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ABSTRACT OF THE DISSERTATION
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Systems

by Indranil Paul

Dissertation Director: Professor Gabriel Kotliar

In this thesis we investigate two topics. First, in chapter 2 we study the basis de-

pendence of dynamical mean field theory. For the purpose of using this theory as a

numerical tool for predicting properties of materials, the choice of a suitably localized

basis is important. We propose and test a criterion for making this choice of basis.

In the rest of the thesis we study thermal and charge transport in systems in which

correlation effects are important. In chapter 3 we clarify some aspects in the calcula-

tion of the thermal transport coefficients. For a tight-binding Hamiltonian we discuss

the approximate nature of the charge and the thermal current obtained by Peierls sub-

stitution. Using equation of motion we derive the thermal current for a generalized

Hubbard model with density interaction. We identify a part which is the contribution

to the thermal current from the long-range interactions. For the Hubbard model we

derive expressions for the transport coefficients which are exact in the limit of large

dimensions. In chapter 4 we study the form of the charge current operator in a down-

folding scheme. By treating the down-folding procedure to lowest order in perturbation

we derive expressions for the charge current in the low- energy sector. In chapter 5 we
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study the thermoelectric behaviour of a heavy-fermion compound when it is close to

an antiferromagnetic quantum critical point. When the low-energy spin fluctuations

are quasi two-dimensional with a three-dimensional Fermi surface, the “hot” regions

on the Fermi surface have a finite area. We argue that there is an intermediate energy

scale where the qualitative aspects of the renormalized hot electrons are captured by

a weak-coupling perturbative calculation. Due to enhanced scattering with the nearly

critical spin fluctuations, the quasiparticle mass in the hot region is strongly renormal-

ized. This accounts for the anomalous logarithmic temperature dependence of specific

heat observed in these materials. We show that the same mechanism produces logarith-

mic temperature dependence in thermopower. This has been observed in CeCu6−xAux.

We expect to see the same behaviour from future experiments on YbRh2Si2.
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Chapter 1

Introduction

Understanding the various quantum states of matter such as metals, insulators, super-

conductors, superfluids and magnets, and the description of phase transitions from one

state to another are among the basic goals of condensed matter physics [1]. In the

last two decades the discovery of heavy-fermion materials [2] and high temperature

superconductors have posed a formidable challenge to this field. In these materials

the electron-electron interaction is comparable to the kinetic energy of the electrons.

The correlation effects arising from the strong interaction between the electrons play a

crucial role in these materials.

Theorists try to understand these strongly correlated electron systems by studying

microscopic model Hamiltonians such as the Hubbard model and the Kondo lattice

model. In spatial dimensions greater than one there are no known exact solutions of

these models and so one has to resort to various approximations. The main difficulty

with strongly correlated systems is the non-perturbative nature of these systems. This

means the physical properties of these systems cannot be understood by expanding

various quantities in powers of the interaction. On the other hand, there are very few

known non-perturbative approximations which are controlled in the sense that these

approximations are exact in certain limits. In problems involving spins, examples of

controlled non-perturbative approximations include the large-S technique, where the

size of the spin is assumed to be large, and the large-N technique, which assumes the

spin degeneracy N to be large [3].
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1.1 Overview of Quantum Phase transition

A quantum phase transition [4, 5] is a zero temperature phenomenon in which the na-

ture of the ground state of a material undergoes profound change by the tuning of a

microscopic parameter. The energies of the ground state and the excited states are

functions of the microscopic parameters of the Hamiltonian. As one of them, say g, is

changed, the transition can occur either by a level-crossing in which an excited state

becomes the ground state, or by the limiting case of an avoided level-crossing. Math-

ematically, a quantum phase transition is a point of non-analyticity in the ground state

energy Eg(g) at some g = gc. This transition is typically from an ordered ground state

(broken symmetry state) to one without order (symmetry restored). The transition is

said to be driven by quantum fluctuations. When the transition is continuous, second

order, the phase transition point is called a quantum critical point (QCP). It is associ-

ated with diverging length and time scales. This is to be contrasted with a classical

phase transition which occurs by tuning the temperature (T ). In this case it is the ther-

mal fluctuations that drive the transition. Mathematically, a classical phase transition

is associated with non-analyticity in the thermodynamic free energy.

A second order phase transition, both quantum and classical, is associated with the

divergence of a characteristic length scale ξ (correlation length). Physically, this length

scale is the average spatial size of the fluctuations of a relevant quantity about the mean

value. More precisely, it is the length scale that determines the exponential decay of

correlation functions. The divergence of the correlation function is expressed as
(

ξ

a

)−1

∼ |g − gc|ν . (1.1)

Here ν is a critical exponent, and a is a microscopic length scale (lattice spacing, or

resolution in a coarse-grained description). For a quantum phase transition there is also

an energy scale Ω that goes to zero at the QCP. For a gapped system this energy scale

is the gap between the ground state and the excitations. For a gapless system this is the

characteristic scale of the excitation spectrum. The vanishing of Ω is expressed as
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Figure 1.1: Two possible phase diagrams with quantum critical points. In (a) a line
of classical continuous phase transitions end at a quantum critical point. The region
within the dashed lines is the critical regime. In (b) only the ground state energy is
non-analytic. At finite temperature thermodynamic free energy is analytic.

(

Ω

J

)

∼ |g − gc|zν ∼
(

ξ

a

)−z

. (1.2)

The exponent z is the called the dynamical exponent. Here J is a microscopic energy

scale. The disappearance of the energy scale is associated with the divergence of a time

scale τφ, called the phase coherence time. Physically, this is the time scale over which

a many-body wavefunction retains phase memory. One can write

τφ ∼ ~

(

ξ

a

)z

. (1.3)

The dynamical critical exponent gives the scaling of time compared to the scaling of

space.

There are three generic possibilities for the T − g phase diagram of a system in the

presence of a QCP at T = 0 and g = gc. First, a line of continuous phase transitions

at T > 0 can end at a QCP. The line is defined by the non-analyticity of the free

energy. This is illustrated in Fig. 1.1(a). The region within the dashed lines is the
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critical regime where kBT � ~ωtyp. Here ωtyp is the frequency scale of the long range

fluctuations of the system close to criticality. In this regime it is possible to think of

the dynamics of the long range fluctuating modes as frozen in time. Then the phase

transition can be described in terms of classical statistical mechanics, a subject which

is well studied [6]. Close to the QCP this region shrinks and there is a wide regime in

the phase diagram where both quantum fluctuations and thermal fluctuations come into

play. We will study this scenario in greater detail in a later chapter of this thesis in the

context of magnetic QCPs in heavy-fermion systems. A second possibility is illustrated

in Fig. 1.1(b). In this situation only the ground state energy is non-analytic as a function

of g. At T > 0 the free energy is analytic and there is no finite temperature phase

transition. A third possibility is when a line of discontinuous first order transitions

at T > 0 end at a QCP. For all these cases, studying the system close to the QCP

reveals information that is important to understand the nature of the system at low

temperatures.

1.2 Magnetic Quantum Criticality in Heavy-Fermion Systems

Heavy-fermion systems are compounds and alloys which contain rare earth metals such

as Ce, Yb, U and Np as one of their constituents. Typical heavy-fermion systems are

CeCu2Si2, CeCu6, UPt3, UBe13, NpBe13. The presence of 4f and 5f electrons in these

materials has dramatic influences on their properties [7, 8, 9]. Below a certain charac-

teristic temperature T ∗, these materials behave as Landau Fermi liquids characterized

by linear temperature dependence of specific heat C ∝ T , quadratic temperature de-

pendence of resistivity ρ(T ) ∝ T 2, and temperature independent Pauli paramagnetic

susceptibility χ. But the effective mass m∗ of the quasiparticles is typically several

hundred times the mass of a free electron. As a consequence, the specific heat coeffi-

cient γ = C/T is very large. For example, in heavy-fermions typically γ ∼ 1 J mol−1

K2, while in an ordinary metal such as Na, γ ∼ 1 mJ mol−1 K2. Similarly, below
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T ∗ the Pauli paramagnetic susceptibility is rather large. As the temperature is raised

above T ∗, the quasiparticles lose their heavy mass and the specific heat levels off. The

susceptibility changes from being Pauli-like to Curie-like. The Ce and U ions start

behaving like ions with localized magnetic moments.

The f -electrons are localized and so their interaction energy is very high compared

to those between s, p and d orbitals. Consequently the low-energy excitations involving

f -electrons are predominantly the spin degrees of freedom, while the high-energy ex-

citations are the charge degrees of freedom. The model Hamiltonian for studying the

microscopics of heavy-fermion systems is the “Kondo Lattice Model” (when charge

fluctuations of the f -electrons are important one has to study the more basic “Periodic

Anderson model”). It has the form

H =
∑

k,α

εkc
†
k,αck,α + J

∑

i,α,β

S̄i · ψ†
α(i)σ̄αβψβ(i). (1.4)

It describes a band of conduction electrons, whose creation and annihilation operators

are c†k,α and ck,α respectively, interacting with localized SU(2) spin degrees of freedom

at each lattice site i. ψα(i) is the Fourier transform of ck,α. Here α, β are spin indices,

and σ̄ are the Pauli matrices. εk is the spectrum of the non-interacting conduction

electrons. J is the energy scale of the Kondo coupling. The localized spins are formed

at each unit cell by unpaired f -electrons of the rare earth ions. Charge fluctuation of

the f -electrons is suppressed due to high repulsion energy.

In the last decade several heavy-fermion materials have been discovered which ex-

hibit antiferromagnetic quantum critical behaviour [10]. Examples include CePd2Si2 [11],

CeIn3 [11], CeRu2Si2 [12], CeNi2Ge2 [13], U2Pt2In2 [14], CeCu6−xRx (R= Au, Ag) [15],

YbRh2Si2 [16]. The generic presence of antiferromagnetic QCP in the phase diagrams

of these materials can be understood in the following way [17]: at high temperatures

the f -electrons form local moments which are mostly decoupled from the conduction

electrons. The coupling J grows as the temperature is lowered. It also gives rise to

interaction between the moments which is mediated by the conduction electrons. This
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Figure 1.2: The competition between the Kondo effect and the RKKY interaction give
rise to magnetic quantum phase transitions in heavy-fermion systems.

is known as the RKKY interaction [18]. In a perturbative calculation the RKKY in-

teraction JRKKY ∼ J2ρ, where ρ is the conduction electron density of states at the

Fermi level. This estimate of JRKKY is valid only when Jρ < 1. The tendency of

the RKKY interaction is to magnetically order the spins, usually in an antiferromag-

netic order with Néel temperature TN ∼ JRKKY /kB. On the other hand the Kondo

coupling J tends to screen the local moments (Kondo effect) by the formation of sin-

glet bound states between the local moments and the conduction electrons below the

Kondo temperature TK ∼ ρ−1 exp(−1/(Jρ)). When the moments are screened, they

hybridize with the conduction electrons to form a heavy Landau Fermi liquid. The

ground state of the system is non-magnetic. The existence of antiferromagnetic QCP

in heavy-fermion systems can be understood as a competition between the RKKY in-

teraction JRKKY and the Kondo energy scale TK (see Fig. 1.2). It is the point in the

phase diagram where the balance between JRKKY and TK is just right to drive the Néel

temperature TN to zero.
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Heavy fermion materials with antiferromagnetic QCP have attracted the attention

of theorists as well experimentalists in the last several years. At low temperature and

close to the QCP these materials, which are metallic, exhibit remarkable non-Fermi

liquid (NFL) behaviour. For example, the temperature dependence of resistivity is ei-

ther linear or quasi-linear, i.e., ρ ∼ T r, where 1 ≤ r < 2. The specific heat coefficient

diverges logarithmically with temperature with γ ∼ log(T0/T ). Recently in YbRh2Si2,

one of the most well-studied materials in this context, it has been observed [19] that

as temperature is lowered the divergence of the specific heat coefficient enhances and

it becomes a power law with γ ∼ T−(1/3). The spin susceptibility (χ) of another

well-studied material CeCu5.9Au0.1 (whose Néel temperature is believed to be zero),

measured by inelastic neutron scattering, seem to scale with frequency over tempera-

ture (ω/T ) with an anomalous exponent α ∼ 0.75 [20]. There is general consensus that

the origin of the NFL behaviour is due to proximity to the QCP (the quantum critical

regime), and that the quantum fluctuations in this regime are responsible for the de-

struction of the Landau Fermi liquid. However, a satisfactory microscopic description

of this phenomena and a clear understanding of the NFL properties is still an enigma

and therefore constitutes an active area of theoretical and experimental research.

1.3 Landau Ginzburg Description of Magnetic QCP : Spin Fluctu-

ation Theory

The spin fluctuation theory [21,22] is the generalization of the Landau Ginzburg theory

for a second order classical phase transition, to describe a quantum phase transition.

In a classical phase transition the dynamics can be separated from statics, and so time

does not enter in the description of the phase transition. But for a quantum phase

transition this separation is not possible. When temperature is the lowest energy scale

in the system, i.e., ~ωtyp � T , the dynamics of the long range fluctuations close to the

QCP is important. Due to this, the effective dimension of a d dimensional system is
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enhanced to (d+ z), where z is the dynamical exponent.

In the context of magnetic QCP in heavy-fermion systems, the spin fluctuation the-

ory is constructed to describe the phase transition from the non-magnetic side. The

assumption is that T ∗ is a high energy cut-off, and the spin fluctuation picture is valid

for temperature much below this cut-off. In this low temperature regime the local mo-

ments are completely screened and are hybridized with the conduction electrons. In

other words, in this regime a heavy Fermi liquid has already formed. The spin fluc-

tuation theory describes the phase transition by a spin density wave (SDW) instability

of this Fermi liquid. The long wavelength collective spin fluctuations of the fermions

condense at the critical point at a particular wave-vector, giving rise to magnetic order.

