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ABSTRACT OF THE DISSERTATION

Correlated Electron Systems in the Limit of In�nite

Dimensions

by Marcelo J. Rozenberg

Dissertation Director: Professor Gabriel Kotliar

The limit of large dimensionality is considered for the study of strongly correlated

electron systems. Di�erent numerical techniques are developed, and applied to the

solution of model hamiltonians. The solution of the Hubbard model is presented in

detail. The results are discussed in regard to the experiments in transition metal oxide

and heavy fermion compounds.
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Preface

This thesis is organized as follows: Chapter 1 contains a brief introduction to the sub-

ject. In Chapter 2 we derive the basic equations and introduce the numerical methods

developed for the study of the model hamiltonians. In chapters 3 to 6 we present in

detail the solution of the Hubbard model and discuss the results with respect to ex-

perimental data on transition metal oxides. Chapters 7 is devoted to the study of the

optical conductivity in the Hubbard and Anderson lattice model. This issue is consid-

ered in regard of the experimental results on various correlated electron compounds. A

certain amount of overlap between chapters has been allowed in order to make each of

them essentially self-contained units.
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Chapter 1

Introduction

1.1 The problem of strong correlations

The discovery of exciting new materials like the high temperature superconductors and

heavy fermion systems has revived the interest in the strong correlation problem in

condensed matter physics.

At the heart of this problem lies the interplay between the localized and itinerant

character of the d and f-electrons in the transition metal oxide compounds. This fasci-

nating issue has been actively studied and debated since the late forties with the early

ideas of Mott on the metal-insulator transition [1].

The model hamiltonians that we consider here for the study of the e�ect of corre-

lations, are variations of the one originally introduced by Hubbard in a series of three

papers in the sixties [2]. Their solution and the extent to which they are able to account

for the rich phenomena that are experimentally observed, mostly remains a standing

challenge to theoretical solid state physicists.

A crucial aspect of this class of problems is that perturbation theory cannot be

applied straightforwardly. It is usually the relevant physical case the one where the

interaction term is not small. We are thus in a situation where we lack of a natural

small parameter for a controlled expansion, and the validity of the procedure becomes

unclear.

One can attempt di�erent alternatives to go beyond the traditional perturbative

approaches [3]. The underlying idea is to modify the formulation of the model in such a

manner that, although a priori may seem unjusti�ed, will allow us to get new physical

insights and possibly obtain a solution that can shed some light on realistic situations.
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These alternatives include the change of the representation of the spin group, from

the fundamental two dimensional representation to a larger one, but keeping the sym-

metry group to be SU(2). In particular the case where the size goes to in�nity can

be studied and corresponds to a semi-classical limit. Another possibility is to modify

the symmetry of the group. For instance, one can extend the spin SU(2) symmetry to

SU(N), and consider the limit where N is large.

A third option is to modify the dimensionality. Actually, most of the exact results

that are available for the kind of models that we are considering, were obtained from

their one dimensional formulation. The Bethe Ansatz technique is very successful in

the consideration of this class of problems. Although relevant to real physical systems

such as one dimensional organic compounds, the results do not seem to be particularly

enlightening for the case of the regular three dimensional systems, or even the high T

c

superconductors whose basic physics is generally considered to be two dimensional.

On the other hand, one can consider the opposite limit, i.e., the one where the di-

mensionality goes to in�nity, which was originally proposed by Metzner and Vollhardt

[4]. The interest in the formulation of the many body problem in this limit, has conse-

quently led to a novel mean �eld theory of the strong correlation problem [5, 6, 7, 8].

This theory is similar in spirit to the familiar Weiss mean �eld theory of spin systems.

The subject of this thesis is a detailed investigation of the results of this last approach

to the study of the Hubbard model and some of its variations. We will see that a full

solution of the model is possible in this limit, and in the latter chapters we will address

the question of its relevance in the light of recent experimental results.
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Chapter 2

Methodology

2.1 Derivation of the Mean Field Equations

Here, we derive the set of self-consistent equations that de�ne the mean �eld theory that

results from the 1� d formulation of the model. They follow from the mapping of the

lattice model onto an impurity problem (i.e. a 0+1 dimensional model), supplemented

by a self-consistency condition. For de�niteness we consider here the Hubbard model.

Generalization of the mapping procedure to other models is straightforward [4].

The Hubbard hamiltonian reads,

H = �

X

hi;ji

(t

ij

+ �)c

y

i�

c

j�

+ U

X

i

(n

i"

�

1

2

)(n

i#

�

1

2

) (2.1)

where c

y

i

is the creation operator on the site i, hi; ji means summation over nearest

neighboring sites, and summation over repeated spin indices is understood. The pa-

rameter t

i;j

corresponds to the hopping between sites i and j, U is the local repulsion

between electrons on the same site, and � is the chemical potential (� = 0 in the

particle-hole symmetric case). In the limit of large dimensionality (d ! 1), as was

�rst noticed by Metzner and Vollhardt, the hopping parameter t is rescaled as t !

t

p

d

for the kinetic and potential energy to be of the same order and obtain a non-trivial

limit [1].

The mapping procedure is most conveniently carried out in the Path Integral for-

malism. We begin by writing the partition function of the lattice model and singling

out a particular site that we call 0.

Z =

Z

D[c

0

; c

i

]e

�

R

Ld�
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L = c

y

0�

(@

�

� �)c

0�

+ U(n

0"

�

1

2

)(n

0#

�

1

2

) +

+

X

i6=0

ft

0i

c

y

0�

c

i�

+ t

i0

c

y

i�

c

0�

+ c

y

i�

(@

�

� �)c

i�

+ U(n

i"

�

1

2

)(n

i#

�

1

2

)g +

+

X

hi6=0;j 6=0i

t

ij

c

y

i�

c

j�

(2.2)

Now, we have to integrate out all the degrees of freedom of the sites other than

0. The partition function can then be factorized and the formal integration can be

performed to obtain,

Z

0

=

Z

D[c

0

] e

�S

0

S

0

= �

X

�

Z Z

d�d�

0

c

y

0

f@

�

� � +

X

hi6=0;j 6=0i

t

0i

~

G

ij

t

j0

g c

0

+

+ U

Z

d�(n

0"

�

1

2

)(n

0#

�

1

2

) (2.3)

~

G is generated in this process and corresponds to the Green function of the lattice

model with site 0 removed (\cavity" Green function). We can relate

~

G

ij

to the full G

ij

by subtracting those paths that visit the origin,

~

G

ij

= G

ij

�

G

i0

G

0j

G

00

; (2.4)

where G

00

is the local Green function of the site 0, and its presence in the denomina-

tor avoids double counting. This expression is similar to one derived in Hubbard-III,

establishing an interesting connection to that work [3].

To proceed further we should now de�ne the particular type of lattice where the

model is de�ned. A natural choice would be, perhaps, a hyper-cubic lattice which is

the natural extension of a cubic lattice to the case of high number of dimensions. The

free density of states that corresponds to that lattice is of gaussian form [1]. This has

the implication of the presence of arbitrary high energy states in the exponential tails

of the density of states, which is obviously unphysical. Another possible choice is the

Bethe lattice of connectivity d. A schematic representation of this lattice is shown in

�gure 2.1. In this case, the free density of states results a semicircle, which not only is

bounded but also correctly captures the square root edges of the free density of states

of the realistic three-dimensional cubic lattice [2]. This density of states is also the
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i j

o

Figure 2.1: Bethe lattice (Cayley tree) with connectivity d = 2. The e�ective action is

obtained by integrating out the d:o:f: of sites other than 0. When this site is removed

the Cayley trees branching from the n:n: become decoupled.

same one considered in Hubbard's classical works [3]. Here, we will consider this type

of lattice, which we believe can better capture important features of �nite dimensional

situation.

Therefore, we immediately realize that in a Bethe lattice the Green function between

the sites i; j with the site 0 removed

~

G

ij

, becomes diagonal and consequently identical

to G

00

. This is because removing the site 0, has the e�ect of decoupling the Cayley

trees that branch out from sites i and j (see �gure 2.1).

Thus,

~

G

ij

=

~

G

ij

�

ij

= G

ii

�

ij

= G

00

�

ij

: (2.5)

Replacing (2.5) into (2.3) and taking t

0i

= t, we �nally obtain the e�ective action

at the site 0,

Z

0

=

Z

D[c

0

] e

�S

0

S

0

=

X

�

Z

�

0

Z

�

0

d�d�

0

c

y

0

(�)G

�1

0

(� � �

0

)c

0

(�

0

) +

+ U

Z

�

0

d�(n

0"

(�)�

1

2

)(n

0#

(�)�

1

2

) (2.6)

with,

G

�1

0

(i!

n

) = i!

n

� �+ t

2

G(i!

n

): (2.7)

These last two expressions represent the mapping of our original lattice model,
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onto an single impurity problem (2.6) with a self-consistency condition (2.7) (note

the to simplied notation G

0

� G

00

). In the derivation, we have implicitly assumed

a magnetically disordered state and accordingly the spin indices were dropped. The

extension of these equations to state with magnetic long range order is straightforward

and will be considered in later chapters.

Notice that the central object in the present scheme is a quantity G

0

which plays

the role of the e�ective �eld in an analogy to mean �eld theories of magnetic systems

[5]. Another important point to note is the similarity of the local e�ective action to

the corresponding one for the f-electrons in the Anderson single impurity model. In

particular it is interesting to see that the role of the hybridization function that describes

the conduction band in that model, is played in this case by the local Green function

itself. This analogy will be essential for the development of practical methods for the

solution of the problem. Also, and equally important, the vast preexistent knowledge

of the physics of impurity models will be a continuous source of physical insights.

The system of equations (2.6-2.7) has to be solved for the unknown G

0

itera-

tively. As we demonstrate below, the Green function of the impurity model G(i!

n

) =

�

R

�

0

e

i!

n

�

hT

�

c(�)c

y

(0)i

S

eff

becomes the local Green function of the Hubbard model only

once self-consistency is attained. We should think of the local Green function G as a

functional of G

0

. Therefore, one has to look for of an in�nite number of self-consistent

solutions, one for each of the frequencies (modes) of G

0

.

From the impurity problem (2.6), an impurity self-energy can be de�ned through

the Dyson's equation

�

imp

= G

�1

0

� G

�1

: (2.8)

Combining this expression with the self-consistency condition (2.7) gives,

G(i!

n

) =

2

i!

n

� �

imp

+ i sgn(!

n

)

q

D

2

+ (!

n

+ i�

imp

)

2

: (2.9)

where D = t=2 is the half-bandwidth of the semicircular free density of states of the

lattice.

We can easily check that at the self-consistent point, the impurity self-energy co-

incides with the Hubbard model self-energy [5]. This follows from the locality of the
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self-energy in the limit of d!1 [1].

By de�nition, the k dependent Green function reads,

G(k; i!

n

) =

1

i!

n

� �

k

� �

local

(i!

n

)

: (2.10)

We can obtain the local Green function performing the integration over momenta.

This is easy to do in the limit of in�nite dimensionality. The multidimensional integra-

tion becomes the one-dimensional integral over the variable � [1],

G

local

(i!

n

) =

Z

1

�1

�

0

(�)

i!

n

� �� �

local

(i!

n

)

d�: (2.11)

Using the Bethe lattice free density of states �

0

(�) =

2

�D

q

1� (

�

D

)

2

we obtain,

G

local

(i!

n

) =

2

i!

n

� �

local

+ i sgn(!

n

)

p

D

2

+ (!

n

+ i�

local

)

2

: (2.12)

Comparing (2.12) with (2.9), it follows that at the self-consistent point,

�

local

= �

imp

; (2.13)

and,

G

local

= G

imp

: (2.14)

We can now solve for G

0

to obtain,

G

0

(i!

n

) =

2

i!

n

+ �(G

0

) + i sgn(!

n

)

p

D

2

+ (!

n

+ i�(G

0

))

2

(2.15)

which can be used as an alternative self-consistency equation that relates G

0

with �

and does not require the explicit calculation of the Green function during the iteration

process.

In the the next section we will present various schemes for the solution of the mean

�eld equations. Depending on the particular one, we will need to consider equation

(2.7) or (2.15).

It should be clear that the problem is composed of two parts: an easy one |

the self-consistency condition|, and a harder one |the impurity problem|. Dealing

with the �rst is mostly straight forward. For the second, we will introduce in what

follows three di�erent numerical procedures. Lets emphasize here that there is no single
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"most appropriate" method. Each one, as it turns out, is more suitable for the study

of di�erent aspects of the problem and, more importantly, provide di�erent physical

insights.

The methods we use to solve the impurity problem are quantum Monte Carlo

(QMC), second order perturbation theory (2OPT), and a novel algorithm based in

the exact diagonalization of an e�ective cluster hamiltonian that is de�ned from a

parametrization of the Green function G

0

.

2.2 Numerical methods

In this section we describe the numerical procedures. We will consider here the al-

gorithms at a formal level, indicating where the technical di�culties are. The source

codes can be found in the appendix.

2.2.1 Quantum Monte Carlo

This method for the solution of the impurity problem basically follows the work of

Hirsch and Fye [6]. It is implemented in the subroutine impurity in the code in the

appendix. This is a �nite temperature calculation with the Green functions being

antiperiodic functions of the imaginary time �

G(� + �) = �G(�) (2.16)

with � being the inverse temperature (k

B

= 1).

The starting point is the Functional Integral formulation of the problem. The par-

tition function reads,

Z =

Z

D[c; c

y

]e

�

P

��

0

c

y

�

(�)G

�1

0

(�;�

0

)c

�

(�

0

)+U

P

�

n

"

(�)n

#

(�)

(2.17)

where the imaginary time is discretized in L \slices" of size �� , and the inverse tem-

perature is � = L�� .

To deal with the quartic term, we use a discrete Hubbard-Stratanovich transforma-

tion [7]

e

���Un

"

n

#

+(��U=2)(n

"

+n

#

)

=

1

2

X

S=�1

e

�S(n

"

�n

#

)

(2.18)
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where � = arccosh(e

��U2

). Performing this transformation at every time-slice, we are

led to a quadratic action, and the partition function becomes

Z =

X

S=�1

Z

D[c; c

y

]e

�

P

��

0

c

y

�

(�)G

�1

0

(�;�

0

)c

�

(�

0

)+�

P

�

S(�)(n

"

(�)�n

#

(�))

(2.19)

with

G

�1

�

(�; �

0

) = G

�1

0�

(�; �

0

) + ��S(�)�

�;�

0

+1

(2.20)

being the inverse propagator for a particular realization of the pseudo-spin �eld s =

(S(�

1

); :::; S(�

L

)). The origin of the �

�;�

0

+1

is in the proper time ordering of the creation

and destruction operators [8, 9]. The process of discretization involves the introduction

of systematic errors of order ��

2

U due to the Trotter break-up. As a working rule, one

should keep ��

2

U < 1 to maintain their e�ect under control.

The trade of a quartic term for an extra summation on the auxiliary �eld s, makes

the action quadratic and allow us to apply Wick's theorem at each time slice. We can

now perform the gaussian integration of the Grassman variables, to obtain

Z =

X

fsg

det[G

�1

"

(s)] det[G

�1

#

(s)] (2.21)

were fsg denotes the set of all possible �eld con�gurations.

In principle, the trace over the auxiliary �eld, would give the full interacting Green

function

G

�

=

X

fsg

G

�

(s) (2.22)

in practice, this involves a sum over 2

L

con�gurations, and more importantly each term

involves the inversion of an LxL matrix as follows from expression (2.20).

We can deal with the �rst problem by performing the sum over a smaller set N <<

2

L

of con�gurations, chosen with a probability distribution given by the Metropolis

algorithm.

hG

�

i =

N

X

s

i

;i=1

G

�

(s

i

) (2.23)

The set of s

i

is obtained by starting with a randomly chosen con�guration, and

attempting successive 
ips of the auxiliary �eld. The probability of accepting a new
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con�guration is obtained from the change in the action produced by the 
ip of a single

pseudo-spin. We attempt a change

s = (S(�

1

); :::; S(�

j

); :::; S(�

L

))! s

0

= (S(�

1

); :::;�S(�

j

); :::; S(�

L

)) (2.24)

and accept the new con�guration with a probability R, given by

R = e

��S

=

det[G

"

(s)G

#

(s)]

det[G

"

(s

0

)G

#

(s

0

)]

(2.25)

The remaining problem is now the calculation of both a determinant and the inverse

of a matrix that di�ers in one element from a matrix for which these quantities are

known (c.f. eq. (2.20)). Following references [6, 8], we take the di�erence in the inverse

propagator produced by a single spin 
ip at time slice j to be 1 � e

�(S

0

(j)�S(j))

. This

expression di�ers from the one that would follow from (2.20) in terms of order ��

2

,

and we check that decreases the errors introduced by the Trotter break-up.

It is not di�cult to see that the new determinant is obtained in terms of the old

one as

det[G

�

(s

0

)] = f1 + (1� G(j; j))(e

�(S

0

(j)�S(j))

� 1)g det[G

�

(s)]: (2.26)

The calculation of the inverse of a matrix, which regularly demands O(L

3

) operations,

can be e�ciently obtained using the Shermann-Morrison formula [10]. The new inverse

can be thus calculated in O(L

2

) operations by

G

0

(j; k) = G(j; k) +

X

l

(G(j; l)� �

j;l

)(e

�(S

0

(l)�S(l))

� 1)

1 + (1�G(l; l))(e

�(S

0

(l)�S(l))

� 1)

G(l; k) (2.27)

The obvious change of notation �

j

� j is used to simplify the expression. This fast

matrix inversion is implemented in the subroutine gnew.

We typically perform 5,000 sweeps to the set of L spins, and store measurements

every other sweep to avoid auto-correlation. It is necessary to consider a number of

\warm-up" sweeps at the beginning of the procedure to thermalize the initial randomly

chosen spin con�guration. We regularly make 500 warm-up sweeps. To prevent nu-

merical instabilities produced by the error build-up, a regular matrix inversion (O(L

3

)

operations) has to be performed about every hundred fast inversions. This regular

inversion is implemented in the subroutine gnewclean.
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Figure 2.2: The only diagram that contributes to the self-energy � to second order.

Finally, the spin-spin correlation functions can be easily obtained from the auxiliary

�elds by means of the identity [7]

hS

z

(�)S

z

(0)i = h(n

"

(�)� n

#

(�))(n

"

(0)� n

#

(0))i =

1

1� e

���U

hS(�)S(0)i (2.28)

which is valid for � 6= 0.

2.2.2 Second Order Perturbation Theory

This method basically follows the work of Yamada and Yosida [11]. The perturbation

expansion is generated byH

I

= U(n

"

�1=2)(n

#

�1=2), which causes all the contributions

from \tadpole" diagrams to vanish. Therefore, to second-order, only the bubble diagram

survives for the evaluation of the self-energy (�gure 2.2). This diagram involves the

convolution of three G

0

in Matsubara frequency representation

�(!) = �U

2

X

!

0

X

!

00

G

0

(! � !

0

)G

0

(!

0

+ !

00

)G

0

(!

00

) (2.29)

therefore, is numerically most convenient to perform a Fourier transformation of this

expression. We are, thus, left with a simple multiplication of three G

0

expressed in

imaginary time representation.

�(�) = �U

2

G

0

(�)G

0

(�)G

0

(��) (2.30)
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It is worth noting here that the same expressions for the self-energy hold both in the

Matsubara and in the real frequency, T = 0, formalism (with sums turning to integrals).

We typically need to consider 32,000 points for the frequency discretization of the

Green functions. This follows from the requirement of a high frequency cut-o� of at

least a few times U , and the need to deal at the same time with the small energy scales

that are characteristic of the impurity problem. The emergence of small energy scales

is characteristic of impurity problems. Nevertheless, the change of representation (from

time to frequency and vice versa) can be very e�ciently implemented using a Fast

Fourier Transform algorithm. In practice the computational limitation is not given by

the speed, but by the memory capacity of the platform.

A relevant point is the choice of an appropriate seed to start the iterative procedure.

A regular G

0

should be used to 
ow to the metallic solution. On the other hand, a

singular G

0

�

1

i!

(atomic limit solution) is an appropriate choice for the insulating case.

An other technical detail arises from the unavoidable need to use equation (2.15), since

in the perturbative approach the self-energy � is a central quantity. A careful consid-

eration of the branch cut of the square root is essential. This is especially relevant in

the real frequency calculation. We were able to successfully overcome this problem by

requiring the numerical continuity of the �rst derivative of the G

0

obtained from equa-

tion (2.15). In the Matsubara frequency case, it was enough to require the imaginary

part of the square root to have the same sign as imaginary part of the other term in

the denominator.

Another issue worth mentioning is that in the real time representation, the function

G

0

(t) decays, for long times, as t

�1

. Therefore, �(t) has long tails. M�uller-Hartmann

has proposed a clever procedure to avoid this problem. We have also implemented

it �nding that the results remain basically unchanged respect to calculation with the

familiar causal Green function representation, that is implemented in the appendix, pro-

vided a large number of points in time/frequency are used. In general, when the Fourier

transformation of functions with long tails are involved, a more precise implementation

can be made with the consideration of \attenuation coe�cients" [10]. However, since

their use will not produce any fundamental change in the results, we have chosen not
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to include it in our codes, to avoid any loss of performance.

The zero temperature (real frequency) calculation can be extended to �nite tem-

perature by the Keldysh formalism. The implementation is straight forward, it merely

involves the consideration of an extended class of diagrams. Therefore, here, we just

give a useful reference [13].

The source codes for the real and Matsubara frequency perturbative calculation can

be found in the appendix.

2.2.3 Exact Diagonalization

Let us now �nally turn to the novel exact diagonalization algorithm. We will consider

it in greater detail since it has especially been developed for application to models in

the limit of large dimensionality.

The basic idea is as follows. The initial insight is that the Green function G

0

can be

well represented by a �nite number of parameters in a continued fraction representation.

We can then think of the parametrization of G

0

as the de�nition of an e�ective non-

interacting hamiltonian H

0

. This hamiltonian consists basically of an impurity site

connected to an e�ective bath with hopping amplitudes given by the elements of the

parametrization. The iteration now proceeds by switching on the local repulsion Un

"

n

#

and then the interacting Green function G is calculated as as a continued fraction

expansion. As a result we obtained a parametrization of G that can be easily related to

a new parametrization ofG

0

through the self-consistency condition (2.7). The procedure

is iterated until convergence is attained.

Let us now consider the algorithm in more detail. A local Green function G(z), at

T = 0, of a cluster Hamiltonian can be obtained as a continued fraction expansion. To

do this, we �rst decompose G(z) into \particle" and \hole" contributions

G(z) = G

>

(z) + G

<

(z) (2.31)

with,

G

>

(z) = hgsjc

1

z � (H � E

0

)

c

y

jgsi
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G

<

(z) = hgsjc

y

1

z + (H �E

0

)

cjgsi: (2.32)

where H is the Hamiltonian, E

0

is its ground state energy, and c and c

y

are the de-

struction and creation operators at the local site.

The respective contributions can be obtained as the continued fraction expansions

hf

>

0

j

1

z � (H � E

0

)

jf

>

0

i =

hf

>

0

jf

>

0

i

z +E

0

� a

>

0

�

b

>2

1

z+E

0

�a

>

1

�

b

>2

2

z+E

0

�a

>

2

�:::

hf

<

0

j

1

z + (H � E

0

)

jf

<

0

i =

hf

<

0

jf

<

0

i

z �E

0

� a

<

0

�

b

<2

1

z�E

0

�a

<

1

�

b

<2

2

z�E

0

�a

<

2

�:::

(2.33)

where

jf

>

0

i = c

y

jgsi; jf

<

0

i = cjgsi (2.34)

and the coe�cients are determined recursively by

jf

n+1

i = H jf

n

i � a

n

jf

n

i � b

2

n

jf

n�1

i;

a

n

= hf

n

jH jf

n

i;

b

2

n

=

hf

n

jf

n

i

hf

n�1

jf

n�1

i

; b

0

= 0: (2.35)

This procedure is implemented in the subroutines getfn and getab in the code \exact

diagonalization" that is included in the appendix.

We combine this representation of the local Green function, with the self-consistency

condition (2.7) to obtain,

G

0

=

1

z � t

2

G

>

(z)� t

2

G

<

(z)

: (2.36)

Therefore, we can think of the G

0

, as the impurity Green function of the Hamiltonian

of an impurity site in an e�ective bath H

0

eff

(�gure 2.3). The bath is composed of two

chains of �ctitious atomic sites with energies given by the a

0

i

s, and hopping elements

given by the b

0

i

s. Explicitly, the e�ective hamiltonian reads

H

0

eff

=

X

�

X

�=>;<

N

C

X

i=1

a

�

i

c

�y

i�

c

�

i�

+ (b

�

i�1

c

�y

i�1�

c

�

i�

+ h:c:) (2.37)

with fc

0

; c

y

0

g � fc; c

y

g the destruction and creation operators at the impurity site,

b

0

=

t

2

, and N

C

the number of atomic sites on each chain. The construction of the

hamiltonian matrix is implemented in the subroutine geth.
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Figure 2.3: The cluster hamiltonian with the impurity site (black), and the e�ective

bath represented by 2 chains of atomic sites (white). The site energies and hopping

amplitudes are given by the parametrization of G

0

.

The next step, is to switch on the local interaction term at the impurity site of the

hamiltonian

H

eff

= H

0

eff

+H

I

H

I

= U(n

"

�

1

2

)(n

#

�

1

2

) (2.38)

and calculate a new interacting Green function at the impurity site. This Green func-

tion, of course, will be obtained as a new continued fraction expansion, and the whole

process is then iterated. As should be clear from (2.35), this procedure only requires to

compute the ground state and ground state energy from the hamiltonian (2.38). Since

H

eff

is a large sparse matrix, we have implemented a modi�ed Lanczos procedure for

the calculation of the ground state and ground state energy [14]. This can be found in

the subroutine lanczos in the code in the appendix. It is possible that there is more

than a single ground state. In that case, some knowledge about the e�ective impurity

model is of great help. For instance in the case of an impurity in an insulating bath,

there will be two degenerate ground states in the sectors with spin �1. Therefore we

have to performed the Lanczos procedure twice, and then take the linear combination

of the degenerate ground states according to the symmetries of the particular model.

In general the ground state or states that are obtained from it by the action of

operators such as c

y

, c, c

y

c, and H , will belong to a sector with a particular number of

particles and spin projection. Therefore, it is numerically advantageous to restrict the

corresponding matrix operations to the block that correspond to that particular sector

of the Hilbert space. The restriction to a speci�c sector is conveniently implemented
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by the construction of \pointers" that de�ne the reordering of the basis within the

di�erent sectors and \masks" that allow to restrict the matrix operation to only the

components that belong to the sector of interest. An implementation can be found in

the subroutine sector that de�nes the sub-basis within the sectors, the subroutine mask

that creates a \mask" given a particular sector and the subroutine hxvm which applies

the hamiltonian to a state using the corresponding \mask".

We thus see that this numerical algorithm consists in the solution of the mean

�eld equations (2.6-2.7), through the self-consistent iteration of a set of parameters

fa

>

i

; b

>

i

; a

<

i

; b

<

i

g that de�ne an e�ective hamiltonianH

eff

or, equivalently, the parametriza-

tion of G

0

.

At this point it is worth noting the following remarks. The kinetic and potential

of energies can be easily and accurately obtained. To obtain their corresponding ex-

pressions, we �rst note that the e�ective hamiltonian is formally similar to the one

for the Anderson impurity model. Using relations valid for that model in combination

with equation (2.7), we can obtain the energy of the Hubbard model directly without

frequency summations. The kinetic energy per site of the Hubbard model is given as

T =

2t

�N

X

hj;ki

X

i!

n

G

jk

(i!

n

)e

i!

n

0

+

: (2.39)

Taking the limit of in�nite coordination number this reduces to

T =

2t

2

�

X

i!

n

G(i!

n

)

2

e

i!

n

0

+

: (2.40)

Using the self-consistency condition and the the fact that in the Anderson model

2

�

X

i!

n

X

�

b

2

�

i!

n

� �

�

hc

�

(i!

n

)c

y

�

(i!

n

)i =

X

�

b

�

hc

y

�

c

��

+ h:c:i (2.41)

where c

y

creates a particle at the impurity site and c

y

�

creates a particle on a site

neighbor to the impurity. We can �nally express the kinetic energy in terms of an

expectation value on the ground state

T =

X

��

b

�

Rehgsjc

y

�

c

��

jgsi; (2.42)

The potential energy of the Hubbard model is simply obtained as

V = Uhgsjn

"

n

#

jgsi (2.43)
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which also amounts to calculate an expectation value on the groundstate.

The local correlation functions can be easily obtained. One just has to construct the

corresponding jf

0

i similar to equation (2.34), and follow the same procedure as for the

Green functions (2.35). For example the local spin-spin correlation function is obtained

by acting on the ground state with the local spin operator

jf

0

i = (n

"

� n

#

)jgsi (2.44)

and obtaining the corresponding continued fraction expansion for the correlation func-

tion, analogous to equation (2.33). The implementation of this calculation can be found

in subroutine getcorr.

Let us now make some �nal remarks. The number of poles in the calculated Green

function is in general larger than the number of sites in the chains of the e�ective

hamiltonian (N

C

+ N

C

). Therefore, in order to close the self-consistency, we make

the approximation of truncating the continued fraction expansion to length N

C

. That

is, only the set fa

>

i

; b

>

i

; a

<

i

; b

<

i

g with i = 1; :::;N

C

of parameters is iterated. This

approximation turns out to be well behaved, and the extrapolation to an in�nite system

is possible, as will be shown in latter chapters. The numerical algorithm relies on the

fact that the continued fraction representation captures exactly the moments of the

energy of the hamiltonian, up to the order retained in the continued fraction (equal to

the length of the chains N

C

). It can thus be thought of as a \moment by moment"

�tting procedure. The scheme has the advantage, respect to a similar one introduced

independently [15], that avoids the need for a multidimensional �t of the Green function

on the imaginary axis (see chapter 6). On the other hand, it presents the disadvantage

that it can be implemented practically only in the case of a semi-circular density of

states (Bethe lattice).

From a numerical point of view, a basic problem is to e�ciently deal with large

sparse matrices, a compressed matrix storage procedure is needed. The particular

implementation used here consists in simply compressing the rows of a matrix in the

following form: we take, for instance, a row of the hamiltonian that is composed of

mostly zeros except for a few entries, and construct a new shorter row that will only
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consist of the non-zero entries in the same order as they appear. To keep note of the

actual position of the elements we also construct a \pointer matrix", that is, a matrix of

integers that will have in each row, the original row index of the corresponding elements.

In the last component of the rows of the \pointer matrix" we write the number of non-

zero stored entries of the row. With this information, we are then able to perform fast

matrix multiplications, and equally important we save memory space. This procedure

is directly implemented in the construction of the hamiltonian in the subroutine geth,

getcp and getcd. The matrix multiplications are performed by the subroutines cxv, hxvl

and hxvm.

As mentioned before, the problem of the calculation of the ground state energy

(lowest eigenvalue) and the ground state (corresponding eigenvector) of a large sparse

matrix, can be e�ectively solved by the modi�ed Lanczos technique [14]. The compu-

tational limitation is not speed, but the memory capacity of the particular platform.

Clusters of up to 10 sites can be considered in a workstation.

2.2.4 Comparison of the methods

To end this chapter, we illustrate how the solutions that are obtained from the di�erent

methods compare. In �gure 2.4, we plot the self-energy �(i!) calculated at the value

of the interaction U = 2:4D, that places the system in its metallic state (chapter 3).

Figure 2.5 shows similar results for U = 3:6D, in the insulator state. A more thorough

comparison will emerge from the following chapters were the results of the model will

be presented in detail.
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Figure 2.4: The metallic solution self-energy �, as obtained from the di�erent methods

presented in the text.
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Figure 2.5: The insulator solution self-energy �, as obtained from the di�erent methods

presented in the text.
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Chapter 3

The Mott-Hubbard transition

3.1 Introduction

Strongly correlated Fermi systems in in�nite dimensions were introduced by Metzner

and Vollhardt [1]. They have received intensive recent attention because they are simple

enough that are amenable to exact treatment and at the same time retain some of the

essential features of �nite dimensional models [2]. In this paper we will focus on the

Hubbard model :

H = �

X

ij�

t

ij

c

+

i�

c

j�

+

X

i

Un

i"

n

i#

� �

X

i�

n

i�

(3.1)

�

P

ij

t

ij

e

i

~

k(i�j)

� � = �

k

is the unperturbed one particle energy and � is the chemical

potential which at half �lling equals

U

2

.

In ref. [3], Georges and Kotliar constructed a mean �eld theory of the Hubbard

model which becomes exact in the limit of in�nite dimensionality. Independently Ja-

nis and Vollhardt [4] arrived at the same mean �eld equations using a very di�erent

approach. Georges and Kotliar also analyzed qualitatively a class of solutions of these

equations which describe the Fermi liquid regime of this model using a mapping onto

the single impurity Anderson model. These ideas have been extended to other strongly

correlated electron systems [5].

