.le .NR+3*NC-1)then

do 56 m1=NR+2*NC+1,NR+3*NC-1
call c(mi,j,k)
if (k.eq.0) goto 57
ki=abs (k)
call cdg(mi+1,k1,i1)
if (il.eq.0) goto 57
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i
endif
sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt (bnl(m1-NR-2%*NC))
index=index+1
h(j,index)=tef*sg
ih(j,index)=1
b7 continue
56 continue

do 76 m1=NR+2*NC+1,NR+3*NC-1
call cdg(mi,j,k)

if (k.eq.0) goto 77

ki=abs (k)

call c(mi+1,k1,i1)

if (il.eq.0) goto 77
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i

endif

sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=dsqrt (bnl(m1-NR-2%*NC))
index=index+1
h(j,index)=-tef*sg
ih(j,index)=1

77 continue
76 continue
endif

¢ hopping to the d site of spin down



36

sg=1.d0
if(k.1t

call c(1,j,k)

if (k.eq.0) goto 36
ki=abs (k)

call cdg(ied,k1,il)
if (il.eq.0) goto 36
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i

endif

sg=1.d0
if(k.1t.0)sg=-1.d0
if(i1.1t.0)sg=-sg
tef=tpd
index=index+1
h(j,index)=tef*sg
ih(j,index)=1
continue

call cdg(1,j,k)

if (k.eq.0) goto 38
ki=abs (k)

call c(ied,k1,il)

if (il.eq.0) goto 38
i=abs(il)
if(i.eq.0.or.k.eq.0)then
print*,k,i

endif

.0)sg=-1.40

if(i1.1t.0)sg=-sg

38

c close
enddo

tef=tpd

index=index+1

h(j,index)=-tef*sg

ih(j,index)=1
continue

if(index.ge.N)then

print*,’need more room for h!!!’
stop

endif

ih(j,N)=index

big j loop

return
end

CHARAAA AR AR R R R RHHHHHHHHHH R R R RR R R R RB R R R R R R R R R R R R R RR B R R R R R B RERERRRY
¢ calculates the matrices cp and cp+ in compressed form

¢ icp has the pointers. Since they only connect one state of

¢ the basis to a unique other state, upon compression become
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¢ matrices of size (NNx1). The matrix cp and cp+ has the
¢ information of the phase and icp and icp+ has which state is
c connected to which other

subroutine getcp(cp,icp,cpdg,icpdg)
parameter (N=16 ,NN=2**I)
implicit real*8(a-h,o-z)
double precision cp(NN),cpdg(NN)
dimension icp(NN),icpdg(lN)

¢ calculates <j|Cpli>
do 2 j=1,NN

call cdg(2,j,i1)
if(il.eq.0)goto 2

i=abs(il)
cp(j)=dfloat(i)/dfloat(il)
icp(j)=1i
2 continue

¢ calculates <j|[Cp+|i>

do 3 j=1,NN
call c(2,j,i1)
if(il.eq.0)goto 3
i=abs(il)
cpdg(j)=dfloat(i)/dfloat(il)
icpdg(j)=i
3 continue

return
end

O e L L L L Lo L 1
¢ idem before (for cd)

subroutine getcd(cd,icd,cddg,icddg)
parameter (N=16 ,NN=2**I)

implicit real*8(a-h,o-z)

double precision cd(NN),cddg(NN)
dimension icd(NN),icddg(lN)

iep=N-1

¢ calculates <jlCd|i>
do 2 j=1,NN
call cdg(iep,j,il)
if(il.eq.0)goto 2
i=abs(il)
cd(j)=dfloat(i)/dfloat(il)
icd(j)=i

2 continue
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¢ calculates <j[Cd+|i>

do 3 j=1,NN

call c(iep,j,il)
if(il.eq.0)goto 3

i=abs(il)
cddg(j)=dfloat(i)/dfloat(il)
icddg(j)=1i

continue

return
end

ctftititi it R R
¢ subroutine for determination of e-vectors and e-values
¢ from numerical recipes