The starting point of the theory is an interacting fermion system with short range

Hubbard interaction. This is written as

H =
∑

k,σ

εkc
†
k,σck,σ + U

∑

i

ni,↑ni,↓. (1.5)

Here ni,σ = c†i,σci,σ is the number operator for fermions with spin σ at the lattice site i.

c† (c) are fermion creation (annihilation) operators, and ck,σ = (
∑

i e
−ik·Rici,σ)/

√
N .

Ri is the position of the site i and N is the number of lattice sites. εk is the spectrum

of the free fermions. Since the system is close to a SDW instability, the long wave-

length collective spin fluctuations (the paramagnons) are important low-energy degrees

of freedom. In a functional integral formalism the spin fluctuations are introduced by

a Hubbard Stratonovich transformation. The partition function (Z) is expressed as a

functional integral in terms of Grassman fields which represent the fermions. The tem-

perature in this formalism plays the role of imaginary time (τ ). The fermion interaction

term, which is quartic in the Grassman fields, is decoupled into Grassman bilinears by

introducing a bosonic Hubbard Stratonovich field (φ). This field is identified with the

collective spin fluctuation degrees of freedom. The fermionic part of the action is now

quadratic, and can be integrated out. The resulting action (S) is expressed entirely

in terms of the spin fluctuations, and has a structure which is similar to the Landau
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Ginzburg free energy functional for second order classical phase transition. The im-

portant difference, as mentioned earlier, is that in the quantum case the order parameter

fields are dynamical variables. The spin fluctuation theory is expressed as

Z = Z0

∫

Dφ(k, ωn)e
−S[φ(k,ωn)], (1.6)

where the action S has the form

S[φ(k, ωn)] =
1

2

∑

k,ωn

(

δ + k2 +
|ωn|
Γk

)

|φ(k, ωn)|2 +
u

4β

∑

ki,ωi

φ(k1, ω1)φ(k2, ω2)

×φ(k3, ω3)φ(−k1 − k2 − k3,−ω1 − ω2 − ω3). (1.7)

Here Z0 is the partition function of the non-interacting fermions, δ is a mass term for

the paramagnons which goes to zero at the QCP, and β = 1/(kBT ). ωn = (2πn)/β is

bosonic Matsubara frequency obtained by Fourier transform of the imaginary time τ .

In terms of the parameters of the original fermionic theory δ = 1 − Uρ(EF ) and u =

U2ρ′′(EF )/12, where ρ(EF ) is the density of states of the non-interacting fermions at

the Fermi energy. The |ωn|/Γk term in the quadratic part of the action gives damping to

the paramagnons. Since the spectrum of the spin fluctuations lies within the continuum

of particle-hole excitations, they can decay into particle-hole pairs and are therefore

overdamped. For a ferromagnetic instability Γk ∼ k, and for an antiferromagnetic

instability Γk ∼ const. In this description of the quantum phase transition the only

role of the conduction electrons is to provide damping to the critical collective spin

excitations.

The above action can be studied using the renormalization group (RG) approach [21,

22]. This is a powerful conceptual framework [23] in which one studies how the cou-

pling constants ( δ and u for the above action, and also T at finite temperature) of the

action change as the energy and momentum cut-off of the theory is lowered. From

studying the flow of the coupling constants (which are functions of the cut-off scale)

one can identify the fixed point action S∗. This is the action which remains unchanged
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under RG transformation. Identifying the fixed point action that governs a phase tran-

sition gives information about the various critical exponents. These exponents are uni-

versal in the sense that they are properties of the fixed point theory S∗ and do not

depend on the microscopic details of the original action S. RG transformation pro-

ceeds in three steps. First, the phase space is separated into slow and fast variables.

The modes with low frequency and momentum are the slow modes φ< = φ(k, ω) with

0 < k < Λ/s and 0 < ω < Ω/sω. The modes with high momentum and/or frequency

are the fast modes φ> = φ(k, ω) with Λ/s ≤ k ≤ Λ and/or Ω/sω ≤ ω ≤ Ω. After the

separation of scales, the fast modes are integrated out (mode elimination). This pro-

cedure generates contributions to the slow sector from the fast sector while preserving

the form of the action. It is also possible that entirely new couplings are generated by

the mode elimination. In the second step, the momenta and frequencies are rescaled by

defining k′ = sk and ω′ = sωω, such that the cut-offs (for the rescaled parameters) are

restored to their original value. The final step is to perform field rescaling by defining

new fields, φ′(k′, ω′) = ξ−1φ<(k′/s, ω′/sω), such that certain terms in the quadratic

part of the action remains invariant.

In the action given by Eq. (1.7) momentum and frequency enter differently, as a

result they are scaled differently. One finds that sω = sz where z is the dynamical

critical exponent. This scaling is necessary to keep both the k2 and the |ωn|/Γk terms

in the action unchanged. At the level of bare scaling (i.e., ignoring loop corrections)

one finds that δ → δs2, T → Tsz and u→ usε where ε = 4− (d+ z). Thus, (d + z)

appears as the effective dimension of the system. When (d + z) > 4 the coupling

between the spin fluctuation modes diminishes as the cut-off is lowered, and goes to

zero at the fixed point. The fixed point theory is given by the quadratic part of the

action (with δ = 0). This is known as the Gaussian fixed point, and the system is said

to be above its upper critical dimension (= 4). In such a case the critical exponents

are correctly given by a mean-field theory. When (d + z) < 4 the coupling u grows

as the cut-off is lowered and it becomes relevant. This is a strong coupling problem.
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The ultimate fate of the flow of the couplings cannot be determined by perturbative

RG (expansion in powers of u). When (d + z) = 4, u goes to zero logarithmically

as 1/ log(Λ0/Λ) (u is said to be marginally irrelevant). This is determined by the sign

of the O(u2) correction to the flow of u. A detailed RG analysis of the above action

gives information about the various regimes and the associated phase transition and

cross-over lines in the T -δ phase diagram [22].

1.4 Application of Spin Fluctuation Theory to Heavy-Fermion Quan-

tum Criticality

The application of the theory of spin fluctuations to understand magnetic quantum

criticality in heavy-fermion materials is not straight-forward and has proven to be

only partially successful [10]. For an antiferromagnetic QCP, z = 2. If one con-

siders three-dimensional spin fluctuations (since the materials are three-dimensional),

the corresponding spin fluctuation model is above the upper critical dimension. Us-

ing this model has the following difficulties: (1) it predicts specific heat coefficient

γ ∼ γ0 + T 1/2, i.e., the corrections to the leading Fermi liquid behaviour are non-

analytic. But experimentally it has been observed [24] that γ ∼ log(T0/T ) for materi-

als such as CeCu6−xAux, CeNi2Ge2 and YbRh2Si2. (2) In this model the Landau quasi-

particles are well defined on most of the Fermi surface except on the “hot lines” which

are lines on the Fermi surface that are connected by the magnetic ordering wave-vector

Q. Though the hot electrons have lower lifetime due to scattering with the critical

fluctuations, the normal electrons (which form the bulk) contribute the most in trans-

port processes. As a result this model will predict the same temperature dependence

of resistivity as does Fermi liquid theory. However, in practice one observes linear or

quasi-linear temperature dependence.

The above difficulties can be removed with the postulation that the spin fluctua-

tions are two-dimensional [25]. The two-dimensional nature of the spin fluctuations
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has been observed in elastic neutron scattering experiment on CeCu5.9Au0.1 [26]. The

d = 2 and z = 2 spin fluctuation theory correctly predicts the logarithmic tempera-

ture dependence of the specific heat coefficient. In addition, the entire Fermi surface

becomes hot because the spin fluctuation spectrum is insensitive in a third direction.

This provides a possible explanation for the linear temperature dependence of resis-

tivity [25]. In a later chapter we will show that this postulation is consistent with the

observed temperature dependence of thermopower in CeCu5.9Au0.1.

However, the two-dimensional spin fluctuation theory leaves the following issues

unexplained: (1) The dynamical spin susceptibility of CeCu5.9Au0.1 at the ordering

wave-vector has been experimentally observed [20] to have the form χ(Q, ω)−1 ∼
(ω/T )0.75. This would suggest a dynamical critical exponent z = 2.7 which is differ-

ent from that given by a Gaussian fixed point. This observation cannot be reconciled

with the two-dimensional spin fluctuation theory since it is at the upper critical dimen-

sion [27]. (2) Recently the specific heat coefficient of YbRh2Si2 has been observed

to diverge with a power law as γ ∼ T−1/3 [19]. Currently there is no proper un-

derstanding of this behaviour. (3) The microscopic origin of the generic occurrence

of two-dimensional spin fluctuations in materials which are three-dimensional is not

known.

The attempt to get a complete picture of magnetic quantum criticality in heavy-

fermion materials still is an active area of research in condensed matter physics. The

failure of the spin fluctuation theory in its current formulation has led to the suggestion

that a more basic model, one that will incorporate the physics of the Kondo effect close

to a QCP, is necessary [10]. It has been speculated that T ∗, the temperature below

which the heavy Fermi liquid forms, goes to zero at the QCP [20,28]. This would imply

a failure of Kondo effect to take place and the existence of the local moments down to

the lowest temperature at the QCP. This idea is currently a topic of investigation.
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1.5 Brief Introduction to Dynamical Mean Field Theory

In the last decade dynamical mean field theory (DMFT) has emerged as a successful

non-perturbative approximation scheme to deal with problems involving strongly cor-

related electrons [29, 30]. It is a generalization of the Weiss mean field theory, which

was developed for classical systems, to quantum problems. The main idea of DMFT is

to describe a many-body system defined on a lattice in terms of a single site quantum

impurity in the presence of an effective medium which is self-consistently determined.

One can show that this description is exact in the limit of infinite co-ordination number

Z (or infinite dimension d). Hence it is a controlled approximation in which various

physical quantities can be expanded in powers of 1/Z.

As an illustration of DMFT, we will consider the Hubbard Hamiltonian. It is written

as

H = −t
∑

〈ij〉,σ
c†i,σci,σ + U

∑

i

ni↑ni↓. (1.8)

Here 〈ij〉 denote nearest neighbour summation, c†i,σ (ci,σ) create (annihilate) electrons

with spin σ on lattice site Ri, t is the hopping integral between neighbouring sites,

ni,σ = c†i,σci,σ is the number operator, and U is the on-site interaction between the

electrons. It can be thought of as the local part of the screened Coulomb interaction

between the electrons. We will imagine the lattice to be a d-dimensional hypercube

which has a co-ordination number Z = 2d.

In the limit of infinite dimension the interaction term, which has no information

about neighbouring sites, need not be changed. But the hopping term has to be scaled

appropriately in order to get a sensible theory. This is done in the following way. We

define the one-particle density matrix g0
ij,σ = 〈c†i,σcj,σ〉0, where 〈 〉0 implies average

with respect to the non-interacting system. g0
ij,σ gives the transition amplitude between

site Ri and Rj. Then |g0
ij,σ|2, summed over those Rj which are nearest neighbour

sites to Ri, gives the probability for an electron to escape from a site Ri to its nearest

neighbour sites. Since the number of nearest neighbour sites is Z, and g0
ij,σ = t, when
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Ri and Rj are nearest neighbours, this probability is Zt2. We have to scale t such

that this probability remains finite and the electrons stay mobile in the limit of infinite

dimensions. Thus the correct scaling is given by

t =
t∗

Z1/2
, t∗ = constant. (1.9)

As a result of this scaling, one can show that the electron self-energy becomes local,

i.e.,

Σij,σ(ω)
d→∞
= Σii,σ(ω)δij. (1.10)

In other words, self-energy becomes momentum independent, and only a function of

frequency. Thus, DMFT ignores fluctuations in space but retains the local quantum

fluctuations. In this sense, even in the limit of infinite dimensions, the system has

a many-body nature. The above idea can be made more concrete in the functional

integral language. This formulation, and the DMFT equations for the Hubbard model

are discussed in appendix A.

However, like any other local approximation, DMFT is basis dependent. One has

to choose a suitably localized basis in order to ignore all non-local interactions. This

topic will be discussed in chapter 2. In recent times DMFT, in conjunction with band

theory, is being developed as a numerical tool for predicting properties of correlated

materials. For this purpose the accuracy of the DMFT approximation, which is related

to the issue of choice of basis, is quite important.

Finally, the calculation of various transport coefficients acquire certain simplifying

features in the DMFT formulation. This, and rigorous expressions for the transport

coefficients are discussed in chapter 3.
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Chapter 2

Basis Dependence and Choice of Basis for DMFT

In this chapter we discuss the basis dependence inherent in all local approximation

schemes including dynamical mean field theory (DMFT). From the point of view of

improving the numerical accuracy in the implementation of DMFT, choosing an ap-

propriate basis is important. We will suggest a procedure for making this choice. We

will test this proposal on an analytically tractable toy model. A few concepts from

linear algebra used here, expressed in the language of a non-orthogonal basis, are dis-

cussed in appendix B.