In this chapter we introduce a di�erent class of solutions which describe a Mott

insulating phase. We then discuss how the transition between the Fermi liquid and the

Mott insulating phase takes place within the mean �eld theory. We will show that one

can obtain substantial analytic insights from the mean �eld equations. In addition we

have obtained an exact, numerical solution of these equations, which we use to check

our considerations.
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3.2 The mean �eld equations

A basic observation in ref. [3] is that for the purpose of calculating local quantities the

information about all intersite processes is contained in a single function of frequency

G

0

(i!

n

) which plays the role of the Weiss �eld in conventional mean �eld theories.

Given the Weiss �eld, the local Green's function G

L

(i!

n

) = �hc

�

(i!

n

)c

+

�

(i!

n

)i

S(G

0

)

is

calculated from the single site action

S[G

0

] =

X

�

�

Z

�

0

Z

�

0

d�d�

0

c

+

�

G

�1

0

c

�

+ U

Z

�

0

d� n

"

(�)n

#

(�): (3.2)

G

L

is related to the Green's function of the Hubbard model in in�nite dimension via

� hc

K

(i!

n

)c

+

K

(i!

n

)i =

1

i!

n

� �

K

� �(i!

n

)

; (3.3)

so that,

G

L

(i!

n

) =

X

K

1

i!

n

� �

K

� �(i!

n

)

: (3.4)

To solve the model we have to compute the Weiss �eld G

0

(i!

n

) from the self-consistency

condition equation

[G

�1

0

(i!

n

)� �(G

0

; i!

n

)]

�1

=

Z

�(�)d�

i!

n

� � � �(G

0

; i!

n

)

(3.5)

where,

�(G

0

; i!

n

) � G

�1

0

� hc

+

ci

�1

S[G

0

]

(3.6)

is the self-energy of the impurity model (3.2). After solving for G

0

, the self-energy of

the Hubbard model is obtained by evaluating � at the self-consistent G

0

.

The only place where the precise nature of the lattice enters the mean �eld equations

is in the density of states �(�) �

P

K

�(� � �

K

). We view �(�) as a parameter in the

mean �eld equations. The hypercubic lattice in in�nite dimensions gives a Gaussian

density of states [6]. We use a bounded density of states, which captures an essential

features of the band structures in �nite dimensions. At half �lling the model is particle

hole symmetric and it is convenient to de�ne quantities which are odd functions of

Matsubara frequency:

~

G

�1

0

= G

�1

0

�

U

2

and

~

�(G

0

) = �(G

0

)�

U

2

.
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3.3 The metal-insulator transition

In ref. [3] Georges and Kotliar analyzed the qualitative behavior of the solutions of (3.2)

under the assumption that G

0

is �nite at zero frequency and ImG

0

(i!

n

= 
+ i�) 6= 0,

which they showed, implies Fermi liquid behavior. Here we would like to point out

that the system of equations (3.2)-(3.5) can have a di�erent class of solutions which

describe a Mott Hubbard insulator. They are characterized by a G

0

which diverges at

zero Matsubara frequency. This behavior is very natural if we think in terms of the

mapping onto the Anderson model proposed in ref. [3]. In that picture the original

electron is split into a local degree of freedom which captures the localized aspect and a

conduction band which re
ects the itinerant aspect of the strong correlation problem.

The local degree of freedom hybridizes with the conduction band.

~

G

0

is parametrized

by the hybridization function �(�) of the Anderson model [3],

~

G

�1

0

= i!

n

+ (��

U

2

)�

1

�

Z

�(�)d�

(i!

n

� �)

: (3.7)

The Fermi liquid regime has �(0) 6= 0 which binds the conduction electrons and the

local moment to form quasiparticles. The insulating behavior that we �nd at half

�lling, � =

U

2

, corresponds to a hybridization function which vanishes as we approach

zero energy, i.e. �(0) = 0.

When the hybridization function vanishes at zero frequency the Kondo model ob-

tained from the Anderson model by eliminating the charge degree of freedom scales to

weak coupling as shown by Whitto� and Fradkin [7]. We then have a realization of the

paramagnetic insulating solution , the charge degrees of freedom are frozen while the

spin degrees of freedom are free to 
uctuate.

To exhibit our new type of solution analytically we take a semi-circular density of

states �(�) =

2

�D

2

p

D

2

� �

2

. We work in the limitU � D, and start with the assumption

(which we will show is self-consistent) that

~

G

�1

0

(i!

n

) � i!

n

that is �(i!

n

) ! 0 as

i!

n

! 0. Substituting this into (3.2), one �nds that the action becomes almost local

(in imaginary time) at low energies, or in the language of the Anderson model, it

reaches the atomic limit. The local Green's function and �(G

0

; i!

n

) are then evaluated
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by taking an average of the two magnetic Hartree Fock solutions,

G

L

(i!) =

1=2

G

�1

0

(i!

n

)� U

+

1=2

G

�1

0

(i!

n

)

(3.8)

which gives,

~

� =

�

U

2

�

2

~

G

0

(i!

n

): (3.9)

Once more we emphasize that while the magnetic HF solution of the Anderson

model is invalid when �(0) 6= 0, the results of ref. [7] imply that the magnetic Hartree

Fock solution is qualitatively correct for large U, since �(0) = 0, and in this case the

Kondo coupling renormalizes to zero at low energies.

Now we show that the Ansatz �(i!

n

)! 0 as i!

n

! 0 is indeed self-consistent. The

Hilbert transform of the semi-circular density of states

R

�(�)d�

(Z��)

, is given by

2

z+

p

z

2

�D

2

and the self-consistency equation becomes

[
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�

~

�(G

0

)]

�1

=

2

i!

n

�

~

�(G

0

) + isgn(!

n

)

q

D

2

+ (!

n

+ i

~

�(G

0

))

2

(3.10)

which, in combination with (3.9), leads to

4g

�2

0

� U

2

g

0

x� 4g

�1

0

x+ (U

2

�D

2

) = 0 (3.11)

where for convenience, we de�ne x = !

n

and,

~

G

0

= �ig

0

~

� = �i� so that g

0

and

� are positive when !

n

> 0. This is a cubic equation in g

�1

0

which can be solved in

closed form. Only one of the three roots corresponds to the physical solution. For small

frequencies, the solution has a simple form g

�1

0

=

U

2

U

2

�D

2

x, (which requires U > D) ,

for large frequencies g

�1

0

= x. When U � D which is the region where the expansion

around the atomic limit is valid, it is possible to approximate the solution of the equation

(analytically continued to real frequencies) as

~

G

�1

0

= ! � !

4!

2

� U

2

�

p

(4!

2

� U

2

)

2

� 4(4!

2

+ U

2

)D

2

2(4!

2

+ U

2

)

(3.12)

The spectral function consists of two features centered around ! = �U=2 with width

2D, arising from the �nite imaginary part of the square root. The hybridization function

can be estimated,

�(i!

n

) =

~

G

�1

0

(i!

n

)� i!

n

' i!

n

D

2

U

2

�D

2

; (3.13)
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as !

n

! 0.

Thus we have shown that

~

G ! i!,

~

G

0

! (i!)

�1

and

~

� ! (i!)

�1

in the low

frequency limit is a solution of the in�nite dimensional Hubbard model. This solution

describes a Mott-Hubbard insulator characterized by a divergent self-energy and a gap

in the single particle spectrum of order U-2D.

A crucial question is how one goes from the Fermi liquid solutions characterized by

Fermi liquid low frequency behavior,

~

�(i!

n

) � �i!

n

to the Mott-Hubbard insulator

regime described in this chapter. To answer this question, we go back to the metallic

solution and gradually increase the interaction U. As described in ref. [5], the Fermi

liquid regime at half �lling corresponds to the formation of the Abrikosov-Suhl Kondo

resonance in Anderson model. Equations (3.2)-(3.5) constitutes a system of functional

equations for the Weiss �eld G

�1

0

(i!

n

) which cannot be solved analytically, (we will

turn to its numerical solution below).

To gain insight into the mechanism that destroys the Fermi liquid resonance peak

one would like to project the functional equation on a small space of \relevant variables".

Here we present a simple argument for the vanishing of the resonance, in a later chapter

this issue will be revisited in greater detail. Since �(0) is unrenormalized in the Fermi

liquid regime, we focus on a variable W, which describes the region over which the

e�ective hybridization is nonzero at low energies. In the Anderson model analogy it

is the e�ective bandwidth of the conduction electrons. We envision an approximate

parametrization of the exact solution of the system, at low frequencies, of the form

~

G

�1

0

= �isgn(!

n

)D=2 + O(i!

n

) for j!

n

j < W , and G

�1

0

� i!

n

for j!

n

j > W . Imagine

solving the system (3.2)-(3.10) by iteration. At the n

th

step we have some �nite value

of W = W

(n)

, and obtain from the impurity model a self-energy,

~

� = (1 �

1

Z(G

0

)

)! +

O(!

2

). For a large U=D, Z is just the inverse of the Kondo temperature, Z(G

0

) =

4

W

(n)

D

exp

��U

4D

. The next step in the iteration, is to solve equation (3.10), which gives,

W

(n+1)

= 4W

(n)

exp

��U

4D

: (3.14)

It is clear that for large U the e�ective bandwidth iterates to zero, reaching the

insulating regime. For small

U

D

, solving the impurity model gives a Z of order unity.



28

The iteration step then gives W � D. This is the Fermi liquid regime. Separating

these two regimes, is the critical U

c

. In this scenario the Mott transition is driven

by the shrinking of the dynamical range of the Fermi-liquid regime, the height of the

quasi-particle peak remains unrenormalized. Related ideas have been put forward by

Khurana [8].

To con�rm these qualitative arguments, we solve equations (3.2)-(3.5) numerically

using quantum Monte Carlo simulations. The procedure to compute �(G

0

) is based

on the algorithm of Hirsch and Fye, and of Gubernatis, Hirsch and Scalapino [9] who

studied the single impurity Anderson model. The functional equation is solved using

an iterative procedure. The technical details of the simulations are discussed in the

previous chapter. The Mott-Hubbard transition with the semi-circular density of states

is found at U � 3:1 for D = 1 (all energy scales are renormalized by D), which is

slightly lower than the result obtained from the Gutzwiller approximation, where U

c

is

calculated to be 32D=3� [10, 11]. In �gure 3.1 we show plots of (Im

~

G

0

)

�1

vs !

n

for

U = 2, U = 3 and U = 3:6.

Figure 3.2 shows the self-energy for the same values of the interaction. Below U

c

,

we distinguish two Fermi liquid sub-regimes characterized by small and large slopes

of the self-energies respectively. The plot for U = 2 is characteristic of the weakly

correlated Fermi liquid regime where the Weiss �eld

~

G

�1

0

decreases monotonically with

frequency. The plot for U = 3:0 is representative of the strongly correlated Fermi liquid

regime characterized by a small dip in

~

G

�1

0

, making it to increase towards its zero

frequency value

D

2

as we reduce the frequency. The behavior for U > U

c

is completely

consistent with our analytic arguments. The numerical results are obtained at an inverse

temperature � = 64. The agreement of the numerical data with our analytic arguments

gives us con�dence that no new features will appear as we take the � !1 limit.

To further con�rm the opening of a gap, we also measured the discontinuity in the

chemical potential vs. occupation number as shown in �gure 3.3. At �nite temperatures

the metal insulator transition we obtained , becomes a crossover. However this crossover

is quite sharp. For example, at �nite temperatures for U > U

c

the � vs n curve should

be continuous because there is always activation from the lower to the upper Hubbard
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Figure 3.1: The imaginary part of the Weiss �eld

~

G

�1

0

as a function of Matsubara

frequency for U = 2 (solid line), U = 3 (dotted line), and U = 3:6 (dashed line), at

� = 64. All energy scales are renormalized by the half-bandwidth D = 1. For U < U

c

the Weiss �eld approaches its unrenormalized zero frequency value D=2. For U > U

c

it

matches the analytical solution of equation (11) in the text, Im(

~

G

�1

0

) = �!

n

, !

n

! 1,

and Im(

~

G

�1

0

) = �

U

2

U

2

�D

2

!

n

, !

n

! 0.
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Figure 3.2: The self-energy

~

� as a function of Matsubara frequency for U = 2 (solid

line), U = 3 (dotted line), and U = 3:6 (dashed line), at � = 64. For U < U

c

the

self-energy is linear at low frequencies with a slope increasing with U. The noise of the

plot at U = 3 is due to the proximity to the critical U.
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for

(top to bottom) U = 2; 3; 4; 6 at � = 4.

band. Nevertheless the curves in �gure 3.3, obtained at �nite temperatures are nearly

discontinuous because the temperature is much smaller than the Mott Hubbard gap.

We also measured the local spin spin autocorrelation function of the Hubbard model,

in imaginary time. It is given by the spin spin correlator of the impurity model. Our

measurements are consistent with the following behavior: on the insulating side of the

transition there is long range order in imaginary time lim

�!1

hm(�)m(0)i = m > 0 for

U > U

c

and it decays to zero on the metallic side. m = 0, for U < U

c

.

3.4 Discussion

In this chapter we have focused on the paramagnetic one particle Green's function of

lattice models in in�nite dimensions with a bounded density of states. We also studied

the unbounded Gaussian density of states. In this case the numerical results for G

0

and

the self-energy are very similar to that of unbounded ones. However, analytically can

be seen that there is a qualitative di�erence in the spectral function of the local Green's

function G: in the unbounded case, above U

c

the one particle spectral function has a

pseudogap at the Fermi level. The rate at which the density of states decays at zero

energy is simply related to the decay of the Hilbert transform of the density of states
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at in�nity. Im(G(!))� �(! � 1=!), ! ! 0.

We concentrate on the paramagnetic solution in order to bring out the physics of

the charge degrees of freedom. The physics of this phase depends only on the density

of states. M�uller-Hartmann [6] has shown that in in�nite dimensions several lattice

dispersions, (some which correspond to non-nested lattices) share the same density of

states. The question on the nature of the magnetic order and the magnetic transition

temperature will be considered in later chapters. It requires to specify more information

on the form of the dispersion than just the density of states. Nonfrustrated lattices have

antiferromagnetic transition temperatures which are exponentially small for small U,

and of order

t

2

U

for large U, with a maximum transition temperature at U of order

t. Frustrated lattices can have much lower transition temperatures. The semi-circular

density of states used in our calculations can be realized in a Cayley tree with in�nite

coordination number [12]. This lattice is not frustrated and bipartite. As a result,

at zero temperature it has antiferromagnetic long range order for an arbitrary value

of U. The semi-circular density of states is also realized in a lattice where every site

is connected to every other site, and the hopping matrix elements are independent

Gaussian random variables suitably scaled as the inverse square root of the number of

lattice sites to have a good thermodynamic limit. While this model has randomness ,

the one particle Green's function is non random, i.e., it is self averaging. This model is

very frustrated and it does not order magnetically. A schematic representation of this

fully-connected lattice is shon in �gure 3.4.

3.5 Conclusions

To conclude, we have found a new regime for the in�nite dimensional Hubbard model

at half �lling. We showed that the large U narrow quasiparticle feature [3] disappears

above a critical value of U. This is due to a divergence in the inverse of the self-consistent

Weiss �eld G

0

, which allows our d = 1 model to map onto an Anderson model with

vanishing e�ective hybridization at the Fermi level (�(0) = 0). The Kondo model

obtained from the Anderson model via the Schrie�er-Wol� transformation then 
ows

to zero coupling at low energies. In this case the self-energy � has a pole singularity
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Figure 3.4: Schematic representation of the fully connected lattice. The hopping ele-

ments are scaled as t

ij

= �

ij

t

d

1=2

with �

ij

independent Gaussian random variables.

at zero frequency which re
ects the opening of a Mott-Hubbard gap in the one particle

spectrum. Our solution for the case of very large U is essentially the same as that in

Hubbard III [13]. What has been accomplished in this chapter is: (1) to show how

Hubbard-like physics emerge in the limit of large d and large U , (2) to obtain a true

Fermi liquid solution on the metallic side of the transition, and (3) to show how a

transition between the two regimes takes place as we change the value of U .
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Chapter 4

The transition at zero temperature

function and the local spin spin correlation function

4.1 Introduction

In his pioneer work on the metal-insulator transition (MIT) [1], Mott envisioned that

in transition metals, as the Coulomb interaction among the charged carriers increases,

the system will undergo a �rst order transition from a metal to an insulator. The �rst

serious attempt using many-body theory to produce this e�ect is due to Hubbard [2]. He

based his calculation on the atomic limit which naturally leads to a two-band picture,

the lower and upper Hubbard bands separated by the interaction U . He concluded that

the MIT happens at U

c

� D the bandwidth, and a gap opens gradually as a function

of U . Although this treatment provides a good insulating solution for large U , it fails

to capture correctly the low energy physics in the metallic side: the Fermi liquid quasi-

particles are absent [3]. Brinkman and Rice (BR) [4] attacked the problem from the

opposite limit by using a Gutzwiller variational wave function, and found the MIT at a

much higher U

c

. The Gutzwiller wave function gives a good Fermi liquid description for

the metallic side, but misses the insulating side completely and lacks the high energy

excitations which are the precursors, in the metal, of the upper and lower Hubbard

bands of the insulating solution.

Until now, it is still not clear what the right picture of the transition is: How is

Hubbard's solution related to BR's? Does the gap open continuously or does it jump

at the transition? Behind these questions lies the far more interesting issue, How does

Fermi liquid theory break down when the interactions become strong?

Recently Metzner and Vollhardt [5], recognized a simple but nontrivial limit of the
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Hubbard model: large dimensionality . In that limit, the Gutzwiller approximation used

by BR becomes exact, and a major assumption made in Hubbard-III, the self-energy

being site diagonal, also becomes exact. In fact, a set of self-consistent equations that

describe the paramagnetic phase of the Hubbard model for d!1 [6, 7] is reminiscent

of the Hubbard-III treatment. Therefore, it is natural that a solution in the d = 1

limit should provide a bridge between the Hubbard-III and the BR treatments and a

clear picture of the Mott transition.

We have seen in the previous chapter how Quantum Monte Carlo (QMC) simu-

lations were used for solving these equations. They were also independently studied

by two other groups [8]. All found the existence of a metallic-like solution for small

U and insulating-like state for large U , thus providing strong evidence that a metal-

insulator transition indeed exists. But, due to the limitations of QMC, the picture of

the transition is still unclear.

Our strategy here is to combine QMC with a more conventional tool: the perturba-

tion expansion. QMC, been essentially exact, is used as a benchmark to select among

the various perturbative schemes the one that works. Perturbation is then used in the

low temperature region that QMC fails to reach, to obtain important information like

the density of states. The result is a complete numerical solution of the self-consistent

equations at half-�lling and T = 0. The metallic side exhibits aspects of the BR's

solution, particularly, the divergence of the e�ective mass of quasi-particles as U ! U

c

.

On the other hand, the insulating side is very similar to that of the Hubbard III. The

emergence of a three band picture close to the transition: the two well separated upper

and lower Hubbard bands, and a central narrow quasi-particle band at the Fermi level

provides a bridge between the two approaches. The continuous narrowing of the quasi-

particle peak drives the MIT. Right above the transition, a full gap is already opened,

as predicted by Mott for a di�erent reason. This is valid as long as the density of states

is bounded. We focus in this type of DOS, because we believe it provides the correct

scenario to understand the physics in �nite dimensions.

The central object in the self-consistent scheme [6] is a quantity G

0

which plays the

role of the e�ective �eld in magnetic systems. G

0

is de�ned in an e�ective local action
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S obtained by integrating out all the degrees of freedom except for a single site 0,

S[G

0

] = �

Z Z

d�d�

0

c

+

0�

G

�1

0

c

0�

+ U

Z

d� (n

"

� 1=2)(n

#

� 1=2): (4.1)

The self-consistent equations for the Weiss �eld G

0

are written in terms of an im-

purity self-energy �

imp

(G

0

) =< c

+

c >

�1

S(G

0

)

�G

�1

0

and the lattice density of states

�(�) =

P

k

�(�

k

� �)

[G

�1

0

� �

imp

(G

0

)]

�1

=

Z

�(�)d�

i! + � � � � �

imp

(i!)

: (4.2)

The impurity self-energy evaluated at the self-consistent G

0

[6] gives the self-energy of

the Hubbard model in in�nite dimensions.

We use a semi-circle density of states as in Hubbard-III, �(�) =

2

�D

q

1� (

�

D

)

2

,

which corresponds to a Bethe lattice in in�nite-d, where Hubbard's hopping paramenter

t = D=2 [9]. The set of self-consistent equations then becomes:

G

�1

0

= i!

n

+ �� t

2

G(i!

n

); G =< c

+

c >

S(G

0

)

(4.3)

G(!

n

) being the local Green function of the Hubbard model. The spin index has

been removed because paramagnetic phase is assumed. Throughout the calculation

the bandwidth D is set to unity.

4.2 Methodology

The key part in solving the above equation is to obtain the self-energy �, given G

0

. This

is equivalent to solving the Anderson impurity model with an arbitrary hybridization

function [6]. Although QMC is exact, it has severe limitations: the data collected are

on the imaginary axis and the analytic continuation cannot be always reliably carried

out; a more essential di�culty is that the method does not allow to investigate the

zero temperature limit. In the previous chapter, we have found evidence that at low

temperatures there is a value of the interaction U

c

where a metal insulator transition

takes place. U

c

was then determined by the sudden developement of a divergence in

the Matsubara self-energy at low frequencies. This is a strong indication for a metal-

insulator transition that is driven by correlation e�ects. Nevertheless, it is no conclusive,
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since the divergence of the self-energy is cut-o� by the �nite temperature (or the lowest

Matsubara frequency). In this chapter with the aid of insights obtained from a very

accurate perturbative scheme, we will be able to unambiguously establish the existance

of a metal-insulator transition from the exact QMC data.

As mentioned in the introduction, we will try to �nd a perturbative calculation that

enable us to investigate the metal insulator transition in the zero temperature limit. The

perturbative approaches fall into four categories. (a) fully self-consistent perturbation

in G

ii

[10]; (b) noncrossing approximation (NCA) [11]; (c) analytic expansion in U as

in Yamada and Yosida [12] (YY); and (d) a fourth approach proposed by Metzner [13]

who systematized the expansion in the kinetic energy. It is discussed in [6] that (a)

does not produce the correct high-energy features, while it is well known that the NCA

becomes inaccurate at low temperatures. We will show below, that approach (c) can

successfully reproduce the QMC data, and argue why it does so.

Figure 4.1 shows a comparison of QMC with perturbation calculations using (c) for

values of U on the metallic side and the insulating side.

With almost point by point �t on the metallic side and the insulating side, a poste-

riori one can rationalize the success of the perturbative calculation as follows: (1) the

transition happens at an intermediate value of U, around which it is known that per-

turbation to second order captures all the important features of the Anderson impurity

model as was shown by YY; (2)the essential ingredient that drives the transition is not

in the self-energy calculation, but rather in the process of enforcing self-consistency.

Higher order corrections to � will only change the exact value of U

c

, but not the nature

of the transition. (3) From the pioneer work of YY and Zlatic, Horvatic, and Sokcevic

[14] we know that the impurity problem is analytic in U . Therefore it is natural to treat

the analytic parts of the problem using a power series expansion while the non-analytic

aspects of the problem are addressed using a self-consistent scheme. (4) It can produce

the atomic solution exactly (see below). Therefore this approximation becomes at least

an interpolation between the two extreme limits (free case U = 0, and atomic t = 0).

The latter is purely accidental, and unfortunately does not apply to the asymmetric

case.
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Figure 4.1: Comparison of Matsubara self-energy obtained from Quantum Monte Carlo

(crosses) to that from perturbation calculation(dots). For U = 2 on the metallic side

and U = 3:6 on the insulating side at a T = 1=64. Note that on the insulating side the

growing deviation at low energies is purely due to the !

�1

divergency, the relative error

remains the same but the absolute error becomes bigger.
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We calculate the self-energy to second order following [6] and [12]. The perturbation

expansion is generated byH

I

= U(n

"

�1=2)(n

#

�1=2). To second order, only the bubble

diagram survives,

�(t) = U

2

G

0

(t)

2

G

0

(�t): (4.4)

It is worth noting here that the same expression for the self-energy holds both in the

zero temperature and in the Matsubara formalism. The zero temperature causal Green

function is then used to obtain the density of states and other quantities.

4.3 Mott transition

An observable that signals the MIT is the density of states (DOS) at the Fermi surface.

Figure 4.2 shows the zero temperature DOS as a function of interaction U . As pointed

out by M�uller Hartmann [10], the height of the peak at zero frequency is unrenormalized

by the interactions in a theory with a k independent self-energy, as long as one is in the

Fermi liquid regime. Therefore the value of the one particle spectral function jumps

discontinuously to zero at the Mott transition. Right after the transition, the structure

of a full gap is already in place.

Since ImG

�1

0

= �

D

2

4

ImG, the width � of the quasi-particle at the Fermi level is

also the width of the coherent hybridization �(!) in the Anderson model analogy. As

U approaches U

c

, this scale vanishes in the following way: G

0

develops a singularity at

an energy !

0

=

p

�D, very near the real axis (� �

2

), which then leads to a similar

singularity in the self-energy. The Mott transition happens when the pole collapses to

zero, and � becomes divergent.

A di�erent view of the transition is obtained by measuring the local spin-spin corre-

lator using QMC. On the metallic side, hm(�)m(0)i � e

���

. Long range order sets in as

�! 0 as shown in �gure 4.3. A spin mode whose energy is independent of momentum

(local paramagnon) is softening as U ! U

c

.

We now proceed to provide an analytical description of the transition, focusing on

the most important quantity �. Using the relation (4.3), we rewrite G

0

as,

G

�1

0

(z) = z �

D

2

4

Z

��(�)d�

z � �

; (4.5)
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Figure 4.2: Density of states -ImG at zero temperature as a function of U . From top

to bottom, U = 1; 2; 2:5; 3; 4.
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the insulating side. b) Local moment as a function of U for two temperatures: � =

16(dots), 32(solid).
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where ��(�) is the DOS of the fully interacting system shown in �gure 4.3. Its three

peak feature can be represented by a Lorentzian at the center with width �, and two

semi-circles centered at �U=2, with half-width D. The weight of the center Lorentzian

is determined by demanding that ImG

�1

0

(0) = D=2. A simple and good approximation

for G

0

, close to the transition can be then obtained:

G

�1

0

(z;�) =

1

2

(z �

D�

z + i�sgnz

): (4.6)

We checked numerically, that the parametrized G

0

and the self-energy calculated from

it are in good agreement with the actual G

0

and �. The impurity self-energy has an

explicit � dependence when calculated from the parametrized G

0

.

�(!;�) = U

2

Z

F

3

(�)e

�j�j!

d!; (4.7)

where

F (�) =

Z

1

0

�(�)e

�i��

d�; (4.8)

and,

��(!) = �ImG

0

=

2D�

2

(!

2

�D�)

2

+�

2

!

2

: (4.9)

As �! 0, �(!) peaks sharply at !

2

0

= D���

2

=2, approaching a � function with unit

weight. Thus, for low frequencies, we �nd the real part of the self-energy,

�(!;�) =

�U

2

!

9(D���

2

=2)

: (4.10)

On the other hand, the self-consistency equation for G

0

in equation (4.2),

G

�1

0

(!;�) =

1

2

(! +�(!;�)+

q

(! � �(!;�))

2

�D

2

); (4.11)

requires that to linear order in !, � =

D

�

!. Since the self-consistency is an iterative

procedure, we can equate the above two expressions for the self-energy iteratively:

�

n+1

=

9D

U

2

(D�

n

��

2

n

=2) (4.12)

There are two �xed points of the iteration, �

�

= 2D(1 �

U

2

U

2

c

) which is stable for

U < U

c

= 3D, and �

�

= 0. The �rst one is the Fermi liquid �xed point discussed

in [6], the second one is the insulating �xed point. We focus here on the fate of the



44

metallic solution. The destruction of the � = 0 (insulating) solution will be discussed

in a latter chapter. When U = U

c

the two �xed points merge into one: the unstable

Mott point. We note here that � = 0 is the exact atomic solution, because from the

parametrized G

0

we have G

0

(�) = �(�) �

1

2

, and consequently, �(�) =

U

2

4

[�(�)�

1

2

], or

� =

U

2

4

G

0

(see previous chapter).

Since �=D � m=m

�

, the �xed point solution also provides the critical behavior

of the e�ective mass close to the transition, m

�

=m / (1 � (U=U

c

)

2

)

�1

which is the

same as BR. The numerical results are plotted in �gure 4.5. The transition occurs at

U

c

= 3:37D � 8��, as in BR. However, above the transition in the insulating side, the

two band-features are not quite symmetric around �U=2, meaning there are still some

residual kinetic energies gained from local hoppings [15]. The fact that virtual double

occupancy is present in the insulating side which gives a �nite exchange constant is

also clear from QMC measurements of the local spin-spin correlation function, which

shows a reduced moment on the insulating side, hm

2

z

i = 1� 2hn

i"

n

i#

i �gure 4.3. QMC

also indicates that the paramagnetic spin susceptibility does not diverge as the e�ective

mass does [16]. These are the crucial di�erences between the exact solution in d = 1

and that of BR.

Another important quantity is the occupation number n

k

. Since � is independent

of k, it is more convenient to label n with the non-interacting energy �,

n

�

= �

1

�

Im

Z

0

�1

d!

! � �� �(!)

: (4.13)

Figure 4.4 shows, in accordance with the divergence of m

�

, the jump at the Fermi

level Z continuously shrinking to zero. The monotonic behavior found here should be

contrasted with the results using Gutzwiller wave function in 1� d [17].

With the new insights obtained from the present perturbative approach, it is worth

revisiting the exact �nite temperature QMC results. In particular we consider the ques-

tion of the existance of a true correlation induced transition at low enough temperatures.

This issue is relevant since the perturbative approach being an approximation, cannot

demonstrate the existence of the transition. The low energy scale of the problem, as the

correlations become important, is set by the width of the central quasiparticle peak in
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Figure 4.4: Particle occupation number vs. noninteracting energy � as a function of

U = 2; 2:5; 3; 4, obtained from perturbative calculations. Inset: m=m

�

vs: U calculated

from the slope of the real part of the self-energy at the Fermi level.
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the density of states. It is clear that if the temperature is bigger than this energy scale,

for a �xed value of U , the low frequency quasiparticle states cannot be sustained. At

those temperatures we should see a crossover from a metallic-like solution at low U , to

an insulating-like solution as the interaction is increased. This solutions could be char-

acterized by a Green function with an imaginary part that extapolated to zero frequency

results non-zero or zero respectively. Also we should observe that this crossover takes

place at higher values of the temperature as the interaction U is increased, since the

Hubbard bands become more widely separated. On the other hand, if the temperature

of the system is lower than the characteristic low energy scale, the correlated quasi-

particle state is realized. In this case, we should see, unlike in the previous situation,

that as we lower the temperature, the metallic state can be mantained for increasingly

bigger values of the interaction, and eventually sharply disappear into an insulating

one, as a critical value U

c

is reached. In �gure 4.5 we see this whole scenario being

realized. We plot the temperature where the QMC solution changes from metallic-like

to insulating-like as a function of the interaction U . We also plot the value of the

quasiparticle width obtained from the perturbative approach, as a de�nition of the low

energy scale given a value of U . This is of course justi�ed by the excellent agreement

that we already discussed before. We observe that the results illustrate our previous

discussion, as the change in the slope in the MIT curve changes when the temperature

is smaller than the low energy scale. This is a de�nite signature of the existence of a

true transition between a metallic and insulating state driven by correlation e�ects. We

will revisit this issue in later chapters to a greater detail. It will turn out that there is

a whole region where two soloutions, one metallic and the other insulating, are allowed

to coexist. This will lead to the result that the transition is indeed �rst order at low

enough temperature.

4.4 Conclusion

We have shown in this chapter a simple and reliable perturbative scheme to treat the

impurity model. It enables us to provide a detail analysis ot the Mott transition in

the 1 � d limit. Our solution connects two very di�erent approaches, the BR and
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Figure 4.5: The temperature where the QMC solution changes from metallic-like to

insulating-like as a function of the interaction U (bold line). The low energy scale

de�ned as the quasiparticle width obtained from 2OPT (dotted line). A true transition

occurs only at the lowest temperatures where the change in the slope is observed in the

metal-insulator boundary line. The transition is driven by the interaction U instead of

the temperature only below this scale. For higher temperatures it becomes a crossover.

the Hubbard-III. In particular it shows a continuous increase of the e�ective mass as

U ! U

c

from below, and contrary to one's intuition, this is followed by the discontinu-

ous opening of a gap in the one particle spectrum at U

c

. On the insulating side, there

is an unsaturated local moment with long range order in the imaginary time indicat-

ing a nonzero double occupancy, and consequently, a �nite magnetic exchange and a

nondivergent magnetic susceptibility.
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Chapter 5

The transition at �nite temperature

5.1 Introduction

The Mott transition, that is the metal insulator transition induced by the electron

electron interactions in a periodic system, has been investigated theoretically and ex-

perimentally for many years [1]. Experimentally it seems to be realized in three di-

mensional transition metal oxides such as V

2

O

3

and can be driven by varying pressure,

temperature, and composition.

From a theoretical point of view, several ideas have been put forward. Hubbard �rst

introduced the notion of Hubbard bands, which are formed by the states that describe

propagating empty and doubly occupied sites. For large U these bands split, and as U

is reduced, there is a critical value where the two bands merge again [2]. This is the

Hubbard picture of the metal-insulating transition.