11

12

13

14
15

SUBROUTINE JACOBI(A,N,NP,D,V,NROT)
implicit real*8(a-h,o-z)
PARAMETER (NMAX=2500)
double precision A(NP,NP),D(NP),V(NP,NP),B(NMAX),Z(NMAX)
DO 12 IP=1,N
DO 11 IQ=1,N
V(IP,IQ)=0.
CONTINUE
V(IP,IP)=1.
CONTINUE
DO 13 IP=1,N
B(IP)=A(IP,IP)
D(IP)=B(IP)
Z(IP)=0.
CONTINUE
NROT=0
DO 24 I=1,50
SM=0.
DO 15 IP=1,N-1
DO 14 IQ=IP+1,N
SM=SM+ABS (A(IP,IQ))
CONTINUE
CONTINUE
IF(SM.EQ.O0.)RETURN
IF(I.LT.4)THEN
TRESH=0.2*SM/N*%2
ELSE
TRESH=0.
ENDIF
DO 22 IP=1,N-1
DO 21 IQ=IP+1,N
G=100.*ABS(A(IP,IQ))
IF((I.GT.4).AND.(ABS(D(IP))+G.EQ.ABS(D(IP)))
.AND. (ABS(D(IQ))+G.EQ.ABS(D(IQ))))THEN
A(IP,IQ)=0.
ELSE IF(ABS(A(IP,IQ)).GT.TRESH)THEN
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16

17

18

19

21

22

23
24

H=D(IQ)-D(IP)

IF(ABS(H)+G.EQ.ABS(H))THEN

T=A(IP,IQ)/H
ELSE
THETA=0.5%H/A(IP,IQ)

T=1./(ABS(THETA)+SQRT(1.+THETA**2))

IF(THETA.LT.0.)T=-T
ENDIF
C=1./SQRT(1+T**2)
S=T*C
TAU=S/(1.+C)
H=T*A(IP,IQ)
Z(IP)=Z(IP)-H
Z(IQ)=Z(IQ)+H
D(IP)=D(IP)-H
D(IQ)=D(IQ)+H
A(IP,IQ)=0.
DO 16 J=1,IP-1
G=A(J,IP)
H=A(J,IQ)
A(J,IP)=G-S* (H+G*TAU)
A(J,IQ)=H+S*(G-H*TAU)
CONTINUE
DO 17 J=IP+1,IQ-1
G=A(IP,J)
H=A(J,IQ)
A(IP,J)=G-S* (H+G*TAU)
A(J,IQ)=H+S*(G-H*TAU)
CONTINUE
DO 18 J=IQ+1,N
G=A(IP,J)
H=A(IQ,J)
A(IP,J)=G-S* (H+G*TAU)
A(IQ,J)=H+S*(G-H*TAU)
CONTINUE
DO 19 J=1,N
G=V(J,IP)
H=V(J,IQ)
V(J,IP)=G-S* (H+G*TAU)
V(J,IQ)=H+S*(G-H*TAU)
CONTINUE
NROT=NROT+1

ENDIF

CONTINUE

CONTINUE

DO 23 IP=1,N
B(IP)=B(IP)+Z(IP)
D(IP)=B(IP)
Z(IP)=0.

CONTINUE

CONTINUE

PAUSE ’50 iterations should never happen’

RETURN
END
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CHAR AR R R AR R R R R R R R R
¢ sorting subroutine for ordering e-values and e-vectors
¢ from numerical recipes
SUBROUTINE EIGSRT(D,V,N,NP)
implicit real*8(a-h,o-z)
DIMENSION D(NP),V(NP,NP)
DO 13 I=1,N-1
K=I
P=D(I)
DO 11 J=I+1,N
IF(D(J).GE.P)THEN
K=J
P=D(J)
ENDIF
11 CONTINUE
IF(K.NE.I)THEN
D(K)=D(I)
D(I)=P
DO 12 J=1,N
P=v(J,I)
v(J,I)=v({J,K)
V(J,K)=P
12 CONTINUE
ENDIF
13 CONTINUE
RETURN
END

O e e e e e B R S s
¢ calculates the ground state of the effective Hamiltonian h
¢ can do search sector by sector
¢ constructs pointers to the sectors in and is
subroutine getgs(ih,h,egs,gs,iloop,iflag,in0,is0,igs)
parameter (N=16 ,NN=2**N ,NP=4900)
implicit real*8(a-h,o-z)
double precision h(NN,2x*N),wh(NP,2*N)
double precision gs(NN),gst(8,NN),esec(N,-N:N)
double precision gswi(NP)
dimension ih(NN,2*N),iwh(NP,2*N)
dimension isrt(NP),jsrt(NN)
dimension inO(N),isO0(N)