2.1 Basis Dependence of Local Approximations

We consider a system of interacting electrons on a lattice whose Hamiltonian is ex-

pressed in the basis of atomic orbitals. The single particle states are denoted by

〈r|nα〉 = φα(r −Rn), where α is a symmetry (say, orbital) index and Rn is a lattice

position. We will assume that there are m orbitals such that the index α = 1, · · · , m,

and there are N lattice sites with the lattice index n = 0, · · · , N − 1. We will also

impose the periodic boundary condition |n, α〉 = |n + N,α〉. The states defining the

basis, unlike those in a Wannier basis, are not orthogonal. We will denote the overlap

between any two states by Oαβ(n−m) ≡ 〈nα|mβ〉. As described in appendix B, the

second quantized many body Hamiltonian can be written as

H =
∑

nm
αβ

tnm
αβ c

†
n,αcm,β +

∑

nmlk
αβγδ

V nmkl
αβδγ c

†
n,αc

†
m,βck,δcl,γ, (2.1)
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where tnm
αβ ≡ 〈nα|H0|mβ〉, and V nmkl

αβδγ ≡ 〈nα,mβ|V̂ |lγ, kδ〉. In dynamical mean field

theory (DMFT) only the on-site interaction terms are kept, i.e.,

HDMFT =
∑

nm
αβ

tnm
αβ c

†
n,αcm,β +

∑

n
αβγδ

V nnnn
αβδγ c

†
n,αc

†
n,βcn,δcn,γ. (2.2)

We now consider an invertible transformation of the single particle basis |nα〉 →
|n′α′〉 =

∑

mβ Tβα(m − n)|mβ〉. Expressed in the new basis the Hamiltonian, say

H′, has the same form as in Eq. (2.1) except with all indices primed. We know that

H′ = H since they are the same operator expressed in two different bases. However, if

we perform the DMFT approximation onH′ and neglect the non-local interaction terms

in the new basis, the corresponding new DMFT HamiltonianH′
DMFT 6= HDMFT . The

approximation involved in DMFT, namely the neglect of non-local interaction terms,

makes this scheme basis dependent. This is a feature of any theory that involves local

approximations because a local interaction term in one basis becomes non-local when

expressed in another basis. This observation also implies that ignoring non-local in-

teraction terms is a good approximation only if the single particle basis is sufficiently

localized. This is the motivation for choosing an appropriate basis in which DMFT can

be used as a meaningful approximation.

2.2 Choice of a Localized Basis for DMFT

The two important questions for formulating the problem of choosing an appropriate

basis are: (1) what should be the criterion that picks out a suitably localized set of

orbitals as the preferred basis, and (2) what type of transformations of the basis should

we allow. The problem of choosing an appropriate basis set has been studied earlier

in quantum chemistry and in band structure calculations [31]. Usually such problems

are formulated by defining an appropriate functional (this provides the aforementioned

criterion) which is basis dependent and whose extremization by transformation of basis

provides a well-defined scheme for choosing a preferred basis set. For example, “local-

ized molecular orbitals” have been studied extensively in quantum chemistry. These are
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the analogues, for finite systems, of the Wannier functions defined for infinite periodic

systems. Among the several criteria that have been proposed for defining the localized

molecular orbitals, one of the most widely accepted criterion is the maximization of

the Coulomb self-interaction of the molecular orbitals by unitary transformations of

the basis states [32]. For band structure calculations the use of “maximally-localized”

Wannier functions has been proposed [31]. The Wannier functions are defined by

Wα(r−R) =
∑

k

eik·(r−R)φαk(r),

where φαk(r) are the Bloch orbitals which have the periodicity of the lattice. However,

there is freedom in the choice of phase of the Bloch orbitals. More generally, the basis

of Bloch orbitals can be changed by unitary transformations

φαk(r)→ φα′k(r) =
∑

β

Uβα(k)φβk(r),

where Uβα(k) is unitary. This produces a new basis of Wannier functions

Wα′(r−R) =
∑

k

eik·(r−R)
∑

β

Uβα(k)φβk(r).

The criterion for choosing this particular basis of Wannier functions involves the min-

imization of the “spread functional” which is the sum of the second moments of the

Wannier functions. It is given by

Ω[Uβα(k)] =
∑

α′

[〈0α′|r2|0α′〉 − 〈0α′|r|0α′〉2].

The spread functional is maximized with respect to the unitary transformation Uβα(k).

This criterion is the exact analogue, for a lattice system, of one of the criteria suggested

for choosing localized molecular orbitals [33].

In our problem it seems a priori there is no unique criterion, and only by compar-

ing the results of different criteria one can conclude what is appropriate. A possible

criterion, for example, is to choose the basis in which the sum of the square of the

on-site interaction terms is maximum. For this one has to define a functional

F1[{|nα〉}] =
∑

αβγδ

∣

∣V 0000
αβδγ

∣

∣

2
=
∑

αβγδ

V 0000
αβδγV

0000
γδβα,
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and find a basis in which the functional is maximum. If it can be implemented, will

this procedure allow us to say that the sum of the square of the non-local interaction

terms have been minimized as well? Also, should one include weight factors from the

overlap matrix in the case of non-orthogonal bases? To answer these questions we will

first identify a quantity which is invariant under invertible transformations of the basis

states. As discussed in appendix B, the trace of an operator is such a quantity. We

define

I = Tr(V̂ 2) =
∑

nmlkrspq
αβγδσρην

O−1
αβ (n−m)O−1

γδ (l − k)O−1
σρ (r − s)O−1

ην (p− q)V mkpr
βδησ V

sqln
ρνγα.

(2.3)

This invariant quantity has two basis-dependent parts: terms that involve only the local

interaction, and those that involve the non-local interaction. Keeping only the local

interaction terms we can define the functional

F [{|nα〉}] =
∑

αβγδσρην

O−1
αβ(0)O−1

γδ (0)O−1
σρ (0)O−1

ην (0)V 0000
βδησV

0000
ρνγα, (2.4)

which we will call the “local interaction functional”. Now if we can find a basis in

which F is maximum, then we are guaranteed that simultaneously the part of I which

contains non-local interaction terms is minimized. Thus, the functional F is a more

suitable quantity to work with than F1. We note that the two functionals are identical

in the case where the basis is orthonormal.

To elucidate the structure of the functional we will consider a basis transformation

of the form |nα〉 → |n′α′〉 = T |nα〉. In general the transformation of the overlap is

given by O′ = T †OT , and the transformation of the interaction is V ′ = T †T †V TT .

Supressing indices for clarity, the functional in the new basis can be expressed as

F [{|n′α′〉}] =
∑

α′β′γ′δ′

σ′ρ′η′ν′

O−1
α′β′(0)O−1

γ′δ′(0)O−1
σ′ρ′(0)O−1

η′ν′(0)V 0000
β′δ′η′σ′V 0000

ρ′ν′γ′α′

=
[

T−1O−1
(

T †)−1
]4
[

T †T †V TT
]2

= F [T ].
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The scheme is to maximize F [T ] with respect to the transformations T .

The next question is what kind of transformations of the basis states should we con-

sider under which the local interaction functional will be maximized. We will study

two possibilities: (1) unitary transformations, and (2) general invertible transforma-

tions with suitable constraints. The overlap matrix remains unchanged under unitary

transformations, therefore in this scheme we will maximize F within a family of bases

which have the same overlap matrix. The motivation for using general invertible trans-

formations is to probe bases which have different overlap matrices. However, without

appropriate constraints, the functional becomes unbounded when non-unitary transfor-

mations are allowed. In particular, we will discuss the constraint that the basis states

remain normalized under a change of basis. But we find that this scheme still fails to

make the functional bounded. We will conclude that the proper way to constrain the

non-unitary transformations is to keep the ratio of the singular-value decompositions

of the transformations within a certain range.

2.3 Maximization of Local Interaction Functional by Unitary Trans-

formations

Given a basis {|nα〉} with the overlap matrix 〈nα|mβ〉 ≡ Oαβ(n − m), we consider

unitary transformation

|nα〉 → |nα〉+ δ|nα〉 = U |nα〉 =
∑

mβ

Uβα(m− n)|mβ〉 (2.5)

to a new set of basis states {|n′α′〉}, where |n′α′〉 = |nα〉+ δ|nα〉. The unitary trans-

formation can be represented as U = eiεH , where H is hermitian and ε is a small

parameter. The action of H on the states is given by H|nα〉 = ∑mβ Hβα(m−n)|mβ〉
such that

Uαβ(n−m) = δαβδnm + (iε)Hαβ(n−m) +
(iε)2

2!

∑

lγ

Hαγ(n− l)Hγβ(l−m) + · · · .
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The hermiticity of H implies that [〈nα|H|mβ〉]∗ = 〈mβ|H|nα〉, i.e.,

∑

lγ

H∗
γβ(l −m)Oγα(l − n) =

∑

lγ

Oβγ(m− l)Hγα(l − n), (2.6)

where we have usedO∗
αγ(n− l) = Oγα(l−n) (which follows from the definition ofO).

Using the above equation it is easy to check that the overlap matrix remains unchanged,

i.e., 〈n′α′|m′β ′〉 = 〈nα|mβ〉 = Oαβ(n −m). If there are m orbitals per site, and the

lattice has N sites with periodic boundary condition, then Hγα(l − n) has Nm2 real

independent parameters. The transformation of the two-particle states is given by

|nα,mβ〉 → |nα,mβ〉+(iε)
∑

lγ

{Hγα(l − n)|lγ,mβ〉+Hγβ(l −m)|nα, lγ〉}+O(ε2),

and the variation of the on-site interaction term is

δV 0000
βδησ = (iε)

∑

tµ

{

V 000t
βδηµHµσ(t) + V 00t0

βδµσHµη(t)−H∗
µβ(t)V t000

µδησ −H∗
µσ(t)V 0t00

βµησ

}

+O(ε2).

The variation of the functional F under the unitary transformation is given by

δF = 2
∑

αβγδσρην

O−1
αβ(0)O−1

γδ (0)O−1
σρ (0)O−1

ην (0)δV 0000
βδησV

0000
ρνγα.

In the following we will assume that V̂ (r1, r2) = V̂ (r2, r1), so that V nmkl
αβδγ = V mnlk

βαγδ .

For the convenience of notation we define the quantity

Lσµ(t) ≡
∑

αβγδρην

O−1
αβ (0)O−1

γδ (0)O−1
σρ (0)O−1

ην (0)V 0000
ρνγαV

000t
βδηµ. (2.7)

After some algebra we get

δF = (4iε)
∑

t,σµ

{

Lσµ(t)Hµσ(t)− L∗
σµ(t)H∗

µσ(t)
}

+O(ε2)

= (4iε)
∑

t,σµ







Lσµ(t)−
∑

nm
αβ

O−1
σβ (m− n)L∗

αβ(−m)Oαµ(n− t)







Hµσ(t)

+ O(ε2). (2.8)

We define

Aσµ(t) ≡ Lσµ(−t)−
∑

nm
αβ

O−1
σβ (m− n)L∗

αβ(−m)Oαµ(n + t), (2.9)
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and we note that Aσµ(t) is anti-hermitian, i.e.,

∑

l,γ

Oβγ(m− l)Aγα(l − n) = −
∑

l,γ

A∗
γβ(l −m)Oγα(l − n). (2.10)

The condition for the functional F to have a local maxima is

δF

δHµσ(t)
= Aσµ(−t) = 0. (2.11)

This anti-hermitian condition has to be satisfied by the preferred basis. In other words,

the preferred basis is the one in which Lσµ(t) is hermitian. This condition gives Nm2

real independent conditions, which is the same as the number of real independent pa-

rameters in the hermitian transformation matrix Hσµ(t).

The following is a simple ansatz for maximizing F by successive unitary transfor-

mations: starting with a basis {|nα〉}, we calculateAµσ(t) in that basis using Eqs. (2.7)

and (2.9). We then change the basis using the transformation

Hµσ(t) = iAµσ(t), (2.12)

and follow this procedure successively till the condition for maxima is achieved. We

assert that with this ansatz, to O(ε)

δF = −(4ε)
∑

t,σµ

Aσµ(−t)Aµσ(t) ≥ 0. (2.13)

This will ensure that with successive transformations the value of the functional in-

creases till maxima is attained.

Next we will prove the above assertion. First, if the basis is orthonormal to begin

with, i.e., Oαβ(n−m) = δαβδnm, it is easy to see that Aµσ(t) = Lµσ(−t)− L∗
σµ(t) =

−A∗
σµ(t). Then, δF = (4ε)

∑

t,σµ |Aσµ(−t)|2 ≥ 0. If the basis {|nα〉} is non-

orthogonal, we will assume there exists an orthonormal basis {|aτ〉〉} (say a Wannier

basis) to which it is related by

|aτ〉〉 =
∑

n,α

S(n, α; a, τ)|nα〉 and 〈〈aτ | =
∑

n,α

〈nα|S(n, α; a, τ)∗. (2.14)
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From a generalization of Eq. (B.3) we get

O−1
αβ (n−m) =

∑

a,τ

S(n, α; a, τ)S(m, β; a, τ)∗. (2.15)

Using Eq. (2.10) we can rewrite

δF = (4ε)
∑

nmt
αβσµ

O−1
σβ (m− n)A∗

αβ(m)Oαµ(n− t)Aµσ(t)

=
1

N
(4ε)

∑

nmtk
αβσµ

O−1
σβ (m− n)A∗

αβ(k − n)Oαµ(k − t)Aµσ(t−m),

(2.16)

where in the last line we have rearranged the lattice indices in a more symmetric way.

Now, using the matrix Eq. (2.15) and its inverse, we get

δF =
1

N
(4ε)

∑

nmtk
αβσµ

[

∑

a,τ

S(m, σ; a, τ)S(n, α; a, τ)∗

]

A∗
αβ(k − n)×

[

∑

b,κ

S−1(b, κ; k, α)∗S−1(b, κ; t, µ)

]

Aµσ(t−m)

=
1

N
(4ε)

∑

ab
τκ

∣

∣

∣

∣

∣

∣

∣

∑

tm
µσ

S−1(b, κ; t, µ)Aµσ(t−m)S(m, σ; a, τ)

∣

∣

∣

∣

∣

∣

∣

2

≥ 0.

2.4 Example: Lattice with Two Sites and Two Orbitals

In this section we study the problem of choosing a localized basis for an analytically

tractable case, namely a lattice with two sites and two orbitals on each site. For this

case we examine the result of maximizing the local interaction functional by unitary

transformations. In particular, we will investigate: (1) whether the criterion that we

have proposed for choosing a suitably localized basis for DMFT is a mathematically

well-defined procedure, and (2) whether the result of maximizing the functional gives

a unique basis.