Brinkman and Rice, building on the work of Gutzwiller, started from the metallic

phase which they described as a strongly renormalized Fermi liquid with a characteristic

Fermi energy scale gradually collapsing as the transition is approached [3]. The metal

insulator transition in this view is driven by the disappearance of the Fermi liquid

quasiparticles.

Slater pointed out that the metal insulator transition is always accompanied by long

range antiferromagnetic order, and viewed the doubling of the unit cell which makes

the band structure of the system that of a band-insulator, as the driving force behind

the metal insulator transition [4].

Building on earlier ideas [5, 6, 7, 8, 9], a new mean �eld theory of strongly correlated

electron systems has been developed. It is based on a mapping of the models of strongly
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correlated electrons onto impurity models supplemented by a self-consistent condition

[10, 11]. This approach becomes exact in the limit of in�nite dimensions [5] and can

be investigated using a variety of techniques. In this chapter, we continue our study of

the Mott transition in the Hubbard model in large dimension, expanding on the results

of previous chapters, and those of ref. [12, 13, 14]. In particular, we make comparisons

of our solutions to experimental observations, and �nd good agreement considering the

relative simplicity of the model. Related work on this problem has been carried out

independently by other groups [15, 16, 17, 18].

The chapter is organized as follows: In section 5.2, we start by brie
y reviewing the

general framework of [11] to present the set of self-consistent equations that describe

the Hubbard model in in�nite dimensions. We concentrate on the semi-circular density

of states which can be realized on a Bethe lattice, and on other lattices having various

amounts of magnetic frustration. The mean �eld equations are functional equations

that determine a Weiss �eld function G

0

and involve a mapping of the problem onto

an Anderson impurity model. Two realizations of the Hubbard model, which share the

same density of states but have very di�erent magnetic properties, are introduced later

to shed light into the issue of magnetic ordering. We close the section with a discussion

of the methods used to analyze this problem.

To study the mean �eld equations we use a combination of exact methods such as

quantum Monte Carlo, exact diagonalization, and analytic arguments exploiting the

well understood structure of the Anderson impurity model. We also rely on an approx-

imate method, which was proposed by Georges and Kotliar, to extract low temperature

information. We stress that, while at high temperature this method [13] gives results

in very good agreement with the quantum Monte Carlo, in principle is only an approx-

imate scheme and we point out some of its limitations. The results obtained with this

method are useful because they provide a concrete analytic realization of the functional

�

imp

[G

0

] de�ned in section 5.2, and illustrates in a simple example the important role

played by the self-consistency condition [9].

In section 5.3 we describe the thermodynamics and present the �nite temperature

phase diagram of the system of the magnetically disordered state. In frustrated lattices,
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where magnetic order is not possible, the phase diagram features a region bounded by

two values of the interaction U

c1

and U

c2

, where a metallic and an insulating solutions

coexist. We demonstrate that at �nite T , the actual transition takes place at an in-

termediate value U

c

where the free energy of the two solutions cross. We further show

that U

c1

< U

c

< U

c2

, and the metal-insulator transition is of �rst-order like a liquid-gas

transition. While the region of stability of the two phases are model dependent and

will vary upon changing the density of states or adding more general interactions to

the Hamiltonian, there are some general lessons that can be drawn by studying the

disappearance of the metallic and the insulating solution. These are general scenarios

for describing a strongly correlated metal and a Mott insulator.

In section 5.4 we study the behavior of the system close to the critical value of the

interaction U

c2

, where the metallic state disappears. We consider the results in relation

to the Brinkman Rice scenario for the metal-insulator transition.

In section 5.5 we analyze the disappearance of the insulating solution, and relate it

to Hubbard's early ideas.

Section 5.6 is devoted to the study of the correlation functions. In particular, we

address the question of how they behave as the transition takes place. We relay on a

combination of analytical arguments and QMC simulations to discuss these points.

In section 5.7, we address the important question of solutions with magnetic long

range order. We verify that in a bipartite lattice, Slater's ideas for the metal-insulator

transition become relevant. On the other hand, when a partial degree of magnetic

frustration in allowed, a rich phase diagram is obtained. The results are considered in

regard to the experimental phase diagram of V

2

O

3

.

Finally, in section 5.8, we study the transition as a function of doping. On the way,

we make qualitative comparisons to existing experimental data, in La

1�x

Sr

x

TiO

3

.

We conclude by arguing that the Hubbard model and its extended version is at least

a qualitatively correct model for the description of some basic features of these systems.

We also present various theoretical questions raised by our work.
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5.2 The self-consistent equations

Our starting point is the Hubbard Model:

H = �

X

<i;j>

(t

ij

+ �)c

y

i�

c

j�

+ U

X

i

(n

i"

�

1

2

)(n

i#

�

1

2

); (5.1)

where summation over repeated spin indices is assumed.

In the limit of the coordination number d going to in�nity, the hopping matrix

elements can be chosen to give a semi-circular density of states of width 4t, and are

scaled as t

ij

�

t

p

d

[5] to provide a well de�ned and non trivial limit. This density

of states is realized on lattices with di�erent amounts of magnetic frustration such as

the Bethe lattice (no frustration), the fully-connected fully-frustrated lattice (FF) [13],

and the two sublattice fully-frustrated model (TSFF), which allows to mimic a varying

degree of frustration [14].

Now we proceed to brie
y review the the self-consistent equations which give the

paramagnetic solution in large d following the scheme of [9]. The central object in this

approach is a quantity G

0

which plays the role of the e�ective �eld in magnetic systems.

G

0

is de�ned in an e�ective local action S

eff

obtained by integrating out all the degrees

of freedom except for a single site 0,

S

eff

[c; c

y

] =

X

�

Z

d�d�

0

c

y

�

(�)G

�1

0

(���

0

)c

�

(�

0

)+U

Z

�

0

d�(n

i"

(�)�

1

2

)(n

i#

(�)�

1

2

): (5.2)

This action is identical to the one of an Anderson impurity model with arbitrary hy-

bridization. The self-consistent equations for the Weiss �eld G

0

are written in terms of

an impurity self-energy �

imp

(G

0

) = hc

y

ci

�1

S(G

0

)

+ G

�1

0

and the lattice density of states

�(�) =

P

k

�(�

k

� �)

[G

�1

0

� �

imp

(G

0

)]

�1

=

Z

�(�)d�

i! � � � �

imp

(G

0

)

: (5.3)

The impurity self-energy evaluated at the self-consistent G

0

gives the self-energy of the

Hubbard model in in�nite dimensions [9].

We use a semi-circle density of states, �(�) =

2

�D

q

1� (

�

D

)

2

. The set of self-

consistent equations then becomes

G

�1

0

= i!

n

� t

2

G(i!

n

); G = �hc

y

ci

S(G

0

)

(5.4)



53

G(i!

n

) being the local Green function of the Hubbard model. The spin index has been

removed, since magnetic disorder is implicitly assumed. This last equation, which does

not require the explicit calculation of �

imp

, and can be used as an alternative to (5.3).

The semi-circular density of states is realized in the Bethe lattice with coordination d,

in the limit that d becomes in�nite, and with Hubbard's hopping parameter equal to

t

p

d

. In this case t = D=2. This lattice with nearest neighbor hopping, if not frustrated,

will strongly favor a N�eel ordered state at low temperatures.

The semi-circular density of states is also realized in the fully-frustrated model [12]

[19].

H

FF

= �t

X

i;j=1;d

�

ij

c

i�

y

c

j�

+ U

X

i

(n

i"

�

1

2

)(n

i#

�

1

2

): (5.5)

Summation over repeated spin indices is assumed. Here �

ij

are quenched independently

distributed Gaussian random variables with zero mean and a variance h�

2

ij

i =

1

d

. This

model has a semi-circular density of states with a half-bandwidth equal to 2t and

therefore shares the same local properties as the Bethe lattice but of course is not

expected to display N�eel order at any �nite temperature. Finally, we can vary the

degree of frustration by studying a two sublattice version of the fully-frustrated model

(TSFF). The Hamiltonian is given by

H

TSFF

= �t

1

X

i;j2AorB

�

ij

c

i�

y

c

j�

� t

2

X

i2Aj2B

�

ij

c

i�

y

c

j�

+U

X

i2A[B

(n

i"

�

1

2

)(n

i#

�

1

2

): (5.6)

This model interpolates between the fully-frustrated lattice and the Bethe lattice in

the antiferromagnetic phase while still sharing a semi-circular local density of states.

In this case D =

p

t

1

2

+t

2

2

2

. Figure 5.1 contains a schematic representation of the TSFF

model. Notice that while the hamiltonians (5.5) and (5.6) contain randomness, the

single particle properties are self-averageing. The single particle Green functions are

the same for any typical realization of the random variables �

ij

.

Let us mention in passing that there are other lattices that lead to the same mean

�eld theory in the limit of large dimensionality. One is obtained from the TSFF model

by considering the interlattice hopping parameter t

2

as a gaussian variable (in the same

manner as t

1

was de�ned). This model is fully random and has a variable degree of

frustration. Another possibility is a lattice with n.n. constant hopping parameter t

1

,
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t
2

t
1t

1

Figure 5.1: Schematic representation of the two sublattice fully frustrated model

(TSFF). The fully-connected fully-frustrated sublattices A (white dots) and B (black

dots) at the top of the �gure, are combined into a single lattice through the interlattice

hopping elements t

2

.
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t
2

t
1

Figure 5.2: Schematic representation of the Bethe lattice with next nearest neighbor

hopping. This model has the same mean �eld equation as the TSFF but does not have

randomness.

and n.n.n. constant hopping parameter t

2

. This model does not contain randomness

and is schematically shown in �gure 5.2.

As in a previous chapter we have studied the semi-circular density of states instead

of the Gaussian density of states which is realized in the large dimension limit of a

hypercubic lattice, because the latter has long tails which prevent the development of

a true Hubbard gap. For a study of the hypercubic lattice see [15, 16].

When antiferromagnetism sets in, the Weiss �eld depends on the sublattice and the

spin. For a general bipartite lattice in the N�eel phase G

A�

= G

B��

the equations were

derived in [11]. For the Bethe lattice, the equations are simpli�ed to

G

�1

0A�

= i! � t

2

G

B�

G

�1

0B�

= i! � t

2

G

A�

(5.7)

where A denotes one sublattice and B the other. The two impurity Green functions G

A

and G

B

are evaluated independently given G

0A�

and G

0B�

and the single site action,

S

eff

de�ned at the beginning of the section.

Finally in the two sublattice fully-frustrated model, which mimics an intermediate

degree of frustration, the mean �eld equations in a phase where the A and B sublattices
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magnetize in opposite directions are given by

G

�1

0A�

= i! � t

2

1

G

A�

� t

2

2

G

B�

G

�1

0B�

= i! � t

2

1

G

B�

� t

2

2

G

A�

(5.8)

In a previous chapter we have discussed that the exact treatment of the problem by a

quantum Monte Carlo solution of the impurity can be reproduced, remarkably well , by

the second-order perturbative calculation proposed in [20]. The perturbative calculation

allows us to investigate the low temperature behavior of the system, including T = 0,

which is unattainable by the QMC approach. To second order in perturbation,

�[G

0

](�) = �U

2

G

3

0

(�): (5.9)

We can understand the success of this approximation for the following reasons: 1) It is

good for weak couplings (U << t) by construction, since the expansion is around U = 0.

As shown by Yamada and Yosida (YY), it is able to produce not only the Abrikosov-Suhl

resonance, but also the upper and lower incoherent bands as well. YY showed that the

4

th

order correction is two orders of magnitude smaller that the 2

nd

order contribution

for the range of the interaction where the MIT occurs. 2) The atomic limit is exactly

captured. When U is very large, and the system is deep in insulating side, G

0

�1

� i!

n

,

the non-magnetic Hartree-Fock solution of the Green function becomes exact,

G

L

(i!) =

1=2

G

�1

0

(i!

n

)� U=2

+

1=2

G

�1

0

(i!

n

) + U=2

(5.10)

therefore, the self-energy reads,

� =

U

2

4

G

0

(i!

n

) (5.11)

which is identical to the self-energy that results from inserting G

0

in Equation (5.9) and

Fourier transforming. Thus, the second order approximation is at least an interpolation

scheme which becomes exact for both the U ! 0 and U !1 limits.

A third numerical technique that we developed for the study of the present type

of models is an exact diagonalization algorithm. It is based on a parametrization of

the function G

0

, with a �nite set of parameters that are then used as input for an
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e�ective Anderson hamiltonian. This technique allows for a non perturbative solution

of the model in all parameter range. It is particularly e�ective for the investigation of

the insulating phases with and without magnetic order. A detailed description of this

procedure can be found in the second chapter.

The mean �eld equations are coupled functional equations to be solved for the

Weiss �eld G

0

and the local Green function. The most di�cult aspect of the mean

�eld theory is the solution of the Anderson impurity model in an arbitrary bath. The

essential insight is to use reliable approximations to calculate G[G

0

] in eq. (5.2), this

step captures the local aspects of the problem. The self-consistency condition (5.3-5.4)

then brings back the lattice aspect. Several techniques are used in the analysis of the

mean �eld equations. They range from qualitative arguments and analytic perturbative

schemes to numerical methods based on quantum Monte Carlo (QMC) [12] [15, 16],

exact diagonalization (ED) [21, 22] and second order perturbative calculations (2OPT)

[13, 14]. To obtain details of the low energy behavior we have developed the projective

self-consistent method which is the lattice equivalent for large d problems of the Wilson

renormalization group method [23]. An important point here is that no single technique

can be pointed out as the most suitable, but the insights obtained on the Mott transition

problem rely on a combined use of these techniques to elucidate the di�erent aspects

of the physics. We will illustrate the capabilities and the range of applicability of the

di�erent approaches in the following sections where we present the results for the model.

5.3 Phase diagram and thermodynamics

The schematic phase diagram of the Hubbard model at half �lling in a fully-frustrated

lattice is shown in �gure 5.3 (from 2OPT). To determine the phase diagram we proceed

in three steps: a) We �rst determine the region where the two paramagnetic solutions

coexist. b) We then compare their free energy, their crossing determines the phase

boundary. The study of the magnetically ordered phase and the calculation of the N�eel

temperature; along with a discussion on whether the metal insulator transition found

in step b) is preempted by a magnetic ordering transition, will be considered in detail

in a later section.



58

T
E

M
P

E
R

A
T

U
R

E

U

0.2

0.1

METAL INSULATOR

CRO
SS

O
VER

Uc1 Uc2

0.0
2 4 6 8

Figure 5.3: Phase diagram of the fully-frustrated model. It is possible to continuously

move from one phase to the other since at high T the transition becomes a crossover.

The dashed lines indicate the region where the metallic and the insulating solutions

coexist. The �lled square indicates the end of the �rst-order line in a second-order

point.

At low temperature there are two phases a Fermi liquid metal characterized by a

non zero density of states at zero energy and paramagnetic insulator with a gap in the

one particle excitation spectra. The metallic solution disappears at the dotted line end-

ing at U

c2

, while the insulating solution persist down to the dotted line ending at U

c1

.

There is a region enclosed by the lines U

c1

(T ) and U

c2

(T ), where both the metallic and

the insulating solutions are allowed. Within this region, there is a �rst order bound-

ary where the two very di�erent solutions cross in free energy, and several quantities

experience a jump: the speci�c heat, the susceptibility, the number of doubly occupied

sites, etc. The �rst order line has a negative slope indicating that the paramagnetic in-

sulating phase has a higher entropy than the metallic phase. This line ends in a second

order point at T

MIT

� 0:05. Above this temperature one can go continuously from the

metal to the insulator via a crossover region which is shaded in the phase diagram. The

�rst order line has a negative slope indicating that the paramagnetic insulating phase

has a higher entropy than the metallic phase.

At T = 0, the metallic state is lower in energy than the paramagnetic insulator

and therefore the �rst order line ends in a T = 0 second order quantum critical point,

denoted U

c2

in the �gure (this point is discussed in detail in the next chapter). In this
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region is where the Brinkman Rice scenario for a metal insulator transition becomes

relevant. In fact, the mean �eld theory has con�rmed the essentials of the Brinkman

Rice picture as applied to the vicinity U

c2

and allowed us to obtain non critical correc-

tions to this picture. We also notice that the paramagnetic insulating solution and the

metallic solution are very close in energy and therefore departures from full frustration

will stabilize the insulating state.

The ED and QMC methods con�rmed that the qualitative phase diagram obtained

from 2OPT is correct, with only the values of U

c1

and U

c2

slightly reduced. With

ED we obtained U

c1

� 2:15 and U

c2

� 3. For comparison notice that the Hubbard

III approximation gives U

HIII

c

=

p

3 � 1:732, and the Brinkman Rice approach gives

U

BR

c

= 8�� � 3:37. The metallic state of the system can be well described by a narrow

central quasiparticle peak characterized by an e�ective Fermi energy � � zD where z

is the quasi-particle weight, z = (1�

d�

d!

)

�1

, plus two high energy incoherent features at

�

U

2

corresponding to the upper and lower Hubbard bands. The e�ective Fermi energy

� is found to go to vanish as U

c2

�U . The insulator state consists of incoherent features

only. Notice however that the shapes of the incoherent features of the metallic and the

insulating phase are very di�erent.

At the point U

c1

the gap between these bands closes continuously realizing the

essential ideas of the Hubbard scenario. While this solution is not the lowest energy

one in the fully-frustrated lattice, as mentioned above, we expect it to be stabilized

in any lattice having �nite frustration. If the magnetic frustration is large we expect

the spectral function of the paramagnetic insulator to be rather close to the frustrated

magnetic solution.

To illustrate the nature of the two coexistent solutions, we plot the zero temperature

spectral function of the metallic and the insulating state in �gure 5.4, as obtained from

2OPT.

We also show in �gure 5.5 a metallic and an insulating Green function obtained for

the same value of the parameters U = 2:8 and T = 1=64, as is obtained from both QMC

and the perturbative calculation. This demonstrates that the coexistent solutions is a

genuine feature of the model, and that it is also correctly captured by the approximate
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Figure 5.4: The density of states for the metallic (thin line) and insulating (bold line)

solution at T = 0 and the same value of the interaction U = 2:9, obtained with the

self-consistent perturbative calculation.

calculation. In order to select an insulating or a metallic solution one has to choose G

0

obeying G

0

(i!) =

1

i!

or G

0

(0) 6= 0 respectively as the initial guess in the substitution

procedure for solving the mean �eld equations.

The energy is computed from the Green function by

E =

T

2

X

nk

(i!

n

+ �

k

)G

k

(i!

n

) (5.12)

The entropy is given by

S(T ) =

Z

T

0

C

v

T

0

dT

0

+ S(0) (5.13)

where C

v

is evaluated numerically by di�erentiating the energy. S(0) is zero for the

metallic side and ln2 for the insulating side re
ecting the double degeneracy of the

paramagnetic insulating phase.

The physical critical line where the �rst order phase transition takes place is deter-

mined by equating the free energies of the two states,

F

M

� F

I

= E

M

� E

I

� (S

M

� S

I

)T: (5.14)

Figure 5.6 shows the calculated internal energy as a function of the temperature for

two values of the interaction U . For the smaller value of U the temperature dependence
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Figure 5.5: Comparison of the insulating and metallic Green function obtained using

the quantum Monte Carlo algorithm and the perturbative calculation. The value of the

interaction U = 2:8 and the inverse temperature � = 64.

of the internal energy of the metal displays a characteristic Fermi liquid T

2

behavior in

the low temperature region. The characteristic energy scale in this regime is set by the

renormalized Fermi energy. At higher temperatures we see a thermal activation of the

incoherent features. In the case of the insulator we just observe only this last e�ect at

an energy scale U � 2D.

In �gure 5.7 we plot the speci�c heat C

v

as a function of the temperature. The curves

are obtained through numerical di�erentiation of E(T). In the strongly correlated

metallic phase we �nd a separation of scales since � is much smaller than U � 2D. At

higher T a thermal activation peak appears at a scale U � 2D in both the metallic and

insulating case. As shown in �gure 5.8, the linear in T Fermi liquid behavior is observed

in the low temperature region, with the slope 
 proportional to m

�

� (U

c2

� U)

�1

(see

also section 5.4).

The integral (5.13) gives the entropy as a function of temperature. As expected the

integral over the quasi-particle peak is equal to ln2 as shown in �gure 5.9. As can be
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Figure 5.6: The energy as a function of the temperature for a value of U = 2 in the

metallic region (solid line), and U = 4 in the insulating phase (dotted line).

seen in �gure 5.8, for larger values of U but with U < U

c2

the metallic solution disap-

pears discontinuously before the entropy reaches ln2. Therefore, we de�ne a coherence

temperature T

s

as the temperature where the entropy reaches the value of

ln2

2

. The

physical relevance of T

s

is that it delineates the temperature range where Fermi liquid

theory is valid; see �gure 5.10.

The comparison of the kinetic energy T = h

P

k

�

k

c

+

k

c

k

i =

P

nk

�

k

G

k

(i!

n

) and the

potential energy V = U

P

hn

"

n

#

i of the two solutions, is shown in �gure 5.11. We �nd

that the di�erence in the internal energy of the two states is much smaller than the

corresponding di�erence in the kinetic and potential energy. The gain in kinetic energy

by delocalization is almost perfectly cancelled by the loss in potential energy due to

the Coulomb repulsion in doubly occupied sites. This makes the higher order correc-

tions from higher order terms in the Yamada Yoshida perturbation theory important

for resolving the relative stability of the metallic and the insulating solution at zero

temperature. The small energy di�erence between the two states, however, is a general
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U = 2 and the dashed line corresponds to U = 4. In the metallic case (U = 2) it is

apparent the separation of energy scales. The linear part, at low T, ends at T � �, and

the thermal activation of the incoherent features peaks at the bigger scale T � U � 2D.

This last e�ect is the only one present in the insulating case.
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is applicable.
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Figure 5.11: The kinetic, potential and internal energy as function of U for T = 0:02

(a) and T = 0:03 (b). The hysteresis e�ect is clearly observed.

feature of the problem. In fact the near degeneracy of the metallic and the insulating

state near U

c2

follows from the bifurcation of two stationary points of the free energy

energy functional at U

c2

. This issue will be revisited in the next chapter.

5.3.1 The breakdown of the metallic solution

In this section we investigate the fate of the metallic solution. The destruction of the

metallic state is driven by the collapse of the renormalized Fermi energy scale � which

we showed is proportional to U

c2

�U (see also section 5.4). From the mean �eld equation

(5.4), we realize that this scale is also the bandwidth of the conduction electron bath

which hybridizes with the local impurity in the Anderson model picture. It is easy to

understand then, that for su�ciently large U this scale vanishes. Imagine solving the
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system of equations (5.2), (5.3), and (5.4), by iteration. Consider a conduction electron

bandwidth �

n

, (W

n

in the notation of chapter 4) at the n

th

iteration step. For large

U , solving the Kondo problem produces a new bandwidth �

n+1

� e

�U=t

�

n

. Therefore,

this energy scale iterates to zero for n!1.

In what followswe will make this argument more precise by introducing a parametriza-

tion for the local Green function. Close to U

c2

, there is a clear separation of energy

scales and the Green function can be written as a sum of a low energy and a high energy

parts: G

l

and G

h

. The high energy part resembles the solution of an atomic problem

while the low energy part obeys a scaling form.

In terms of a spectral representation:

G

l

=

R

1

�1

�

l

(�)

i!��

d� (5.15)

G

h

=

R

1

�1

�

h

(�)

i!��

d�

with �

l

(�) =

1

t

f(

�

�

) exhibiting a scaling form as � / U

c2

� U goes to zero. �

h

(�)

describes the high energy non scaling parts (Hubbard bands) centered around �U=2.

A somewhat oversimpli�ed but transparent picture of the spectral function is obtained

by taking �

h

to be two semi-circles with overall weight 1 � �=D, t = D=2. The

calculation of the scaling function f is an open problem, in the exact solution of the

large d Hubbard model. Here we determine it within the second order perturbation

theory scheme outlined in section 5.2.

Approaching the transition, G

0

develops a pole at a scale

p

�t >> �. The pole

can be determined exactly from the relation G

�1

0

= i! � t

2

G. In the frequency range

of � << ! << U=2, the Green function can be simpli�ed to:

G =

2

!

Z

1

0

�

l

(�)d�� 2!

Z

1

0

�

h

(�)

�

2

d�+ i��(!) (5.16)

where particle-hole symmetry �(��) = �(�) has been used to change the integration

limit. In the energy region we are considering, the imaginary part is negligibly small

and we will ignore it in the following calculations.

G

�1

0

= (1 + 2t

2

C)! �

2t

2

�F

!

(5.17)
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where, F =

1

t

R

1

0

f(x)dx and C =

R

1

0

�

h

(�)

�

2

d�. The pole results at !

0

=

p

�(

2t

2

F

1+2t

2

C

)

1=2

.

Notice that the existence of this pole follows from the general scaling argument.

Now, combining this with the second order expression for the self-energy, one can make

further progress and determine the value of U

c2

analytically.

The self-energy is given by, � = �U

2

G

3

0

(�), which can be conveniently expressed in

terms of the density of states of the G

0

,

� = �2!U

2

Z

1

0

Z

1

0

Z

1

0

�

0

(�

1

)�

0

(�

2

)�

0

(�

3

)d�

1

d�

2

d�

3

(�

1

+ �

2

+ �

3

)

2

� !

2

(5.18)

where �

0

(!) = �

1

�

ImG

0

(!). As � ! 0, �

0

develops a � like peak positioned at !

0

with a weight of

1

2(1+2t

2

C)

. Therefore, the integrals can be performed in closed form to

obtain,

� = �

U

2

!

4(1 + 2t

2

C)

3

(9!

0

2

� !

2

)

(5.19)

as �! 0.

Comparing this expression with the one given by its de�nition, � = G

�1

0

� G

�1

=

�

D!

�

, where only the most singular term at small ! is kept, at U = U

c2

(i.e. � = 0),

we have

U

c2

= 3D(1 +D

2

=U

2

c2

) (5.20)

where D = 2t, and the approximations F �

1

2D

and C �

2

U

2

c2

that follow from the

parametrization discussed before are used. The value at which the metallic solution

disappears is then U

c2

= 3:28D which is very close to the numerically determined

value U

2OPT

c2

= 3:37D. From equation (5.19) it is clear that the scaling part of � is

proportional to

!

�

and that the scaling function f in this approximation is a semi-circle.

Figure 5.12(a) and (b) contain the numerical solution for the density of states �

l

and

its scaling form f , as obtained from the second order perturbation theory near U

c2

. It

demonstrates that the region where scaling holds is actually quite large.

In principle equation (5.18) can be expanded to next order in �, but the coe�cient

depends on the scaling function and the high energy part of the Green function and

cannot be calculated analytically. However, it can be determined numerically that close

to the critical point, � = k(U

c2

�U) with k � 0:21. Recalling the de�nition of � = zD

and that

m

�

m

= z

�1

, this last result implies that within this approximation we �nd the
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same critical behavior for the divergence of the renormalized mass as in the work of

Brinkman and Rice [3]. Notice that within second order perturbation theory

@

2

�

@!

2

is not

divergent as one would expect on general grounds. This is due to the fact that in this

approach the vertex U is not renormalized.

5.3.2 The breakdown of the insulating solution

In this section we study how the insulating solution disappears as we reduce the value

of U . Our calculations determined that there indeed exists a new boundary U

c1

(T ) <

U

c2

(T ), U

c1

(T = 0) � 2:6D associated with the break down of the insulating solution

[24].

To understand the destruction of the insulating state, we proceed to parametrize

the Green function once more,

G

0

(�) = �(�(�)� 1=2) + G

inc

0

(�) (5.21)

with �(�) being the step function. The �rst term represents an insulating solution at the

atomic limit (t=0). G

inc

0

is the \incoherent part" of the insulating solution, which decays

to zero as � !1 at zero temperature. Physically, this decomposition is motivated by

viewing the self-consistent equations as describing a Kondo spin in an insulator. The

spin operator S has a low energy part which is responsible for a Curie type of local spin

susceptibility and a high frequency part. We write S =

p

�S

low

+S

high

, � is a quantity

similar to the \quasi-particle weight", it describes the weight of a pure free spin in an

interacting system, the impurity + the insulating host. In frequency space, G

inc

0

is only

responsible for the details of the shape of the Hubbard bands which are high frequency

features. The step function part gives rise to a divergency in G

0

(i!

n

) � 1=i!

n

and is

solely responsible for the existence of a gap. In the atomic limit � approaches to unity,

while on the contrary, the vanishing of � signals the complete screening (or Kondo

quenching) of the spin and the destruction of the insulating phase.

Using the parametrized form of G

0

, we can relate � to the density of states �(�) of

the local Green function. At half-�lling, because of the particle-hole symmetry,

G = 2i!

n

Z

1

0

�(�)d�

(i!

n

)

2

� �

2

(5.22)
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Therefore, using (5.4) and comparing linear terms in i!,

�

�1

= 1 + 2t

2

Z

1

0

�(�)d�

�

2

(5.23)

If the Mott-Hubbard gap collapses, i.e., �(�) becomes �nite at � ! 0, �

�1

diverges.

Alternatively, a �nite � at the transition indicates a �nite Mott-Hubbard gap. Within

the second order perturbation scheme, we can obtain a closed equation for �. Inserting

the parametrized G

0

into the self-energy expression we obtain:

�(�) = �

3

U

2

4

(�(�)� 1=2)+ �

inc

: (5.24)

which determines the low frequency behavior of the local Green function:

G =

2

i!

n

+�(G

0

) + isgn(!

n

)

p

D

2

+ (!

n

+ i�(G

0

))

2

(5.25)

Considering the most singular terms in the self-consistency condition (5.3) and (5.4),

for small ! we have

G

�1

0

= i!

n

+

D

2

4�

; (5.26)

and therefore,

� =

�

1 +

D

2

U

2

�

3

�

�1

(5.27)

There are two solutions for �

�

for U > U

c1

. The one with a smaller �

�

is always

unstable and unphysical since it is not connected continuously to � = 1 as U tends to

in�nity. At the transition U

c1

, the unstable �xed point collides with the stable one, and

the �xed point solution disappears. U

c1

= 3

p

3=2D � 2:6D which is the same as the

numerically obtained. Since � is �nite at the transition, the Mott-Hubbard gap, within

this approximation, is �nite. As was previously noted in section 5.2, we observed using

QMC, that in the exact �nite temperature solution the U

c1

vs. T line is shifted to

lower values of U , indicating a further reduction of the minimum gap. In fact, we will

later show using the ED calculation (which is non-perturbative) how the gap indeed

collapses to zero as in Hubbard's original scenario.



71

5.4 U

c2

The Brinkman Rice point

We now turn to the description of the neighborhood of U

c2

. The quasiparticle residue z

(inverse mass enhancement) as a function of U from the exact diagonalization method

and the 2OPT is shown in �gure 5.13. For a small value of U the latter becomes exact,

at an intermediate range they coincide and as the critical point is approached the exact

diagonalization method, that treats the interaction non-perturbatively, becomes more

accurate. Using the projective self-consistent method we obtained U

c

� 3. Notice that

the z vs. U line extrapolates towards that value. It is noticeable that a straight line

from U

c

can be obtained for a big range of the interaction. The mass renormalization in

the limit of in�nite dimensionality is identical to the quasiparticle weight. The critical

behavior of the renormalized mass is thus

m�

m

= z

�1

� 0:92(1�

U

U

c

)

�1

. These results

can be compared to the Brinkman Rice picture for the transition [3] [25]. Using the

Gutzwiller wavefunction, that variational approach gives U

BR

c

= 8�� � 3:37, and z =

(1�(

U

U

BR

c

)

2

). This last result, close to the critical point reduces to z

�1

= 0:5(1�

U

U

BR

c

)

�1

,

which is similar to the ones of the present treatment. It is interesting to note that

the value for U

c2

obtained with 2OPT is virtually identical to the Brinkman Rice

calculation.

To gain further insight on the nature of the transition, we investigated the behavior

of other quantities as a function of U . We plot in �gure 5.14 the double occupation hDi

as a function of U as obtained from the di�erent methods.

There are two branches, corresponding to the metallic and insulating solutions at

T = 0, which merge at U

c

� 3. They show the excellent agreement of the exact

diagonalization algorithm and the 2OPT in all parameter range, except very close to

the MIT point. The QMC data being at an inverse temperature � = 32, shows that the

e�ect of the temperature is to reduce the double occupation on the metallic side. In the

insulating side, the e�ect is negligible since in this case there are no small energy scales.

At this temperature the coexistence region is very small, and the data shows a jump

in hDi at U � 2:4. Notice that this result indicates that the Brinkman-Rice approach

captures the singular part of hDi, but in addition we observe that this quantity does not
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Figure 5.13: The quasiparticle weight z as a function of the interaction U . The solid

bold line corresponds to ED results with 8 sites. The dotted line is obtained from 2OPT.

For comparison we also plot the results using the Gutzwiller variational method.
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Figure 5.14: Double occupation as a function of the interactionU . The data corresponds

to QMC simulations at � = 32 (dots), 8 sites exact diagonalization (bold line) and

2OPT at T = 0 (dotted line). For comparison the results for the Gutzwiller variational

wavefunction is also plotted (thin line).
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vanish at the transition due to an additive non-singular part. We can thus parametrize

hDi = 0:235(

U

c

�U

U

c

) + 0:015 Also note that the magnetic moment is obtained from the

double occupation through the identity hm

2

z

i = 1 � 2hDi. Therefore, we �nd that the

magnetic moment is not saturated at the transition.