1=p site down
2=p site up
iep=d site up
ied=d site down
NR =last site of up chain
NR+1=first site of down chain
NC =length of each side of the chains

o o0 0 0 0 0 0

NR=((N-2)/2-1)/2+2
NC=NR-2



nhalf=N/2

iep=N-1

ied=N
egs0=1.d4

if(iloop.eq.1l.and.iflag.eq.1)then

in0(1)=nhalf

is0(1)=0

igs=1

print*,’considering the p-h symetric sector only!!!’
endif

if(iflag.eq.0)then
¢ search all sectors
igs=1

c sweep all sectors
do ievod=0,1

¢ ievod=0 ==> even number of particles (and even spin)
¢ ievod=1 ==> odd number of particles (and odd spin)

do in= 2-ievod,N-ievod,2
if(ilast.eq.1)then

write(100,%)?"N=",in, "’

endif

ism=in

if(in.gt.nhalf)ism=N-in

do is= -ism,ism,2

¢ construct the pointers for sector (in,is)

call sector(in,is,idg,isrt,jsrt)

¢ construct wh = the hamiltonian in sector (in,is),
¢ and and iwh = the pointer of the hamiltonian

call gethns(idg,isrt,jsrt,h,ih,wh,iwh)

¢ diagonalize wh by modified Lanczos method
call lanczos(wh,gswl,egs,iwh,idg,in,is)
esec(in,is)=egs

if(ilast.eq.1)then

write(100,*)is,real(egs)
endif
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if(egs.lt.egsO+1.d-5)then
¢ found a new ground state vector (may be a degenerate one)

¢ check for degeneracy or new gs

if(dabs(egs-egs0).1t.1.d-5)then
igs=igs+1
in0(igs)=in
is0(igs)=is
else
igs=1
egsO=egs
in0(igs)=in
is0(igs)=is
endif

c expand the new gs to full size and store it
do i=1,NN
gst(igs,1)=0.d0
enddo
do i=1,idg
ia=isrt(i)
gst(igs,ia)=gswi(i)
enddo
endif
enddo
if(ilast.eq.1)then
write(100,%)? ’
endif

enddo

enddo

else
ck*** in inner loops skip the full search ***x*
do j=1,igs

in=in0(j)
is=is0(j)

¢ construct the pointers for sector (in,is)

call sector(in,is,idg,isrt,jsrt)



¢ construct wh = the hamiltonian in sector (in,is),
¢ and and iwh = the pointer of the hamiltonian

call gethns(idg,isrt,jsrt,h,ih,wh,iwh)
¢ diagonalize wh by modified Lanczos method
call lanczos(wh,gswl,egs,iwh,idg)
egsO=egs
c expand the new gs to full size and store it

do i=1,NN

gst(igs,1)=0.d0

enddo
do i=1,idg
ia=isrt(i)
gst(igs,ia)=gswi(i)
enddo

enddo

endif

¢ copy the output
egs=egs0

do i=1,NN

gs(1)=0.40

enddo

xnor=1.d0/dsqrt(dfloat(igs))

do j=1,igs

do i=1,NN

gs(i)=gs(i)+gst(j,i)*xnor

enddo

enddo

do i=1,igs

print*,’the gs sector is (W,Sz)=’,in0(i),1is0(i)
enddo

print*,’there are’,igs,’ degenerate gs’
if(iflag.eq.0)then
if(dabs(egs-esec(in0(1),is0(1))).gt.1d-5)then
print*,’something is wrong...’

endif

endif

return
end
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¢ extracts from the full hamiltonian the block corresponding
¢ to sector (m,s)
subroutine gethns(idg,isrt,jsrt,h,ih,wh,iwh)
parameter (N=16 ,NN=2**N ,NP=4900)
implicit real*8(a-h,o-z)
double precision h(NN,2x*N),wh(NP,2*N)
dimension ih(NN,2*N),iwh(NP,2*N)
dimension isrt(NP),jsrt(NN)

¢ extract the rows of h and ih

do j=1,2*N
do i=1,NP
wh(i,j)=0.40
iwh(i,j)=0
enddo

enddo

do i=1,idg
ia=isrt(i)

do k=1,2%N
wh(i,k)=h(ia,k)
iwh(i,k)=ih(ia,k)
enddo

enddo

¢ rewrite iwh to point inside the sector

do 105 i=1,idg
MM=iwh(i,I)

do 106 k=1,MM
jj=iwh(i,k)
if(jj.eq.0)goto 106
j=jsrt(3j)
iwh(i,k)=j
106 continue
105 continue