23

We consider a lattice with two sites (N = 2), namely n = 0, 1. On each site

there are two orbitals (m = 2) a and b. We assume that the initial basis with the four

states 〈r|0a〉 = φa(r), 〈r|0b〉 = φb(r), 〈r|1a〉 = φa(r − R), 〈r|1b〉 = φb(r − R) is

orthonormal. We consider an interacting electron Hamiltonian of the form

H =
∑

nm
αβ

tnm
αβ c

†
n,αcm,β + U

(

n2
0 + n2

1

)

+
V

2
(n0n1 + n1n0) . (2.17)

Here n,m are site indices and α, β are orbital indices. tnm
αβ ≡ 〈nα|H0|mβ〉 is the

hopping term, and ni =
∑

α c
†
i,αci,α is the occupancy of the site i. We parameterize the

non-local interaction term by V = λU .

For the basis defined above the local interaction functional F = 4, in units of U 2

(which we will set as 1 from now on). In the following we will examine whether the

functional can be maximized by unitary transformations of the starting basis.

We order the initial basis states {|0a〉, |0b〉, |1a〉, |1b〉}, and consider unitary trans-

formation of the form |nα〉 → |n′α′〉 =
∑

n,α Uαα′(n − n′)|nα〉. The transformation

is defined by Nm2 = 8 independent parameters. Due to lattice translation symmetry,

the 4 × 4 transformation matrix U and its adjoint U † can be written in terms of 2 × 2

blocks of the form

U =





U(0) U(1)

U(1) U(0)



 and U † =





U †(0) U †(1)

U †(1) U †(0)



 . (2.18)

We note that the 2× 2 matrices U(0) and U(1) are not unitary, but the 4× 4 matrix U

is. The most general form of the blocks can be expressed as

U(0) =
1

2

{

eiu0 [cos(u)1 + i sin(u)(û · σ̄)] + eiv0 [cos(v)1 + i sin(v)(v̂ · σ̄)]
}

,

(2.19)

and

U(1) =
1

2

{

eiu0 [cos(u)1 + i sin(u)(û · σ̄)]− eiv0 [cos(v)1 + i sin(v)(v̂ · σ̄)]
}

.

(2.20)
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Here 1 is the 2×2 identity matrix and σ̄ are the Pauli sigma matrices. û = u1x̂+u2ŷ+

u3ẑ and v̂ = v1x̂ + v2ŷ + v3ẑ are unit vectors. The parameters of the transformation

are u0, v0 = (0, 2π), u, v = (0, π), u1, u2 (with u3 = ±
√

1− u2
1 − u2

2 ), and v1, v2

(with v3 = ±
√

1− v2
1 − v2

2 ). The transformations belong to the symmetry group

SU(2)×SU(2)×U(1)×U(1). One U(1), which we will associate with the parameter

u0, is a trivial transformation by a global phase. We will disregard this and set u0 = 0,

and define v0 − u0 = θ. The transformations U are then defined by ū, v̄, θ (seven

parameters), i.e., U = U(ū, v̄, θ).

The local interaction term in the new basis V 0000
α′β′γ′δ′ ≡ 〈0α′, 0β ′|V̂ |0δ′, 0γ′〉 is given

by

V 0000
α′β′γ′δ′ =

∑

nmlk
αβγδ

U †
α′α(N − n)U †

β′β(N −m)V nmlk
αβγδ Uγγ′(l)Uδδ′(k). (2.21)

Since the transformation is unitary, the orthonormality of the original basis is preserved

in the new one. Since, O−1
αβ (0) = δαβ , the form of the functional defined in Eq. (2.4)

reduces to

F [U ] =
∑

α′β′γ′δ′

∣

∣V 0000
α′β′γ′δ′

∣

∣

2

=
∑

α′β′γ′δ′

∣

∣

∣

∣

∣

∣

∣

∑

nmlk
αβγδ

U †
α′α(N − n)U †

β′β(N −m)V nmlk
αβγδ Uγγ′(l)Uδδ′(k)

∣

∣

∣

∣

∣

∣

∣

2

.(2.22)

The above expression is simplified because in the original basis we have only two

types of interaction matrix elements: Unnnn
αββα = 1 (in units of U ) for n = (0, 1) and

α, β = (a, b); and Unmmn
αββα = λ/2, n 6= m, n,m = (0, 1) and α, β = (a, b). Since the

transformation is unitary, it is easy to verify that U †(0)U(0) + U †(1)U(1) = 1. For

convenience we define the matrix Y = U †(0)U(0)− U †(1)U(1). One can show that

Y = cos(θ) [cos(u) cos(v) + sin(u) sin(v)(û · v̂)] 1 + sin(θ) sin(u) cos(v)(û · σ̄)

− sin(θ) cos(u) sin(v)(v̂ · σ̄)− sin(θ) sin(u) sin(v)(û× v̂) · σ̄. (2.23)
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After some algebra one can show that the functional has the form

F [U ] =

(

1 +
λ

2

)2

+
1

4

(

1− λ

2

)2
[

Tr(Y 2)
]2

+
1

2

(

1− λ2

4

)

[Tr(Y )]2 . (2.24)

From Eq. (2.23) we get,

Tr(Y ) = 2 cos(θ) [cos(u) cos(v) + sin(u) sin(v)(û · v̂)] , (2.25)

and one can further show that

Tr(Y 2) = 2 sin2(θ) + 2 cos(2θ) [cos(u) cos(v) + sin(u) sin(v)(û · v̂)]2 . (2.26)

Since |û · v̂| ≤ 1, one can show that |cos(u) cos(v) + sin(u) sin(v)(û · v̂)| ≤ 1. We

define cos(u) cos(v) + sin(u) sin(v)(û · v̂) = sin(φ). Then,

F [U ] =

(

1 +
λ

2

)2

+
1

4

(

1− λ

2

)2

(1− cos(2θ) cos(2φ))2

+
1

2

(

1− λ2

4

)

(1− cos(2φ)) (1 + cos(2θ)) . (2.27)

Before we discuss the transformations that maximize the functional, it is useful to

identify the symmetry transformations that leave the interacting part of the Hamilto-

nian (HI) invariant. Since the functional considers only interaction terms, we do not

worry about the transformation properties of the non-interacting part. Suppose Us is a

transformation of the form given by Eq. (2.18) which leavesHI invariant. Now, if Um

is a transformation that maximizes the functional, then so does UmUs. In this context

we note: (a) HI is invariant under transformations that generate SU(2) rotations of

the two orbitals on each site. We will call such transformations USU(2). They have the

form U(0) = exp(in̄ · σ̄), U(1) = 0, i.e., U(n̄, n̄, 0). (b) HI is invariant under trivial

re-labeling of the two sites, i.e., 0 ↔ 1. We will call this transformation URL. It is

given by U(0) = 0, U(1) = 1, i.e., U(0, 0, π). (c) For λ = 2,HI has SU(4) symmetry

and is invariant under any U .

The result of maximizing the functional depends on the strength of the non-local

interaction λ in the starting basis. We identify the following different cases:
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1. |λ| < 2.

The maximum value of the functional is Fmax = 4 (same as in the original basis),

and at the maxima we have the solution cos(2φ) = −1, i.e., φ = π/2, (3π)/2,

and cos(2θ) = 1, i.e., θ = 0, π. For φ = π/2 we have the equation

cos(u) cos(v) + sin(u) sin(v)(û · v̂) = 1. (2.28)

This has solutions ((û · v̂) = 0, u = v = 0), ((û · v̂) = 0, u = v = π), and

((û · v̂) = 1, u = v). Similarly for φ = (3π)/2 we have the solutions (û · v̂) =

0, u = 0, v = π), (û · v̂) = 0, u = π, v = 0) and ((û · v̂) = −1, v = π − u). All

these solutions can be put into two categories of transformations: (a) U(n̄, n̄, 0).

This gives the identity transformation, and rotations between the two orbitals on

each lattice site. Since the identity transformation, which chooses the original

basis, maximizes the functional, so does USU(2). (b) U(0)↔ U(1), which is the

same as (a) with an additional relabeling of the lattice sites (i.e., URLUSU(2) =

U(n̄, n̄, π)). All these transformations are trivial in the sense they do not mix

between orbitals on different sites. Up to these trivial transformations the result

of maximizing the functional is unique, and we conclude that the original basis

is the most localized one.

2. λ = 2.

In this case the functional becomes constant with F = 4 and independent of the

choice of basis. This is becauseHI has SU(4) symmetry.

3. |λ| > 2.

Fmax = 2 + λ2/2 and the solution for the maxima is cos(2θ) = −1, i.e., θ =

π/2, (3π)/2, and cos(2φ) = 1, i.e., φ = 0, π. For either value of φ we get the

equation

cos(u) cos(v) + sin(u) sin(v)(û · v̂) = 0. (2.29)

The vectors ū and v̄ are defined by six independent parameters. The above equa-

tion fixes one of the parameters. This defines a family of transformations (S)
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with five independent parameters. To understand the composition of this family

we note that u = 0, v = π/2 satisfy the above equation and belongs to this

family. This defines a two parameter set (S0) of transformations of the form

U(0) = (1 − v̂ · σ)/2, U(1) = (1 + v̂ · σ)/2, i.e., S0 = {U(0, (πv̂)/2, π/2)}.
The two parameters fix the direction of v̂. The remaining transformations be-

longing to S are generated by the action of a transformation belonging to S0 on a

symmetry transformation USU(2) (which accounts for three independent param-

eters). To prove this let U(ūn, v̄n, π/2) be the result of acting U(0, (πv̂)/2, π/2)

on a USU(2) of the form U(n̄, n̄, 0). Then, one can check that ūn = n̄, and v̄n is

defined by

cos(vn) = sin(n)(n̂ · v̂)

and

v̂n = −cos(n)v̂ + sin(n)(n̂× v̂)
√

1− sin2(n)(n̂ · v̂)2
.

Using the above relations one can show that cos(un) cos(vn)+sin(un) sin(vn)(ûn·
v̂n) = 0, for all v̂ (two parameters) and for all n̄ (three parameters). Thus,

U(ūn, v̄n, π/2) constitutes the set S, and furthermore, it is enough to consider

only transformations U(0, (πv̂)/2, π/2) as solutions. They define a family of

non-trivial transformations (in the sense that the transformations mix orbitals on

different sites). Thus, there is no unique most localized basis in this case. As an

example, when v̂ = x̂, U(0) = (1−σx)/2, and U(1) = (1+σx)/2. Then,HI →
1
2
(1+ λ

2
)n2

0+
1
2
(1− λ

2
)(c†0,ac0,b+c

†
0,bc0,a)

2+local terms on site 1+non-local terms.

This gives F = 4 × (1 + λ/2)2/4 + 4 × (1 − λ/2)2/4 = 2 + λ2/2. And when

v̂ = ŷ,HI → 1
2
(1+ λ

2
)n2

0− 1
2
(1− λ

2
)(c†0,ac0,b +c†0,bc0,a)

2 + local terms on site 1+

non-local terms. This too gives F = 2 + λ2/2. It is also important to note that

identity does not belong to this family. In other words, the starting basis is not

among the most localized bases.

4. λ = −2.
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Fmax = 4 and there are two sets of solutions for the maxima. One set of solution

is cos(2φ) = −1, cos(2θ) = 1, which has been discussed in case 1. The second

set of solution is cos(2θ) = −1, and cos(2φ) = 1, i.e., φ = 0, π which has been

discussed in case 3.

We conclude that the scheme of maximizing the local interaction functional is

mathematically well-defined. The result of maximization, at least for the case that

we have studied explicitly, chooses a localized basis uniquely when the non-local in-

teraction terms are sufficiently small in the original basis. However, an unsatisfactory

feature of the solution is that it changes discontinuously, like in a first order transition.

For small enough values of λ the functional gives no mixing of orbitals and prefers

the original basis. But beyond a certain value of λ it mixes orbitals on the two sites

equally, and in the preferred basis the wavefunctions are delocalized over the two sites.

It remains to be investigated what gives rise to this behaviour. It is possible that the

source of the first order transition is due to the high symmetry of the toy Hamiltonian.

In that case a more generic model will exhibit second order transition. The other ques-

tion that remains to be investigated is whether in a lattice the preferred orbitals will

be delocalized if the strength of the non-local interactions become large enough. The

study of the toy model, but with four sites, will shed some light on these questions.

2.5 Attempt to Include Non-Unitary Transformations

In this section we extend the group of the allowed transformations to include non-

unitary transformations as well. We will consider the same system we have studied

in the previous section, namely a lattice with two sites and two orbitals and a starting

basis which is orthonormal with a Hamiltonian given by Eq. (2.17).

We consider non-unitary transformation of the form |nα〉 → |n′α′〉 =
∑

n,α Tαα′(n−
n′)|nα〉. The transformation is defined by 2Nm2 = 16 independent parameters. The

general form of the transformation matrix T and its adjoint T † can be written in terms
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of 2× 2 blocks of the form

T =





T (0) T (1)

T (1) T (0)



 and T † =





T †(0) T †(1)

T †(1) T †(0)



 , (2.30)

with

T (0) =
1

2

{

eiu0 [cos(u)1 + i sin(u)(û · σ̄)] + eiv0 [cos(v)1 + i sin(v)(v̂ · σ̄)]
}

,

(2.31)

and

T (1) =
1

2

{

eiu0 [cos(u)1 + i sin(u)(û · σ̄)]− eiv0 [cos(v)1 + i sin(v)(v̂ · σ̄)]
}

.

(2.32)

All the parameters in the above transformation are complex (when the parameters are

real we have unitary transformations that we have discussed before). Let u0 = a0 + ib0,

v0 = c0+id0, u = a+ib, v = c+id. û = u1x̂ = u2ŷ+u3ẑ and v̂ = v1x̂ = v2ŷ+v3ẑ are

complex “unit vectors” with ui = ai + ibi, and vi = ci + idi for i = (1, 2, 3). Each “unit

vector” is determined by six parameters, only four of which are independent since two

of the parameters are determined by the complex valued equation û · û = 1. To keep

the calculation manageable for the rest of the discussion we will consider only real unit

vectors, i.e., bi = di = 0, ∀i. Thus we are considering only a subclass of non-unitary

transformations. For this subclass we have

T †(0) =
1

2

{

e−iu∗

0 [cos(u∗)1− i sin(u∗)(û · σ̄)] + e−iv∗
0 [cos(v∗)1− i sin(v∗)(v̂ · σ̄)]

}

,

and

T †(1) =
1

2

{

e−iu∗

0 [cos(u∗)1− i sin(u∗)(û · σ̄)]− e−iv∗
0 [cos(v∗)1− i sin(v∗)(v̂ · σ̄)]

}

.