5.5 U

c1

The Hubbard point

We have just discussed how in the region of the phase diagram around U

c2

the Brinkman

Rice scenario for the destruction of the metal is realized. Surprisingly in the region

around U

c1

Hubbard's ideas regarding the closure of the Hubbard bands come to life. In

�gure 5.15 we plot the value of the Hubbard gap as a function of U in the paramagnetic

phase. As a de�nition for the magnitude of the gap we take twice the energy of the lowest

energy pole of the Green function obtained from the exact diagonalization method. We

show data extrapolated for �nite size e�ects from systems of 3,5 and 7 sites. A 1=N

sites

scaling behavior is assumed. The results indicate that, following the insulating solution,

the gap closes at a value U

c1

� 2:15, and that �

gap

� (U�U

c1

). For comparison, we also

plot the same quantity from the 2OPT calculation that givesU

2OPT

c1

� 2:6. These results

can be compared to the corresponding from Hubbard-III. In that case the critical value

for the destruction of the insulating state is U

HIII

c1

� 1:73, and �

HIII

� (U�U

HIII

c1

)

3=2

.

Even though the paramagnetic insulating phase is strictly unstable at zero temper-

ature, it is relevant to very frustrated magnetic insulators. Since the energy di�erence

between the metal and the paramagnetic insulator is very small in the full coexistence

region at T = 0, departures from full frustration will stabilize a magnetic solution that

will resemble the paramagnetic insulator solution.

5.6 Susceptibilities and the Mott-Hubbard transition

In what follows we are going to present a combination of theoretical arguments and

numerical results, in order to discuss the behavior of the susceptibilities in the vicinity

of the transition. Unfortunately, we cannot take further advantage of the perturbative

approach. The vanishing of higher order corrections in the self-energy in the atomic
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Figure 5.15: Paramagnetic gap (solid) as function of the interaction U obtained from

ED. For comparison, the corresponding results from 2OPT (dotted), and U

HIII

c1

� 1:73

(diamond).

limit does not necessary imply that this will be also true for the calculation of other

quantities. For example, negative compressibilities are obtained for intermediate and

high values of U . Therefore, all the numerical results in this section were obtained

with the QMC method. Although the present computational power does not allow a

detailed quantitative analysis of higher correlation functions at very low temperatures,

our results are su�cient to give support to the theoretical discussion.

Much theoretical insight about the behavior of the spin and charge susceptibilities

can be gained by the fact that the impurity model describing the Hubbard model is an

Anderson impurity model.

In chapter 4 we have already discussed that when the Mott point is approached,

magnetic order of the local spin sets in [13]. In principle �

s

L

can be determined in

NMR experiments. However it is the q = 0 susceptibility that is easily accessible to

experimental probes. The q = 0 quantities di�er from the local ones because of the

polarization of the Weiss �eld due to the external perturbation. We will illustrate how

this e�ect, which is at the heart of the Fermi liquid theory, modi�es the low energy

responses near U

c2

.
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In the presence of a small chemical potential �, away from the particle-hole sym-

metric point, and a small magnetic �eld h, the mean �eld equations are

G

�1

0�

= i!

n

+ � + �h� t

2

G

�

(5.28)

To proceed, we extend the simpli�ed form of the parametrization discussed in section

5.3.1 to account for the magnetic properties. The high frequency part of the Green

function is polarized like a local moment which can be described as a superposition of

Hartree-Fock solutions. It has been demonstrated that when U � U

c

the upper and

lower Hubbard bands are well developed, so that for low frequencies and �elds, a good

approximation for G

�

is

G

�

=

n

�

i!

n

�

U

2

+

n

��

i!

n

+

U

2

+

2�=D

i!

n

+ i�(sgn!

n

)

(5.29)

with D = 2t. Inserting (5.29) in (5.28), we have for small frequencies,

G

�1

0�

= i!

n

+ �+ h� + 2

t

2

m

�

U

� (5.30)

where m

�

= n

�

�n

��

. Equation (5.30) describes an impurity problem in the presence of

an external �eld h

eff

= h�2

t

2

U

m

�

. We can compute the magnetization from the theory

of the Anderson impurity model in an e�ective �eld h

eff

. We know that m = �

o

h

eff

,

with �

o

�

1

�T

k

, and T

k

being the e�ective Kondo energy of the problem which in our

case corresponds to �. � is a numerical coe�cient of order unity. Solving for m we

�nd

�

s

=

�

dm

dh

�

h=0

=

1

�

�1

o

+ 2

t

2

U

=

1

��+ J

(5.31)

where we have de�ned the magnetic exchange energy J = 2

t

2

U

=

D

2

2U

.

The physical interpretation of this equation is transparent: the exchange arises from

high energy processes which are largely una�ected by the Mott transition. As a result

the susceptibility varies continuously, as U passes through U

c

. Remarkably equation

(5.31) was also obtained in the large N limit [26]. This �ndings are consistent with

the QMC results displayed in �gures 5.16 and 5.17. For smaller U , an initial fast

increase in �

s

is observed as � rapidly decreases. However, unlike the Brinkman-Rice

approach, this quantity remains �nite at the transition due to to the existence of a
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Figure 5.16: Local magnetization m

z

as function of an external magnetic �eld, for

di�erent values of the interaction U .

non zero superexchange constant in the uniform response. The numerical result can

be parametrize according to the analytic expression obtained above. We �nd �

�1

�

0:7(1�

U

U

c

) for the metallic phase, and �

�1

� J in the insulator phase (J is plotted for

comparison). It is intersting to note that this result (metallic case) compares very well

with the Gutzwiller variational approach that gives for the spin susceptibility [25]

�

s

= �

2

B

N(0)

2

�

1�

U

2

U

2

c

�

�1

�

1�

N(0)U

2

1 + U=2U

c

1 + U=U

c

�

�1

(5.32)

where N(0) denotes the density of states at the Fermi level. Close to the critical point

reduces to �

�1

BR

� 0:74(1�

U

U

c

), in agreement with our results as long as the critical point

is not approached too close. This is because the variational scheme fails to capture the

cut-o� in the magnetic response.

We �nally also obtained the Wilson ratio as a function of interaction U . This

quantity is displayed in �gure 5.18 and is derived from �gures 5.13 and 5.17. It is found

to vanish at the critical point since while the speci�c heat diverges as

1

�

, the magnetic
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Figure 5.17: Inverse of magnetic susceptibility at q = 0 (solid dots) and the magnetic

exchange J =

2t

2

U

(dashed line) as a function of the interaction U .

susceptibility is cut-o� by minfT

�1

; J

�1

= 2U=D

2

g.

Similar considerations apply to the charge susceptibility. Applying a chemical po-

tential does not cause a change (to order �n) in the distribution of integrated spectral

weight between the upper and lower Hubbard bands. This can be readily understood

by extending the observation of chapter 4 that the high energy features are correctly

reproduced by an expansion around the atomic limit. In this limit a small particle

hole asymmetry shifts the energies of the atomic levels but does not transfer spectral

weight. The change in the low energy part of the Green function is easily estimated

using Fermi liquid theorems. The change in G(0) as a result of a change in chemical

potential is given by the phase shift, which in turn is given by the shift of the location of

the center of the resonance. Its width does not change to order �=D because of particle

hole-symmetry. Assuming that at low frequencies the result of applying � is to shift

the center of the resonance by �

f

, the local Green function can be then approximated

by

G(i!

n

) =

2�=D

(i!

n

+ �

f

+ i�sgn!

n

)

(5.33)

with �n �

�f

�

. We thus �nd �G(0) �

�n

�

, and therefore, from (5.28), the e�ective

chemical potential of the impurity model becomes ��

eff

� �� �

t

2

�

�n. The response of

the impurity to this shift in the chemical potential is �n = �

imp

��

eff

, with �

imp

�

1

U
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Figure 5.18: Wilson ratio as function of the interaction U .

the charge susceptibility of the impurity. Combining these results we obtain

�n

��

=

�

0

c

1 +

�

0

c

t

2

�

(5.34)

that implies that the charge susceptibility vanishes as (U

c

� U) as we approach the

Mott transition. This result is consistent with the Monte Carlo simulations that give

�n

��

� 0:52(1�

U

U

c

)=D � 0:6�=D

2

, with U

c

� 2:75 at an inverse temperature � = 16.

Thus, the compressibility goes to zero as �, when U approaches U

c

. It is intersting to

note that this result compares well with corresponding one obtained from the Gutzwiller

variational approach [25]. In that case the compressibility is obtained as

� =

1

n

0

�n

��

=

4

U

c

1� U=U

c

1 + U=U

c

(5.35)

where n

0

denotes the particle density. Close to the critical point it reduces to

�n

��

BR

�

0:59(1�

U

U

c

)=D in close agreement with our results.

On the other hand, we have seen in section 5.4, that the doubly occupancy does

not saturates as the transition is crossed. This is consistent with the local charge

susceptibility being �nite. In fact, the impurity charge compressibility equals minus the

kinetic energy by virtue of the mean �eld equations.

Before proceeding with our discussion we illustrate in �gure 5.19 the quality of the

�t that is obtained from the parametrization for the local Green functions introduced

above. The data shows a comparison of a Green function obtained at � = 64 from
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QMC simulations and the �tting function

G

�

=

n

�

i!

n

+ ��

U

2

+

n

��

i!

n

+mu+

U

2

+

2�=D

(i!

n

+ �

f

+ i�sgn!

n

)

(5.36)

As is clear from the plot this simple parametrization is able to capture the exact results

in great detail as can be particularly noted from the low frequency behavior of the

real and imaginary parts of the Green functions. The parametrization has three free

parameters: the width �, the position of the low frequency quasiparticle peak �

f

and the

number of particles in the Hubbard bands n

�

(n

��

becomes �xed by the normalization

condition). The value for the interaction is set to U = 2:5 and the chemical potential is

chosen � = 0:3. This values are consistent with the made assumptions for the validity of

the parametrization, that is, proximity to the critical point where the Hubbard bands

are well developed and small doping. Note that in principle one may use a smaller

number of free parameters by considering available information such as the expectation

value of the particle number operator and the particle number sum rule. However, here

our aim is not to produce the least free parameter �t, but rather to justify the validity

of the parametrization scheme.

We argued before that the local spin susceptibility diverges at the Mott transition

as

1

�

while the q = 0 spin susceptibilty stays �nite at the transition. This and an

independent estimate of the exchange constant J can be obtained by approaching the

transition from the insulating side by analyzing the fully-frustrated model.

For large U , the fully-frustrated model in equation (5.5) reduces at half �lling to

H

J

=

X

ij

J

ij

S

i

� S

j

(5.37)

where J

ij

are independent random variables with an exponential distribution PfJg =

�(J)

p

J

exp � (JN=J

o

) with �(x) = 1 for x > 0 and �(x) = 0 for x < 0.

An important observation is that

�

J

ij

=

J

N

while the variance

�

J

2

ij

�

�

J

2

ij

=

J

2

N

2

so the

randomness is irrelevant in the thermodynamical limit. The solution of Hamiltonian

(5.37) with J

ij

=

J

N

is elementary.

We exhibit the solution to con�rm and interpret the �nite susceptibility in the

insulating phase. The eigenstates of equation (5.37) are labeled by the total spin �

s

=
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Figure 5.19: Comparison of an exact Green function away from half-�lling obtained

from QMC at � = 64, and the parametrization discussed in the text. The interaction

U = 2:5 and � = 0:3.
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J

o

N

[S(S + 1)]. For simplicity we will take N to be even N � 2N

o

. For a given value

of the spin the degeneracy of a state with a given value of total spin S and projection

S

Z

is d

S

= (

2N

o

N

o

�S

)� (

2N

o

N

o

�S�1

). The partition function in the presence of a uniform �eld

reduces to

Z =

N

o

X

S=0

d

S

e

��

J

o

2N

o

S(S+1)

sinh(�h(S +

1

2

))

sinh(

�h

2

)

(5.38)

In the thermodynamical limit N

o

! 1 it is convenient to introduce the variable

x = S=N

o

and equation (5.38) reduces to

Z = N

o

�

Z

1

0

dx e

N

o

g(x)

e

�

�J

o

N

o

x

2

4

�

e

h�N

o

x

� e

�h�N

o

x

2sinh(

h�

2

)

�

+O(

1

N

o

)

�

(5.39)

with g(x) � ln

4

(1+x)(1�x)

+ xln[

1�x

1+x

] being the density of states. This system is peculiar

in that the number of states decreases as the energy (or the spin) increases. g(x) =

2ln2 � x

2

as x ! 0, therefore it has negative temperature. Equation (5.39) is easily

evaluated when N

o

is large and we obtain the free energy per particle

F (h; �)

N

= �

h

2

�

8 + 2�J

o

�

1

�

ln2 (5.40)

and the susceptibility

�

s

(q = 0) = �

@

2

f

@h

2

=

1

4T + J

o

(5.41)

which displays Curie law for T >> J

o

but saturates at the magnetic energy J

o

at low

temperatures in complete agreement with the discussion of the paramagnetic phase.

From the free energy and the energy E = �

@lnZ

@�

, we can obtain the entropy S =

E�F

T

.

Notice that when h = 0; E = 0 and S = 2N

o

ln2. This is the result of the large

degeneracy of the singlet sector. In fact the number of states per particle in the singlet

sector can be estimated directly from equation (5.40).

The prediction that �

s

remains �nite as U ! U

c2

is physically sensible and probably

persists in �nite dimensions. It re
ects the fact that the magnetic energy is �nite

when d ! 1. The same is true in the limit of large N of the model studied in

[27] in any dimension, provided we identify the Mott transition with the metal charge

transfer insulator transition. This physics is missed by the Gutzwiller approximation
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which ignores the high energy processes thus the magnetic exchange completely. The

divergence of 
 (cf. section 5.3) as U ! U

c

is consistent with the fact that the entropy

is ln2 in the insulator. In the metallic phases S(T ) =

R

T

o

C

v

(T

0

)

T

0

dT

0

. Since this quantity

vanishes as T ! 0 in the insulating phase

C

v

(T )

T

diverges at the transition. This is the

result of a large spin ground state degeneracy. It is rooted in the fact that since J

ij

�

1

d

one needs long range order to gain �nite magnetic energy. This is clearly unrealistic and

will not persist in any �nite dimension. In fact, in the large N limit in �nite dimensions

the speci�c heat remains �nite when the metal insulator transition drives the system

into a resonating valence bond state [28]. It would be interesting to construct a loop

expansion around the d =1 solution to remedy this problem.

5.7 The magnetic solution and frustration

In this section we will consider the solution of the model with magnetic order. In the

absence of magnetic frustration, on a bipartite lattice, one expects to �nd an antifer-

romagnetically ordered state as the local moments develop when the interaction U is

increased from zero and the temperature is low. This is indicated by �nite dimensional

Hartree-Fock and variational calculations [29, 30].

On the other hand, at big values of the interaction, the magnetic moments become

fully developed and the model maps onto the Heisenberg model. It will consequently

also display an antiferromagnetically order state with a N�eel temperature that is in-

versely proportional to U .

The low temperature solution of the model, on a bipartite lattice, is therefore ex-

pected to be that of an antiferromagnetic insulating state due to the e�ective doubling

of the lattice parameter.

We �nd that this scenario is fully realized in the limit of large dimensions. We solve

the self-consistent equations (5.7) that de�ne the model on a Bethe lattice without

magnetic frustration. As usual in the case of antiferromagnetic order, two sublattices

A and B are introduced. Even though we are at half �lling and in the particle-hole

symmetric case, the Matsubara Green functions acquire a non-zero real part as the
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occupation becomes di�erent for the up and down spin functions on either sublattice.

G

A

�

= [�G

B

�

]

�

G

A;B

�

= [�G

A;B

��

]

�

(5.42)

and,

n

A;B

�

= 1� n

A;B

��

n

A

�

= n

B

��

(5.43)

In �gure 5.20 we show the local Green function of spin � as a function of Matsubara

frequency. The �gure shows the results obtained by QMC simulations at � = 32 and

the ED calculation with 8 sites. The value of the interaction is U = 1:5. The solutions

are insulating since the imaginary part goes to zero at the origin. On the other hand,

the large real part signals the opening of a gap. Although QMC is at T 6= 0, the

agreement is excellent since the gap is much bigger than T . In �gure 5.21 we present

the corresponding results for the density of states at the same value of the interaction.

The di�erence in the occupation of the up and down spin Green functions is apparent.

The gap in the density of states is obtained from the distance between the lowest energy

poles.

To study the behavior of the system at the low temperatures where the QMC

approach becomes inapplicable, we implemented both a Hartree-Fock calculation and

the generalization of the second order perturbation approximation that we introduced

before. To test the reliability of these approaches, we obtained the N�eel temperature

for the model. The results are displayed in �gure 5.22. We �nd that none of them in

good agreement with the QMC simulations.

The failure of the perturbative approach, which underestimates the value of the

N�eel temperature, can be understood from the following argument.

The local magnetization is de�ned as m

z

= hn

"

� n

#

i, and from particle-hole sym-

metry, m

z

= 2(hn

"

i �

1

2

) = �2(hn

#

i �

1

2

). On the other hand, the local Green function

for, say the up spin electrons, with the self-energy considered to second order reads,

G

"

=

1

G

�1

0"

+ � � Uhn

#

i � �

(2)

"

(5.44)
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Figure 5.20: The local antiferromagnetic Green function of spin � as a function of

Matsubara frequency. The imaginary part is odd and the real part even. Obtained

from QMC at � = 32 (full line) and ED of 8 sites (dotted line). The results can hardly

be resolved due to the excellent agreement. The interaction U = 1:5
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Figure 5.22: Comparison of the N�eel temperature of the bipartite Bethe lattice model

obtained from QMC (bold line), 2OPT (dotted line), and Hartree-Fock (thin line).

At particle-hole symmetry, we set � =

U

2

, and the Green function now becomes

G

"

=

1

G

�1

0"

� U(hn

#

i �

1

2

)� �

(2)

"

(5.45)

Now lets imagine that we produce a small magnetization or, equivalently, an increase

of the up spin occupation. Then hn

"

i �

1

2

> 0, and hn

#

i �

1

2

< 0. Therefore the up

spin electrons will experience an increase in their e�ective chemical potential whose

rol is played by the second term in the denominator of equation (5.45). As was noted

in a previous section, one of the failures of 2OPT away from half �lling is that it

produces negative compressibilities when the interaction becomes of the order of the

bandwidth. Therefore, in the present case this e�ect is translated into an e�ective dia-

magnetic response to the original magnetization. This has the consequence of reducing

the tendency of the system to develop a magnetization, and ultimately to reduce the

N�eel temperature. We have also check that the region of parameter U where the N�eel

temperature is fully suppressed, indeed coincides with the region where the negative

compressibility becomes more pronounced.

Regarding the Hartree-Fock calculation, we �nd that it fails to accurately reproduce

the Green function obtained by QMC, however, it correctly predicts the existence of

the antiferromagnetic phase.

It is also worthy to note the very close agreement of the Hartree-Fock results with
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Figure 5.23: Local staggered magnetic moment as function of temperature obtained

from Hartree-Fock approximation. The interaction U = 0:5; 1; 2 (thin, dotted, and

bold line).

the similar obtained for a three dimensional cubic lattice [29]. The agreement is very

good not only for the N�eel temperature, but also for the local magnetic moment as a

function of U that we show in �gure 5.23.

We want to turn now to the intersting case of adding frustration to the model. This

question may be of relevance in the description of the V

2

O

3

compound. Although this

system is found to be antiferromagnetic at low temperatures, experiments show that

the magnetic interaction between neighboring vanadium sites is frustrated [31].

In this case we solve equations (5.8) that apply to the TSFF model introduced

before. Many results are a�ected when a partial degree of frustration is added to the

model. We see in �gure 5.21 that the density of states is modi�ed in a dramatic way.

With the interaction U = 1:5 and the parameters t

2

1

=

1

4

t

2

and t

2

2

=

3

4

t

2

, we �nd that

the frustration not only clearly reduces the magnetic moment, but more importantly,

is able to close the gap, driving the system to a novel antiferromagnetic metallic phase.

The possibility for this type of solutions has been previously considered by Cyrot [32],

and it has been experimentally observed in V

2

O

3

by Carter et al. [33].

In �gure 5.24 we show the results for the gap in the density of states as obtained from

the ED calculation. It is clear from the plot how the TSFF represents an interpolation



87

0

1

2

4

3

0 1 2 43 5
U

∆

Figure 5.24: The gap in the density of states obtained from ED for the bipartite Bethe

lattice (thin line), fully-frustrated lattice (dotted line), and TSFF model (bold line).

The gap is de�ned as the distance between the lowest poles in the Green function. The

curves correspond to the extrapolated results to an in�nite size system from clusters of

N

sites

= 3; 5; 7. A 1=N

sites

scaling behavior is assumed.

between the fully frustrated case where no magnetic order is possible and the case of

a bipartite lattice. It is interesting to note that the frustration lowers the value where

the insulator disappears U

AF2

respect to U

c1

introduced before. We �nd that it is non-

zero (unlike the bipartite case) and its value results U

AF2

� 1:5 for the above choice of

parameters.

The local staggered magnetization shown in �gure 5.25 remains continuous as a

function of U as the antiferromagnetic gap closes. However, its value is decreased by

the frustration. In particular it is driven to zero for a value of the interactionU

AF1

� 0:5,

in contrast to the bipartite lattice case where it remains non-zero when U 6= 0.

We have, therefore, a situation at T = 0 where the solution is a paramagnetic metal

until a value U

AF1

is reached where the local staggered moment starts to develop and

the system becomes an antiferromagnetic metal. When the interaction U is further

increased, a gap in the density of states eventually opens as U

AF2

is reached. From
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Figure 5.25: The local staggered magnetization obtained from ED for the bipartite

Bethe lattice (dotted line), and TSFF model (bold line). The curves correspond to

the extrapolated results to an in�nite size system from clusters of N

sites

= 3; 5; 7. A

1=N

sites

scaling behavior is assumed.

there on an antiferromagnetic insulating state sets in.

As we increased the temperature with a value of the interaction slightly above U

AF2

,

we observe that the gap closes and we obtain an antiferromagnetic metallic state at

�nite temperature. The magnetization of this state rapidly disappears as T is further

increased. This can be observed in �gure 5.26 where we show results for the real and

imaginary parts of the local Green function obtained from ED at T = 0 and QMC

simulations at T = 1=64. It can be seen clearly how the imaginary part becomes non-

zero at zero frequency in the �nite temperature results, while the real part remains

non-zero which signals an antiferromagnetic state.

It is interesting to note that the existence of an antiferromagnetic metallic phase is

also obtained within the Hartree-Fock approximation. This is illustrated by the results

of �gure 5.27 that display the Green function obtained at U = 0:95 and T = 0:05. The

imaginary part accordingly goes to a �nite value at small frequency, while the real part

is non-zero.

Within this approximation, it is possible to solve analytically for U

AF1

, which is the

value of the interaction where the solution acquires a staggered magnetic moment but
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Figure 5.26: The antiferromagnetic metallic solution of the TSFF model as a function

of Matsubara frequency. The imaginary part is odd and the real part even. Obtained

from QMC at � = 64 (full line) and ED of 8 sites (dotted line). The interaction U = 2
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Figure 5.27: The antiferromagnetic metallic solution of the TSFF model as a function

of Matsubara frequency. Obtained from the Hartree-Fock approximation at U = 0:95

and T = 0:05. The bold line corresponds to the imaginary part and the dotted line to

the real part.
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remains metallic.

The self-consistent equations for the TSFF model (5.8) that mimics a partial degree

of frustration in the Hartree-Fock approximation read,

G

�

=

1

G

�1

0�

+ �

U

2

m

z

(5.46)

G

�1

0�

= i! � t

2

1

G

�

� t

2

2

G

��

(5.47)

where � = 1;�1 for the up and down spin Green function respectively.

We now expand the Green functions arround the non-interacting and non-magnetic

G

0

that corresponds to a semi-circular density of states of half-width 2t = D,

G

0

(i!) =

2

i! +

p

(i!)

2

� 4t

2

(5.48)

Writing G

�

= G

0

+ �G

�

and replacing in the self-consistency equations we obtain,

G

�1

0

� �G

"

G

�2

0

= i! +

U

2

m

z

� t

2

G

0

� t

2

1

�G

"

� t

2

2

�G

#

G

�1

0

� �G

#

G

�2

0

= i! �

U

2

m

z

� t

2

G

0

� t

2

1

�G

#

� t

2

2

�G

"

: (5.49)

De�ning �G " ��G #= �G, we subtract the last equations to get

G

�2

0

�G = �Um

z

+ (t

2

1

� t

2

2

)�G (5.50)

and solving for �G,

�G =

Um

z

�G

�2

0

+ (t

2

1

� t

2

2

)

(5.51)

which is the variation of G

"

� G

#

when U is small.

We can combine this result with the self-consistent condition for the magnetization

that reads,

m

z

= �

1

�

Z

0

�1

Im[�G] (5.52)

Inserting the expression for G

0

on the real axis

G

�1

0

(!) =

!

2

+ i

sgn(!)

2

p

4t

2

� !

2

; �D < ! < D (5.53)

into �G, we obtain, after a few steps of tedious algebra, the following expression for the

critical value of U

AF1

where a non-zero magnetization appears

U

HF

AF1

=

3�

2

�

Z

1

0

p

1� x

x

2

+ x

1

3

(1� 8�) +

4�

2

3

dx

�

�1

(5.54)
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where � is de�ned from t

2

1

� t

2

2

= t

2

� � t

2

(1� �) = �t

2

(1� 2�). Examining equation

(5.54) we realize that for � 6= 0 the integral converges and a �nite U

AF1

is obtained. For

� = 0:25 we numerically solve the integral to obtain U

HF

AF1

� 0:71 which is consistent

with the value obtained previously from the ED calculation.

For the case � = 0 which corresponds to the bipartite Bethe lattice, i. e., without

frustration, the integral has a logarithmic divergency. This is signals that the original

assumption that the Green function can be expanded arround the non-interacting non-

magnetic G

0

breaks down. This is because in this case U

AF2

= 0, since an in�nitesimal

U immediately drives the system to the antiferromagnetic insulating state.

Let us now consider the large U region. The modi�cation of the N�eel temperature

cannot be obtained with QMC in this case since U is large and T is low. However, it

can be analytically determined. We have seen in �gure 5.25 that even in the presence

of partial frustration, the magnetic moment becomes rapidly saturated for intermediate

values of U . We therefore consider, as we did in the previous section, the extension to

the TSFF model of the spin hamiltonian that we introduced before. The solution is

straightforward and the N�eel temperature is found to be reduced as T

N

= J

2

� J

1

=

2(t

2

2

� t

2

1

)=U .

Finally, we combine all the present results with the earlier ones for the fully frus-

trated model, to obtain a new phase diagram for the model with a partial degree of

magnetic frustration. The results are summarized in �gure 5.28. It is very intersting

to note that most of the main features experimentally observed in V

2

O

3

are realized in

this model [34, 35, 33]. In particular if we associate decreasing pressure with increasing

interaction U , we �nd the correct tilting of the �rst order line that separates the para-

magnetic metallic to the paramagnetic insulating state. This line ends both, in the our

case and in the experiment, in a second order critical point where a crossover region

starts and which is tilted in the opposite way. The topology of the phase diagram is

also captured in detail, even the small antiferromagnetic metallic region recently found

by Carter et al. [33]. As a last remark, is notable that also the temperature scales are

consistent with the experiments if we set the bandwidth D � 0:5eV .
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5.8 The transition as a function of doping

It is interesting to investigate the Mott transition as a function of doping in the Hubbard

model. We believe that away from half �lling and in the paramagnetic phase there is

only one solution, and then we can investigate the behavior of various quantities as a

function of �lling factor.

We �rst show in �gure 5.29, the particle occupation as a function of the chemical

potential as obtained from QMC at � = 16. We note that the slope of the curve, i.e.

the compressibility, goes to zero at � = 0 as U

c

is approached. For bigger values of U ,

we have a vanishing compressibility characteristic of an insulating state. It displays a

gap approximately equal to U � 2D which compares very well with the results for the

size of the gap from the exact diagonalization method (�gure 5.15). Notice that for

U > U

c

the � vs. � curves approach half �lling (� = 0) with a �nite slope.

We also calculated the speci�c heat and spin susceptibility as a function of doping

for the case U = 3. This places the system close to the Mott point, as it seems to be the
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case for compounds as La

x

Sr

1�x

TiO

3

and the high T

C

cuprates [36]. The speci�c heat


 =

�

2

k

2

B

3

�

0

(�

F

)

m

�

m

, and the spin susceptibility �

S

= �

2

B

�

dm

dh

�

h=0

, with m = n

"

� n

#

, are

displayed in �gure 5.30. The plot is in units of 


0

=

�

2

k

2

B

3

�

0

(0) =

4

3

�k

2

B

D

and �

0

S

=

�

2

B

D

respectively, and corresponds to QMC simulations at � = 32. This compares rather

well with the experiments of Tokura et al. on La

x

Sr

1�x

TiO

3

[37]. The speci�c heat is

consistent with the parametrization 
 � 0:28




0

�

. Notice also that for small doping the

renormalized mass behaves as

m

�

m

/ z

�1

/ 
 / �

�1

. This quantity is shown in the inset

of the �gure.

The Wilson ratio (�

S

=
)=(�

0

S

=


0

), plotted as function of doping in �gure 5.31, is

derived from these quantities. We note that its value is consistently lower than the

experimental value R � 2 that is found in the compound mentioned above. Whether

this is due to a shortcoming of the mean �eld theory, or it is some interesting e�ect

of the many orbital character of the experimental system, remains an interesting open

problem.

5.9 Conclusion

The solution of the Hubbard model in the limit of large dimensions has provided a limit

where various early ideas can be put in perspective.

One issue is whether a metal insulator transition can take place in the absence of

magnetic order. The phase diagram presented in �gure 5.3 and �gure 5.28 answers this

question in the a�rmative for a frustrated lattice.

There is a region enclosed by two lines U

c1

(T ) and U

c2

(T ), where both the metallic

and the insulating solutions are allowed. Within this region, there is a �rst order bound-

ary where the two very di�erent solutions cross in free energy, and several quantities

experience a jump: the speci�c heat, the susceptibility, the number of doubly occupied

sites, etc. The �rst order line has a negative slope indicating that the paramagnetic

insulating phase has a higher entropy than the metallic phase. The line ends in an

interesting second order critical point, above it there is a smooth crossover between a

metallic and an insulating regime.
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We also demonstrated that for U < U

c2

, the one particle Green function of the

model captures some aspects of the Brinkman-Rice scenario. In particular, the mass

renormalization diverges as (U

c2

� U)

�1

[13]. At the same time, the solution of the

Hubbard model in in�nite dimension also allowed us to perform calculations of phys-

ical quantities at �nite temperatures, and eliminated some of the shortcomings of the

Brinkman Rice description of the Mott transition. In the actual solution, the number

of doubly occupied sites is �nite and changes smoothly at the metal-insulator transition

resulting in a �nite exchange constant which gives rise to a �nite susceptibility. We also

observed that at U

c2

, the single particle gap opens discontinuously, which is di�erent

from the predictions of the slave boson method [38], but is not inconsistent with the

experimental observations of Fujimori et al. [36].

We found a natural scenario for the destruction of the insulating solution with the

continuous narrowing of the gap of the insulator. This is a realization of the original

Hubbard scenario for the MIT driven by the closing of the upper and lower Hubbard

bands. In this case, U

c1

corresponds to the value of the interaction where the gap in

the one particle spectra vanishes, or equivalently, where the divergence of the dielectric

constant is observed. This was demonstrated by the exact diagonalization results.

Although the same was not the case within the second order approximation to the

impurity self-energy, this calculation, nevertheless, provided valuable insights on the

nature of the destruction of the insulating solution.



97

On non-frustrated, bipartite lattices, however, we �nd that the N�eel temperature

is much higher than the metal insulator transition temperature, making the transition

between small and large U continuous. In this case, the physics can be understood

in terms of the magnetic long range order and a smooth crossover within the broken

symmetry phase. The Mott transition is irrelevant, vindicating Slater's point of view.

When a partial degree of frustration is considered, in addition, at low temperatures

there is a �rst order line between an antiferromagnetic metal and an antiferromagnetic

insulating phase. This is possibly relevant to the experimental results of Carter et al.

[33]. In this case, the phase diagram has the same topology and even the same scale as

the experimentally observed phase diagram of V

2

O

3

. We therefore conclude, that the

Hubbard model in large dimensions at half �lling on a frustrated lattice can account for

the basic experimental features observed in the V

2

O

3

system vindicating Mott's point

of view.

The experimentally observed phase diagrams of transition metal oxides display in-

commensurate metallic magnetism. This can in principle be studied by extending the

mean �eld theory to account for incommensurate phases as done by Freericks for the

Falikov Kimball model [39]. For this calculation to be meaningful, however, one should

include the details of a realistic band structure of the transition metal oxide, which is

beyond the scope of our work.

An important open question is what happens to the transition at �nite dimensions?