return
end

CHHHH IR R R R R
¢ constructs the pointers for the different sectors and
c the vectors isrt and jsrt with the corresponding
¢ ordering definition of the sub-basis within each sector
subroutine sector(in,is,idg,isrt,jsrt)
parameter (N=16 ,NN=2**N ,NP=4900)
implicit real*8(a-h,o-z)
dimension isrt(NP),jsrt(NN)
dimension ib2(N)
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c 1=p site down
¢ 2=p site up
c ilep=d site up
¢ ied=d site down
¢ NR =last site of up chain
¢ NR+1=first site of down chain
¢ NC =length of each side of the chains
NR=((N-2)/2-1)/2+2
NC=NR-2
nhalf=N/2
iep=N-1
ied=N
idg=0
do i=1,NN
jsrt(i)=0
enddo
do i=1,NP
isrt(i)=0
enddo
c construct idg and isrt. idg has the degeneracy of the
¢ sector (in,is). isrt has the list of vectors that belong
¢ to the sector (in,is). isrt defines the basis of the sector
¢ jsrt has the "inverse pointer" of isrt
do i=1,NN
call b2(i,ib2)
ibs=0
ibn=0
ibs=ib2(2)-ib2(1)+ib2(iep)-ib2(ied)
ibn=ib2(2)+ib2(1)+ib2(iep)+ib2(ied)
do j=3,NR
ibs=1bs+ib2(j)+ib2(j+NC)-ib2(j+2%NC)-ib2(j+3*NC)
ibn=ibn+ib2(j)+ib2(j+NC)+ib2(j+2+NC)+ib2(j+3*NC)
enddo
if(ibn.eq.in.and.ibs.eq.is)then
idg=idg+1
isrt(idg)=i
jsrt(i)=idg
endif
enddo
return
end

CHAR AR R R AR R R R R R R R R
¢ this routine calculates the position and strengh of the

¢ discrete poles of the Green function expressed in continued

¢ fraction form. It basically diagonalizes the tridiagonal
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¢ matrix defined by the a’s and the b’s
subroutine getpole(egs,anr,bnr,anl,bnl,NG,iwr,ip)
parameter (N=16 ,NN=2#**N ,NP=4900 ,NM=50)
implicit real*8(a-h,o-z)
double precision anr(0:NP),bnr(0:NP)
double precision anl(0:NP),bnl(0:NP)
double precision pr(NP),wr(NP)
double precision prs(NP),wrs(NP)
double precision pl(NP),wl(NP)
double precision pls(NP),wls(NP)
double precision trdh(NM,NM),rot(NM,NM),ev(NM)
common/pw/pr,pl,wr,wl
common/pws/prs,pls,wrs,wls
common/size/NC,NL
common/par/tu

NL=NG

¢ NC=length of each side of the chains
NR=((N-2)/2-1)/2+2
NC=NR-2

do j=1,NM
do i=1,NM
trdh(j,1i)=0.
enddo

enddo

¢ if ss (ip=-1) => skip the short chain
¢ if d site (ip=0) => skip the short chain
¢ if p site (ip=1) => do the short chain

¢ do the sign flip for "snl"
if(ip.eq.-1)then

do i=1,NG

anl(i-1)=-anl(i-1)

enddo

endif

if(ip.eq.1)then

¢ calculate the poles and weights for a short chain
¢ with one pole per effective bath site

c right side

do i=1,NC
trdh(i,i)=anr(i-1)-egs
trdh(i,i+1)=dsqrt(bnr(i))
trdh(i+1,i)=dsqrt(bnr(i))
enddo



call jacobi(trdh,NC,NM,ev,rot,irot)
call eigsrt(ev,rot,NC,NM)

do i=1,NC
prs(i)=ev(i)
wrs(i)=rot(1,1i)*%*2
enddo

¢ left side

do i=1,NC

trdh(i,i)=-anl(i-1)-egs
trdh(i,i+1)=dsqrt(bnl(i))
trdh(i+1,i)=dsqrt(bnl(i))

enddo
call jacobi(trdh,NC,NM,ev,rot,irot)
call eigsrt(ev,rot,NC,NM)
do i=1,NC

pls(i)=ev(i)
wls(i)=rot(1,1i)**2
enddo

endif

¢ calculate the poles and weights for the full hamiltonian

¢ with a big number of poles
c right side

do i=1,NG
trdh(i,i)=anr(i-1)-egs
trdh(i,i+1)=dsqrt(bnr(i))
trdh(i+1,i)=dsqrt(bnr(i))
enddo

call jacobi(trdh,NG,NM,ev,rot,irot)
call eigsrt(ev,rot,NG,NM)