Though the starting basis is orthonormal, since the transformation is not unitary, the

new basis {|n′α′〉} is not orthonormal. The overlap matrix for the new basis is given

by

O =





O(0) O(1)

O(1) O(0)



 = T †T, (2.33)
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where O(0) = T †(0)T (0) + T †(1)T (1), and O(1) = T †(0)T (1) + T †(1)T (0). It will

be useful to define the inverse of the transformation T−1 and the adjoint of it (T−1)† as

T−1 =





T−1(0) T−1(1)

T−1(1) T−1(0)



 and (T−1)† =





(T−1)†(0) (T−1)†(1)

(T−1)†(1) (T−1)†(0)



 .

(2.34)

One can show that

T−1(0) =
1

2

{

e−iu0 [cos(u)1− i sin(u)(û · σ̄)] + e−iv0 [cos(v)1− i sin(v)(v̂ · σ̄)]
}

,

(2.35)

and

T−1(1) =
1

2

{

e−iu0 [cos(u)1− i sin(u)(û · σ̄)]− e−iv0 [cos(v)1− i sin(v)(v̂ · σ̄)]
}

.

(2.36)

(T−1)†(0) and (T−1)†(1) are the adjoints of T−1(0) and T−1(1) respectively. Note that

T−1(0) and T−1(1) are not the inverses of the matrices T (0) and T (1) respectively as

the notation might suggest. The inverse of the overlap matrix is given by

O−1 =





O−1(0) O−1(1)

O−1(1) O−1(0)



 = T−1(T−1)†, (2.37)

whereO−1(0) = T−1(0)(T−1)†(0)+T−1(1)(T−1)†(1), andO−1(1) = T−1(0)(T−1)†(1)+

T−1(1)(T−1)†(0).

The functional given by Eq. (2.4) can be written in terms of the transformation

matrix as

F [T ] =
∑

α′β′γ′δ′

σ′ρ′η′ν′

O−1
ν′α′(0)O−1

η′β′(0)O−1
γ′ρ′(0)O−1

δ′σ′(0)

×







∑

nmlk
αβγδ

T †
α′α(N − n)T †

β′β(N −m)V nmlk
αβγδ Tγγ′(l)Tδδ′(k)







×





∑

rspq
σρην

T †
σ′σ(N − r)T †

ρ′ρ(N − s)V rspq
σρηνTηη′(p)Tνν′(q)



 , (2.38)
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where O−1 is given by Eq. (2.37). Since in the original basis the interaction ma-

trix elements are simple and symmetric, the above expression simplifies consider-

ably. It is useful to define the matrices X̃ = O−1(0)[T †(0)T (0) + T †(1)T (1)] and

Ỹ = O−1(0)[T †(0)T (0) − T †(1)T (1)]. The expressions for X̃ and Ỹ are given in

appendix C.

One can show that the functional reduces to the form

F [T ] =
1

4

(

1 +
λ

2

)2
[

Tr(X̃2)
]2

+
1

4

(

1− λ

2

)2
[

Tr(Ỹ 2)
]2

+
1

2

(

1− λ2

4

)

[

Tr(X̃Ỹ )
]2

.

(2.39)

We note that the above equation reduces to the unitary case, i.e. Eq. (2.24), if we put

the non-unitary parameters b0, d0, b, d to zero. The evaluation of the traces of X̃2, Ỹ 2

and X̃Y are given in appendix C.

It is quite clear that without imposing constraints the functional F is unbounded

with respect to the non-unitary parameters b0, d0,b and d. The rest of this section is

devoted to examining what constraints will be appropriate to keep F bounded.

First, we consider the transformation where the orbitals are multiplied by a scale

factor (dilatation). This transformation has the form T (0) = lαδαβ , T (1) = 0, where

lα is the scale by which the orbital α is multiplied. Then O−1(0) = |lα|−2 δαβ , and

X̃ = Ỹ = 1. Using Eq. (2.39) we get F = 4 for this transformation, which is the

same as in the original basis. Thus, we note that the functional stays constant under

dilatation.

Next we consider the transformation where only the non-unitary parameter b0 is

non-zero, i.e. a0 = c0 = d0 = a = b = c = d = 0 and b0 6= 0. This transformation has

the form T (0) = ((e−b0 + 1)/2)1 and T (1) = ((e−b0 − 1)/2)1. This is a non-trivial

transformation since it mixes the orbitals on different sites. It is easy to check that

X̃ = cosh2(b0)1 and Ỹ = cosh(b0)1, and F as a function of b0 is

F (b0) =

(

1 +
λ

2

)2

cosh8(b0) +

(

1− λ

2

)2

cosh4(b0) + 2

(

1− λ2

4

)

cosh6(b0),

which is unbounded for any value of λ. As b0 →∞, the functional F blows up and the
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transformation becomes singular. It is easy to check that the behaviour of the functional

is the same for transformations where any one of the non-unitary parameters d0, b and

d is the only non-zero parameter. Thus, each of the non-unitary parameters enter the

functional in a way that makes it unbounded and when the functional goes to infinity

the transformation becomes singular as well.

Next we will examine what kind of constraint will keep the functional bounded.

First we will consider the constraint that the basis states remain normalized after the

transformation, i.e. we want the transformation to satisfy Oαα(0) = 1. To keep the

calculation simple we will put the unitary parameters a0 = c0 = a = c = 0. The

constraint gives two equations involving the non-unitary parameters b0, d0, b and d.

Solving for b0 and b in terms of d0 and d we get

b0 = −1

4
ln
[

(

e−2d0 cosh(2d)− 2
)2 −

(

e−2d0(l3) sinh(2d)
)2
]

,

b = arctanh

[

e−2d0(l3) sinh(2d)

e−2d0 cosh(2d)− 2

]

,

where l3 = v3/u3. Since we have put the parameters a0 and a to zero, we need real

solutions of the constraint equations. This imposes some bound on the possible values

of the parameters d0, d and l3. However, it is easy to verify that over the range in which

real solutions exist the functional still blows up. As an example, say l3 = 0.1 and

d0 = 1. Then over the range 2 ≤ d < ∞ we get real solutions for b0 and b. Over this

range we find that the functional F , now a function of d, is monotonically increasing

and is still unbounded.

By studying the above examples we find that the functional is unbounded in terms

of the non-unitary parameters. Since the group of invertible transformations is non-

compact, the parameters themselves do not have an upper bound. Any attempt to max-

imize the functional has to be supplemented by a suitable constraint that will keep the

non-unitary parameters within some bound and not allow them to flow to infinity. This

idea can be implemented more concretely in terms of the singular value decomposition

of the transformation matrix. In this decomposition the transformation is expressed as
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T = V †DW , where W and V are unitary matrices and D is diagonal with positive

definite eigenvalues (the singular values). It is easy to check that the singular values

are nothing but the square roots of the eigenvalues of the overlap matrix T †T . For

example, for transformations in which a0 = c0 = a = c = 0 (to keep the calculation

simple), the singular value decomposition gives exp(d0− d), exp(d0 + d), exp(b0− b)
and exp(b0 + b). When any of the non-unitary parameters flow to infinity one or more

of the singular values become zero or infinity. This is the point where the functional

blows up and the transformation becomes singular. Thus, a suitable way of imposing

constraints would be to keep the ratio of the maximum and minimum singular values

within a specified bound. This will ensure that the singular values do not become too

large or too small, and that the non-unitary parameters stay within a finite bound. The

local interaction functional can now be maximized by non-unitary transformations.
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Chapter 3

Thermal and Charge Transport for Many Body
Tight-Binding Models

3.1 Introduction

The theoretical description of the thermoelectric response of correlated materials is

a fundamental problem in condensed matter physics, and a breakthrough in this area

has potential technological useful implications [34]. The materials, which have been

studied as likely candidates for useful thermoelectric properties, are mostly semicon-

ductor alloys and compounds. Materials such as Bi2Te3/Sb2Te3 and Si-Ge, which are

currently favoured for room temperature application, belong to this category. Another

class of materials, with potentially useful thermoelectric properties, are Ce and La

filled skutterudites such as LaFe3CoSb12 and CeFe3CoSb12 [34]. Theoretically these

materials have been studied successfully using band theory [35]. Recently Mahan and

Sofo [36] have shown that the best thermoelectric materials could well be correlated

metals and semiconductors (i.e., rare earth intermetallic compounds). The develop-

ment of the dynamical mean field theory (DMFT)[for reviews see Refs. [29, 37]] has

allowed new studies of the effects of correlation on the thermoelectric response using

this method on model Hamiltonians [38, 39, 40]. More recent combinations of band

theory and many-body methods such as the LDA+DMFT method [41] [for reviews see

Refs. [42, 43]] or the LDA++ method [44] offers the exciting possibility of predicting

the thermoelectric properties of materials starting from first principles [45]. This re-

vival of interest in the thermoelectric response motivates us to re-analyze in this chapter

the following issues: (1) what is the form of the thermal current and the charge current
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which should be used in realistic calculations, and (2) how it should be approximated

in a DMFT calculation.

The first question is subtle for two reasons. First, as noted early on by Jonson and

Mahan [46], the electronic part of the thermal current operator contains a quadratic

and a quartic piece (if the electron-electron interaction is non-local) in the electron

creation and annihilation operators. The contribution of this quartic interaction term

to the current has continued to be the subject of discussion [47]. Second, while the

form of the thermal current and the charge current in the continuum is unambiguous,

and can be calculated using Noether’s theorem [48,49], DMFT calculations require the

projection of these currents on a restricted lattice model. This involves the computation

of complicated matrix elements, and in practice an approximation which is analogous

to the Peierls substitution [50] for the electrical current is carried out. It is well known

that the results of this construction depend on the basis set of orbitals used [51]. This

raises the practical question of how to optimize the basis of orbitals to be used in

transport calculations.

The second question is subtle due to the presence of interaction terms in the current.

This raises the issue of how it should be simplified in the evaluation of the various

current-current correlation functions and the transport coefficients. This question was

first addressed by Schweitzer and Czycholl [52] and by Pruschke and collaborators [37]

who stated that within the relaxation time approximation, this term can be expressed

in terms of a time derivative, and the vertex corrections can be ignored. In the review

of Georges et. al. [29] it was stated that the results of Pruschke et. al. hold beyond

the relaxation time approximation in the limit of large dimensionality when DMFT

becomes exact but no detailed proof of this statement was presented.

The following are our main results. (1) In section 3.2 we address the question of the

optimization of the basis of localized orbitals for transport calculations, following the

ideas of Marzari and Vanderbilt [31]. For completeness and for pedagogical reasons
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we discuss in parallel work on the charge current, which is simpler and better under-

stood [53] than the thermal current. Our conclusions in this context have applications

for the computation of Born charges in empirical tight-binding models [54]. (2) In sec-

tion 3.3 we derive the form of the thermal current to be used in tight-binding models,

and its dependence on the orbitals, using the equation of motion technique introduced

in Ref. [55]. Our final expression differs in one term from the results of Ref. [47]. (3)

In section 3.4 we describe in detail the diagrammatic analysis of correlation functions

of the current operators. We demonstrate explicitly that in the DMFT limit of the trans-

port calculation, the vertex corrections (even for those involving the thermal current)

can be completely neglected, thereby justifying the current practice used in all previous

DMFT work.

3.2 Charge Current

We consider a system of electrons in a periodic potential V (r), in the presence of

an external vector potential A(r), and with coulomb interaction between them. The

Lagrangian is given by

L =
i

2

∫

d3r
(

ψ†ψ̇ − ψ̇†ψ
)

+
1

2m

∫

d3rψ† (∇− ieA(r))2 ψ

−
∫

d3rV (r)ψ†ψ − e2

2

∫ ∫

d3rd3r′ψ†(r)ψ†(r′)
1

|r− r′|ψ(r′)ψ(r). (3.1)

Here ψ†(r) and ψ(r) are the electron field operators with usual anticommutation prop-

erties. We have ignored the spin of the electrons only to simplify the notation. Includ-

ing spin in the following analysis is quite straightforward. In field theory, when both

high and low energy degrees of freedom are retained, Noether’s theorem provides a ro-

bust procedure to identify the various currents [49]. The theorem associates with every

symmetry of the action a conserved charge and a corresponding current. The charge

current is determined by the invariance of the action S =
∫

dtL(t), under U(1) gauge

transformation given by ψ(r) → ψ(r)eiφ(r) and ψ†(r) → ψ†(r)e−iφ(r). The transfor-

mation does not produce any variation from the interaction term, and the well known
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expression for the charge current is

j = − ie
m

∫

d3rψ†(r) (∇− ieA(r))ψ(r). (3.2)

The above expression is gauge invariant. The part which is proportional to the vector

potential gives the diamagnetic current.

In order to facilitate further discussion we will perform the standard Noether con-

struction in the Wannier basis. In this basis the action (which includes both low and

high energy degrees of freedom) is

S =

∫

dt











i

2

∑

nµ

(

c†µn ċ
µ
n − ċ†µn cµn

)

−
∑

nm
µν

tµν
nmc

†µ
n c

ν
m +

e

2m

∑

nml
µνγ

p
µγ
nl ·Aγν

lmc
†µ
n c

ν
m

+
e

2m

∑

nml
µνγ

A
µγ
nl · pγν

lmc
†µ
n c

ν
m −

e2

2m

∑

nml
µνγ

A
µγ
nl ·Aγν

lmc
†µ
n c

ν
m

−1

2

∑

n1...n4

µ1...µ4

Uµ1 ...µ4

n1...n4
c†µ1

n1
c†µ2

n2
cµ3

n3
cµ4

n4











, (3.3)

where tµν
nm = 〈nµ|H0|mν〉, pµν

nm = 〈nµ|p|mν〉, Aµν
nm = 〈nµ|A(r)|mν〉, and Uµ1 ...µ4

n1...n4
=

〈n1µ1, n2µ2|e2/|r− r′||n4µ4, n3µ3〉. HereH0 = p2/2m+ V (r) is the non-interacting

part of the Hamiltonian, µ is the band index, and Rn defines the lattice positions.