We expect that the Mott transition and the metal charge transfer insulator transition

are in the same universality class. The large N expansion results of [27] indicate that

for N = 2, U

c1

and U

c2

coincide and that the Mott transition is second order with

continuous disappearance of the Kondo resonance and a gradual closing of the Mott

gap. Similar results were obtained with the slave boson approach to the Hubbard

model. Whether the large N expansion is missing crucial 1=N terms which would split

the two transitions, or whether the 1=d corrections would bring the two transitions to

one, remains an interesting open problem.
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Chapter 6

The coexistent solutions

6.1 Introduction

The correlation induced metal-insulator transition (Mott-Hubbard transition) is one of

the prime examples in which strong correlations dominate the low-energy behavior of

a physical system. A theoretical treatment of the problem requires an approach which

is non-perturbative in the interaction. Recently, new insights into the problem were

gained using the limit of in�nite dimensionality [1, 2]. It allows for a mapping of a

variety of lattice models onto impurity problems in a self-consistently determined bath

[3, 4] and is therefore a natural way to formulate a mean-�eld theory of itinerant systems.

While being simpler than the original problem, the resulting mean-�eld theory remains

a formidable many-body problem which has to be solved using numerical methods.

Recently the Hubbard model has been investigated by several groups using Quantum

Monte Carlo (QMC) simulations and self-consistent perturbation theory (PT) [5, 6, 7,

8]. While a combination of both methods established the existence of a Mott-Hubbard

transition at a �nite value of the interactionU in the paramagnetic phase of the Hubbard

model at half-�lling, important questions regarding the nature of the transition remain

unsolved.

In the previous chapter, the coexistence of metallic and insulating solutions over

a �nite range of values of U has been demonstrated [9]. While the metallic solution

disappears continuously at a value U

c2

, the insulating solution disappears abruptly

at a value U

c1

< U

c2

. At �nite temperature, the di�erence between the free energy

of the solutions is dominated by the entropy term. The large entropy, which is a

result of the degeneracy of the ground state in the insulating case, made it possible to

unambiguously determine the existence of a �rst order transition line close to U

c1

(T ).
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As the temperature is reduced, the free energy approaches the energy, therefore an

accurate evaluation of the energy is necessary. Depending on which solution is lower in

energy two very di�erent scenarios may take place: If E

Ins

< E

Met

, the transition will

be close to U

c1

and the sudden destruction of the metallic state implies a �rst-order

transition even at T = 0. On the other hand, in the case E

Met

< E

Ins

, the metallic

solution continuously merges with the insulating one at U

c2

, and the quasiparticles

display a diverging renormalized mass [9].

While the limit T = 0 cannot be attained by QMC simulations, within the second-

order perturbative approach the energies of the two solutions are almost degenerate,

making the consideration of higher-order corrections necessary. An alternative nu-

merical approach to the problem was introduced recently: While the large d mean �eld

equations are functional equations for the Green function G(i!

n

), an approximation can

be obtain by modeling G(i!

n

) using a �nite number N of parameters, which reduces

the functional equations to non-linear algebraic equations in N unknowns. Following

this idea, two di�erent parameterizations were introduced [10, 11]. Both take advan-

tage of a mapping of the lattice problem onto an Anderson impurity model with a

self-consistently determined bath. The N parameters that model G(i!

n

) de�ne the

hopping amplitudes and energies of the e�ective electron orbitals of the bath, as will be

discussed in detail in next section. The resulting problem can then be solved at T = 0

by exact diagonalization of the e�ective Hamiltonian. This is followed by the new de-

termination of the set of parameters, and the procedure is iterated until convergence is

attained. The method is thus non-perturbative in nature and overcomes the problems

of both QMC and PT, allowing for an accurate evaluation of the energies at T = 0.

In this paper we apply this approach to the study of the Hubbard model. We

establish the coexistence of metallic and insulating solutions over a �nite range of the

interaction parameter U and show that at T = 0 the metallic solution has lower energy

than the insulating one, implying that the metal-insulator transition in the Hubbard

model with semicircular density of states is of second order. This justi�es a posteriori

the relevance of the earlier studies [8] of this quantum critical point which captures the

essence of the Brinkman-Rice transition.
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6.2 Methodology

In the limit of in�nite dimensionality the Hubbard model, described by the Hamiltonian

H = �

X

<i;j>

(t

ij

+ �)c

y

i;�

c

j;�

+ U

X

i

(n

i"

�

1

2

)(n

i#

�

1

2

); (6.1)

can be reduced to an e�ective impurity problem, supplemented by a self-consistency

condition [4]. As in the previous work we focus on a Bethe lattice of in�nite connectivity

d, which in the non-interacting limit corresponds to a semicircular density of states of

width 4t, where the hopping parameter t is rescaled in the usual way as t !

t

p

d

.

Integrating out the degrees of freedom other than the origin, one obtains an e�ective

local action of the form

S

eff

[c; c

y

] =

X

�

Z

d�d�

0

c

y

�

(�)G
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(� � �
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�

(�

0

) + U

Z
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0

d�(n
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(�)�
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)(n
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(�)�
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):(6.2)

In the following we focus on the paramagnetic solution at half �lling (� = 0). The

self-consistency condition then reads G

�1

0

(i!

n

) = i!

n

� t

2

G(i!

n

) where G(i!

n

) =

�

R

�

0

e

i!

n

�

< T

�

c(�)c

y

(0) >

S

eff

is the local Green function of the Hubbard model once

self-consistency is attained. As shown in previous chapters an action of the same form

can be obtained from an Anderson impurity model by integrating out the conduction

electrons [4]. Note that the self-consistency condition implies that the role of the hy-

bridization function is played by the local Green function itself. The iterative solution

now proceeds as follows: G(i!

n

) is modeled by a �nite set of parameters. In terms of

the impurity problem, this represents an e�ective bath for the impurity with a �nite

number of poles. This e�ective impurity model is then solved by exact diagonalization

and a new G(i!

n

) is calculated. A new set of parameters is then obtained from G(i!

n

)

by approximating it by a function with a number of poles equal to the number of sites

in the bath (this number is in general smaller than the number of poles of G(i!

n

)).

Note that this represents a further approximation of the method (beyond the e�ec-

tive Hamiltonian being �nite). The whole process is iterated until convergence of the

parameters is achieved.
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Exploiting these features, two new similar algorithms were proposed recently [10, 11],

di�ering basically in the way the new set of parameters is obtained, that is, how the

G(i!

n

) is parametrized by a smaller number of poles. We will consider both schemes

and comment on their respective advantages and limitations.

As mentioned, the number of poles of G(i!

n

) is in general larger that the number of

sites in the bath, therefore this approximation is an essential ingredient of the scheme.

Ca�arel and Krauth [10] proposed to obtain the new parameters by a �

2

�t of G(i!

n

).

Starting with an Anderson Hamiltonian of the form

H =

X

�;�

�

�

a

y

��

a

��

+

X

�;�

(V

�

a

y

��

c

�

+ h:c:) + U(n

"

�

1

2

)(n

#

�

1

2

) (6.3)

the self-consistency condition becomes t

2

G(i!) =

P

N

s

�=1

V

2

�

i!

n

��

�

. We thus have to mini-

mize

�

2

=

N




X

i!

n

jG(i!

n

)�

N

site

X

�=1

V

2

�

i!

n

� �

�

j

2

(6.4)

where we sum over frequencies !

n

= (2n + 1)�T with small �ctitious temperature (

T = :001) and large cuto� N




�! � 2U , to obtain the new set of parameters V

�

and �

�

.

Note that this Hamiltonian e�ectively describes an impurity surrounded by a \star" of

bath electrons.

An alternative route was introduced in the context of an extended Hubbard model

[11]. This procedure takes advantage of the fact that the Green function G(z) can be

decomposed into \particle" and \hole" contributions as G(z) = G

>

(z) + G

<

(z) with

G

>

(z) =< gsjc

1

z�(H�E

0

)

c

y

jgs > and G

<

(z) =< gsjc

y

1

z+(H�E

0

)

cjgs > :

The respective contributions can be obtained from a continued fraction expansion

as
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where jf

>

0

>= c

y

jgs >, jf

<

0

>= cjgs > and jf

n+1

>= H jf

n

> �a

n

jf

n

> �b

2

n

jf

n�1

>,

a

n

=< f

n

jH jf

n

>, b

2

n

=

<f

n

jf

n

>

<f

n�1

jf

n�1

>

, b

0

= 0. This implies that G

>

and G

<

can be

regarded as resulting from a Hamiltonian describing an impurity coupled to two chains
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with site energies a

>=<

n

and hopping amplitudes b

>=<

n

. Again the number of poles in

the Green function is in general larger than the number of sites of the Hamiltonian

and in order to close the self-consistency, the continued fraction expansion has to be

truncated. The approximation in this scheme relies on the fact that the continued

fraction representation captures exactly the moments of the energy of the Hamiltonian,

up to the order retained in the continued fraction. It can thus be thought of as a

moment by moment �tting. This scheme has the numerical advantage that it avoids

the multidimensional �t of the Green function, but the disadvantage that it can be

implemented practically only in the case of a semi-circular density of states. In the

metallic case an explicit extra site at the Fermi energy is introduced in order to better

represent the low frequency region and, more importantly, to allow us to feed-back

a metallic bath. The hopping parameter to this extra site is calculated by a single

parameter minimization of the expression

�

2

(�) =

i!

nH

X

i!

nL

jG

A

(i!

n

; �)� G(i!)j

2

(6.6)

where now G

A

(i!

n

; �) =

�

i!

n

+ (1� �)G

N

C

(i!

n

). G

N

C

is the truncated Green function

to length N

C

= N

Site

=2 and !

L

and !

H

are low and high energy cut-o�s de�ned by the

lowest poles of G and G

N

C

, respectively. In this case the moments will be modi�ed by

a small factor (�) which decreases as the system size is increased.

The e�ective Anderson model therefore reads

H =
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with c

�

being the destruction operator at the impurity site, c

0�

being the destruction

operator at the e�ective bath site with zero enenergy, and c

�

��

being the destruction

operator at the chain sites of the e�ective bath.

In both schemes, ground-state wavefunction and ground-state energy of the An-

derson Hamiltonian are determined by exact diagonalization (up to six sites) and the

modi�ed Lanczos technique [12]. Systems of up to ten sites can be handled on a work-

station. The zero temperature Green function of the local site is �nally obtained from
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a continued fraction expansion using the recursion method discussed above.

As mentioned in the introduction, a further advantage of the formulation of the

problem in terms of an Anderson impurity model is the fact that the energy of the

Hubbard model can be obtained directly without frequency summations using Anderson

model relations. The kinetic energy per site of the Hubbard model is given as T =

2

�N

P

<j;k>

P

i!

n

tG

jk

(i!

n

)e

i!

n

0

+

. Taking the limit of in�nite coordination number this

reduces to T =

2t

2

�

P

i!

n

G(i!

n

)

2

e

i!

n

0

+

. Using the self-consistency condition as well as

the the fact that in the Anderson model

2

�

P
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n
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�
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��

+ h:c: > we obtain

T =

X

��

V

�

Re < gsjc

y

�

c

��

jgs >; (6.8)

where � labels the sites neighboring the impurity. The potential energy of the Hubbard

model is obtained as

V = U < gsjn

"

n

#

jgs > : (6.9)

6.3 The two solutions

In our analysis we have focused on two major aspects: the determination of a region

where two solutions are allowed, and the resolution of controversy regarding the low-

est energy solution. The two approaches considered yield a consistent picture of the

transition. We are able to obtain converged metallic and insulating solutions for a

�nite range of the interaction U within both schemes. We further demonstrate that

the metallic solution is lower in energy in the whole coexistence region. The energy

di�erence between the solutions goes to zero as U

c2

is approached, implying that the

transition can be classi�ed as second order. This should be contrasted with the results

from second-order perturbation theory, where the two solutions were found to cross

in energy at an intermediate value of the interaction U . A point worth noticing (as

was already observed within the perturbative approach) is that the energy di�erence

between the solutions is much smaller than any energy scale of the problem. This is

due to an almost perfect compensation of the gain in delocalization (kinetic) energy, by

the loss of energy through double occupancy (potential energy), in the metallic state
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Figure 6.1: Comparison of the metallic and insulating Matsubara Green functions for

U = 2:7, as obtained from the two variations of the algorithm. Full line \star geometry"

and dotted line \two chain geometry" (10 sites for the metallic case and 8 sites for the

insulating).

compared to the insulator.

Metallic and insulating solutions for U = 2:7 inside the coexistence region are shown

in �gure 6.1 (the half-bandwidth 2t is set equal to unity). In the �rst case the Green

function displays a narrow resonance at low frequency (note that the pinning condition

at ! = 0 is ful�lled [13]), while the insulator in the second case merely consists of

high energy features (upper and lower Hubbard bands). The �gures also illustrate the

consistency of the two schemes considered here. In both, the metallic and insulating,

cases the agreement is very good. We also �nd that the results of both methods for

the single particle Green function on the imaginary axis compare very well with the

second-order perturbative calculation [8] and QMC [6, 7] (the latter is discussed in

reference [10]).

The kinetic, potential and total energies for the two solutions in the coexistence
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region are displayed in �gure 6.2. An interesting feature is the already mentioned

almost perfect cancellation of delocalization and double occupancy energy. Another

important observation is that while a �nite size e�ect is apparent in the results for the

kinetic and potential energy, the convergence of the total energy is much faster [14]. A

few runs for a ten site system show almost no di�erence to the results for eight sites.

The energy di�erence of the two solutions is shown in the inset of �gure 6.2. As the

critical point U

c2

is approached from below, the �nite size e�ects become relevant for

U � 2:8. This limitation of the scheme is due to the fact that as the low energy scale

associated with the quasiparticle peak goes to zero close to the transition, the discrete

nature of the approximation starts playing an important role and the Kondo resonance

is represented by only a single pole.

The smallness of the di�erence in energy between the metal and the insulator can

be understood from the picture of a second-order critical point where the metallic and

insulating solutions merge with a vanishing scale � � U

c2

� U . The problem can

be formulated from a variational point of view, with the free energy F becoming an

extremum at the metallic and insulating solutions, i.e.,

�F

�G

M

=

�F

�G

I

= 0. Since the two

solutions merge at the point U

C2

, F can be expanded in power series of G

M

�G

I

as

F

M

� F

I

=

�

2

F

�G

2

(G

M

� G

I

)

2

: (6.10)

As the di�erence between the metallic and the insulating solution is parameterized by

�, and the second derivative vanishes at the critical point as �, it follows that the

energy di�erence goes to zero as �

3

. The critical region cannot be accessed by the

present method. In order to capture the vanishing energy scale, a higher resolution (i.e.

an e�ective bath with more sites) is needed.

Finally, we would like to comment on the disappearance of the insulating solution

at U

c1

. From the \two chain" scheme, the insulating solution is found to persist all the

way down until the gap closes. This di�ers from the results of perturbation theory and

resembles the Hubbard III scenario for the destruction of the insulating state [17, 18].

In the case of the \star con�guration", while a converged insulating solution can be

obtained at values of the interaction U well below U

c2

, the question of the closing of
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tions in the coexistence region. Di�erence between the metallic and insulating solution

(inset). From the \two chain geometry".
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the gap cannot be answered conclusively.

6.4 Conclusion

We have resolved the standing questions regarding the metal-to-insulator transition

in the Hubbard model in in�nite dimensions, using a powerful algorithm to obtain

Green functions at zero temperature [15]. We were able to demonstrate the existence

of a region in which metallic and insulating solutions coexist, which is in agreement

with previous results, and showed that the metallic solution is always lower in energy.

This implies that while at �nite temperature the transition is �rst order, it becomes

second-order at T = 0, similar to the work of Brinkman and Rice in the context of the

Gutzwiller approximation [16] [8]. Since the method presented is very general as well

as simple, especially when compared to Monte Carlo simulations, it is an appealing

approach to the study of strongly correlated electron systems.
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Chapter 7

Optical conductivity in correlated electron systems

7.1 Introduction

The question of the transfer of spectral weight in the optical conductivity of correlated

electron systems is a long standing problem. The interest in this issue has been re-

vived by the improvement of the quality of the experimental data in various strongly

correlated systems.

From a theoretical perspective, the calculation of the optical conductivity in models

where the interactions are strong proved to be a di�cult task. It has only been studied

by exact diagonalization of very small clusters, by approximate diagrammatic schemes

where the reliability of the results is di�cult to determine and by large N methods.

All these treatments have been restricted to zero temperature and have been unable

to account for the interesting transfer of spectral weight that occurs as a function of

temperature in strongly correlated electron systems.

Recently, following the interest in the study of the many body problem in the limit

of in�nite dimensions [1], a new mean �eld theory of the strong correlation problem

was developed [2, 3, 4]. This theory is similar in spirit to the Weiss mean �eld theory

in classical statistical mechanics. It has provided new insights into the physics of Mott

transition [5, 6, 7], a classical problem of strongly correlated systems.

At the heart of the mean �eld approach is the exact mapping of the many body

system onto a single site problem (impurity model) in an e�ective medium which is

solved for self-consistency [2, 3]. The remaining impurity problem can be e�ciently

solved by numerical techniques, and a great variety of physical observables of the original

model can be then easily obtained [8, 9].
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In this chapter we address, in the framework of this mean �eld theory, the question

of the optical conductivity in the the light of the recent experiments on V

2

O

3

a system

with a Mott transition [10], and Ce

3

Bi

4

Pt

3

and FeSi which are considered to be Kondo

insulators [11, 12].

7.2 Methodology

As model hamiltonians for these systems we consider respectively, the Hubbard model

and the Anderson lattice.
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where summation over repeated spin indices is assumed.

7.2.1 Mean �eld equations

Here we will consider the symmetrical case of the models � = 0; �

o

d

= 0. For simplicity,

a semi-circular bare density of states for the conduction electrons is assumed, �

o

(�) =

P

k

�(� � �

k

)=N

site

= (2=�D)

p

1� (�=D)

2

, with t =

D

2

. This density of states can be

realized in a Bethe lattice and also on a fully connected fully frustrated version of the

model [13]. In the following we set the half-bandwidth D = 1.

The corresponding impurity problem is de�ned by an e�ective action. It follows

from formulating the problem in the Functional Integral formalism, and integrating out

the degrees of freedom of all sites but the one at the origin. We thus obtain for the

Hubbard model [2]:
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the self-consistency conditions reads,
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) (7.4)

The corresponding expressions for the Anderson lattice model are [3, 14]:

S

eff

[ ; 

y

] =

Z

�

0

Z

�

0

d�d�

0

 

y

�

(�)G

�1

0

(���

0

) 

�

(�

0

)+

Z

�

0

d� U(n

di"

(�)�

1

2

)(n

di#

(�)�

1

2

);

(7.5)

and,
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with  

y

= fc

y

; d

y

g.

The equations are solved by iteration. At the self-consistent point, the impurity

Green function coincides with the local Green function of the lattice problem. Due

to independence of momenta, the same applies to the self-energy. It obeys the Dyson

equation � = G

�1

loc

� G

�1

0

.

We use an exact diagonalization algorithm (ED) [15, 16] and an extension of the

second order perturbative (2OPT) calculation around the non-magnetic hamiltonian to

solve the impurity problem [13, 17]. We have already discussed in previous chapters

the remarkable success of this simple approximation to reproduce, for all parameter

range, the essentially exact results that are obtained for these models by use of ED and

quantum Monte Carlo simulations [9, 13]. We consider here the 2OPT calculation in

the Keldysh formalism, that allows to obtain �nite temperature results directly on the

real axis, with no need of analytic continuation.

7.2.2 Optical conductivity

The optical conductivity is de�ned as

�(!) = �

1

!

Im < [j; j] > (7.7)

after a few steps of algebra one obtains the expression for the frequency dependent real

part of � in the limit of large dimensions
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�1
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�

(!
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(!

0
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with, A

�

(!) = �2Im(G

k

(!)) being the spectral representation of the lattice conduction

electrons Green function, e is the electron charge, and a the lattice constant. At T = 0,

the optical conductivity of a correlated electron system can be parametrized by [18]

�(!) =

!

�

P

2

4�

�(!) + �

reg

(!) (7.9)

where the coe�cient in front of the �-function is the Drude weight and !

�

P

is the renor-

malized plasma frequency. In the presence of disorder �(!) is replaced by a lorentzian

of width �.

The kinetic energy is related to the conductivity by the sum rule

Z

1

0

�(!)d! = �

�e

2

2�h

2

a

< T >=

!

2

P

4�

(7.10)

The Drude part can be directly obtained in terms of the quasiparticle weight z in

the limit of d!1. It can be shown that

!

�

P

2

4�

=

2e

2

3�h

2

a

Dz: (7.11)

7.3 Hubbard model

To apply the Hubbard model to V

2

O

3

one has to remember that in this compound, in

a range of 2eV from the Fermi level, there are three d-orbitals per vanadium which are

�lled with two electrons. However, photoemission spectroscopy indicates that mainly

one band is involved in the metal-insulator transition. This band extends to approx-

imately 0:4eV . Using this value for the bandwidth we �nd that our model exhibits a

phase diagram with a T

MIT

� 240K, which is within a factor of two of the experimental

result [19]. Therefore, we will consider the results for the optical conductivity, in the

low frequency range of ! < 1eV , within the framework of a single band model. One

should keep in mind, however, that at high frequencies contributions from other bands

will appear, but these are outside the scope of the present treatment.
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Table 7.1: Experimentally determined parameters for the model.

Phase Parameter

D [eV] U [eV] � [eV] !

2

P

=4� [eV/
cm]

Insulator (stoich.) 0.33 1.3 0.32 175

Insulator (y=.013) 0.48 0.98 0.063 820

Metal (stoich. 170K) � 0.3 � 0.6 { 1400

To make contact with the experiments, we take the lattice constant a � 3

�

A the

average vanadium-vanadium distance, and extract the parameters U and D from the

main features of the experimental optical spectra. We then use these as input parame-

ters to the Hubbard model to calculate the lineshape and its temperature dependence.

We also compare interesting information such as the distribution of spectral weight, !

�

P

,

!

P

, and the optical gap. Experimentally one can vary the the parameters U and D, by

modifying the oxigen content y. The parameters extracted for di�erent situations are

summarized in table 7.1. It is not surprising that U and D are very di�erent in the

metal and the insulator, since the lattice parameter and the screening length change

rapidly across the phase diagram. We consider that the role of magnetic frustration

is relevant in the insulating phase of V

2

O

3

, so we use our two sublattice model in the

limit of strong frustration. This is consistent with the fact that the N�eel temperature

is much lower than the T

MIT

, and with neutron scattering experiments.

7.3.1 The insulator state

We �rst discuss the insulating state. The experimental optical spectrum of the insulator

is characterized by an excitation gap at low energies, followed by an incoherent feature

that corresponds to charge excitations of mainly vanadium character. In �gure 7.1, we

reproduce the experimental results obtained recently by Thomas et al. for the optical

conductivity of V

2

O

3

in the insulator phase [10].

In �gure 7.2, we plot the optical gap � as a function of the interaction U , for both

the antiferromagnetic and paramagnetic insulator solutions. The gap is de�ned as twice

the distance to the lowest energy pole obtained from the ED. The curve corresponds
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Figure 7.1: The optical conductivity �(!) in [


�1

cm

�1

] for V

2�y

O

3

. The top curve

corresponds to y = 0:013; T = 10K, and the lower curve to y = 0; T = 70K.
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Figure 7.2: The optical gap � as a function of the interaction U , for both the antifer-

romagnetic (dotted) and paramagnetic (solid) insulator solutions. The points show the

experimental gap in units of the experimental half-bandwidth.

to the extrapolated data from clusters of 3, 5 and 7 sites. A

1

N

sites

scaling behavior is

assumed.

In �gure 7.3 we show the corresponding results for the optical spectrum that is

obtained from the 2OPT at T = 0. The shape of the spectrum is found to be in good

agreement with the experimental results [10].

Another quantity that can be compared to the experiment is the integrated spectral

weight. It is related to the kinetic energy by the sum rule in equation (7.10). In �gure

7.4 we plot the results for the kinetic energy that are obtained from the ED. The curves

show both the insulator and metallic paramagnetic results along with the antiferromag-

netic insulator. We also include for comparison the experimentally determined spectral

weight. The experimental points are plotted in units of

�e

2

2�h

2

a

.

7.3.2 The metallic state

We now turn to the discussion of the metallic state. Experimental data were obtained

for T = 170K and T = 300K, on stoichiometric samples of V

2

O

3

that become insulating

at T

c

� 150K. In �gure 7.5, we reproduce the experimental results obtained recently

by Thomas et al. for the optical conductivity of V

2

O

3

in the metallic phase [10].
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Figure 7.3: The optical conductivity from ED at T = 0. Results for the paramag-

netic insulator solution with a value of the interaction U = 2:15D (top) and U = 4D

(bottom). For comparison, the results from 2OPT at U = 4D are also shown (dotted).
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Figure 7.4: The kinetic energy as a function of the interaction U , for both the antifer-

romagnetic (dotted) and paramagnetic insulator (thin) and metallic (thick) solutions.

The points show the experimental integrated spectral weight in units of
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Figure 7.5: The higher �gure contains the optical conductivity �(!) in [


�1

cm

�1

] of

V

2

O

3

for T = 170K (top) and T = 300K (bottom). In the lower �gure we plot the

di�erence ��(!) of the two spectra.
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Figure 7.6: The optical conductivity from 2OPT for U = 2:1D, and T = 0:05D (top)

and 0:083D (bottom). This values correspond to T � 170K and 300K by setting the

half-bandwidth D � 0:3eV . A small � was included in the calculation to mimic a �nite

amount of disorder.

The lower and higher temperature spectra look rather featureless. However, upon

considering their di�erence it becomes apparent an enhancement of the spectrum at

frequencies of the order of 0:5eV , and more notably, the emergence of a low frequency

feature that extends to � 0:15eV . We will argue below that this behavior can be

accounted by the Hubbard model treated in mean �eld theory in the metallic state.

In �gure 7.6 we present the results for the optical spectrum obtained from 2OPT for

two di�erent values of the temperature. The repulsive interaction is set to U = 2:1D

that places the system in the correlated metallic state. The �rst feature that becomes

clear from this �gure is that, at least, the qualitative aspect of the physics is already

captured. As the temperature is lowered, we observe both, the enhancement of the

incoherent structures at frequencies of the order

U

2

to U , and the rapid emergence a

feature at the lower end of the frequency spectrum. This behavior is consistent with

the experimental data on V

2

O

3

shown in �gure 7.5 [10].

The lower temperature optical spectrum displays various contributions: i) A narrow

low frequency feature in the optical spectrum that is due to excitations within the many
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body quasiparticle resonance. ii) At frequencies of order

U

2

and U , two broad incoherent

features also emerge due to excitations between the Hubbard bands and the central

resonance, and between the Hubbard bands respectively.

The interesting prediction of the model is the temperature dependence of the low

frequency feature. We expect a transfer of spectral weight to the lower frequencies,

as the temperature is decreased. This should occur at a scale T

coh

� 200K which we

have introduced in chapter 5. It has the physical meaning of de�ning a temperature

below which the Fermi liquid description applies, and the quasiparticle resonance in the

density of states is formed.

As we have done previously for the insulator, we can consider the integrated spectral

weight. We �nd a valueW � 1100

ev


cm

which is consistent with the experimental results,

although somewhat lower. We believe that this is possibly due to the presence of higher

energy bands that are not included in the present treatment.

To end the discussion of the metallic state we would like to brie
y consider the

question of the slope of the speci�c heat 
. The experiments show an unusually big value

for this quantity. The need to account for this observation imposes further constraints

for the model. 
 is related to the Drude part of the conductivity since both quantities

depend on the renormalized mass. The slope of the speci�c heat, within the present

scheme, is given by 
 =

1

zD

3

mJeV

molK

2

. Experimentally, it has been measured as function

of di�erent parameters and a remarkable high value is always found. For 0:08%Ti

substitution 
 � 40

mJ

molK

2

, while for a pressure P = 25Kbar in the stoichiometric

compound 
 � 30

mJ

molK

2

, and with vanadium de�ciency in a range of y = 0:013 to

0:033, the value is 
 � 47

mJ

molK

2

[20, 21, 22]. We �nd that the choice U = 2:1D above,

corresponds to z � 0:3 and gives 
 � 30

mJ

molK

2

which is in good agreement with the

experimental �ndings.

Thus, it turns out that this framework naturally incorporates the physics of both

the lower end of the optical conductivity spectrum, and the anomalously big values

of the slope of the speci�c heat 
, as consequence of the appearance of a single small

energy scale, the renormalized Fermi energy �

�

F

= zD.
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7.4 Anderson lattice model

We would like now to turn to the second model, the Anderson lattice, and consider its

results in the light of the recent experiments in Kondo insulators [11, 12]. In the non-

interacting limit U = 0, the e�ect of the localized orbital is to split the conduction band.

The system becomes a hybridization band insulator, with a direct gap proportional to

the magnitude of the hybridization V . In this limit, the optical conductivity exhibits

a sharp gap followed by an incoherent absorption feature of width given also by V ,

�(!) � �(! � 2V )(!

2

� 4V

2

)

1=2

=!

4

. This behavior is due to the crossing between the

conduction p-band and the non-dispersive d or f-band.

As the interaction on the localized orbital is switched on, di�erent approaches to

this problem (e.g. perturbation theory, NCA, large N, etc. [23]) indicate that a low

energy scale emerge due to the Kondo e�ect T

K

� exp(�

UD

V

2

). The narrow band of

quasiparticles, characterized by T

K

, also opens a gap due to the hybridization. Thus,

the physics remains basically identical to the non-interacting case, with the exception

that the hybridization is renormalized to a smaller value V

�

and

V

�2

D

� T

K

.

The consequences for the optical conductivity, are that as the temperature becomes

of the order of T

K

� V

�

� D, the Kondo quasiparticles are destroyed and the gap

is �lled by spectral weight which comes mainly from the higher frequency part of the

incoherent spectrum. This picture is consistent with the experimental results [11, 12,

24].

The present mean �eld theory approach is in agreement with this basic picture but

contains in addition the incoherent part of the excitation spectrum which cannot be

described in terms of quasiparticles [14]. In addition it allows us to study quantitatively

the evolution of the spectra as a function of temperature. Here we apply this method

to the optical conductivity of heavy fermions.

In �gure 7.7 we plot the results for the optical conductivity spectra of the Anderson

lattice for di�erent values of the interaction U , keeping the hybridization V �xed.

We clearly observe how the optical gap is renormalized by the correlation e�ects in

agreement with the previous discussion. The inset shows that the result

V

�2

D

� T

K

is
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Figure 7.7: The optical conductivity spectra of the Anderson lattice for values of the

interaction U = 0:5; 1; 2; 3 (right to left), keeping the hybridization V = 0:25 �xed. The

inset shows the gap �

c

� V

�

and the indirect gap from the local density of states � T

K

for V = 0:6. The slopes of these curves give V

�

2

=D � T

K

in the strong correlation

region.

indeed valid in the region where the correlations are strong. However, the exponential

dependence of V

�

and T

K

with U , becomes power-law with exponents �1 and �2

respectively. The results are obtained at T = 0 by the 2OPT calculation. As mentioned

above this approximation reproduces remarkably well the essentially exact results of the

ED method. A detailed comparison will be presented elsewhere.

A point worth mentioning is that the size of the gap �

c

, within the present ap-

proach, is basically given by V

�

(the direct gap). This is in contradiction to the results

that are expected in a large N calculation if contributions beyond the mean �eld are

considered [25]. In that case, it is argued that higher order terms would produce optical

excitations down to the scale of the indirect gap T

K

. The argument follows from the

assumption that the results for the metallic phase can be extended into the insulating

one. The validity of this assumption is unclear. In the case considered here, however,

the contributions to the spectral weight at the scale of the indirect gap seem to be
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strongly suppressed.

We would like to consider now the e�ect of the temperature in the transfer of optical

weight. In the experimental results for the optical conductivity on Ce

3

Bi

4

Pt

3

and FeSi

[11, 12] that we reproduce in �gure 7.8, charge-gaps of size �

c

� 400K and 1500K are

observed. However, they start to form at the much lower temperatures T

K

� 100K

and 200K respectively. They �nally become depleted at T � 25K with most of the

spectral weight being transferred to frequencies much bigger than �

c

. Thus, we see

that in these materials, T

K

is roughly �ve times smaller than �

c

and the temperature

were the gap is depleted is roughly �ve times smaller that T

K

.

Figure 7.9 show that the Anderson lattice in mean �eld theory can account for

some aspects of the experimental observations. The results are obtained for U = 3 and

V = 0:25. The charge-gap indeed starts to form at a temperature much lower than its

size (

�

c

T

� 4), and it becomes depleted at an even much lower temperature (

�

c

T

� 20).

The only aspect that is not fully consistent with the observation is that this model

shows that most of the spectral weight is being transfer to frequencies just of the order

of the charge gap. In the experiments the transfer of weight to this energy range is

smaller.

a�ected by surface defects, especially strain

To make a meaningful comparison with the experimental data we have added the

e�ects of disorder by putting a lorentzian distributed random site energy on the con-

duction electron band with width � = 0:05. The results are shown in the inset of �gure

7.9. It is clear from the �gure that the addition of disorder brings our results to a much

closer agreement with the experimental results. It is also worth mentioning that we

observe that increasing the disorder reduces the temperature T

�

.