do i=1,NG
pr(i)=ev(i)

wr(i)=rot(1,1i)**2
enddo

¢ left side

do i=1,NG
trdh(i,i)=-anl(i-1)-egs
trdh(i,i+1)=dsqrt(bnl(i))
trdh(i+1,i)=dsqrt(bnl(i))
enddo
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call jacobi(trdh,NG,NM,ev,rot,irot)
call eigsrt(ev,rot,NG,NM)

do i=1,NG
pl(i)=ev(i)

wl(i)=rot(1,1i)#**2
enddo

¢ undo the sign flip for '"snl"
if(ip.eq.-1)then

do i=1,NG

anl(i-1)=-anl(i-1)

enddo

endif

ck**print out resultskkkx*
if(iwr.eq.1)then

if(ip.eq.-1)then
write(96,*)’"poles & weigths suscept.'’
write(96,*)’"sp-sp"’

do i=1,NG
write(96,*)real(pr(i)),real(wr(i))
enddo

write(96,%)’ ’
write(96,*)’"ch-ch"’

do i=1,NG
write(96,*)real(pl(i)),real(wl(i))
enddo

write(96,%)’ ’

endif

if(ip.eq.0)then
write(97,%*)’"poles & weigths d site"’
write(97,%)"right"’

do i=1,NG
write(97,*)real(pr(i)),real(wr(i))
enddo
write(97,%)’ ’
write(97,*)"left"?
do i=1,NG
write(97,*)real(pl(i)),real(wl(i))
enddo
write(97,%)’ ’
endif

if(ip.eq.1)then
write(98,*)’"poles & weigths p site"’
write(98,*)’"right"’
do i=1,NG
write(98,*)real(pr(i)),real(wr(i))
enddo



195

write(98,*)’ ’
write(98,*)"left"?
do i=1,NG
write(98,*)real(pl(i)),real(wl(i))
enddo

write(98,*)’ ’

write(99,%)’"poles & weigths p bath"’
write(99,%)’"right"’
do i=1,NC
write(99,*)real(prs(i)),real(wrs(i))
enddo
write(99,*)’ ’
write(99,*)’"left"?
do i=1,NC
write(99,*)real(pls(i)),real(wls(i))
enddo
write(99,*)’ ’
endif

endif

return
end

CHARAAA AR AR R R R RHHHHHHHHHH R R R RR R R R RB R R R R R R R R R R R R R RR B R R R R R B RERERRRY
¢ This subroutine calculates the gs energy and

¢ the [gs> by the modified Lanczos method

¢ the Hamiltonian h has been compressed and ih has the pointers

¢ fO is the seed on input and the |gs> on output

subroutine lanczos(h,f0,egs,ih,id,in,is)

parameter (N=16 ,0P=4900,MP=15)

implicit real*8(a-h,o-z)

double precision h(NP,2x*N)

double precision fO(NP),f1(NP)

double precision f2(NP),f3(NP)

dimension ih(NP,2*N),zz(MP,MP),at(MP),bt(MP)
dimension vect(MP,NP)

if(id.eq.1)then
egs=h(1,1)

do i=1,NP
£0(1)=0.40
enddo
£0(1)=1.40

goto 200

endif

€0=0.40



e1=100.d0
xx=0.d0

do i=1,id
xn=ran(2)
f0(i)=xn
xx=xx+f0 (i) **2
enddo
xx=1.d0/dsqrt (xx)
do i=1,id
fO(i)=xx*f0(i)
enddo

¢ does regular modified lanczos
if(id.1t.3)then

100

jloop=0
continue
jloop=jloop+1
e0=el

call hxvl(h,ih,f0,f1,id)
call hxvl(h,ih,f1,f2,id)
call hxvl(h,ih,£2,£3,id)

ha=0.d0

h2=0.4d0

h3=0.4d0

do i=1,id
ha=ha+f0(i)*£f1(1i)
h2=h2+f0(i)*£f2(i)
h3=h3+£0(i)*£3(i)

enddo

hh=h2-hax**2

if (h2-ha**2.1t.0.d0)then
write(1,#*)jloop,real(h2-ha**2)
hh=1.4-9

endif

den=dsqrt (hh)

do i=1,id
£1(i)=(f1(i)-ha*f0(i))/den
enddo

den1=2.d40*(h2-ha**2)*den
xnum=h3-3.d0*ha*h2+2.d0*ha**3
f=xnum/deni

alpha=f-dsqrt (£**2+1.40)