Wµ(r − Rn) = 〈r|nµ〉 form a complete set of orthonormal Wannier functions. The

creation and annihilation operators satisfy the anticommutation relation {cµ
n, c

†ν
m} =

δnmδµν . The gauge transformation of the fermionic field operators is equivalent to the

variation δcµn = i
∫

d3rφ(r)ψ(r)W ∗
µ(r − Rn) and δc†µn = −i

∫

d3rφ(r)ψ†(r)Wµ(r −
Rn). Expanding φ(r) about the point Rn and keeping only up to ∇φ (which is all we

need to construct the Noether current) we get

δcµn = iφ(Rn)cµn + i∇φ
∑

mν

Lµν
nmc

ν
m,

δc†µn = −iφ(Rn)c†µn − i∇φ
∑

mν

c†νmLνµ
mn, (3.4)

where Lµν
nm =

∫

d3rW ∗
µ(r−Rn)(r−Rn)Wν(r−Rm) are the connection coefficients.

The matrix L is hermitian. We note first that the variation from the interaction term is
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exactly zero. Next, using the operator identity [ri, Aj(r)] = 0, we find that the variation

from the term quadratic in A(r) is zero. To get the correct diamagnetic part we make

use of [ri, pj] = iδij . From the invariance of the action we can identify the charge

current as

j = ie
∑

nm
µν

(Rm −Rn)tµν
nmc

†µ
n c

ν
m + ie

∑

nml
µνγ

c†µn (tµγ
nl L

γν
lm − L

µγ
nl t

γν
lm) cνm

−e
2

m

∑

nm
µν

Aµν
nmc

†µ
n c

ν
m

= ie
∑

nm
µν

c†µn c
ν
m〈nµ|[H0(A), r]|mν〉. (3.5)

H0(A) = (p − eA)2/(2m) + V (r). This is just Eq. (3.2) expressed in the Wannier

basis. The charge current is related to the electronic polarization operator [56]

Pel = e
∑

nm
µν

c†µn c
ν
m〈nµ|r|mν〉

by ∂Pel/∂t = j. The change in polarization ∆Pel (which is a well defined and mea-

surable bulk quantity, rather than polarization itself) between an initial and a final state

of a sample is the integrated current flowing through the sample during an adiabatic

transformation connecting the two states [57].

Theoretical models of the tight-binding type are effective low energy models de-

scribed in terms of those bands which are close to the Fermi surface [58]. The question,

which is non-trivial and which is still debated, is what should be the form of the current

for such low energy models. The low energy Hamiltonian is obtained by eliminating

or integrating out the degrees of freedom corresponding to the high energy bands. This

is easily formulated in the functional integral language and the procedure generates

many interaction terms that are not present in the original action. In a Hamiltonian

formulation this is equivalent to making a canonical transformation to decouple the

low energy and the high energy sectors [59]. That is, given a full many body Hamil-

tonian H, we perform unitary transformation U such that UHU−1 is diagonal (for a
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system of interacting particles, in general, this can be done only approximately), and

then consider only PUHU−1P , where P is the operator projecting on the low energy

bands. To obtain the expression for the current in the low energy sector one has to

perform the same canonical transformation used to transform the original Hamiltonian

into the effective Hamiltonian on the operator representing the current. In other words,

we first calculate the current (say, J) for the full theory (using the symmetry of the full

theory), make the same unitary transformation and then project the current on the low

energy sector of interest. The exact low energy current is then given by PUJU−1P .

This method of calculating the current for the low energy theory is motivated by renor-

malization group ideas. But, to implement this in practice is usually a formidable task.

However, if we consider a system of non-interacting electrons (in a periodic potential)

with a subset M of bands that defines the low energy subspace, the low energy current

is obtained by projecting the full current in Eq. (3.5) on the low energy subspace. This

is given by P jP , where P =
∑

n,µ∈M

|nµ〉〈nµ| is the projection operator. We note that

the calculation of the exact current requires knowledge of the matrix elements of the

position operator in addition to that ofH0 (the tight-binding parameters) [60].

Sometimes, to avoid calculating the matrix elements of the position operator, one

makes the approximation known as Peierls substitution. There are two types of ap-

proximations involved with this procedure. First, terms involving the connection co-

efficients are dropped out, and one considers an approximate gauge transformation

given by δcµn = iφ(Rn)cµn and δc†µn = −iφ(Rn)c†µn . Putting the connection coef-

ficients to zero is equivalent to the approximation 〈nµ|r|mν〉 ≈ Rnδnmδµν for the

matrix elements of the position operator, and 〈nµ|p|mν〉 = im〈nµ|[H0, r]|mν〉 ≈
im(Rm − Rn)tµν

nm for the matrix elements of the momentum operator. Second, with

this approximate gauge transformation, the variation from the interaction term is non-

zero (though, as already noted, it is zero for the exact gauge transformation). However,

contribution to the current from the interaction term is neglected. It will be further
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assumed that the vector potential is constant, i.e., Aµν
nm = Aδnmδµν . With these sim-

plifications the approximate current (jP ) is given by

jP = ie
∑

nm
µν∈M

(Rm−Rn)tµν
nmc

†µ
n c

ν
m + e2

∑

nm
µν∈M

(Rm−Rn) ((Rm −Rn) ·A) tµν
nmc

†µ
n c

ν
m.

(3.6)

The second term is the approximate diamagnetic contribution. The usefulness of jP

lies in the fact that it can be calculated from the tight-binding parameters alone.

The construction of the Peierls current in terms of the atomic orbitals is a pri-

ori not obvious for the case when there is more than one atom per unit cell. It is

worthwhile to clarify this issue here. We will denote the atomic wavefunctions by

|ατRn〉, where α is a symmetry index, Rn is the lattice position of a unit cell, and Rτ

is the position of the atom τ within a unit cell. It is desirable to define the Bloch ba-

sis wavefunctions by |ατk〉 = 1√
N

∑

Rn
e−ik·(Rn+Rτ )|ατRn〉, though the phase factor

e−ik·Rτ is quite innocuous for the definition of the Hamiltonian matrix H(k)α1τ1;α2τ2

and for the subsequent calculation of the energy bands. The question, whether to keep

the phase factor or not, is however important for the definition of the Peierls current

jP (k)α1τ1;α2τ2 = ∂
∂k
H(k)α1τ1;α2τ2 . It is easy to verify that, with the above definition

of the Bloch basis, one gets the same form for the Peierls current if one considers a

lattice with one atom per unit cell (for which case the definition of the Peierls current

is unambiguous), and compare it with the same lattice with its period doubled (and

therefore now with two identical atoms per unit cell).

We will examine the behaviour of the exact current and the approximate one under

infinitesimal unitary transformation Uµν
nm = δnmδµν +W µν

nm (where W is antihermitian)

of the Wannier functions defined by |nµ〉 →∑

mν U
νµ
mn|mν〉. The variation of a matrix

element (j)µν
nm = ie〈nµ|[H0(A), r]|mν〉 of the exact current is given by

(j)µν
nm → (j)µν

nm +
∑

k,γ

{(j)µγ
nkW

γν
km −W µγ

nk (j)γν
km} . (3.7)

This is the usual transformation of matrix elements of operators that remain invariant

under unitary transformation. In fact, the paramagnetic and the diamagnetic parts of
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the operator j are separately invariant. The behaviour of jP is, however, different. The

variation of (jP )µν
nm = ie(Rm −Rn)tµν

nm + e2(Rm −Rn)((Rm −Rn) ·A)tµν
nm is given

by

(jP )µν
nm → (jP )µν

nm +
∑

k,γ

{(jP )µγ
nkW

γν
km −W µγ

nk (jP )γν
km}+ ie

∑

k,γ

(Rm −Rk) t
µγ
nkW

γν
km

−ie
∑

k,γ

(Rk −Rn)W µγ
nk t

γν
km + e2

∑

k,γ

{(Rk −Rn) ((Rm −Rk) ·A)

+ (Rm −Rk) ((Rm −Rn) ·A)} tµν
nkW

γν
km − e2

∑

k,γ

{(Rm −Rk) ((Rk −Rn) ·A)

+ (Rk −Rn) ((Rm −Rn) ·A)}W µγ
nk t

γν
km. (3.8)

The paramagnetic and the diamagnetic parts of jP are both basis dependent operators.

The basis dependence of jP raises the practical question as to what basis one should

choose while making the Peierls construction. For example, there have been efforts to

calculate polarization properties, like effective charges of semiconductors, using the

empirical tight-binding theory [54]. In this scheme a natural approximation is the

“diagonal” ansatz which assumes that the position operator is diagonal in the tight-

binding basis with expectation values equal to the atomic positions. This is equiva-

lent to a Peierls substitution, and the polarization calculated with this ansatz is related

to the Peierls current jP . The effective charges calculated in this procedure depends

on the choice of the underlying Wannier basis. In order to improve the results one

should first make an appropriate choice of a basis. One possibility is to use the ba-

sis of the “maximally localized” Wannier functions that was introduced by Marzari

and Vanderbilt [31]. This is obtained by minimizing a functional which measures the

spread of the Wannier functions. Intuitively, it seems plausible that the approxima-

tion in which the connection coefficients are neglected, will work better in a basis

where the Wannier functions are more localized. A second possibility, suggested by

Millis [51], is to choose that basis in which the charge stiffness calculated using the

Peierls current will be closest to the one obtained from band theory. We note that

this criterion is already satisfied by the Bloch basis in which the effective one-electron
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Hamiltonian is diagonal in the band indices. This can be seen easily in the follow-

ing manner. We consider the scenario of band theory where electrons are in an ef-

fective periodic potential. Let εkµ denote the single particle energy levels. It can be

shown that the charge stiffness is given by Dαβ =
∑

kµ f(εkµ)(∂
2εkµ/(∂kα∂kβ)) [61].

Here f(ε) is the Fermi function and α, β denote spatial directions. The Peierls cur-

rent constructed in the Bloch basis does not have any interband term since the basis

is already diagonal in the band indices. The paramagnetic part of the current is given

by (jP )para,α =
∑

kµ(∂εkµ/∂kα)c†µk c
µ
k. Since the paramagnetic part has no interband

matrix element, it does not contribute to the charge stiffness. The diamagnetic part,

given by (jP )dia,α = −∑kµβ(∂2εkµ/(∂kα∂kβ))Aβc
†µ
k c

µ
k, gives a charge stiffness ex-

actly equal to that obtained from band theory. It is possible, though, that there are other

bases which satisfy this criterion.

In passing we note that if the matrix elements of the exact current j are known

by some means, say, from first principles calculation, then it is possible to define the

functional

Ω =
∑

nm
µν∈M

α

〈nµ|j− jP |mν〉 · 〈mν|j− jP |nµ〉 (3.9)

and choose the basis which minimizes Ω, and thereby the difference between the exact

current and the approximate one. Using Eqs. (3.7) and (3.8) we can calculate the

variation of Ω under infinitesimal unitary transformation. The gradient, defined as

Gµν
nm = dΩ/dW µν

nm, is given by

Gµν
nm = (Rm −Rn) · 〈nµ|[H0, (j− jP )]|mν〉

+ ie ((Rm ·A)Rm − (Rn ·A)Rn) · 〈nµ|{H0, (j− jP )}|mν〉

− ie
∑

kγ

{(Rm −Rn)(Rk ·A) + ((Rm −Rn) ·A)Rk}

· {〈nµ|j− jP |kγ〉〈kγ|H0|mν〉 + 〈nµ|H0|kγ〉〈kγ|j− jP |mν〉} (3.10)

The optimum basis is the one for which the gradient vanishes. The choice of basis will

depend on the vector potential, but the physical quantities calculated in that basis will
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not. In general, this criterion will give a basis which is different from that of the “max-

imally localized” Wannier functions. The above method of choosing an appropriate

basis is not very useful for doing charge transport calculations because to define the

method one needs to know the matrix elements of the exact current, knowing which

makes the Peierls construction redundant. However, one can use this optimization pro-

cedure for doing thermal transport calculation. As we will see in the next section, the

matrix elements of the exact thermal current are quite complicated, and a Peierls for-

mulation of the thermal current is desirable (in some suitable basis). The rationale for

our suggestion is that the basis which optimizes the Peierls construction for electric

transport will be a good basis for doing the Peierls construction for thermal transport

as well.

3.3 Thermal Current

In field theory, the energy current (which is same as the thermal current, except for the

latter the single particle energies are measured from the chemical potential) is deter-

mined from the invariance of the action under the transformation of time t→ t−φ(r, t).

This shifts the field operators by δψ = ψ̇φ, and δψ† = ψ̇†φ. From the variation of the

action defined in Eq.(3.1), the energy current (jE) is given by

jE = − 1

2m

∫

d4r
{

ψ̇†∇ψ +∇ψ†ψ̇
}

+
1

4

∫

d3r1

∫

d3r2 (r2 − r1)U(r1 − r2)

×
{

ψ̇†(r1)ρ(r2)ψ(r1)− ψ†(r1)ρ̇(r2)ψ(r1) + ψ†(r1)ρ(r2)ψ̇(r1)
}

. (3.11)

Here ρ(r) = ψ†(r)ψ(r), and U(r) is the two-particle interaction energy (Coulomb

potential, in our case). The second term above, which is formally quartic in the field

operators, is the contribution to energy current from the non-local (in space) interac-

tion. This term was missed by Langer [48], but noted in a different context by Jonson

and Mahan [46]. More recently, it has been discussed by Moreno and Coleman [47].