Although the dependence of the these results on the details of the density of states

of the conduction band is a priori an important issue, our results seem to indicate that

it is possibly a minor e�ect. This is mostly due to the observation that the shape of

the optical spectra remain basically invariant (up to a rescaling) as the interaction U

is increased, even to very high values. In that case the model approaches the atomic

limit and the details of the shape of the conduction band should become irrelevant.
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Figure 7.8: The optical conductivity spectra �(!) in [


�1

cm

�1

] for the Kondo in-

sulators Ce

3

Bi

4

Pt

3

and FeSi. The higher �gure corresponds to Ce

3

Bi

4

Pt

3

at

T = 25; 50; 75; 100; 300K (from below). The lower �gure corresponds to FeSi at

T = 20; 100; 150; 200; 250K (from below).
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Figure 7.9: The optical conductivity for the Anderson model at T = 0:001 (bold),

0:005; 0:01; 0:02 (dotted), 0:03 (thin). The interaction U = 3 and V = 0:25. Inset: The

same quantity at T = 0:001 (bold), 0:005; 0:01; 0:02 (dotted), 0:03 (thin) with lorentzian

random site disorder of width � = 0:005.

Finally we would like to consider a last but important issue, the magnetic response.

Since the localized spins dynamics is solely controlled by the Kondo scale T

K

and

magnetic susceptibility data is available, it is interesting to consider it under the light

of the results of the present approach. It is currently argued from experiments [24] that

the fact that the spin and charge-gap are generally found to be of the same order of

magnitude can be understood in terms of a simple hybridization band insulator with a

single small energy scale T

K

. However, a closer look to the experimental data indicates

that the spin-gap is consistently smaller than the charge-gap. In particular, for the

compounds that we are considering above we see that the charge-gap is at least two

times bigger than the spin-gap in Ce

3

Bi

4

Pt

3

, while for FeSi it di�ers by as much as

approximately a factor of four [11, 24]. This observation may be an indication that the

interpretation mentioned above is, perhaps, not correct.

The mean �eld results for the frequency dependent local spin-spin correlation func-

tion suggest a di�erent interpretation of the energy scale controlling the optical gap. We

�nd that the spin-gap is greater than the indirect charge gap (which is also controlled

by T

K

), by a factor of order unity. The size of the indirect gap is obtained from the local
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Green Functions, and the spin-gap is measured from the position of the lowest energy

pole on the spin-spin correlation function obtained in the ED procedure. This result,

when considered in regard to the observation made before, seems to be in con
ict with

the interpretation that the lowest frequency feature in the optical conductivity spectra

is controlled by the Kondo scale (indirect gap). On the other hand, the experimen-

tal situation can be consistently accommodated within the present theory since the

charge-gap in the optical spectra is given by the direct gap (�

c

� V

�

; V

�

> T

K

).

Figure 7.10 shows the local spin-spin and density-density correlation function of both

the conduction and the localized electrons. As expected, the f-electron contribution to

the magnetic response bigger and correspondingly will make up for most of the signal

experimentally measured. The optical conductivity is also plotted for the same value

of the parameters, this results should be compared to the corresponding in ref. [11].

In the inset we plot �

s

, the indirect gap �

ind

and �

c

as a function of the interaction

U for a �xed value of the hybridization. The �rst corresponds to the position of the

lowest pole of the correlation function and the second to the gap in the single particle

spectrum, obtained from the ED calculation with 8 sites. The latter corresponds to

the the frequency where the sharp edge in the optical spectrum calculated by 2OPT

reaches half-height. We �nd that �

c

is consistently larger than �

s

, and that �

s

is

somewhat smaller than �

ind

. As expected when U = 0, �

s

= �

ind

, but as U increases

�

s

�

ind

becomes smaller than unity and approaches the value 0:5 at U � 2. We emphasize,

once more, that both the indirect and direct gaps are small energy scales that go to

zero as the interaction U is increased. They are correspondingly given by the Kondo

scale T

K

and V

�

, and are related by T

K

�

V

�2

D

, thus they do not vanish in the same

manner.

7.5 Conclusions

In this chapter we have illustrated how the mean �eld theory, that becomes exact in

the limit of large dimensions, can be used to study the physics of systems where the

local interactions are strong and play a major role. In particular we have demonstrated

that the Hubbard and the Anderson lattice treated in the mean �eld approximation can
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Figure 7.10: The local spin-spin (bold) and density-density (thin) susceptibility from

8 sites ED. The optical conductivity from 2OPT (dotted). The parameters are U = 1

and V = 0:2. The inset shows the direct gap as obtained form 2OPT (upper dotted

line), the indirect gap (lower dotted line) and the spin gap (solid line) from 8 sites ED.

The hybridization is V = 0:2.
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account for the main features of the temperature dependent transfer of spectral weight

in the optical conductivity spectra. In the case of V

2

O

3

we found that the theory is

able to account semi-quantitatively for the conductivity results in both the metallic

and insulating states. In the latter, the theory seems to provide further insights in the

role of the magnetic frustration. For the Kondo insulators, although the comparison

was not carried to such detail, we have seen most of the qualitative features of the

experimental results been naturally realized within the present approach. The remain-

ing discrepancies would probably have to wait until a systematic expansion around the

mean �eld theory is developed.

We also stress that this approach can easily incorporate more realistic band structure

density of states and more complicated unit cells. This extensions would allow for a

more precise quantitative description of the physical systems.
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Chapter 8

Conclusions

In this thesis we have consider at length the behavior of systems of correlated electrons

in the limit of large dimensionality. We have seen how the physics that results from the

considered models not only retains most of the features commonly encounter in �nite

dimensional formulations, but has provided us with valuable new insights that were not

possible to obtained before.

We have been able to take full advantage from the mapping to lattice models onto

impurity problems to develop a set of powerful numerical tools that enabled us to solve

the models in great detail.

We have combined the numerical results with analytic arguments to present a de-

tailed solution of the Hubbard model and considered its relevance in regard of the

experimental results on transition metal oxides. In particular, we have found that

the model is able to capture some fundamental aspects of the physics observed in the

compound V

2

O

3

, which is considered as a prototype of system with a Mott transition.

In chapters 3 and 4, we demonstrated the existence of a metal-insulator transition in

the Hubbard model at an intermediate value of the interaction U in the half-�lled case

and in the absence of magnetic order. One most intersting aspect that the solution dis-

played is that it was able to make contact within a single framework with two important

classical results for the model: the work of Hubbard that starts from the atomic limit,

and the Brinkman Rice approach from the metallic side considering the Gutzwiller vari-

ational wavefunction. These traditional approaches hinted towards the existence of a

Mott transition at an intermediate value of the Coulomb repulsion, which became fully

realized in the large dimensional limit. From the mapping of the lattice model onto an
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Anderson impurity model we obtained interesting insights on the nature of the tran-

sition. In particular, we showed that as the the interaction U reaches a critical value,

the narrow quasiparticle feature at the Fermi energy that de�ned the metallic state

disappears. This was due to a divergence in the inverse of the self-consistent Weiss �eld

G

0

, which translated into the vanishing of the e�ective hybridization of the impurity

model. The Kondo model obtained from the Anderson model via the Schrie�er-Wol�

transformation then 
ows to zero coupling at low energies, and the self-energy corre-

spondingly develops a pole singularity at zero frequency. This has as a consequence the

opening of a Mott-Hubbard gap in the one particle spectrum.

In chapter 5 and 6 we consider the solution of the Hubbard model in a greater

perspective. Various early ideas could be put in perspective. In particular, for the

frustrated lattice, we established the coexistence of a metallic and insulating solution

in a �nite region of the (U; T ) plane. Within this region, there is a �rst order bound-

ary where the two very di�erent solutions cross in free energy, and several quantities

experience a jump: the speci�c heat, the susceptibility, the number of doubly occupied

sites, etc. The �rst order line has a negative slope indicating that the paramagnetic

insulating phase has a higher entropy than the metallic phase. The line ends in an

interesting second order critical point, above it there is a smooth crossover between a

metallic and an insulating regime.

We also made more precise the connection between our approach and the Brinkman

Rice scenario for the metal insulator transition, as well as with the complementary work

of Hubbard.

In particular, regarding the �rst, we found similar behavior of the quasiparticle

weight and the compressibility that vanish as (1 �

U

U

c

) close to the transition. How-

ever, the study of the double occupation and the spin susceptibility revealed that the

variational approached fails to produce non-singular corrections. In the actual solution,

these quantities are �nite and change smoothly at the metal-insulator transition.

In respect to the second, we found a natural scenario for the destruction of the

insulating solution with the continuous narrowing of the gap of the insulator. This is

a realization of the original Hubbard scenario for the metal insulator transition driven
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by the closing of the upper and lower Hubbard bands.

The question of the magnetic phases was also considered. On non-frustrated, bi-

partite lattices, we found that the N�eel temperature is much higher than the metal

insulator transition temperature, making the transition between small and large U con-

tinuous. In this case, the physics can be understood in terms of the magnetic long range

order and a smooth crossover within the broken symmetry phase. The Mott transition

is irrelevant, vindicating Slater's point of view of a transition driven by the doubling of

the lattice parameter.

Upon consideration of a partial degree of frustration, in addition, at low temper-

atures there is a �rst order line between an antiferromagnetic metal and an antifer-

romagnetic insulating phase. This is possibly relevant to the experimental results of

Carter et al. [1]. In this case, the phase diagram has the same topology and even the

same scale as the experimentally observed phase diagram of V

2

O

3

[2, 3, 1].

In the last chapter we consider the important issue of the optical conductivity.

This subject has acquired renewed relevance in regard of the recent improvement of

the quality of the experimental data in various strongly correlated systems [4] [5, 6].

We have demonstrated that the Hubbard and the Anderson lattice models, treated

in the present mean �eld approximation, can account for the main features of the

temperature dependent transfer of spectral weight in the optical conductivity spectra.

In the case of V

2

O

3

we found that the theory is able to account semi-quantitatively for

the conductivity results in both the metallic and insulating states. In the latter, the

theory seems to provide further insights in the role of the magnetic frustration. For

the Kondo insulators, although the comparison was not carried to such detail, we have

seen most of the qualitative features of the experimental results been naturally realized

within the our approach.

In closing we would like to point out that the mapping of lattice models onto impu-

rity problems was a key ingredient in paving the way for the development of an arsenal of

numerical tools. This, in combination with the ever increasing computational power of

today's machines allowed for a new assault to the strongly correlated electron problem.

As a result of our study we learned important lessons. The limit of large dimensionality
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has revealed itself as a very physical one providing fresh new insights into relatively old

questions. In particular, the results presented in this thesis lead us to conclude that

the Hubbard model in this limit is able to account for some fundamental basic features

that are experimentally observed in the V

2

O

3

system. A further degree of quantitative

agreement will probably have to wait until a systematic expansion around the mean

�eld theory is developed.
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Appendix A

Source codes

A.1 Quantum Monte Carlo

c Quantum Monte Carlo simulation for the oo-d Hubbard

c Model on a Bethe lattice.

c This code accepts any chemical potential.

c Produces the local Green functions, the Selfenergy,

c and the local spin-spin correlation function.

c Has to be linked to IMSL

c#########################################################

parameter(L=16384,LI=32)

implicit real*8(a-h,o-z)

double complex xi,d2,one,ome

double complex fg0(2*L),fg0f(2*L),fg0b(2*L)

double complex fg0t(2*L)

double complex fgb(2*L),fgf(2*L),self(2*L),self0(2*L)

double precision g0(-L:L),g(-L:L),dumg(2*L),dumg0(2*L)

double precision dumg1(2*L),dumg01(2*L)

double precision g00(-LI:LI),gtmp(-LI:LI)

c******* output data **********************************************

c fort.10=G0 in imaginary time

c fort.11=G in imaginary time

c fort.30=Imaginary part of Selfenergy

c fort.31=Real part of Selfenergy

c fort.40=Imaginary part of G0

c fort.41=Real part of G0

c fort.60=Imaginary part of G

c fort.61=Real part of G

c fort.90=particle occupation

c fort.91=local spin-spin correlation function

c fort.92=acceptance rate and number of negative determinants found

c******* input data (fort.50) **************************************

c LI=the number of time slices for the impurity subroutine

c dtauI=the imaginary time slice step for the impurity subroutine

c L=the number of time slices for the self-consistency part

c dtau=the imaginary time slice step for the self-consistency part
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c u=interaction strength

c d=half-bandwidth

c nloop=number of iteration loops

c dmu=increment for the mu loop

c nmu=number of mu loops

c xmu0=initial mu (chemical potential, mu=0 at half-filling)

c NOTE: we introduce a thinner time discretization to improve the

c high frequency cut-off. dtau and L are defined such that:

c dtau*L=dtauI*LI=beta

c this is equivalent to the introduction of attenuation coefficients

c in the Fourier transforms.

c L must be multiple of LI

c if1=0 calculates the spin-spin correlation function

c if1=1 does not

read(50,*)dtauI,u

read(50,*)d,nloop,dmu,nmu,xmu0,if1

c*******define some constants*******

d2=d**2*(1.,0.)

dtau=dtauI*float(LI)/float(L)

pi=3.141592653589793

xi=(0.,1.)

one=(1.,0.)

beta=dtau*float(L)

plt=pi/float(L)/dtau

dli=1.d0/float(L)/dtau

dth=dtau/2.d0

do 301 i=1,2*L

fg0(i)=(0.,0.)

301 continue

c*******************************************************************

c******** mu loop starts here **********************************

do 432 imu=1,nmu

xmu=xmu0+dmu*float(imu-1)

c******* here starts the iteration *****************************

do 103 iloop=1,nloop

c***********************************************

c fg0(i) is g0 in Matsubara space

c fgf(i) is g in Matsubara space

c self(i) is the selfenergy in Matsubara space

c***********************************************
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c**set a flag for the final loop for the impurity subroutine**

if0=1

if(iloop.eq.nloop)if0=0

c**in first loop g0 is initialized**

if(imu.eq.1.and.iloop.eq.1)then

c use mu=mu/4 to construct a seed with a non-zero particle number

c (is a trick to have a reasonable starting seed)

do 101 i=1,L

ome=xi*plt*(2.*float(i)-1.-float(L))

ome=ome-xmu/4.

sq=dimag(zsqrt((ome)**2-d**2))

w=dimag(ome)

sig=sq*w/dabs(sq*w)

fg0(2*i)=2./(ome+sig*(zsqrt((ome)**2-d**2)))

101 continue

else

do 102 i=1,L

ome=xi*plt*(2.*float(i)-1.-float(L))

ome=ome-self(2*i)-xmu

sq=dimag(zsqrt((ome)**2-d**2))

w=dimag(ome)

sig=w*sq/dabs(w*sq)

fgf(2*i)=2./(ome+sig*(zsqrt((ome)**2-d**2)))

102 continue

do 303 i=1,2*L

fg0(i)=(0.,0.)

303 continue

do 104 i=1,L

fg0(2*i)=one/(one/fgf(2*i)+self(2*i))

104 continue

endif

call dfftcb(2*L,fg0,fg0t)

sg=-1.

do 82 i=1,2*L

sg=sg*(-1.)

fg0t(i)=sg*dli*fg0t(i)

82 continue

do 83 i=1,L

fg0b(i)=fg0t(i+L)
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83 continue

do 84 i=L+1,2*L

fg0b(i)=fg0t(i-L)

84 continue

c******************************

c fg0b(i) is g0 in time space

c******************************

c take the real part for the impurity subroutine input

do 811 i=1,2*L

g0(i-L-1)=real(fg0b(i))

811 continue

c**************************************

c trick for the discontinuity in g(tau)

g0(0)=g0(0)+.5

g0(-L)=-g0(0)

c**************************************

c extract LI points from the L point GF

call extract(g0,g00,L,LI)

c************************************************

c do the QMC impurity simulation

c g00 is the input non-interacting GF

c gtmp is the output interacting GF

call impurity(g00,gtmp,dtauI,u,if0,if1,xmu)

c*************************************************

c get the L point GF from the L point one by interpolation

call interp(gtmp,g,L)

call interp(g00,g0,L)

c*******************************************

c "undoes" the trick for the discontinuity of g(tau)

g(0)=g(0)-.5

g0(0)=g0(0)-.5

g(-L)=-g(0)

g0(-L)=-g0(0)

c*******************************************
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c********************************

c fgb(i) is g in time space

c********************************

do 812 i=1,2*L

fgb(i)=g(i-L-1)*(1.,0.)

fg0b(i)=g0(i-L-1)*(1.,0.)

812 continue

call dfftcf(2*L,fg0b,fg0f)

call dfftcf(2*L,fgb,fgf)

c** get the selfenergy **

do 304 i=1,2*L

self0(i)=(0.,0.)

304 continue

sg=-1.

do 85 i=1,2*L

sg=sg*(-1.)

fg0f(i)=dth*sg*fg0f(i)

fgf(i)=dth*sg*fgf(i)

if(mod(i,2).eq.0)then

self0(i)=one/(fg0f(i))-one/(fgf(i))

end if

85 continue

do 409 i=1,L

self(i)=self0(i+L)

dumg(i)=dimag(fgf(i+L))

dumg0(i)=dimag(fg0f(i+L))

dumg1(i)=real(fgf(i+L))

dumg01(i)=real(fg0f(i+L))

409 continue

do 410 i=L+1,2*L

self(i)=self0(i-L)

dumg(i)=dimag(fgf(i-L))

dumg0(i)=dimag(fg0f(i-L))

dumg1(i)=real(fgf(i-L))

dumg01(i)=real(fg0f(i-L))

410 continue

c******print output************

if(iloop.eq.nloop)then

c** g0, g, and selfenergy in Matsubara space **

write(30,*)'"mu=',real(xmu),'"'
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write(31,*)'"mu=',real(xmu),'"'

write(40,*)'"mu=',real(xmu),'"'

write(41,*)'"mu=',real(xmu),'"'

write(60,*)'"mu=',real(xmu),'"'

write(61,*)'"mu=',real(xmu),'"'

do 106 i=L-LI*2,L+LI*2,2

si=dimag(self(i))

si1=real(self(i))

xa=real(pi/beta*float(i-L-1))

write(30,*)real(xa),real(si)

write(31,*)real(xa),real(si1)

write(40,*)real(xa),real(dumg0(i))

write(41,*)real(xa),real(dumg01(i))

write(60,*)real(xa),real(dumg(i))

write(61,*)real(xa),real(dumg1(i))

106 continue

write(30,*)' '

write(31,*)' '

write(40,*)' '

write(41,*)' '

write(60,*)' '

write(61,*)' '

c** g0 and g in imaginary time **

write(10,*)'"mu=',real(xmu),'"'

write(11,*)'"mu=',real(xmu),'"'

do 10 i=-LI,LI

write(10,*)real(i*dtauI),real(g00(i))

write(11,*)real(i*dtauI),real(gtmp(i))

10 continue

write(10,*)' '

write(11,*)' '

c** occupation **

write(90,*)real(xmu),real(-gtmp(0))+.5

endif

c*******close iteration loop*********************************

103 continue

c*******close mu loop****************************************

432 continue

stop

end

c#########################################################

c#########################################################

c this subroutine takes a GF in time with L points spaced

c at dtau, and extracts LI points spaced at dtauI for the
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c impurity subroutine. Is the inverse of the subroutine

c interp

subroutine extract(g0,g00,L,LI)

implicit real*8(a-h,o-z)

double precision g0(-L:L),g00(-LI:LI)

g00(0)=g0(0)

nrat=L/LI

do 20 i=1,LI

g00(i)=g0(i*nrat)

20 continue

do 21 i=1,LI

g00(-i)=-g00(LI-i)

21 continue

return

end

c###########################################################

c this subroutine takes a GF in time with LI points spaced

c at dtauI, and interpolates to produce L points spaced at

c dtau. Is the inverse of the subroutine extract

subroutine interp(gtmp,g,L)

implicit real*8(a-h,o-z)

parameter(LI=32,LI1=32+1)

integer nintv

double precision gtmp(-LI:LI),g(-L:L)

double precision xa(LI1),ya(LI1)

double precision break(LI1),cscoef(4,LI1)

external dcsint,dcsval

c***LI1=LI+1******

do 10 i=1,LI1

xa(i)=float(i-1)/float(LI)

ya(i)=gtmp(i-1)

10 continue

call dcsint(LI1,xa,ya,break,cscoef)

c***assign g(i)*****

nintv=LI

do 20 i=1,L

x=float(i)/float(L)

g(i)=dcsval(x,nintv,break,cscoef)

20 continue
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g(0)=gtmp(0)

do 40 i=1,L

g(-i)=-g(L-i)

40 continue

return

end

c############################################################

c this subroutine takes a non-interacting GF and solves the

c impurity problem producing the interacting GF on output

subroutine impurity(g0,g,dtau,u,if0,if1,xmu)

implicit real*8(a-h,o-z)

parameter(L=32)

double precision gup(L,L),gdw(L,L),v(L)

double precision g0(-L:L),del(L,L),g(-L:L)

double precision gstup(L,L),gstdw(L,L)

double precision xgu(-L:L),xgd(-L:L),xg(-L:L),xga(-L:L)

dimension xs(0:L)

dimension s(2*L,3000)

c*********************************************************

real rnunf

external rnset,rnunf

c****parameters******

c nsweep=number of sweeps of the L spins

c ndirty=number of dirty updates (L**2 operations) between

c clean updates (L**3 operations)

c ncor=autocorrelation length

c nwarm=number of warm-up sweeps

c iseed=seed for the RNG

c polar= average polarization of the initial spins

c********************

iseed=123457

polar=.5

nsweep=3500

ndirty=50

ncor=2

nwarm=500

do 11 i=1,L

do 12 j=1,L

del(i,j)=0.

12 continue

del(i,i)=1.

11 continue

do 800 i=1,L

do 800 j=1,L

gstup(i,j)=0.

gstdw(i,j)=0.
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800 continue

z=dtau*u/2

z=exp(z)

xlam=log(z+sqrt(z**2-1.))

if(u.eq.0.)u=.001

xxx=1./(1.-exp(-dtau*u))

call rnset(iseed)

g0(-L)=-g0(0)

c**generates the initial spin configuration with**

c**average polarization = pol **

call initial(xlam,v,polar,L)

call gnewclean(gup,v,g0,del,1.d0)

call gnewclean(gdw,v,g0,del,-1.d0)

c***parameters*************

c kx= counts # of measurements

c irr= counts # of accepted flips (after the warm-up)

c nrat= counts # of negative determinants encountered

kx=0

irr=0

nrat=0

c**************************

c********start measurement loop***************************

c***************************

c does a total of nsweeps

c a clean update comes after

c ndirty dirty updates

c***************************

do 2 k=1,nsweep

kk=mod(k,ndirty)

kcor=mod(k,ncor)

do 5 j=1,L

dv=2.*v(j)

c****calculates the determinant ratio***********

ratup=1.+(1.-gup(j,j))*(exp(-dv)-1.)

ratdw=1.+(1.-gdw(j,j))*(exp(dv)-1.)

rat=ratup*ratdw

if(rat.lt.0.)then

nrat=nrat+1

end if

rat=rat/(1.+rat)
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r=rnunf()

if(rat.gt.r)then

if(k.gt.nwarm)then

irr=irr+1

end if

v(j)=-v(j)

if(kk.eq.0)then

c makes a clean calculation of g

call gnewclean(gup,v,g0,del,1.d0)

call gnewclean(gdw,v,g0,del,-1.d0)

goto 100

endif

c makes a dirty calculation of g

call gnew(gup,v,j,del,1.d0)

call gnew(gdw,v,j,del,-1.d0)

endif

100 continue

5 continue

c*** store the measurements*****************

if(kcor.eq.0.and.k.gt.nwarm)then

kx=kx+1

if(kx.ge.3000.and.if1.eq.0)then

print*,'increase the size of the spin measurement storage!!'

print*,'is the size of the matrix xs in the impurity routine'

stop

endif

c******store the GF*********

do 333 ix=1,L

do 333 jx=1,L

gstup(ix,jx)=gstup(ix,jx)+gup(ix,jx)

gstdw(ix,jx)=gstdw(ix,jx)+gdw(ix,jx)

333 continue

if(if0.eq.0.and.if1.eq.0)then

c***store the Ising spins*****

do 557 iq=1,L

s(iq,kx)=v(iq)/abs(v(iq))

s(iq+L,kx)=s(iq,kx)

557 continue

endif

endif

c********************************************

c********end measurement loop*****************************

2 continue
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c statistics for the acceptance rate

write(92,*)'acc. rate:',real(float(irr)/float((nsweep-nwarm)*L))

c number of negative determinants

write(92,*)'# of neg det:',nrat

c**** get g(-L:L) by wrapping-around and *******

c**** averaging the matrices up & dw (PM case) *******

kxmax=kx

c*** normalize the sum of the matrices ***

do 334 ix=1,L

do 334 jx=1,L

gstup(ix,jx)=gstup(ix,jx)/float(kxmax)

gstdw(ix,jx)=gstdw(ix,jx)/float(kxmax)

334 continue

c**** wrap-around ********

do 601 j=0,L-1

xgd(-j)=0.

xgu(-j)=0.

do 602 i=1,L-j

xgd(-j)=xgd(-j)+gstdw(i,i+j)

xgu(-j)=xgu(-j)+gstup(i,i+j)

602 continue

xga(-j)=.5*(xgu(-j)+xgd(-j))

601 continue

do 604 j=1,L-1

xgd(j)=0.

xgu(j)=0.

do 605 i=1,L-j

xgd(j)=xgd(j)+gstdw(i+j,i)

xgu(j)=xgu(j)+gstup(i+j,i)

605 continue

xga(j)=.5*(xgu(j)+xgd(j))

604 continue

do 606 i=1,L-1

xg(i)=(xga(i)-xga(i-L))/float(L)

xg(i-L)=-xg(i)

606 continue

xg(0)=xga(0)/float(L)

xg(-L)=-xg(0)

c**the end point for the interpolation routine**

xg(L)=1.-xg(0)

g0(L)=1.-g0(0)

c***********************************************
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do 556 i=-L,L

g(i)=xg(i)

556 continue

if(if0.eq.0.and.if1.eq.0)then

c****get the spin susceptibility***************

c***from the ising fields****

xsa=0.

xs2=0.

do 587 ii=0,L

xs(ii)=0.

587 continue

do 558 iq=1,kxmax

do 559 itq=0,L-1

do 560 il=1,L

itk=il+itq

xs(itq)=xs(itq)+s(itk,iq)*s(il,iq)

xsa=xsa+s(il,iq)

xs2=xs2+s(il,iq)**2

560 continue

559 continue

558 continue

write(91,*)'"xmu=',real(xmu),'"'

do 561 ii=1,L-1

xs(ii)=xxx*xs(ii)/float(kxmax*L)

write(91,*)float(ii)/dtau/float(L),xs(ii)

561 continue

write(91,*)' '

endif

c*****************************************************

return

end

c########################################################

c dirty update

c this subroutine calculates the new inverse matrix in L**2 operations

c using the Sherman-Morrison formula



149

subroutine gnew(g,v,j,del,xflag)

implicit real*8(a-h,o-z)

parameter(L=32)

double precision g(L,L),v(L),del(L,L),d(L,L)

do 1 i1=1,L

do 2 i2=1,L

dv=xflag*2.*v(j)

a=1.+(1.-g(j,j))*(exp(dv)-1.)

b=(g(i1,j)-del(i1,j))*(exp(dv)-1.)

d(i1,i2)=g(i1,i2)+b/a*g(j,i2)

2 continue

1 continue

do 3 i1=1,L

do 4 i2=1,L

g(i1,i2)=d(i1,i2)

4 continue

3 continue

return

end

c##################################################

c clean update

c this subroutine calculates the new inverse matrix in L**3 operations

c by standard method

subroutine gnewclean(g,v,g0,del,xflag)

implicit real*8(a-h,o-z)

parameter(L=32)

double precision g(L,L),v(L),b(L,L),binv(L,L)

double precision g0(-L:L),del(L,L)

do 1 i=1,L

do 2 j=1,L

dv=xflag*v(j)

b(i,j)=del(i,j)-(g0(i-j)-del(i,j))*(exp(dv)-1.)

2 continue

1 continue

call dlinrg(l,b,L,binv,L)

do 3 i1=1,L

do 4 i2=1,L

xdum=0.

do 5 i=1,L

xdum=xdum+binv(i1,i)*g0(i-i2)

5 continue

g(i1,i2)=xdum

4 continue

3 continue

return

end

c####################################################

c this subroutine initialize the vector v of Ising fields
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c with an average polarization given by polar

subroutine initial(xlam,v,polar,L)

implicit real*8(a-h,o-z)

double precision v(L)

real rnunf

external rnset,rnunf

iseed=765437

call rnset(iseed)

do 1 i=1,L

s=1.

r=rnunf()

if(r.gt.polar) s=-1.

v(i)=xlam*s

1 continue

return

end

c########################################################

c########################################################
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A.2 2

nd

Order Perturbation Theory (Matsubara space)

c 2nd Order Perturbation Theory (a la Yamada Yosida)

c for the oo-d Hubard Model in Matsubara space.

c Produces the local Green function and the Selfenergy.

c Also calculates the kinetic T, potential V,

c and total E energies, and the double occupation.

c Has to be linked to IMSL

c#########################################################

parameter(L=16384)

implicit real*8(a-h,o-z)

double complex xi,ep,om,om1,om2,d2,one,root

double complex fg0(2*L),fg0b(2*L)

double complex fg0t(2*L),fg(2*L)

double complex sefb(2*L),seff(2*L),self(2*L)

c******* output data **********************************************

c fort.30=Imaginary part of Selfenergy

c fort.60=Imaginary part of G

c fort.80=kinetic energy T as a function of temperature

c fort.81=potential energy V as a function of temperature

c fort.82=total energy E as a function of temperature

c fort.83=double occupation as a function of temperature

c fort.90=kinetic energy T as a function of U

c fort.91=potential energy V as a function of U

c fort.92=total energy E as a function of U

c fort.93=double occupation as a function of U

c******* input data (fort.70) **************************************

c L=number of frequency points

c t0=initial temperature

c u0=initial interaction strength

c dt=step for the temperature loop

c du=step for the interaction loop

c nl=number of temperature/interaction loops

c d=half-bandwidth

c nloop=number of iteration loops

c nl0=number of final loops to be printed-out

c imet=selects initial seed (1=metallic, 0=insulating)

c isie=flag for computation of energies (isie=1 does it, isie=0 does not)

c itu=selects type of loop (itu=0 U loop, itu=1 temperature loop)

read(70,*)t0,u0,dt,du,nl

read(70,*)d,nloop,nl0,imet,isie,itu

c*******define some constants*******
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ep=.0001*(1.,0.)

d2=d*(1.,0.)

d2=d2**2

pi=3.141592653589793

xi=(0.,1.)

one=(1.,0.)

u=u0

t=t0

do 301 i=1,2*L

fg0(i)=(0.,0.)

fg(i)=(0.,0.)