den2=dsqrt(1.d0+alpha**2)
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do i=1,id
f0(i)=(£0(i)+alpha*fi1(i))/den2
enddo

el=ha+den*alpha

if(dabs(el-e0).gt.1.d-9)goto 100
egs=el
c print*,’regul lanczos egs:’,egs

else
¢ does tridiagonalization of MxM block

300 continue
el=el
do i=1,MP
at(i)=0.4d0
bt(i)=0.4d40
do j=1,NP
vect(i,j)=0.d0
enddo
enddo

call hxvl(h,ih,f0,f1,id)

a=0.d0

b=0.d0

do i=1,id

a=a+f0(i)*f1(i)

enddo

at(1)=a

$=0.d40

do i=1,id
f1(i)=f1(i)-a*f0(i)
s=s+f1(i)*f1(i)

enddo

bt(2)=dsqrt(s)

$=1.d0/bt(2)

do i=1,id

f1(i)=s*f1(i)

vect(1,i)=f0(i)

vect(2,i)=Ff1(i)
enddo

¢ check that the block for lanczos is not bigger than the
c size of the sector

M=MP
if(id.1t.M)M=id
do k=2,M

call hxvl(h,ih,f1,f2,id)
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b=bt (k)
a=0.d0
do i=1,id
a=a+f1(i)*£f2(i)
enddo
at(k)=a
s=0.d0
do i=1,id
f2(i)=f2(i)-a*f1(i)-b*f0(1i)
s=s+f2(1)*£f2(i)
enddo
s=dsqrt(s)
if(k.le.M-1)then
bt(k+1)=s
s=1.d0/s
do i=1,id
£2(i)=s*f2(i)
vect(k+1,i)=f2(i)
enddo
endif

do i=1,id
f0(i)=£f1(1)
f1(i)=£f2(1i)
enddo

enddo

do i=1,MP

do j=1,MP
zz(i,j)=0.40
enddo
zz(i,i)=1.d0
enddo

call tqli(at,bt,M,MP,zz)
call eigsrt(at,zz,M,MP)

el=at (M)

s=0.d0

do i=1,id

f0(1)=0.d0

do j=1,M

10(i)=f0(i)+zz(j,M)*vect(j,1)

enddo

s=s+f0(1i)*f0(i)

enddo

s=1.d0/dsqrt(s)
do i=1,id

£0(i)=s*f0(i)

enddo
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if(jloop.gt.1020)then

print*,’did not converge!!! (but continued anyway)’
goto 400

endif

if(dabs(el-e0).gt.1.d-9)goto 300

400 continue

egs=el

endif
200 continue

return
end

O e e e e e B R S s
¢ diagonalized a tridiagonal matrix
¢ from numerical recipes
SUBROUTINE tqli(d,e,n,np,z)
implicit real*8(a-h,o-z)
INTEGER n,np
double precision d(np),e(np)
double precision z(np,np)
C USES pythag
INTEGER i,iter,k,l,m
double precision b,c,dd,f,g,p,r,s,pythag
do i=2,n
e(i-1)=e(i)
enddo
e(n)=0.d0
do 15 1=1,n
iter=0
1 do m=1,n-1
dd=dabs(d(m))+dabs(d(m+1))
if (dabs(e(m))+dd.eq.dd) goto 2
enddo
m=n
2 if(m.ne.1l)then
if(iter.eq.30)pause ’too many iterations in tqli’
iter=iter+1
g=(d(1+1)-d(1))/(2.d0*e(1))
r=pythag(g,1.d40)
g=d(m)-d(1)+e(1)/(g+dsign(r,g))
s=1.d0
c=1.d0
p=0.d0
do 14 i=m-1,1,-1
f=s*e(i)
b=c*e(i)
r=pythag(f,g)
e(i+1)=r
if(r.eq.0.d0)then
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d(i+1)=d4(i+1)-p
e(m)=0.d0
goto 1
endif
s=f/r
c=g/r
g=d(i+1)-p
r=(d(i)-g)*s+2.d0*c*b
p=s*r
d(i+1)=g+p
g=c*r-b
C Omit lines from here ...
do 13 k=1,n
f=z(k,i+1)
z(k,i+1)=s*z(k,i)+c*f
z(k,i)=c*z(k,i)-s*f
13 continue
C ... to here when finding only eigenvalues.
14 continue
d(1)=d(1)-p
e(l)=g
e(m)=0.d0
goto 1
endif
15 continue

return
END

O e e e e e B R S s
¢ used by tqli
¢ from numerical recipes
double precision FUNCTION pythag(a,b)
implicit real*8(a-h,o-z)
double precision a,b,pythag
double precision absa,absb
absa=dabs(a)
absb=dabs(b)
if (absa.gt.absb)then
pythag=absa*dsqrt(1.+(absb/absa)**2)
else
if (absb.eq.0.)then
pythag=0.
else
pythag=absb*dsqrt(1.+(absa/absb)**2)
endif
endif
return
END