We have discussed in the previous section that for an effective low-energy model

any current is obtained correctly by projecting the current for the full theory (where
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both high and low energy degrees of freedom are present) on the low-energy bands.

To implement this for the energy current one has to consider variations of the Wannier

operators δcµi = φ(Ri)ċ
µ
i + ∇φ∑j,ν L

µν
ij ċ

ν
j and δc†µi = φ(Ri)ċ

†µ
i + ∇φ∑j,ν ċ

†ν
j L

νµ
ji

under translation of time. If we ignore the terms with the connection coefficients, we

get an approximate current which is equivalent to a Peierls substitution. The same

approximate current can be derived from the low-energy effective Hamiltonian using

the equations of motion [55]. Although we are emphasizing the importance of the

exact low-energy current, in practice, calculating the exact thermal current is fairly

complicated. Therefore, we will restrict the derivation to that of a Peierls type of

energy current for a generalized Hubbard model described by the Hamiltonian

H =
∑

ij
µν
σ

tµν
ij c

†µ
iσ c

ν
jσ +

∑

ij
µν
σσ′

V µν
ij,σσ′n

µ
iσn

ν
jσ′ , (3.12)

using the equation of motion technique. Here nµ
iσ = c†µiσ c

µ
iσ. The local energy density

(hi) is given by

hi =
1

2

∑

j
µν
σ

(

tµν
ij c

†µ
iσ c

ν
jσ + tνµ

ji c
†ν
jσc

µ
iσ

)

+
1

2

∑

j
µν
σσ′

(

V µν
ij,σσ′n

µ
iσn

ν
jσ′ + V νµ

ji,σ′σn
ν
jσ′n

µ
iσ

)

.

We can show that

ḣi =
1

2

∑

j
µν
σ

{

tµν
ij

(

c†µiσ ċ
ν
jσ − ċ†µiσ cνjσ

)

+ tνµ
ji

(

ċ†νjσc
µ
iσ − c†νjσċµiσ

)}

+
1

2

∑

j
µν
σσ′

V µν
ij,σσ′

(

−ċ†µiσ c†νjσ′c
ν
jσ′c

µ
iσ + c†µiσ ċ

†ν
jσ′c

ν
jσ′c

µ
iσ + c†µiσ c

†ν
jσ′ ċ

ν
jσ′c

µ
iσ

− c†µiσ c
†ν
jσ′c

ν
jσ′ ċ

µ
iσ

)

+
1

2

∑

j
µν
σσ′

V νµ
ji,σ′σ

(

ċ†νjσ′c
†µ
iσ c

µ
iσc

ν
jσ′ − c†νjσ′ ċ

†µ
iσ c

µ
iσc

ν
jσ′

− c†νjσ′c
†µ
iσ ċ

µ
iσc

ν
jσ′ + c†νjσ′c

†µ
iσ c

µ
iσ ċ

ν
jσ′

)

, (3.13)

where ˙̂
O = i[H, Ô]. The energy current (jE) is related to the energy density by the

continuity equation ḣi + ∇ · jE(i) = 0. We define h(q) =
∑

i e
−iq·Rihi, and sim-

ilarly jE(q). The Fourier transform of the Wannier operators are defined by cµ
kσ =



45

1√
N

∑

i e
−ik·Ricµiσ, and similarly for c†µkσ. Here N is the size of the lattice. Comparing

with the continuity equation we get the energy current

jE =
i

2

∑

k
µν
σ

∇kε
µν
k

(

c†µk,σċ
ν
k,σ − ċ†µk,σc

ν
k,σ

)

+
i

2

∑

kk′

µν
σσ′

∇kV
µν
k,σσ′

(

c†µk′,σṅ
ν
k,σ′c

µ
k′−k,σ

− ċ†µk′,σn
ν
k,σ′c

µ
k′−k,σ − c†µk′,σn

ν
k,σ′ ċ

µ
k′−k,σ

)

, (3.14)

where nµ
k,σ =

∑

k′ c
†µ
k′,σc

µ
k′+k,σ. The first two terms (the quadratic part) in the above

equation are contributions to the energy current from the electron hopping and from

the local part of the interactions. The last three terms (the quartic part) are addi-

tional contributions to energy flow from the long range interactions. Moreno and

Coleman [47] have calculated the quartic part using Noether’s theorem for classical

fields, and their result is i
2

∑

k,µν,σσ′

∇kV
µν
k,σσ′

(

nµ
−k,σṅ

ν
k,σ′ − ṅµ

−k,σn
ν
k,σ′

)

. We want to ar-

gue that this result is incorrect. We note that for classical fields the issue of correct

arrangement of operators is not present. Indeed, if we could commute the third op-

erator with the second in each of the last three terms of Eq. (3.14) we would get

the result derived in Ref. [47]. However such commutation will generate an additional

term
∑

kk′,µν,σ

∇kV
µν
k,σσε

µν
k′−kc

†µ
k′,σc

ν
k′,σ. Thus, proper arrangement of operators is important

to get the correct form of the energy current, which is naturally captured in an equation

of motion technique but not while using Noether’s theorem for classical fields.

The heat current (jQ) is related to the energy current by jQ = jE−µj,where µ is the

chemical potential [55]. The chemical potential enters only to shift the single particle

energies, i.e., right hand side of Eq. (3.14) gives the heat current with the re-definition

˙̂
O = i[H− µN , Ô], where N is the total particle operator.

3.4 Transport Coefficients

In this section we will examine in detail the derivation of the correlation functions of

the current operators. We will consider only the Peierls type of (charge and thermal)
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Figure 3.1: Diagrams in configuration space for thermoelectric power. HI is the inter-
action term. In (a) and (b) the thermal current is a two-point vertex, while in (c) and
(d) it is a four-point vertex. In the limit of infinite d contribution from (b) and (d) can
be neglected.

currents to keep things analytically tractable. In Kubo formalism the correlation func-

tions are related to the corresponding response functions (the transport coefficients). In

the framework of DMFT [29] it is possible to derive exact expressions for the transport

coefficients. The essential simplification in the limit of infinite dimensions (d) is that

the self energy and the vertex terms are local. For the single-band Hubbard model,

defined by the Hamiltonian

H =
∑

〈ij〉,σ

(

tijc
†
i,σcj,σ + h.c.

)

+ U
∑

i

ni,↑ni,↓,

we will demonstrate that this allows the correlation functions to be factorized into

products of single particle Green’s functions and their time derivatives. The terms

that are ignored by such factorization are O(1/d) smaller and can be neglected in the

limit of infinite d. Using a slightly different approach, the expressions for the transport

coefficients for the Falikov-Kimball model have been derived recently [40].
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The correlation functions of the current operators are defined as [55]

Lab(iωn) =
1

βiωnV

∫ β

0

dτeiωnτ 〈Tτ ja(τ)jb(0)〉, (3.15)

where a, b = (1, 2), and j1 = j is the charge current and j2 = jQ is the heat current.

Here V is the volume of the system, β = 1/kBT is inverse temperature, and iωn is

bosonic Matsubara frequency. The transport coefficients (that enter the formula for

DC conductivity, thermoelectric power and thermal conductivity) are given by,

Lab = lim
ω→0

ImLab(iωn → ω + iδ). (3.16)

For the single band Hubbard model the charge current is given by,

j = e
∑

k,σ

vkc
†
k,σck,σ = e

∑

〈ij〉
σ

i (Rj −Ri) tijc
†
i,σcj,σ, (3.17)

and the heat current is given by

jQ =
i

2

∑

k,σ

vk

(

c†k,σċk,σ − ċ†k,σck,σ

)

=
1

2

∑

〈ij〉
σ

(Ri −Rj) tij

(

c†i,σ ċj,σ − ċ†i,σcj,σ
)

.

(3.18)

Here vk = ∇kεk is the electron velocity. Since the interaction is purely local, there is

no contribution from the long range interactions.

The derivation of L11 is discussed extensively in the literature on DMFT [37, 52].

In infinite d the particle-hole vertex becomes momentum independent [62], and the

dressed correlation function becomes equal to the bare one. This implies the correla-

tion function can be factorized into a product of single particle Green’s functions, i.e.,

〈Tτ j(τ)j(0)〉 = − e2

d

∑

k,σ v
2
kGσ(k, τ)Gσ(k,−τ),where Gσ(k, τ) = −〈Tτ ck,σ(τ)c

†
k,σ(0)〉

is the fermionic Matsubara Green’s function. We define the Fourier transform Gσ(k, τ) =

1
β

∑

n e
−iωnτGσ(k, iωn), in terms of which

L11(iωn) = −
(

e2

d

)(

1

βiωnV

)

∑

k,σ

v2
k

1

β

∑

ipn

Gσ(k, iωn + ipn)Gσ(k, ipn).
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Gσ(k, z) has a possible branch cut at z = ε and Gσ(k, z + iωn) has one at z = ε −
iωn [55]. Following Mahan [46, 55] one can show

1

β

∑

ipn

Gσ(k, iωn + ipn)Gσ(k, ipn) =

∫ ∞

−∞

dε

2π
nF (ε)Aσ(k, ε) [Gσ(k, ε+ iωn) + Gσ(k, ε− iωn)] ,

where Aσ(k, ε) = −2ImGR
σ (k, ε) is the spectral function and nF (ε) is the Fermi func-

tion. After analytic continuation iωn → ω + iδ, and after taking the static limit we get

L11 =
e2

2dβV

∑

k,σ

v2
k

∫ ∞

−∞

dε

2π

(

−∂nF (ε)

∂ε

)

A2
σ(k, ε). (3.19)

The derivation of L21 is more involved, and is not well discussed in the litera-

ture. Since the heat current has a part which is a four-point vertex, a priori it is

not clear whether a factorization of the correlation function into products of single

particle Green’s functions and their time derivatives is possible. We have ċi,σ =

−i∑l tilcl,σ − iUci,σni,σ̄ + iµci,σ (and similarly for ċ†i,σ). We ignore the term with

the chemical potential for the time being (the result remains unchanged). Due to the

first term the heat current is a two-point vertex, and the corresponding diagrams for L21

are of the type (a) and (b) of Fig. 3.1. The heat current is a four-point vertex due to the

second term. The corresponding diagrams are of the type (c) and (d) of Fig. 3.1. In the

limit of infinite d the scaling of the hopping term is tij = t∗ij/
√
d (Ref. 4). This implies

that G0
ij ∼ (1/

√
d)|i−j| (Ref. [29]). One can show explicitly that diagrams (a) and (c)

are O(1/d) (and higher), and diagrams (b) and (d) are O(1/d2) (and higher). In Fig.

3.1, HI = U
∑

i ni,↑ni,↓ is the interaction term of the Hubbard Hamiltonian. In the

limit of infinite d the latter drops out, and the factorization of the correlation function

is possible. In imaginary time

〈Tτ jQ(τ)j(0)〉 d→∞
=

e

2d

∑

k,σ

v2
k

{

〈Tτ ċk,σ(τ)c†k,σ(0)〉〈Tτck,σ(0)c†k,σ(τ)〉 + h.c.
}

.
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Using ∂
∂τ
G(τ) = 〈Tτ

∂
∂τ
c(τ)c†(0)〉 − δ(τ) (in imaginary time), we get

L21(iωn) = −
(

2

dβiωnV

)

∑

k,σ

v2
k

{

1

β

∑

ipn

(

ipn +
iωn

2

)

Gσ(k, ipn)Gσ(k, ipn + iωn)

− nk,σ} .

We drop the second term within braces because it does not contribute to ImL21(ω+iδ).

The rest is evaluated like L11(iωn). It can be shown that

1

β

∑

ipn

(

ipn +
iωn

2

)

Gσ(k, ipn)Gσ(k, ipn + iωn) =

∫ ∞

−∞

dε

2π
nF (ε)Aσ(k, ε)

[(

ε+
iωn

2

)

Gσ(k, ε + iωn) +

(

ε− iωn

2

)

Gσ(k, ε− iωn)

]

.

After analytic continuation and taking the static limit we get,

L21 =
e

2dβV

∑

k,σ

v2
k

∫ ∞

−∞

dε

2π
ε

(

−∂nF (ε)

∂ε

)

A2
σ(k, ε). (3.20)

The derivation ofL22 is analogous to that ofL21. In the limit of infinite d, 〈Tτ jQ(τ)jQ〉
factorizes into products of (imaginary) time derivatives of single particle Green’s func-

tions (plus terms which do not contribute to ImL22(ω)). As in the case of L11 and L21,

the terms which are dropped out by such factorization are at least O(1/d) smaller. In

other words,

〈Tτ jQ(τ)jQ〉 d→∞
=

1

4d

∑

k,σ

v2
k

{

〈Tτ ċk,σ(τ)c
†
k,σ(0)〉〈Tτck,σ(0)ċ†k,σ(τ)〉

−〈Tτ c̈k,σ(τ)c†k,σ(0)〉〈Tτck,σ(0)c†k,σ(τ)〉 + h.c.
}

.

With this simplification it can be shown that

L22(iωn) = −
(

1

dβiωnV

)

∑

k,σ

v2
k

{

1

β

∑

ipn

(

ipn +
iωn

2

)2

Gσ(k, ipn)Gσ(k, ipn + iωn)

+ · · · } .

The terms in the ellipses do not contribute to ImL22(ω). Finally we get,

L22 =
e

2dβV

∑

k,σ

v2
k

∫ ∞

−∞

dε

2π
ε2
(

−∂nF (ε)

∂ε

)

A2
σ(k, ε). (3.21)
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We reiterate the observation made in Ref. [40] that the above expressions for the trans-

port coefficients are correct for any model with local interaction (for which Eq. (3.18)

is correct), in infinite dimensions.