301 continue

c*******************************************************************

c*******temperature/U loop starts here***********************

do 222 il=1,nl

if(itu.eq.1)then

t=t0+dt*(float(il-1))

else

u=u0+du*float(il-1)

endif

dtau=1./t/float(L)

binv=1./dtau/float(L)

c******** the iteration loop starts here ***********************

do 103 iloop=1,nloop

c****g0 is the non interacting GF in real frequency space******

c**on first loop compute a seed (imet=1 metallic, imet=0 insulating)

if(iloop*iu*it.eq.1)then

do 101 i=1,L

om=xi*(2.*float(i)-1.-float(L))*pi*binv

fg0(2*i)=one/om

if(imet.eq.1)then

root=cdsqrt((om+ep)**2-d2)

sig=1.

if(dimag(om)*dimag(root).lt.0.)sig=-1.

fg0(2*i)=2.*one/(om+(cdsqrt((om+ep)**2-d2)))

endif

101 continue

else

do 102 i=1,L
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om=xi*(2.*float(i)-1.-float(L))*pi*binv

om1=om+self(2*i)

om2=om-self(2*i)

root=cdsqrt((om2+ep)**2-d2)

sig=1.

if(dimag(om)*dimag(root).lt.0.)sig=-1.

fg0(2*i)=2.*one/(om1+sig*root)

fg(2*i)=2.*one/(om2+sig*root)

102 continue

endif

c** fg0(i) is the non interacting GF in Matsubara space **

call dfftcb(2*L,fg0,fg0t)

ex=-1.

do 82 i=1,2*L

ex=-ex

fg0t(i)=binv*fg0t(i)*ex

82 continue

do 83 i=1,L

fg0b(i)=fg0t(i+L)

83 continue

do 84 i=L+1,2*L

fg0b(i)=fg0t(i-L)

84 continue

c** fg0b(i) is the non interacting GF in time **

c***calculate the selfenergy in 2OPT****************

do 520 i=1,L

sefb(i+L)=u**2*fg0b(i+L)**3

520 continue

do 525 i=1,L

sefb(L+1-i)=-sefb(i+L)

525 continue

call dfftcf(2*L,sefb,seff)

ex=-1.

do 530 i=1,2*L

ex=-ex

seff(i)=.5*dtau*ex*seff(i)

530 continue

do 540 i=1,L

self(i)=seff(i+L)
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540 continue

do 550 i=L+1,2*L

self(i)=seff(i-L)

550 continue

c***self is the self-energy in Matsubara space******

c************print output*******************************

x=pi/(L*dtau)

if(iloop.ge.nloop-nl0+1)then

do 106 i=L-300,L+300,2

si=dimag(self(i))

g1=dimag(fg(i))

write(30,*)real(x*(i-L-1)),real(si)

write(60,*)real(x*(i-L-1)),real(g1)

106 continue

write(30,*)' '

write(60,*)' '

endif

c********************************************************

c*******close iteration loop*********************************

103 continue

c******************get the energies****************************

c** E=tum,T=tuma,V=tum-tuma***

if(isie.eq.1)then

sum=0.

tum=0.

tuma=0.

do 111 i=1,L

oma=(2.*float(i)-1.-float(L))*pi*binv

sg=1.

if(oma.lt.0.)sg=-1.

omb=oma*2.

tum=tum+.5*dimag(fg(2*i))*dimag(self(2*i))

$ -(dimag(fg(2*i))+2./(oma+sg*dsqrt(oma**2+d**2)))*oma

tuma=tuma+dimag(fg(2*i))*dimag(self(2*i))

$ -(dimag(fg(2*i))+2./(oma+sg*dsqrt(oma**2+d**2)))*oma

111 continue



155

free=0.

e=-d

de=d/1000.

do 666 i=1,2000

free=free+de*e*dsqrt(1.-(e/d)**2)/(dexp(e/t)+1.)

e=e+de

666 continue

free=free*2./(pi*d)

tum=t*tum+free

tuma=t*tuma+free

if(itu.eq.1)then

c***print-out energies as function of temperature***

c**kinetic**

write(80,*)real(binv),real(tuma)

c**potential**

write(81,*)real(binv),real(tum-tuma)

c**total**

write(82,*)real(binv),real(tum)

c**<Nup*Ndw>=<D> double ocupation**

write(83,*)real(binv),real((tum-tuma)*2./u+.25)

else

c***print-out energies as function of U***

c**kinetic**

write(90,*)real(u),real(tuma)

c**potential**

write(91,*)real(u),real(tum-tuma)

c**total**

write(92,*)real(u),real(tum)

c**<Nup*Ndw>=<D> double ocupation**

write(93,*)real(u),real((tum-tuma)*2./u+.25)

endif

c**************************************************************

endif

c*******close temperature/U loop********************************

222 continue
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stop

end
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A.3 2

nd

Order Perturbation Theory (Real space T = 0)

c 2nd Order Perturbation Theory (a la Yamada Yosida)

c for the oo-d Hubard Model in real frequency space.

c Produces the local Green functions, the Selfenergy,

c and the local spin-spin correlation function.

c Has to be linked to IMSL

c#########################################################

parameter(L=16384)

implicit real*8(a-h,o-z)

double complex one,xi,xs,sq,g

double complex g0(2*L),tg0(2*L),fg0(-L:L)

double complex sft2(2*L),sf2(2*L),sft(-L:L),sf(-L:L)

double precision dns(2*L)

c******* output data **********************************************

c fort.10=Real part of G0

c fort.11=Imaginary part of G0

c fort.23=Real part of Selfenergy

c fort.24=Imaginary part of Selfenergy

c fort.25=Imaginary part of G (density of states)

c******* input data (fort.20) *************************************

c L=number of frequency points

c f=frequency discretization step

c d0=half-bandwidth

c u0=initial interaction strength

c nloop=number of iteration loops

c du=step for the interaction loop

c nu=number of interaction loops

c i01=interval between points for output (from -imax1 to imax1)

c imax1=limit for low frequency printout

c i02=interval between points for output (from -imax2 to -imax1)

c and (from imax1 to imax2)

c nl0=number of final loops to be printed-out

c imet=selects initial seed (1=metallic, 0=insulating)

read(20,*)f,d0,u0,nloop,du,nu

read(20,*)i01,imax1,i02,imax2,nl0,imet

c*******define some constants*******

pi=3.141592653589793

dtau=2.*pi/f/dfloat(2*L)

f2=f**2

one=(1.,0.)

xi=(0.,1.)

XL=float(L)

epsilon=1./100000.
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c*******************************************************************

c******** U loop starts here **********************************

do 121 iu=1,nu

u=u0+du*dfloat(iu-1)

xn=1./(u**2/pi/d0)

c******** the iteration loop starts here ***********************

do 100 iloop=1,nloop

c****g0 is the non interacting GF in real frequency space******

c****constructs g0 using the continuity of the derivatives*****

c****for choosing the correct brunch-cut***********************

do 2 i=L+1,2*L

om=(float(i)-XL-1.)*f

sig=1.d0

ome=om*one

c***on first loop compute a seed (imet=1 metallic, imet=0 insulating)

if(iloop.eq.1)then

if(dabs(om).lt.1.d-9)then

g0(i)=0.*one

else

g0(i)=1./(ome+float(imet)*d0*xi/2.)

endif

else

xs=sf(i-L-1)

sq=cdsqrt((ome-xs)**2-d0**2*one)

sqim=dimag(sq)

sqre=real(sq)

if(i.le.L+5)then

c get the first 5 points right to define the branch-cut

if(sqre.gt.0..and.imet.eq.0)sig=-1.d0

else
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benpr=real(2./(ome+xs+sq))

benmr=real(2./(ome+xs-sq))

benpi=dimag(2./(ome+xs+sq))

benmi=dimag(2./(ome+xs-sq))

xp=((benpr+benchr0-2.*benchr)**2

$ +(benpi+benchi0-2.*benchi)**2)

xm=((benmr+benchr0-2.*benchr)**2

$ +(benmi+benchi0-2.*benchi)**2)

if(xp.gt.xm)sig=-1.d0

g=(2./(ome+xs+sq))

d1=dimag(one/g)-dimag(sf(i-L-1))

d2=real(one/g)-real(sf(i-L-1))

d2=d2**2

d3=d1**2

dn=d1/(d2+d3)

if(dn.lt.0)sig=-1.

end if

g0(i)=2./(ome+xs+sig*sq)

endif

benchr=real(g0(i))

benchi=dimag(g0(i))

benchr0=real(g0(i-1))

benchi0=dimag(g0(i-1))

2 continue

c**get the negative frequency part by symmetry**

do 222 i=1,L-1

g0(L+1-i)=-g0(L+1+i)

222 continue

g0(1)=g0(2)

g0(L+1)=0.*one

c*******************************************************

call dfftcb(2*L,g0,tg0)

ex=-1.

do 3 i=1,2*L

ex=-ex

tg0(i)=ex*f/2./pi*tg0(i)

3 continue

do 4 i=1,L

fg0(i-1)=tg0(i)

4 continue

do 5 i=L+1,2*L
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fg0(-2*L-1+i)=tg0(i)

5 continue

c***fg0 is the non interacting GF in real time******

c***calculate the selfenergy in 2OPT****************

do 7 i=-L+1,L-1

sft(i)=-u**2*fg0(i)**2*fg0(-i)

7 continue

sft(-L)=-u**2*fg0(-L)**2*fg0(L-1)

do 24 i=-L,L-1

sft2(i+L+1)=sft(i)

24 continue

call dfftcf(2*L,sft2,sf2)

ex=-1.

do 8 i=1,2*L

ex=-ex

sf2(i)=-ex*dtau*sf2(i)

8 continue

do 34 i=1,L

sf(i-1)=sf2(i)

34 continue

do 35 i=L+1,2*L

sf(-2*L-1+i)=sf2(i)

35 continue

c***sf is the self-energy in real frequency space******

c************print output*******************************

if(iloop.ge.nloop-nl0+1)then

c***get the final interacting GF***

do 111 i=1,2*L

if(i.eq.L+1)then

dns(i)=2./d0

else

d1=dimag(one/g0(i))-dimag(sf(i-L-1))

d2=real(one/g0(i))-real(sf(i-L-1))

d2=d2**2
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d3=d1**2

dns(i)=d1/(d2+d3)

endif

111 continue

if(imet.eq.0)dns(L+1)=0.

do i=imax2,imax1,-i02

write(25,*)-real(f*float(i)),real(dns(i+L+1))

enddo

do i=imax1,0,-i01

write(25,*)-real(f*float(i)),real(dns(i+L+1))

enddo

do 118 i=0,imax1,i01

write(25,*)real(f*float(i)),real(dns(i+L+1))

write(11,*)real(f*float(i)),real(real(g0(i+L+1)))

write(12,*)real(f*float(i)),real(dimag(g0(i+L+1)))

write(24,*)real(f*float(i)),real(dimag(sf(i)))

write(23,*)real(f*float(i)),real(real(sf(i)))

118 continue

do 116 i=imax1,imax2,i02

write(25,*)real(f*float(i)),real(dns(i+L+1))

write(11,*)real(f*float(i)),real(real(g0(i+L+1)))

write(12,*)real(f*float(i)),real(dimag(g0(i+L+1)))

write(24,*)real(f*float(i)),real(dimag(sf(i)))

write(23,*)real(f*float(i)),real(real(sf(i)))

116 continue

write(25,*)' '

write(11,*)' '

write(12,*)' '

write(24,*)' '

write(23,*)' '

endif

c*******close iteration loop*********************************

100 continue

c*******close U loop*****************************************

121 continue

stop

end

c################################################################

c################################################################
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A.4 Exact Diagonalization

c Exact diagonalization for the oo-d Anderson model

c on a Bethe lattice.

c This code accepts general values of the input parameters.

c Produces the local Green functions and the local

c spin-spin and charge-charge correlation functions.

c Note1: it may get trapped into cycles in the

c non particle-hole symmetric case.

c Note2: setting tpd and v to zero corresponds to the

c Hubbard model (with upp the Hubbard repulsion)

c*********************************************************

parameter(N=16,NN=2**N,NP=4900)

parameter(lm=400)

implicit real*8(a-h,o-z)

double precision h(NN,2*N)

double precision anr(0:NP),bnr(0:NP)

double precision anl(0:NP),bnl(0:NP)

double precision cnr(0:NP),dnr(0:NP)

double precision cnl(0:NP),dnl(0:NP)

double precision snr(0:NP),tnr(0:NP)

double precision snl(0:NP),tnl(0:NP)

double precision gs(NN)

double precision cp(NN),cpdg(NN)

double precision cd(NN),cddg(NN)

dimension icp(NN),icpdg(NN)

dimension icd(NN),icddg(NN)

dimension ih(NN,2*N)

double complex zr,zl,xi,xr,xl,gg(-lm:lm),gx(-lm:lm),s(-lm:lm)

double complex zw,zy

double complex dr,dl,ggd(-lm:lm),gxd(-lm:lm)

double complex dw,dy

double complex sr,sl,sch(-lm:lm),ssp(-lm:lm)

dimension in0(N),is0(N)

c******* output data **********************************************

c fort.7 a's of the Gpp> CF

c fort.8 a's of the Gpp< CF

c fort.17 b's of the Gpp> CF

c fort.18 b's of the Gpp< CF

c fort.27 a's of the Gdd> CF

c fort.28 a's of the Gdd< CF

c fort.37 b's of the Gdd> CF

c fort.38 b's of the Gdd< CF

c fort.60 Im(Gpp) Real frequency

c fort.61 Re(Gpp) Real frequency

c fort.70 Im(Gpp) Matsubara

c fort.71 Re(Gpp) Matsubara

c fort.80 Im(Gdd) Real frequency

c fort.81 Re(Gdd) Real frequency
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c fort.90 Im(Gdd) Matsubara

c fort.91 Re(Gdd) Matsubara

c fort.92 spin-spin correlation function

c fort.93 charge-charge correlation function

c fort.96 poles & weights for spin and charge susceptibilities

c fort.97 poles & weights for d site

c fort.98 poles & weights for p site

c fort.99 poles & weights for effective bath

c******* input data (fort.50) **************************************

c N=number of sites (impurity + chains)

c lm=size of the output files (2*lm)

c tem=spacing of Matsubara points (\delta\omega=\pi*tem)

c u0=initial interaction strength

c du=increment for the u loop

c nu=number of u loops

c tpd=hybridization between p & d sites

c v=charge repulsion between p & d sites

c ed0=atomic energy of d site

c upp=p site repulsion

c d=half-bandwidth

c xm0=initial chemical potential (=0 at the symmetrical point)

c nloop=number of iterations loops

c eps=broadening for the poles

c dmu=increment for the mu loop

c nmu=number of mu loops

c NB=number of poles to be evaluated in the last iteration (2NG+2)

c nlast=number of final iterations that are written on output

c iall=number of initial iterations where the gs is searched

c in all sectors

c ird=1 reads input parameters for Gpp (=0 generates new set)

c ifast=0 searches for gs in all sectors in the final (nloop-nlast)

c iterations (=1 does not)

read(50,*)tem,u0,du,nu

read(50,*)tpd,v,ed0,upp

read(50,*)d,xmu0,nloop,eps,dmu,nmu

read(50,*)NB,nlast

read(50,*)iall,ird,ifast

c*******define some constants*******

u=u0

pi=3.141592653589793

xi=(0.,1.)

xr=-eps*xi

xl=-eps*xi

one=(1.,0.)

pt=pi*tem

c 1=p site down

c 2=p site up

c iep=d site up
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c ied=d site down

c NR =last site of up chain

c NR+1=first site of down chain

c NC =length of each side of the chains

NR=((N-2)/2-1)/2+2

NC=NR-2

nhalf=N/2

iep=N-1

ied=N

c*******************************************************************

c**get creation and destruction operators in matrix form**

call getcp(cp,icp,cpdg,icpdg)

call getcd(cd,icd,cddg,icddg)

c*******constructs the initial seed*************

if(ird.eq.1)then

c reads-in parameters

do i=0,NC

read(7,*)x,anr(i)

read(17,*)x,bnr(i)

read(8,*)x,anl(i)

read(18,*)x,bnl(i)

enddo

close(7)

close(8)

close(17)

close(18)

else

c generates new parameters

do 1 i=0,N

anr(i)=d/2.d0

bnr(i)=d**2/4.

1 continue

do 2 i=0,N

anl(i)=-d/2.d0

bnl(i)=d**2/4.

2 continue

endif

egs=0.d0
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c******** U loop starts here **********************************

do 300 iu=1,nu

u=u0+du*dfloat(iu-1)

c******** mu loop starts here **********************************

do 200 imu=1,nmu

xmu=xmu0+dmu*float(imu-1)

c******* here starts the iteration *****************************

do 100 iloop=1,nloop

do 121 i=1,NN

gs(i)=0.d0

do 121 j=1,2*N

h(i,j)=0.d0

ih(i,j)=0

121 continue

c constructs the Hamiltonian h in the full hilbert space

c in compressed form. The matrix ih is the pointer

print*,'getting the new hamiltonian...'

call geth(ih,h,d,u,xmu,ed0,v,tpd,upp,

$ anr,bnr,anl,bnl,egs)

print*,'done!'

c iflag=0 searches in all sectors, iflag=1 doesn't

iflag=1

if(iloop.le.iall.or.iloop.ge.nloop-nlast) iflag=0

if(ifast.eq.1.and.iloop.ge.nloop-nlast) iflag=1

print*,'calculating the new gs...'

call getgs(ih,h,egs,gs,iloop,iflag,in0,is0,igs)

print*,'done!'

c** print the groundstate energy **

write(3,*)iloop,real(egs)
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c adjust the size of the chains that need to be obtained

NG=NC

if(iloop.ge.nloop-nlast)NG=NB

print*,'getting Gpp...'

call getgf(h,ih,anr,bnr,anl,bnl,gs,igs,cp,icp,cpdg,icpdg,

$ NG,in0,is0)

c renormalize the bn's, multiplying by t^2

c (up to here bnr(0)=yr, bnl(0)=yl)

yr=bnr(0)

yl=bnl(0)

bnr(0)=bnr(0)*d**2/4.

bnl(0)=bnl(0)*d**2/4.

c**in final loops get the Gdd continued fraction and**

c**the susceptibilities **

if(iloop.ge.nloop-nlast)then

print*,'getting Gdd...'

call getgf(h,ih,cnr,dnr,cnl,dnl,gs,igs,cd,icd,cddg,icddg,

$ NG,in0,is0)

print*,'getting susceptibilities...'

call getcorr(h,ih,snr,tnr,snl,tnl,gs,igs,NG,in0,is0)

endif

c***in last loop calculate the poles and the weights****

c iwr=1 writes output files (=0 does not)

iwr=1

if(iloop.ge.nloop)then

print*,'getting poles and weights...'

call getpole(egs,snr,tnr,snl,tnl,NG,iwr,-1)

call getpole(egs,cnr,dnr,cnl,dnl,NG,iwr,0)

call getpole(egs,anr,bnr,anl,bnl,NG,iwr,1)

print*,'done!'

endif
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c******print output************

cut=2.d0*u

if(cut.lt.2.)cut=2.d0

if(cut.gt.4.)cut=u

if(iloop.ge.nloop-nlast)then

print*,'writting the output...'

c** Gpp, Gdd, and the susceptibilities***

do 24 i=-lm,lm

ome=pt*(2.*float(i)-1.)

if(dabs(ome).gt.cut)goto 24

zr=xr+ome+egs-anr(NG)

zl=xl+ome-egs-anl(NG)

zw=xi*ome-(anr(NG)-egs)

zy=xi*ome-(anl(NG)+egs)

dr=xr+ome+egs-cnr(NG)

dl=xl+ome-egs-cnl(NG)

dw=xi*ome+egs-cnr(NG)

dy=xi*ome-egs-cnl(NG)

sr=xr+ome+egs-snr(NG)

sl=xl+ome+egs-snl(NG)

if(NG.ge.1)then

do 25 in=NG,1,-1

zr=xr+ome+egs-anr(in-1)-bnr(in)/zr

zl=xl+ome-egs-anl(in-1)-bnl(in)/zl

zw=xi*ome+egs-anr(in-1)-bnr(in)/zw

zy=xi*ome-egs-anl(in-1)-bnl(in)/zy

dr=xr+ome+egs-cnr(in-1)-dnr(in)/dr

dl=xl+ome-egs-cnl(in-1)-dnl(in)/dl

dw=xi*ome+egs-cnr(in-1)-dnr(in)/dw

dy=xi*ome-egs-cnl(in-1)-dnl(in)/dy

sr=xr+ome+egs-snr(in-1)-tnr(in)/sr

sl=xl+ome+egs-snl(in-1)-tnl(in)/sl

25 continue

endif

gg(i)=yr/zr+yl/zl

gx(i)=yr/zw+yl/zy

ggd(i)=dnr(0)/dr+dnl(0)/dl

gxd(i)=dnr(0)/dw+dnl(0)/dy

s(i)=xi*ome-d**2/4.*gx(i)-1./gx(i)
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ssp(i)=tnr(0)/sr

sch(i)=tnl(0)/sl

c**the minus sign is to match the QMC code convention**

write(60,*)real(ome),real(dimag(gg(i)))

write(61,*)real(ome),real(real(gg(i)))

write(70,*)real(ome),real(dimag(-gx(i)))

write(71,*)real(ome),real(real(-gx(i)))

write(80,*)real(ome),real(dimag(ggd(i)))

write(81,*)real(ome),real(real(ggd(i)))

write(90,*)real(ome),real(dimag(-gxd(i)))

write(91,*)real(ome),real(real(-gxd(i)))

if(i.ge.0)then

write(92,*)real(ome),real(dimag(ssp(i)))

write(93,*)real(ome),real(dimag(sch(i)))

endif

24 continue

write(60,*)' '

write(61,*)' '

write(70,*)' '

write(71,*)' '

write(80,*)' '

write(81,*)' '

write(90,*)' '

write(91,*)' '

write(92,*)' '

write(93,*)' '

c** chopped Gpp to the size of the chains **

do 28 i=-lm,lm

ome=pt*(2.*float(i)-1.)

if(dabs(ome).gt.2.*u)goto 28

zr=xr+ome+egs-anr(NC-1)

zl=xl+ome-egs-anl(NC-1)

zw=xi*ome-(anr(NC-1)-egs)

zy=xi*ome-(anl(NC-1)+egs)

if(NC-1.ge.1)then

do 29 in=NC-1,1,-1

zr=xr+ome+egs-anr(in-1)-bnr(in)/zr

zl=xl+ome-egs-anl(in-1)-bnl(in)/zl

zw=xi*ome+egs-anr(in-1)-bnr(in)/zw

zy=xi*ome-egs-anl(in-1)-bnl(in)/zy

29 continue

endif

gg(i)=yr/zr+yl/zl

gx(i)=yr/zw+yl/zy
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c**the minus sign is to match the QMC convention**

write(160,*)real(ome),real(dimag(gg(i)))

write(161,*)real(ome),real(real(gg(i)))

write(170,*)real(ome),real(dimag(-gx(i)))

write(171,*)real(ome),real(real(-gx(i)))

28 continue

write(160,*)' '

write(161,*)' '

write(170,*)' '

write(171,*)' '

print*,'done!'

endif

if(iloop.ge.nloop-nlast)then

c**continued fraction parameters**

do 26 i=0,NG

write(7,*)i,(anr(i)-egs)

write(8,*)i,(anl(i)+egs)

write(27,*)i,(cnr(i)-egs)

write(28,*)i,(cnl(i)+egs)

26 continue

write(7,*)' '

write(8,*)' '

write(27,*)' '

write(28,*)' '

do 27 i=0,NG

write(17,*)i,(bnr(i))

write(18,*)i,(bnl(i))

write(37,*)i,(dnr(i))

write(38,*)i,(dnl(i))

27 continue

write(17,*)' '

write(18,*)' '

write(37,*)' '

write(38,*)' '

endif

c*******close iteration loop*********************************

100 continue

c*******close mu loop****************************************

200 continue
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c*******close U loop****************************************

300 continue

end

c################################################################

c################################################################

c################################################################

c multiplication of H times a vector of size M

c used by the lanczos subroutine

subroutine hxvl(h,ih,v,w,M)

parameter(N=16,NP=4900)

implicit real*8(a-h,o-z)

double precision h(NP,2*N),v(NP),w(NP)

double precision t(0:NP)

dimension ih(NP,2*N)

t(0)=0.d0

do i=1,NP

t(i)=v(i)

enddo

do 1 i=1,M

w(i)=0.d0

MM=ih(i,N)

do 2 j=1,MM

w(i)=w(i)+h(i,j)*t(ih(i,j))

2 continue

1 continue

return

end

c################################################################

c multiplication of H times a vector using the mask

c to avoid multiplication by 0

c used by the getcorr subroutine

subroutine hxvm(h,ih,v,w,imk)

parameter(N=16,NN=2**N)

implicit real*8(a-h,o-z)

double precision h(NN,2*N),v(NN),w(NN)

double precision t(0:NN)

dimension ih(NN,2*N)

dimension imk(NN)

t(0)=0.d0

do i=1,NN

t(i)=v(i)

enddo

do 1 i=1,NN

w(i)=0.d0

if(imk(i).eq.1)then

MM=ih(i,N)
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do 2 j=1,MM

w(i)=w(i)+h(i,j)*t(ih(i,j))

2 continue

endif

1 continue

return

end

c################################################################

c action of operator c on a vector state v

c c is in compressed form and ic are the pointers

subroutine cxv(c,ic,v,w)

parameter(N=16,NN=2**N)

implicit real*8(a-h,o-z)

double precision c(NN),v(NN),w(NN)

double precision t(0:NN)

dimension ic(NN)

t(0)=0.d0

do i=1,NN

t(i)=v(i)

enddo

do 1 i=1,NN

c w(i)=c(i)*v(ic(i))

w(i)=c(i)*t(ic(i))

1 continue

return

end

c################################################################

c calculates the recursive orthogonal basis for the

c continued fraction expansion

subroutine getfn(ih,h,f,f1,f2,a,b,imk)

parameter(N=16,NN=2**N)

implicit real*8(a-h,o-z)

double precision h(NN,2*N),f(NN),f1(NN),f2(NN)

double precision x(NN)

dimension ih(NN,2*N)

dimension imk(NN)

call hxvm(h,ih,f1,x,imk)

do 1 i=1,NN

f(i)=0.d0

if(imk(i).eq.1)then

f(i)=x(i)-a*f1(i)-b*f2(i)

endif

1 continue
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return

end

c################################################################

c calculates the recursive coefficients of the

c continued fraction expansion

subroutine getab(ih,h,f,f1,a,b,imk)

parameter(N=16,NN=2**N)

implicit real*8(a-h,o-z)

double precision h(NN,2*N),f(NN),f1(NN)

double precision x(NN)

dimension ih(NN,2*N)

dimension imk(NN)

call hxvm(h,ih,f,x,imk)

a=0.

y=0.

z=0.

do 5 i=1,NN

if(imk(i).eq.1)then

a=a+f(i)*x(i)

y=y+f(i)**2

z=z+f1(i)**2

endif

5 continue

if(y.ne.0.)then

a=a/y

else

print*,'warning! the CF has ended unexpectedly'

print*,'but tried to continue anyway...'

a=.0000001

endif

b=y/z

return

end

c################################################################

c input a state |i> and output a vector ib(N)

c with its binary decomposition

c (corresponds to the decomposition of the number i-1)

subroutine b2(i,ib)

parameter(N=16)

implicit real*8(a-h,o-z)

dimension ib(N)

do 1 ia=1,N

ib(ia)=0

1 continue

ii=i-1

j=1

10 continue
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ib(j)=ii-int(ii/2)*2

ii=int(ii/2)

j=j+1

if(ii.gt.1)goto 10

ib(j)=ii

return

end

c################################################################

c input state |i> of the basis and calculates |j>=Cm|i>

c the sign of j has the phase convention

c m labels the sites

subroutine c(m,i,j)

parameter(N=16)

implicit real*8(a-h,o-z)

dimension ib(N)

c convention:

c + + + +

c C C C C |0>

c 1 2 3 4

call b2(i,ib)

if (ib(m).eq.0)then

j=0

else

if(m.eq.1)then

j=i-1

else

km=0

do 1 k=1,m-1

km=km+ib(k)

1 continue

isg=(-1)**km

j=isg*(i-2**(m-1))

endif

endif

return

end

c################################################################

c input state |i> of the basis and calculates |j>=Cm+|i>

c the sign of j has the phase convention

c m labels the sites

subroutine cdg(m,i,j)

parameter(N=16)

implicit real*8(a-h,o-z)

dimension ib(N)
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c convention:

c + + + +

c C C C C |0>

c 1 2 3 4

call b2(i,ib)

if (ib(m).eq.1)then

j=0

else

if(m.eq.1)then

j=i+1

else

km=0

do 1 k=1,m-1

km=km+ib(k)

1 continue

isg=(-1)**km

j=isg*(i+2**(m-1))

endif

endif

return

end

c################################################################

c calculates the new effective Hamiltonian

c it is stored in matrix h in compressed form (compressed columns)

c the true column position is stored in ih (pointers)

subroutine geth(ih,h,d,u,xmu,ed0,v,tpd,upp,

$ anr,bnr,anl,bnl,egs)

parameter(N=16,NN=2**N,NP=4900)

implicit real*8(a-h,o-z)

double precision h(NN,2*N),anr(0:NP),bnr(0:NP)

double precision anl(0:NP),bnl(0:NP)

dimension ib(N),ih(NN,2*N)

c NR =last site of up right chain

c NR+1=first site of up left chain

c NC =length of each side of the chains

NR=((N-2)/2-1)/2+2

NC=NR-2

c iep position of d site up spin

c ied position of d site down spin

iep=N-1

ied=N

c****diagonal entries*******

do 1 k=1,NN

call b2(k,ib)

ec=0.
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do 2 kp=3,NR

ec=ec+(anr(kp-3)-egs)*(dfloat(ib(kp)+ib(kp+2*NC)))

2 continue

do 10 kp=NR+1,NR+NC

ec=ec+(anl(kp-NR-1)+egs)*(dfloat(ib(kp)+ib(kp+2*NC)))

10 continue

h(k,1)=(-xmu)*dfloat(ib(1))+(-xmu)*dfloat(ib(2))+

$(-xmu+ed0)*dfloat(ib(iep))+(-xmu+ed0)*dfloat(ib(ied))

$+ ec + u*(dfloat(ib(iep))-.5d0)*(dfloat(ib(ied))-.5d0)

$+ v*dfloat(ib(iep)+ib(ied))*dfloat(ib(1)+ib(2))

$+ upp*(dfloat(ib(1))-.5d0)*(dfloat(ib(2))-.5d0)

ih(k,1)=k

1 continue

c start the big j loop

do j=1,NN

c**index counts the number of non-zero entries of each row**

index=0

index=index+1

c***hopping to the right chain

do 4 m1=2,NR-1

call c(m1,j,k)

if (k.eq.0) goto 6

k1=abs(k)

call cdg(m1+1,k1,i1)

if (i1.eq.0) goto 6

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnr(m1-2))

index=index+1

h(j,index)=tef*sg

ih(j,index)=i

6 continue

4 continue

do 84 m1=2,NR-1

call cdg(m1,j,k)

if (k.eq.0) goto 86

k1=abs(k)

call c(m1+1,k1,i1)

if (i1.eq.0) goto 86

i=abs(i1)
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if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnr(m1-2))

index=index+1

h(j,index)=-tef*sg

ih(j,index)=i

86 continue

84 continue

c*** note: the (-) comes from C+iCj + h.c. = C+iCj + (C+iCj)+ =

c*** C+iCj + C+jCi = C+iCj - CiC+j

c hopping from the p site to the first

c neighbour on the left side

c the left chain starts at NR+1 site

call c(2,j,k)

if (k.eq.0) goto 9

k1=abs(k)

call cdg(NR+1,k1,i1)

if (i1.eq.0) goto 9

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnl(0))

index=index+1

h(j,index)=tef*sg

ih(j,index)=i

9 continue

call cdg(2,j,k)

if (k.eq.0) goto 89

k1=abs(k)

call c(NR+1,k1,i1)

if (i1.eq.0) goto 89

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnl(0))

index=index+1

h(j,index)=-tef*sg
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ih(j,index)=i

89 continue

c hopping to the rest of the left chain

if(NR+1.le.NR+NC-1)then

do 7 m1=NR+1,NR+NC-1

call c(m1,j,k)

if (k.eq.0) goto 8

k1=abs(k)

call cdg(m1+1,k1,i1)

if (i1.eq.0) goto 8

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnl(m1-NR))

index=index+1

h(j,index)=tef*sg

ih(j,index)=i

8 continue

7 continue

do 87 m1=NR+1,NR+NC-1

call cdg(m1,j,k)

if (k.eq.0) goto 88

k1=abs(k)

call c(m1+1,k1,i1)

if (i1.eq.0) goto 88

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnl(m1-NR))

index=index+1

h(j,index)=-tef*sg

ih(j,index)=i

88 continue

87 continue

endif

c hopping to the d site of spin up

call c(2,j,k)

if (k.eq.0) goto 26
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k1=abs(k)

call cdg(iep,k1,i1)

if (i1.eq.0) goto 26

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=tpd

index=index+1

h(j,index)=tef*sg

ih(j,index)=i

26 continue

call cdg(2,j,k)

if (k.eq.0) goto 28

k1=abs(k)

call c(iep,k1,i1)

if (i1.eq.0) goto 28

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=tpd

index=index+1

h(j,index)=-tef*sg

ih(j,index)=i

28 continue

c****right down spin chain******

c***hopping to the right down chain

c**the right down chain starts at NR+NC+1 site

c***hopping from the down site (1) to the first

c***neighbour on the right side

call c(1,j,k)

if (k.eq.0) goto 51

k1=abs(k)

call cdg(NR+NC+1,k1,i1)

if (i1.eq.0) goto 51

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0
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if(i1.lt.0)sg=-sg

tef=dsqrt(bnr(0))

index=index+1

h(j,index)=tef*sg

ih(j,index)=i

51 continue

call cdg(1,j,k)

if (k.eq.0) goto 71

k1=abs(k)

call c(NR+NC+1,k1,i1)

if (i1.eq.0) goto 71

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnr(0))

index=index+1

h(j,index)=-tef*sg

ih(j,index)=i

71 continue

c***hopping of the rest of the right down chain

if(NR+NC+1.le.NR+2*NC-1)then

do 52 m1=NR+NC+1,NR+2*NC-1

call c(m1,j,k)

if (k.eq.0) goto 53

k1=abs(k)

call cdg(m1+1,k1,i1)

if (i1.eq.0) goto 53

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnr(m1-NR-NC))

index=index+1

h(j,index)=tef*sg

ih(j,index)=i

53 continue

52 continue

do 72 m1=NR+NC+1,NR+2*NC-1

call cdg(m1,j,k)

if (k.eq.0) goto 73

k1=abs(k)
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call c(m1+1,k1,i1)

if (i1.eq.0) goto 73

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnr(m1-NR-NC))

index=index+1

h(j,index)=-tef*sg

ih(j,index)=i

73 continue

72 continue

endif

c***left down spin chain********

c**the left down chain starts at NR+2*NC+1 site

c***hopping from the down site (1) to the first

c***neighbour on the left side

call c(1,j,k)

if (k.eq.0) goto 55

k1=abs(k)

call cdg(NR+2*NC+1,k1,i1)

if (i1.eq.0) goto 55

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnl(0))

index=index+1

h(j,index)=tef*sg

ih(j,index)=i

55 continue

call cdg(1,j,k)

if (k.eq.0) goto 75

k1=abs(k)

call c(NR+2*NC+1,k1,i1)

if (i1.eq.0) goto 75

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg
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tef=dsqrt(bnl(0))

index=index+1

h(j,index)=-tef*sg

ih(j,index)=i

75 continue

c***hopping of the rest of the left down chain

if(NR+2*NC+1.le.NR+3*NC-1)then

do 56 m1=NR+2*NC+1,NR+3*NC-1

call c(m1,j,k)

if (k.eq.0) goto 57

k1=abs(k)

call cdg(m1+1,k1,i1)

if (i1.eq.0) goto 57

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnl(m1-NR-2*NC))

index=index+1

h(j,index)=tef*sg

ih(j,index)=i

57 continue

56 continue

do 76 m1=NR+2*NC+1,NR+3*NC-1

call cdg(m1,j,k)

if (k.eq.0) goto 77

k1=abs(k)

call c(m1+1,k1,i1)

if (i1.eq.0) goto 77

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=dsqrt(bnl(m1-NR-2*NC))

index=index+1

h(j,index)=-tef*sg

ih(j,index)=i

77 continue

76 continue

endif

c hopping to the d site of spin down
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call c(1,j,k)

if (k.eq.0) goto 36

k1=abs(k)

call cdg(ied,k1,i1)

if (i1.eq.0) goto 36

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=tpd

index=index+1

h(j,index)=tef*sg

ih(j,index)=i

36 continue

call cdg(1,j,k)

if (k.eq.0) goto 38

k1=abs(k)

call c(ied,k1,i1)

if (i1.eq.0) goto 38

i=abs(i1)

if(i.eq.0.or.k.eq.0)then

print*,k,i

endif

sg=1.d0

if(k.lt.0)sg=-1.d0

if(i1.lt.0)sg=-sg

tef=tpd

index=index+1

h(j,index)=-tef*sg

ih(j,index)=i

38 continue

if(index.ge.N)then

print*,'need more room for h!!!'

stop

endif

ih(j,N)=index

c close big j loop

enddo

return

end

c################################################################

c calculates the matrices cp and cp+ in compressed form

c icp has the pointers. Since they only connect one state of

c the basis to a unique other state, upon compression become
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c matrices of size (NNx1). The matrix cp and cp+ has the

c information of the phase and icp and icp+ has which state is

c connected to which other

subroutine getcp(cp,icp,cpdg,icpdg)

parameter(N=16,NN=2**N)

implicit real*8(a-h,o-z)

double precision cp(NN),cpdg(NN)

dimension icp(NN),icpdg(NN)

c calculates <j|Cp|i>

do 2 j=1,NN

call cdg(2,j,i1)

if(i1.eq.0)goto 2

i=abs(i1)

cp(j)=dfloat(i)/dfloat(i1)

icp(j)=i

2 continue

c calculates <j|Cp+|i>

do 3 j=1,NN

call c(2,j,i1)

if(i1.eq.0)goto 3

i=abs(i1)

cpdg(j)=dfloat(i)/dfloat(i1)

icpdg(j)=i

3 continue

return

end

c################################################################

c idem before (for cd)

subroutine getcd(cd,icd,cddg,icddg)

parameter(N=16,NN=2**N)

implicit real*8(a-h,o-z)

double precision cd(NN),cddg(NN)

dimension icd(NN),icddg(NN)

iep=N-1

c calculates <j|Cd|i>

do 2 j=1,NN

call cdg(iep,j,i1)

if(i1.eq.0)goto 2

i=abs(i1)

cd(j)=dfloat(i)/dfloat(i1)

icd(j)=i

2 continue
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c calculates <j|Cd+|i>

do 3 j=1,NN

call c(iep,j,i1)

if(i1.eq.0)goto 3

i=abs(i1)

cddg(j)=dfloat(i)/dfloat(i1)

icddg(j)=i

3 continue

return

end

c################################################################

c subroutine for determination of e-vectors and e-values

c from numerical recipes

SUBROUTINE JACOBI(A,N,NP,D,V,NROT)

implicit real*8(a-h,o-z)

PARAMETER (NMAX=2500)

double precision A(NP,NP),D(NP),V(NP,NP),B(NMAX),Z(NMAX)

DO 12 IP=1,N

DO 11 IQ=1,N

V(IP,IQ)=0.