CHARAAA AR AR R R R RHHHHHHHHHH R R R RR R R R RB R R R R R R R R R R R R R RR B R R R R R B RERERRRY
¢ constructs a mask of 1 and 0’s to avoid multiplication by 0’s

¢ in the operation of h times a state.

c it takes a state from a sector (n0,s0) and depending



c on how the operator that acts changes the spin and particle
¢ number, it constructs the appropiate mask.
subroutine mask(in0,is0,igs,imk,imc)
parameter (N=16 ,NN=2#*N ,NP=4900)
implicit real*8(a-h,o-z)
dimension inO(N),isO(N),imk (NN)

dimension isrt(NP),jsrt(NN)

¢ the GF are spin up by convention

c

Cc +

¢ imc is O for the C C |0> sector (does not change)
c

Cc +

¢ imc is +1 for the C |0> sector (N+1, S+1)
c

c

¢ imc is -1 for the C |0> sector (N-1, s-1)
c

do i=1,NN

imk(1)=0

enddo

do i=1,igs

in=in0(i)+imc
is=is0(i)+imc

¢ construct the pointers for sector (in,is)
call sector(in,is,idg,isrt,jsrt)

do j=1,idg
jj=isrt(j)
imk(jj)=1
isrt(j)=0
enddo

enddo
return
end

O B R R i R R i S i

¢ This subroutine calculates a Green function in terms of
¢ a continued fraction

subroutine getgf(h,ih,anr,bnr,anl,bnl,gs,igs,cp,icp,cpdg,icpdg,

$ NG,in0,is0)
parameter (N=16 ,NN=2**N ,NP=4900)
implicit real*8(a-h,o-z)
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double precision h(NN,2x*N)

double precision anr(0:NP),bnr(0:NP)

double precision anl(0:NP),bnl(0:NP)

double precision xa(lN)

double precision fO(NN),f1(NN),f2(NN),f(NN)
double precision gs(NN)

double precision cp(NN),cpdg(NN)

dimension icp(NN),icpdg(NN)

dimension ih(NN,2*N)

dimension inO(N),isO(N),imk (NN)

¢ construct the mask
call mask(in0,is0,igs,imk,1)

cx**starts the tridiagonalizationk***
¢ right chain

call cxv(cpdg,icpdg,gs,f0)

c get an(0) and bn(0)

call hxvm(h,ih,f0,xa,imk)
anr(0)=0.

yr=0.

do 11 i=1,NN

anr (0)=anr(0)+f0(i)*xa(i)
yr=yr+f0(1i)**2

11 continue

anr(0)=anr(0)/yr
bnr(0)=yr

c get the an(i) and bn(i)
¢ f1=f(n-1),£2=f(n-2)

a=anr(0)
b=0.

do 13 i=1,NN
£1(i)=f0(i)
£2(i)=0.

13 continue

do 14 in=1,NG

call getfn(ih,h,f,f1,£f2,a,b,imk)
call getab(ih,h,f,f1,a,b,imk)
anr(in)=a

bnr(in)=b

do 15 i=1,NN
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£2(i)=f1(1)

£f1(i)=£f(1)
15 continue
14 continue

¢ construct the mask
call mask(in0,is0,igs,imk,-1)

¢ left chain
c***cp(j,i)=cp+(i,j)***

cx*change the sign of H to calculate the hole excitations**
do 102 j=1,2*N

do 102 i=1,NN

h(i,j)=-h(i,j)

102 continue

call cxv(cp,icp,gs,f0)

c get an(0) and bn(0)

call hxvm(h,ih,f0,xa,imk)
anl1(0)=0.
y1=0.
do 19 i=1,NN
anl(0)=anl(0)+f0(i)*xa(i)
yl=yl+£0(1i)**2

19 continue

anl(0)=anl(0)/yl
bnl(0)=y1
c get the an(i) and bn(i)
¢ £1=f(n-1),f2=f(n-2)

a=anl(0)
b=0.
do 21 i=1,NN
£f1(i)=f0(i)
£2(i)=0.

21 continue

do 22 in=1,NG
call getfn(ih,h,f,f1,f2,a,b,imk)
call getab(ih,h,f,f1,a,b,imk)
anl(in)=a

bnl(in)=b



23
22

do 23 i=1,NN
£2(i)=f1(i)
£f1(i)=£f(i)

continue
continue

c**restore the sign of H*x*
do 103 j=1,2*N

do 103 i=1,NN
h(i,j)=-h(i,j)

103 continue

print*,’done!’
return
end

CHUHHHMI A R R
¢ This subroutine calculates the spin-spin and charge-charge

¢ correlation function in terms of a continued fraction
subroutine getcorr(h,ih,snr,tnr,snl,tnl,gs,igs,NG,in0,is0)

O o0 0 0 0 00

1=p
2=p
iep=d
ied=d

parameter (N=16 ,NN=2**N ,NP=4900)
implicit real*8(a-h,o-z)

double precision h(NN,2x*N)

double precision snr(0:NP),tnr(0:NP)
double precision snl(0:NP),tnl(0:NP)
double precision xa(lN)

double precision fO(NN),f1(NN),f2(NN),f(NN)
double precision gs(NN)

dimension ih(NN,2*N)

dimension ib2(N)

dimension inO(N),isO(N),imk (NN)

site down
site up
site up
site down

NR =last site of up chain
NR+1=first site of down chain
NC =length of each side of the chains

NR=((N-2)/2-1)/2+42
NC=NR-2

nhalf=N/2

iep=N-1

ied=N

¢ calculates the <sp-sp> continued fraction

¢ construct the mask
call mask(in0,is0,igs,imk,0)
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cx**starts the tridiagonalizationk***
¢ right chain

xnp=0.d0

xnd=0.40

do i=1,NN

call b2(i,ib2)

xnp=xnp+gs (1) *gs(i)*ib2(2)

xnp=xnp+gs (i)*gs(i)*ib2(1)
xnd=xnd+gs (1) *gs(i)*ib2(iep)
xnd=xnd+gs (1) *gs(i)*ib2(ied)
f0(i)=dfloat(ib2(2)-ib2(1)+ib2(iep)-ib2(ied))*gs(i)
enddo

print#*,’Np:’,real(xnp)
print#*,’Nd:’,real(xnd)

c get cn(0) and dn(0)

call hxvm(h,ih,f0,xa,imk)
snr(0)=0.
srd=0.
do 311 i=1,NN
snr(0)=snr(0)+f0(i)*xa(i)
srd=srd+f0(i)**2

311 continue

snr(0)=snr(0)/srd
tnr(0)=srd
c get the cn(i) and dn(i)

c=snr(0)
dd=0.
do 313 i=1,NN
£f1(i)=f0(i)
£2(i)=0.

313 continue

do 314 in=1,NG
call getfn(ih,h,f,f1,f2,c,dd,imk)

call getab(ih,h,f,f1,c,dd,imk)
snr(in)=c
tnr(in)=44d
do 315 i=1,NN
£2(i)=f1(i)
£f1(i)=£f(i)
3156 continue
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314 continue

¢ use left chain for the <ch-ch>

Cc can use the same mask

¢ construct 0

xnp=0.d0

xnd=0.40

do i=1,NN

call b2(i,ib2)
idnp=ib2(2)+ib2(1)-1
idnd=ib2(iep)+ib2(ied)-1

f0(i)=dfloat(idnp+idnd)*gs(i)

enddo

c get cn(0) and dn(0)

call hxvm(h,ih,f0,xa,imk)
snl1(0)=0.
s1ld=0.
do 319 i=1,NN
snl1(0)=snl1(0)+f0(i)*xa(i)
51d=s1d+f0(i)**2

319 continue

sn1(0)=snl(0)/sld
tnl1(0)=sld
c get the cn(i) and dn(i)

c¢=snl1(0)
dd=0.
do 325 i=1,NN
£f1(i)=f0(i)
£2(i)=0.

326 continue

do 322 in=1,NG
c do 322 in=1,10
call getfn(ih,h,f,f1,f2,c,dd,imk)
call getab(ih,h,f,f1,c,dd,imk)
snl(in)=c
tnl(in)=44d
do 323 i=1,NN
£2(i)=f1(i)
£f1(i)=£f(i)
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323 continue
322 continue
print*,’done!’

return
end
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