11 CONTINUE

V(IP,IP)=1.

12 CONTINUE

DO 13 IP=1,N

B(IP)=A(IP,IP)

D(IP)=B(IP)

Z(IP)=0.

13 CONTINUE

NROT=0

DO 24 I=1,50

SM=0.

DO 15 IP=1,N-1

DO 14 IQ=IP+1,N

SM=SM+ABS(A(IP,IQ))

14 CONTINUE

15 CONTINUE

IF(SM.EQ.0.)RETURN

IF(I.LT.4)THEN

TRESH=0.2*SM/N**2

ELSE

TRESH=0.

ENDIF

DO 22 IP=1,N-1

DO 21 IQ=IP+1,N

G=100.*ABS(A(IP,IQ))

IF((I.GT.4).AND.(ABS(D(IP))+G.EQ.ABS(D(IP)))

* .AND.(ABS(D(IQ))+G.EQ.ABS(D(IQ))))THEN

A(IP,IQ)=0.

ELSE IF(ABS(A(IP,IQ)).GT.TRESH)THEN
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H=D(IQ)-D(IP)

IF(ABS(H)+G.EQ.ABS(H))THEN

T=A(IP,IQ)/H

ELSE

THETA=0.5*H/A(IP,IQ)

T=1./(ABS(THETA)+SQRT(1.+THETA**2))

IF(THETA.LT.0.)T=-T

ENDIF

C=1./SQRT(1+T**2)

S=T*C

TAU=S/(1.+C)

H=T*A(IP,IQ)

Z(IP)=Z(IP)-H

Z(IQ)=Z(IQ)+H

D(IP)=D(IP)-H

D(IQ)=D(IQ)+H

A(IP,IQ)=0.

DO 16 J=1,IP-1

G=A(J,IP)

H=A(J,IQ)

A(J,IP)=G-S*(H+G*TAU)

A(J,IQ)=H+S*(G-H*TAU)

16 CONTINUE

DO 17 J=IP+1,IQ-1

G=A(IP,J)

H=A(J,IQ)

A(IP,J)=G-S*(H+G*TAU)

A(J,IQ)=H+S*(G-H*TAU)

17 CONTINUE

DO 18 J=IQ+1,N

G=A(IP,J)

H=A(IQ,J)

A(IP,J)=G-S*(H+G*TAU)

A(IQ,J)=H+S*(G-H*TAU)

18 CONTINUE

DO 19 J=1,N

G=V(J,IP)

H=V(J,IQ)

V(J,IP)=G-S*(H+G*TAU)

V(J,IQ)=H+S*(G-H*TAU)

19 CONTINUE

NROT=NROT+1

ENDIF

21 CONTINUE

22 CONTINUE

DO 23 IP=1,N

B(IP)=B(IP)+Z(IP)

D(IP)=B(IP)

Z(IP)=0.

23 CONTINUE

24 CONTINUE

PAUSE '50 iterations should never happen'

RETURN

END
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c################################################################

c sorting subroutine for ordering e-values and e-vectors

c from numerical recipes

SUBROUTINE EIGSRT(D,V,N,NP)

implicit real*8(a-h,o-z)

DIMENSION D(NP),V(NP,NP)

DO 13 I=1,N-1

K=I

P=D(I)

DO 11 J=I+1,N

IF(D(J).GE.P)THEN

K=J

P=D(J)

ENDIF

11 CONTINUE

IF(K.NE.I)THEN

D(K)=D(I)

D(I)=P

DO 12 J=1,N

P=V(J,I)

V(J,I)=V(J,K)

V(J,K)=P

12 CONTINUE

ENDIF

13 CONTINUE

RETURN

END

c################################################################

c calculates the ground state of the effective Hamiltonian h

c can do search sector by sector

c constructs pointers to the sectors in and is

subroutine getgs(ih,h,egs,gs,iloop,iflag,in0,is0,igs)

parameter(N=16,NN=2**N,NP=4900)

implicit real*8(a-h,o-z)

double precision h(NN,2*N),wh(NP,2*N)

double precision gs(NN),gst(8,NN),esec(N,-N:N)

double precision gsw1(NP)

dimension ih(NN,2*N),iwh(NP,2*N)

dimension isrt(NP),jsrt(NN)

dimension in0(N),is0(N)

c 1=p site down

c 2=p site up

c iep=d site up

c ied=d site down

c NR =last site of up chain

c NR+1=first site of down chain

c NC =length of each side of the chains

NR=((N-2)/2-1)/2+2

NC=NR-2
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nhalf=N/2

iep=N-1

ied=N

egs0=1.d4

if(iloop.eq.1.and.iflag.eq.1)then

in0(1)=nhalf

is0(1)=0

igs=1

print*,'considering the p-h symetric sector only!!!'

endif

if(iflag.eq.0)then

c search all sectors

igs=1

c sweep all sectors

do ievod=0,1

c ievod=0 ==> even number of particles (and even spin)

c ievod=1 ==> odd number of particles (and odd spin)

do in= 2-ievod,N-ievod,2

if(ilast.eq.1)then

write(100,*)'"N=',in,'"'

endif

ism=in

if(in.gt.nhalf)ism=N-in

do is= -ism,ism,2

c construct the pointers for sector (in,is)

call sector(in,is,idg,isrt,jsrt)

c construct wh = the hamiltonian in sector (in,is),

c and and iwh = the pointer of the hamiltonian

call gethns(idg,isrt,jsrt,h,ih,wh,iwh)

c diagonalize wh by modified Lanczos method

call lanczos(wh,gsw1,egs,iwh,idg,in,is)

esec(in,is)=egs

if(ilast.eq.1)then

write(100,*)is,real(egs)

endif
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if(egs.lt.egs0+1.d-5)then

c found a new ground state vector (may be a degenerate one)

c check for degeneracy or new gs

if(dabs(egs-egs0).lt.1.d-5)then

igs=igs+1

in0(igs)=in

is0(igs)=is

else

igs=1

egs0=egs

in0(igs)=in

is0(igs)=is

endif

c expand the new gs to full size and store it

do i=1,NN

gst(igs,i)=0.d0

enddo

do i=1,idg

ia=isrt(i)

gst(igs,ia)=gsw1(i)

enddo

endif

enddo

if(ilast.eq.1)then

write(100,*)' '

endif

enddo

enddo

else

c**** in inner loops skip the full search ****

do j=1,igs

in=in0(j)

is=is0(j)

c construct the pointers for sector (in,is)

call sector(in,is,idg,isrt,jsrt)
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c construct wh = the hamiltonian in sector (in,is),

c and and iwh = the pointer of the hamiltonian

call gethns(idg,isrt,jsrt,h,ih,wh,iwh)

c diagonalize wh by modified Lanczos method

call lanczos(wh,gsw1,egs,iwh,idg)

egs0=egs

c expand the new gs to full size and store it

do i=1,NN

gst(igs,i)=0.d0

enddo

do i=1,idg

ia=isrt(i)

gst(igs,ia)=gsw1(i)

enddo

enddo

endif

c copy the output

egs=egs0

do i=1,NN

gs(i)=0.d0

enddo

xnor=1.d0/dsqrt(dfloat(igs))

do j=1,igs

do i=1,NN

gs(i)=gs(i)+gst(j,i)*xnor

enddo

enddo

do i=1,igs

print*,'the gs sector is (N,Sz)=',in0(i),is0(i)

enddo

print*,'there are',igs,' degenerate gs'

if(iflag.eq.0)then

if(dabs(egs-esec(in0(1),is0(1))).gt.1d-5)then

print*,'something is wrong...'

endif

endif

return

end
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c################################################################

c extracts from the full hamiltonian the block corresponding

c to sector (n,s)

subroutine gethns(idg,isrt,jsrt,h,ih,wh,iwh)

parameter(N=16,NN=2**N,NP=4900)

implicit real*8(a-h,o-z)

double precision h(NN,2*N),wh(NP,2*N)

dimension ih(NN,2*N),iwh(NP,2*N)

dimension isrt(NP),jsrt(NN)

c extract the rows of h and ih

do j=1,2*N

do i=1,NP

wh(i,j)=0.d0

iwh(i,j)=0

enddo

enddo

do i=1,idg

ia=isrt(i)

do k=1,2*N

wh(i,k)=h(ia,k)

iwh(i,k)=ih(ia,k)

enddo

enddo

c rewrite iwh to point inside the sector

do 105 i=1,idg

MM=iwh(i,N)

do 106 k=1,MM

jj=iwh(i,k)

if(jj.eq.0)goto 106

j=jsrt(jj)

iwh(i,k)=j

106 continue

105 continue

return

end

c################################################################

c constructs the pointers for the different sectors and

c the vectors isrt and jsrt with the corresponding

c ordering definition of the sub-basis within each sector

subroutine sector(in,is,idg,isrt,jsrt)

parameter(N=16,NN=2**N,NP=4900)

implicit real*8(a-h,o-z)

dimension isrt(NP),jsrt(NN)

dimension ib2(N)
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c 1=p site down

c 2=p site up

c iep=d site up

c ied=d site down

c NR =last site of up chain

c NR+1=first site of down chain

c NC =length of each side of the chains

NR=((N-2)/2-1)/2+2

NC=NR-2

nhalf=N/2

iep=N-1

ied=N

idg=0

do i=1,NN

jsrt(i)=0

enddo

do i=1,NP

isrt(i)=0

enddo

c construct idg and isrt. idg has the degeneracy of the

c sector (in,is). isrt has the list of vectors that belong

c to the sector (in,is). isrt defines the basis of the sector

c jsrt has the "inverse pointer" of isrt

do i=1,NN

call b2(i,ib2)

ibs=0

ibn=0

ibs=ib2(2)-ib2(1)+ib2(iep)-ib2(ied)

ibn=ib2(2)+ib2(1)+ib2(iep)+ib2(ied)

do j=3,NR

ibs=ibs+ib2(j)+ib2(j+NC)-ib2(j+2*NC)-ib2(j+3*NC)

ibn=ibn+ib2(j)+ib2(j+NC)+ib2(j+2*NC)+ib2(j+3*NC)

enddo

if(ibn.eq.in.and.ibs.eq.is)then

idg=idg+1

isrt(idg)=i

jsrt(i)=idg

endif

enddo

return

end

c################################################################

c this routine calculates the position and strengh of the

c discrete poles of the Green function expressed in continued

c fraction form. It basically diagonalizes the tridiagonal
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c matrix defined by the a's and the b's

subroutine getpole(egs,anr,bnr,anl,bnl,NG,iwr,ip)

parameter(N=16,NN=2**N,NP=4900,NM=50)

implicit real*8(a-h,o-z)

double precision anr(0:NP),bnr(0:NP)

double precision anl(0:NP),bnl(0:NP)

double precision pr(NP),wr(NP)

double precision prs(NP),wrs(NP)

double precision pl(NP),wl(NP)

double precision pls(NP),wls(NP)

double precision trdh(NM,NM),rot(NM,NM),ev(NM)

common/pw/pr,pl,wr,wl

common/pws/prs,pls,wrs,wls

common/size/NC,NL

common/par/tu

NL=NG

c NC=length of each side of the chains

NR=((N-2)/2-1)/2+2

NC=NR-2

do j=1,NM

do i=1,NM

trdh(j,i)=0.

enddo

enddo

c if ss (ip=-1) => skip the short chain

c if d site (ip=0) => skip the short chain

c if p site (ip=1) => do the short chain

c do the sign flip for "snl"

if(ip.eq.-1)then

do i=1,NG

anl(i-1)=-anl(i-1)

enddo

endif

if(ip.eq.1)then

c calculate the poles and weights for a short chain

c with one pole per effective bath site

c right side

do i=1,NC

trdh(i,i)=anr(i-1)-egs

trdh(i,i+1)=dsqrt(bnr(i))

trdh(i+1,i)=dsqrt(bnr(i))

enddo
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call jacobi(trdh,NC,NM,ev,rot,irot)

call eigsrt(ev,rot,NC,NM)

do i=1,NC

prs(i)=ev(i)

wrs(i)=rot(1,i)**2

enddo

c left side

do i=1,NC

trdh(i,i)=-anl(i-1)-egs

trdh(i,i+1)=dsqrt(bnl(i))

trdh(i+1,i)=dsqrt(bnl(i))

enddo

call jacobi(trdh,NC,NM,ev,rot,irot)

call eigsrt(ev,rot,NC,NM)

do i=1,NC

pls(i)=ev(i)

wls(i)=rot(1,i)**2

enddo

endif

c calculate the poles and weights for the full hamiltonian

c with a big number of poles

c right side

do i=1,NG

trdh(i,i)=anr(i-1)-egs

trdh(i,i+1)=dsqrt(bnr(i))

trdh(i+1,i)=dsqrt(bnr(i))

enddo

call jacobi(trdh,NG,NM,ev,rot,irot)

call eigsrt(ev,rot,NG,NM)

do i=1,NG

pr(i)=ev(i)

wr(i)=rot(1,i)**2

enddo

c left side

do i=1,NG

trdh(i,i)=-anl(i-1)-egs

trdh(i,i+1)=dsqrt(bnl(i))

trdh(i+1,i)=dsqrt(bnl(i))

enddo
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call jacobi(trdh,NG,NM,ev,rot,irot)

call eigsrt(ev,rot,NG,NM)

do i=1,NG

pl(i)=ev(i)

wl(i)=rot(1,i)**2

enddo

c undo the sign flip for "snl"

if(ip.eq.-1)then

do i=1,NG

anl(i-1)=-anl(i-1)

enddo

endif

c***print out results****

if(iwr.eq.1)then

if(ip.eq.-1)then

write(96,*)'"poles & weigths suscept."'

write(96,*)'"sp-sp"'

do i=1,NG

write(96,*)real(pr(i)),real(wr(i))

enddo

write(96,*)' '

write(96,*)'"ch-ch"'

do i=1,NG

write(96,*)real(pl(i)),real(wl(i))

enddo

write(96,*)' '

endif

if(ip.eq.0)then

write(97,*)'"poles & weigths d site"'

write(97,*)'"right"'

do i=1,NG

write(97,*)real(pr(i)),real(wr(i))

enddo

write(97,*)' '

write(97,*)'"left"'

do i=1,NG

write(97,*)real(pl(i)),real(wl(i))

enddo

write(97,*)' '

endif

if(ip.eq.1)then

write(98,*)'"poles & weigths p site"'

write(98,*)'"right"'

do i=1,NG

write(98,*)real(pr(i)),real(wr(i))

enddo
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write(98,*)' '

write(98,*)'"left"'

do i=1,NG

write(98,*)real(pl(i)),real(wl(i))

enddo

write(98,*)' '

write(99,*)'"poles & weigths p bath"'

write(99,*)'"right"'

do i=1,NC

write(99,*)real(prs(i)),real(wrs(i))

enddo

write(99,*)' '

write(99,*)'"left"'

do i=1,NC

write(99,*)real(pls(i)),real(wls(i))

enddo

write(99,*)' '

endif

endif

return

end

c################################################################

c This subroutine calculates the gs energy and

c the |gs> by the modified Lanczos method

c the Hamiltonian h has been compressed and ih has the pointers

c f0 is the seed on input and the |gs> on output

subroutine lanczos(h,f0,egs,ih,id,in,is)

parameter(N=16,NP=4900,MP=15)

implicit real*8(a-h,o-z)

double precision h(NP,2*N)

double precision f0(NP),f1(NP)

double precision f2(NP),f3(NP)

dimension ih(NP,2*N),zz(MP,MP),at(MP),bt(MP)

dimension vect(MP,NP)

if(id.eq.1)then

egs=h(1,1)

do i=1,NP

f0(i)=0.d0

enddo

f0(1)=1.d0

goto 200

endif

e0=0.d0
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e1=100.d0

xx=0.d0

do i=1,id

xn=ran(2)

f0(i)=xn

xx=xx+f0(i)**2

enddo

xx=1.d0/dsqrt(xx)

do i=1,id

f0(i)=xx*f0(i)

enddo

c does regular modified lanczos

if(id.lt.3)then

jloop=0

100 continue

jloop=jloop+1

e0=e1

call hxvl(h,ih,f0,f1,id)

call hxvl(h,ih,f1,f2,id)

call hxvl(h,ih,f2,f3,id)

ha=0.d0

h2=0.d0

h3=0.d0

do i=1,id

ha=ha+f0(i)*f1(i)

h2=h2+f0(i)*f2(i)

h3=h3+f0(i)*f3(i)

enddo

hh=h2-ha**2

if(h2-ha**2.lt.0.d0)then

write(1,*)jloop,real(h2-ha**2)

hh=1.d-9

endif

den=dsqrt(hh)

do i=1,id

f1(i)=(f1(i)-ha*f0(i))/den

enddo

den1=2.d0*(h2-ha**2)*den

xnum=h3-3.d0*ha*h2+2.d0*ha**3

f=xnum/den1

alpha=f-dsqrt(f**2+1.d0)

den2=dsqrt(1.d0+alpha**2)
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do i=1,id

f0(i)=(f0(i)+alpha*f1(i))/den2

enddo

e1=ha+den*alpha

if(dabs(e1-e0).gt.1.d-9)goto 100

egs=e1

c print*,'regul lanczos egs:',egs

else

c does tridiagonalization of MxM block

300 continue

e0=e1

do i=1,MP

at(i)=0.d0

bt(i)=0.d0

do j=1,NP

vect(i,j)=0.d0

enddo

enddo

call hxvl(h,ih,f0,f1,id)

a=0.d0

b=0.d0

do i=1,id

a=a+f0(i)*f1(i)

enddo

at(1)=a

s=0.d0

do i=1,id

f1(i)=f1(i)-a*f0(i)

s=s+f1(i)*f1(i)

enddo

bt(2)=dsqrt(s)

s=1.d0/bt(2)

do i=1,id

f1(i)=s*f1(i)

vect(1,i)=f0(i)

vect(2,i)=f1(i)

enddo

c check that the block for lanczos is not bigger than the

c size of the sector

M=MP

if(id.lt.M)M=id

do k=2,M

call hxvl(h,ih,f1,f2,id)
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b=bt(k)

a=0.d0

do i=1,id

a=a+f1(i)*f2(i)

enddo

at(k)=a

s=0.d0

do i=1,id

f2(i)=f2(i)-a*f1(i)-b*f0(i)

s=s+f2(i)*f2(i)

enddo

s=dsqrt(s)

if(k.le.M-1)then

bt(k+1)=s

s=1.d0/s

do i=1,id

f2(i)=s*f2(i)

vect(k+1,i)=f2(i)

enddo

endif

do i=1,id

f0(i)=f1(i)

f1(i)=f2(i)

enddo

enddo

do i=1,MP

do j=1,MP

zz(i,j)=0.d0

enddo

zz(i,i)=1.d0

enddo

call tqli(at,bt,M,MP,zz)

call eigsrt(at,zz,M,MP)

e1=at(M)

s=0.d0

do i=1,id

f0(i)=0.d0

do j=1,M

f0(i)=f0(i)+zz(j,M)*vect(j,i)

enddo

s=s+f0(i)*f0(i)

enddo

s=1.d0/dsqrt(s)

do i=1,id

f0(i)=s*f0(i)

enddo
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if(jloop.gt.1020)then

print*,'did not converge!!! (but continued anyway)'

goto 400

endif

if(dabs(e1-e0).gt.1.d-9)goto 300

400 continue

egs=e1

endif

200 continue

return

end

c################################################################

c diagonalized a tridiagonal matrix

c from numerical recipes

SUBROUTINE tqli(d,e,n,np,z)

implicit real*8(a-h,o-z)

INTEGER n,np

double precision d(np),e(np)

double precision z(np,np)

C USES pythag

INTEGER i,iter,k,l,m

double precision b,c,dd,f,g,p,r,s,pythag

do i=2,n

e(i-1)=e(i)

enddo

e(n)=0.d0

do 15 l=1,n

iter=0

1 do m=l,n-1

dd=dabs(d(m))+dabs(d(m+1))

if (dabs(e(m))+dd.eq.dd) goto 2

enddo

m=n

2 if(m.ne.l)then

if(iter.eq.30)pause 'too many iterations in tqli'

iter=iter+1

g=(d(l+1)-d(l))/(2.d0*e(l))

r=pythag(g,1.d0)

g=d(m)-d(l)+e(l)/(g+dsign(r,g))

s=1.d0

c=1.d0

p=0.d0

do 14 i=m-1,l,-1

f=s*e(i)

b=c*e(i)

r=pythag(f,g)

e(i+1)=r

if(r.eq.0.d0)then
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d(i+1)=d(i+1)-p

e(m)=0.d0

goto 1

endif

s=f/r

c=g/r

g=d(i+1)-p

r=(d(i)-g)*s+2.d0*c*b

p=s*r

d(i+1)=g+p

g=c*r-b

C Omit lines from here ...

do 13 k=1,n

f=z(k,i+1)

z(k,i+1)=s*z(k,i)+c*f

z(k,i)=c*z(k,i)-s*f

13 continue

C ... to here when finding only eigenvalues.

14 continue

d(l)=d(l)-p

e(l)=g

e(m)=0.d0

goto 1

endif

15 continue

c

return

END

c################################################################

c used by tqli

c from numerical recipes

double precision FUNCTION pythag(a,b)

implicit real*8(a-h,o-z)

double precision a,b,pythag

double precision absa,absb

absa=dabs(a)

absb=dabs(b)

if(absa.gt.absb)then

pythag=absa*dsqrt(1.+(absb/absa)**2)

else

if(absb.eq.0.)then

pythag=0.

else

pythag=absb*dsqrt(1.+(absa/absb)**2)

endif

endif

return

END

c################################################################

c constructs a mask of 1 and 0's to avoid multiplication by 0's

c in the operation of h times a state.

c it takes a state from a sector (n0,s0) and depending
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c on how the operator that acts changes the spin and particle

c number, it constructs the appropiate mask.

subroutine mask(in0,is0,igs,imk,imc)

parameter(N=16,NN=2**N,NP=4900)

implicit real*8(a-h,o-z)

dimension in0(N),is0(N),imk(NN)

dimension isrt(NP),jsrt(NN)

c the GF are spin up by convention

c

c +

c imc is 0 for the C C |0> sector (does not change)

c

c +

c imc is +1 for the C |0> sector (N+1, S+1)

c

c

c imc is -1 for the C |0> sector (N-1, S-1)

c

do i=1,NN

imk(i)=0

enddo

do i=1,igs

in=in0(i)+imc

is=is0(i)+imc

c construct the pointers for sector (in,is)

call sector(in,is,idg,isrt,jsrt)

do j=1,idg

jj=isrt(j)

imk(jj)=1

isrt(j)=0

enddo

enddo

return

end

c################################################################

c This subroutine calculates a Green function in terms of

c a continued fraction

subroutine getgf(h,ih,anr,bnr,anl,bnl,gs,igs,cp,icp,cpdg,icpdg,

$ NG,in0,is0)

parameter(N=16,NN=2**N,NP=4900)

implicit real*8(a-h,o-z)
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double precision h(NN,2*N)

double precision anr(0:NP),bnr(0:NP)

double precision anl(0:NP),bnl(0:NP)

double precision xa(NN)

double precision f0(NN),f1(NN),f2(NN),f(NN)

double precision gs(NN)

double precision cp(NN),cpdg(NN)

dimension icp(NN),icpdg(NN)

dimension ih(NN,2*N)

dimension in0(N),is0(N),imk(NN)

c construct the mask

call mask(in0,is0,igs,imk,1)

c***starts the tridiagonalization****

c right chain

call cxv(cpdg,icpdg,gs,f0)

c get an(0) and bn(0)

call hxvm(h,ih,f0,xa,imk)

anr(0)=0.

yr=0.

do 11 i=1,NN

anr(0)=anr(0)+f0(i)*xa(i)

yr=yr+f0(i)**2

11 continue

anr(0)=anr(0)/yr

bnr(0)=yr

c get the an(i) and bn(i)

c f1=f(n-1),f2=f(n-2)

a=anr(0)

b=0.

do 13 i=1,NN

f1(i)=f0(i)

f2(i)=0.

13 continue

do 14 in=1,NG

call getfn(ih,h,f,f1,f2,a,b,imk)

call getab(ih,h,f,f1,a,b,imk)

anr(in)=a

bnr(in)=b

do 15 i=1,NN
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f2(i)=f1(i)

f1(i)=f(i)

15 continue

14 continue

c construct the mask

call mask(in0,is0,igs,imk,-1)

c left chain

c***cp(j,i)=cp+(i,j)***

c**change the sign of H to calculate the hole excitations**

do 102 j=1,2*N

do 102 i=1,NN

h(i,j)=-h(i,j)

102 continue

call cxv(cp,icp,gs,f0)

c get an(0) and bn(0)

call hxvm(h,ih,f0,xa,imk)

anl(0)=0.

yl=0.

do 19 i=1,NN

anl(0)=anl(0)+f0(i)*xa(i)

yl=yl+f0(i)**2

19 continue

anl(0)=anl(0)/yl

bnl(0)=yl

c get the an(i) and bn(i)

c f1=f(n-1),f2=f(n-2)

a=anl(0)

b=0.

do 21 i=1,NN

f1(i)=f0(i)

f2(i)=0.

21 continue

do 22 in=1,NG

call getfn(ih,h,f,f1,f2,a,b,imk)

call getab(ih,h,f,f1,a,b,imk)

anl(in)=a

bnl(in)=b
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do 23 i=1,NN

f2(i)=f1(i)

f1(i)=f(i)

23 continue

22 continue

c**restore the sign of H**

do 103 j=1,2*N

do 103 i=1,NN

h(i,j)=-h(i,j)

103 continue

print*,'done!'

return

end

c##############################################################

c This subroutine calculates the spin-spin and charge-charge

c correlation function in terms of a continued fraction

subroutine getcorr(h,ih,snr,tnr,snl,tnl,gs,igs,NG,in0,is0)

parameter(N=16,NN=2**N,NP=4900)

implicit real*8(a-h,o-z)

double precision h(NN,2*N)

double precision snr(0:NP),tnr(0:NP)

double precision snl(0:NP),tnl(0:NP)

double precision xa(NN)

double precision f0(NN),f1(NN),f2(NN),f(NN)

double precision gs(NN)

dimension ih(NN,2*N)

dimension ib2(N)

dimension in0(N),is0(N),imk(NN)

c 1=p site down

c 2=p site up

c iep=d site up

c ied=d site down

c NR =last site of up chain

c NR+1=first site of down chain

c NC =length of each side of the chains

NR=((N-2)/2-1)/2+2

NC=NR-2

nhalf=N/2

iep=N-1

ied=N

c calculates the <sp-sp> continued fraction

c construct the mask

call mask(in0,is0,igs,imk,0)
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c***starts the tridiagonalization****

c right chain

xnp=0.d0

xnd=0.d0

do i=1,NN

call b2(i,ib2)

xnp=xnp+gs(i)*gs(i)*ib2(2)

xnp=xnp+gs(i)*gs(i)*ib2(1)

xnd=xnd+gs(i)*gs(i)*ib2(iep)

xnd=xnd+gs(i)*gs(i)*ib2(ied)

f0(i)=dfloat(ib2(2)-ib2(1)+ib2(iep)-ib2(ied))*gs(i)

enddo

print*,'Np:',real(xnp)

print*,'Nd:',real(xnd)

c get cn(0) and dn(0)

call hxvm(h,ih,f0,xa,imk)

snr(0)=0.

srd=0.

do 311 i=1,NN

snr(0)=snr(0)+f0(i)*xa(i)

srd=srd+f0(i)**2

311 continue

snr(0)=snr(0)/srd

tnr(0)=srd

c get the cn(i) and dn(i)

c=snr(0)

dd=0.

do 313 i=1,NN

f1(i)=f0(i)

f2(i)=0.

313 continue

do 314 in=1,NG

call getfn(ih,h,f,f1,f2,c,dd,imk)

call getab(ih,h,f,f1,c,dd,imk)

snr(in)=c

tnr(in)=dd

do 315 i=1,NN

f2(i)=f1(i)

f1(i)=f(i)

315 continue
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314 continue

c use left chain for the <ch-ch>

c can use the same mask

c construct f0

xnp=0.d0

xnd=0.d0

do i=1,NN

call b2(i,ib2)

idnp=ib2(2)+ib2(1)-1

idnd=ib2(iep)+ib2(ied)-1

f0(i)=dfloat(idnp+idnd)*gs(i)

enddo

c get cn(0) and dn(0)

call hxvm(h,ih,f0,xa,imk)

snl(0)=0.

sld=0.

do 319 i=1,NN

snl(0)=snl(0)+f0(i)*xa(i)

sld=sld+f0(i)**2

319 continue

snl(0)=snl(0)/sld

tnl(0)=sld

c get the cn(i) and dn(i)

c=snl(0)

dd=0.

do 325 i=1,NN

f1(i)=f0(i)

f2(i)=0.

325 continue

do 322 in=1,NG

c do 322 in=1,10

call getfn(ih,h,f,f1,f2,c,dd,imk)

call getab(ih,h,f,f1,c,dd,imk)

snl(in)=c

tnl(in)=dd

do 323 i=1,NN

f2(i)=f1(i)

f1(i)=f(i)



207

323 continue

322 continue

print*,'done!'

return

end

c################################################################
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