3.5 Conclusion

The current (charge or thermal) obtained by Peierls substitution or by the equation of

motion technique is an approximation to the exact low energy current for an effective

tight-binding Hamiltonian. In particular, the approximate current is not invariant under

a unitary transformation of the Wannier basis. We have suggested a simple criteria

by which one can choose a set of Wannier functions where the difference between

the exact and the approximate current is minimum. The minimization procedure is

well defined provided the matrix elements of the exact current are known from first

principles calculation. Using the equations of motion we have derived the thermal cur-

rent for a very general tight-binding Hamiltonian, correcting the result of a previous

work. Finally, using the Peierls currents, we have established the correctness of known

expressions for the transport coefficients for the Hubbard model in infinite d. The sim-

plification in the limit of large coordination is that the current (charge and thermal)

correlation functions can be factorized into products of single particle Green’s func-

tions and their time derivatives. These expressions are correct for any model with local

interaction and in infinite dimensions.
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Chapter 4

The Charge Current Operator in Down-folding Scheme

4.1 Introduction

The notion of effective low-energy Hamiltonians, or model Hamiltonians, is central to

the conceptual framework of condensed matter theory. The motivation and the justi-

fication for using model Hamiltonians is the following: The microscopic details of an

interacting many-body system come into play only when we probe the system over a

wide range of energy. But if we restrict ourselves to examining only low-energy prop-

erties of the system then much of the microscopic details can be forgotten. This allows

us to replace a more complicated full Hamiltonian, which describes both low- as well

as high-energy modes of the system, by a simpler Hamiltonian (usually with fewer mi-

croscopic parameters) which describes only the low-energy degrees of freedom. The

Hilbert space for the latter is smaller and hence has a better chance of being tractable,

both analytically as well as numerically. This procedure is implemented rigorously

within the formalism of the renormalization group (RG).

The scheme of down-folding is a formal procedure by which a Hamiltonian, which

has a clear and well-separated low(L)- and high(H)-energy subspaces, is expressed

entirely in the low-energy sector. This procedure can be used to construct low-energy

effective Hamiltonians, and the scheme is motivated by the idea of RG mentioned

above. To illustrate the scheme we consider solving Schroedinger equationHψ = Eψ.

The wave-function has low- and high-energy projections ψL and ψH respectively. The

Hamiltonian has low- and high- energy pieces and also some mixing terms. In matrix
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notation we write

Hψ =





HL H†
M

HM HH









ψL

ψH



 = E





ψL

ψH



 . (4.1)

Formally one can write

ψH =
1

(E −HH)
HMψL (4.2)

and eliminate the high-energy subspace completely. The “Schroedinger equation” in

the low-energy subspace is

HD(E)ψL =

(

HL +H†
M

1

(E −HH)
HM

)

ψL = EψL. (4.3)

Note that the down-folded “Hamiltonian” HD is energy dependent and that the above

equation is non-linear. Let us suppose that EL and EH are typical energy scales of

the low- and high-energy manifolds respectively, i.e., typical matrix elements of the

operators HL and HH respectively. We want the down-folded theory to reproduce

the spectrum of the low-energy manifold. In principle this can be done by writing

E = EL+δE and expanding the above equation in the small parameter δE/(EH−EL).

Let us suppose that for the original theory (in which both the low- and high- energy

degrees of freedom are present) the form of the charge current operator j is known

from the symmetry of the original theory and by the application of Noether’s theorem.

Let us assume that the current operator is given by j = ((δH(A))/(δA))A=0. For the

down-folded theory it is not possible to reconstruct Noether’s theorem since the Hilbert

space has been truncated to exclude the high-energy states. The questions, then, are:

what is the form of the charge current operator (jeff ) for the down-folded theory that

reproduces the low-energy part of the current correctly? Also, if we can write down

a low-energy effective Hamiltonian Heff(EL) (and which does not depend on E like

HD(E)), then will jeff = ((δHeff(A))/(δA))A=0.
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This issue was recently revisited by Millis [51]. He assumed that the wavefunc-

tion in the low-energy sector is normalized, i.e., 〈ψL|ψL〉 = 1. With this normal-

ization convention, the basis states of the full theory acquire energy dependent nor-

malization factor, i.e., the normalized states are ψN = ψ/N(E) where N(E) =
√

1 + 〈ψL|H†
M(E −HH)−2HM |ψL〉. By a simple application of the Feynman-Hellman

theorem one can show that

〈ψN |
(

δH(A)

δA

)

A=0

|ψN 〉 =

(

δE

δA

)

A=0

= 〈ψL|
(

δHD(E,A)

δA

)

A=0

|ψL〉. (4.4)

From the above equation we find that the diagonal matrix elements of the current op-

erator for the full theory can be expressed in terms of the diagonal matrix elements of

the energy-dependent current operator of the down-folded theory. However, Millis ob-

served, for non-diagonal matrix elements there is no such simple relation between the

full theory and the down-folded one. The main problem in making such a connection

is the energy dependence of the normalization of the basis states in the full theory and

the energy dependence of the operators in the down-folded theory.

RG provides a rigorous way of identifying the low-energy theory. In the functional

integral language this is done by eliminating or integrating out high-energy degrees of

freedom. In a Hamiltonian formulation this is equivalent to making unitary transforma-

tions that decouple the high- and low-energy subspaces, and then truncating the Hilbert

space to keep only the low-energy subspace. That is, given a HamiltonianH, we per-

form unitary transformations (U) such that U †HU is block diagonal (i.e., no terms mix-

ing the two subspaces). The effective low-energy Hamiltonian is Heff = PU †HUP ,

where P is the operator projecting on the low-energy subspace. In this scheme the

effective low-energy current operator is unambiguous and is jeff = PU †jUP . In the

following our aim will be to understand down-folding as a formal procedure of per-

forming RG transformation and make a connection between the two schemes.

We make the observation that the problem of the energy dependence in the nor-

malization factor and the energy dependence in the operators of the down-folded the-

ory can be removed if we expand Eq. (4.3) to first order in δE. To this order, and
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after a transformation that makes the low-energy basis states orthonormal, the low-

energy effective theory can be expressed as a Schroedinger equation with an effective

Hamiltonian Heff(EL). We will identify the down-folding transformation D, where

Heff(EL) = D†HD, as a combined operation of unitary transformation and projection,

i.e., D = UP . With this identification it is clear that in the down-folding scheme the

effective current operator is jeff = D†jD. However, we will see that the down-folding

transformation is energy dependent, i.e., D = D(δE). Therefore, in order to write

down jeff we will have to make use of the equation of motion.

4.2 Charge Current Operator in Low-Energy Sector

We begin with Eq. (4.1), and we adopt the normalization that the eigenstates of the

full theory are orthonormal, i.e., 〈ψa|ψb〉 = δab. This implies the projections of the

eigenstates on the low-energy sector satisfy the formal relation

〈ψLa

∣

∣

∣

[

1 +H†
M (Ea −HH)−1 (Eb −HH)−1HM

]
∣

∣

∣
ψLb〉 = δab. (4.5)

Next, we expand Eq. (4.3) to linear order in δE. The corresponding equation can be

written as

H̃(EL)ψ
(0)
L = δEO−1(EL)ψ

(0)
L , (4.6)

where

H̃(EL) = HL +H†
M(EL −HH)−1HM − EL, (4.7)

and

O−1(EL) = 1 +H†
M(EL −HH)−2HM . (4.8)

The solution of Eq. (4.6), ψ(0)
L , coincides with ψL to zeroth order in δE, i.e., ψL =

ψ
(0)
L +O(δE). If we expand the normalization Eq. (4.5) to zeroth order in δE, we get

〈ψ(0)
La |O−1(EL)|ψ(0)

Lb 〉 = δab. (4.9)

This suggests that Eq. (4.6) has the structure of Schroedinger equation expressed in a

non-orthogonal basis, and the operator O−1(EL) can be understood as the inverse of
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the overlap. This is expected because though the basis states for the full theory (ψ’s)

are orthonormal, their projection on the low-energy sector (ψL’s) are not orthonormal.

In other words, this step in the process of down-folding is a transformation (say T1)

that is a non-unitary followed by the projection P . We write this transformation as





ψL

ψH



 = T1





ψ
(0)
L

0



 =





1 0

M 0









ψ
(0)
L

0



 (4.10)

where

M = (EL −HH)−1HM − δE(EL −HH)−2HM . (4.11)

In this new basis we have the equation

T †
1 (H− EL)T1





ψ
(0)
L

0



 = δE T †
1T1





ψ
(0)
L

0
.



 (4.12)

To O(δE) this coincides with Eq. (4.6). We note that the transformation T1 depends

on the spectrum δE.

In the next step we will consider a non-unitary transformation (T2) in the low-

energy sub-space of the form ψ
(0)
L = T2φL, such that the states φL are orthonormal. It

is easy to check that the general form of the transformation is T2 = O1/2U , where U is

unitary, i.e., U †U = 1. Using Eq. (4.9) we get

δab = 〈ψ(0)
La |O−1(EL)|ψ(0)

Lb 〉 = 〈φLa|U †O1/2O−1O1/2U |φLb〉 = 〈φLa|φLb〉. (4.13)

This establishes the orthonormality of the {|φL〉} basis. The transformation from the

non-orthogonal basis {|ψL〉} to the orthonormal basis {|φL〉} is not unique. It depends

on the choice of U . In the following we will choose U = 1. Applying this transforma-

tion to Eq. (4.6) we get

Heff(EL)φL = δEφL, (4.14)

where

Heff(EL) = O1/2(EL)
(

HL +H†
M(EL −HH)−1HM − EL

)

O1/2(EL). (4.15)
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We identify the down-folding transformation (D) as

D = T1T2 =





1 0

M 0









O1/2 0

0 0



 =





O1/2 0

MO1/2 0



 , (4.16)

and we can write

D†HD =





Heff 0

0 0



 +O((δE)2). (4.17)

It is easy to check that keeping terms to zeroth order in δE (which is consistent since

we have maintained accuracy of the wavefunction and the normalization condition to

this order) we get

D†D =





1 0

0 0



 . (4.18)

This confirms the identification D = UP . It is important to remember that the trans-

formation D is spectrum dependent.

The effective low-energy current is given by

D†jD =





O1/2 O1/2M †

0 0









jL j
†
M

jM jH









O1/2 0

MO1/2 0



 =





jeff 0

0 0



+O((δE)2).

(4.19)

The above equation has explicit dependence on δE. This can be removed formally by

making use of the equation of motion, i.e., Eq. (4.14). Since the operator D acts on

|φL〉, we will replace δE byHeff acting on the right, and for D† we will replace δE by

Heff acting on the left. We get

jeff = O1/2
[

jL + j
†
M(EL −HH)−1HM +H†

M(EL −HH)−1jM+

H†
M(EL −HH)−1jH(EL −HH)−1HM

]

O1/2 −
[

O1/2
{

j
†
M +H†

M(EL −HH)−1jH

}

(EL −HH)−2HMO
1/2Heff+

HeffO
1/2H†

M(EL −HH)−2
{

jM + jH(EL −HH)−1HM

}

O1/2
]

. (4.20)

This construction guarantees that

〈ψa|j|ψb〉 = 〈φLa|jeff |φLb〉+O((δE)2).



57

4.3 Downfolding in the Presence of a Vector Potential

We will assume we know how the vector potential A couples to the original Hamil-

tonian H, and that the current operator is given by j = ((δH(A))/(δA))A=0. Thus

H(A) = H(0)+ j ·A. From this information we should be able to find how A couples

toHeff(EL). We will investigate whether jeff = ((δHeff(EL,A))/(δA))A=0.

It is instructive to study this issue first for a case where the down-folding is trivial.

Let us suppose we have a Hamiltonian which we can diagonalize and which we can

cleanly separate into a low- and a high-energy subspace. In obvious notations

H0 = HL ⊕HH =
∑

i∈L

Ei
L|ψi

L〉〈ψi
L|+

∑

k∈H

Ek
H |ψk

H〉〈ψk
H |.

In this trivial case the down-folded Hamiltonian is

Heff = HL =
∑

i∈L

Ei
L|ψi

L〉〈ψi
L|.

However, thoughH is diagonal, the current operator j = ((δH(A))/(δA)), in general,

is not diagonal in this basis. In particular, it can have terms mixing between the two

subspaces. The current operator can be expressed as

j =
∑

i,j∈L

〈ψi
L|
δH0

δA
|ψj

L〉|ψi
L〉〈ψj

L|+
∑

k,l∈H

〈ψk
H |
δH0

δA
|ψl

H〉|ψk
H〉〈ψl

H |

+
∑

i∈L
k∈H

〈ψk
H |
δH0

δA
|ψi

L〉|ψk
H〉〈ψi

L|+
∑

i∈L
k∈H

〈ψi
L|
δH0

δA
|ψk

H〉|ψi
L〉〈ψk

H |.

The four terms above are jL, jH , jM and j
†
M respectively. The current for the down-

folded theory is

jeff = P jP = jL =
∑

i,j∈L

〈ψi
L|
δH0

δA
|ψj

L〉|ψi
L〉〈ψj

L|.

Now the question is whether jL = (δHL(A))/(δA). Using Feynman-Hellman theorem

we can express the current matrix elements as

〈ψj|δH
δA
|ψi〉 =

∂Ei

∂A
δij + (Ei − Ej)〈ψj|−→∂A|ψi〉, i, j ∈ L,H. (4.21)
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Using the above equation we get

δHL

δA
= jL +

∑

i∈L
k∈H

Ei
L

(

〈ψk
H |
−→
∂A|ψi

L〉|ψk
H〉〈ψi

L|+ 〈ψi
L|
←−
∂A|ψk

H〉|ψi
L〉〈ψk

H |
)

. (4.22)

Similarly, one can show that

δHH

δA
= jH +

∑

i∈L
k∈H

Ek
H

(

〈ψk
H |
←−
∂A|ψi

L〉|ψk
H〉〈ψi

L|+ 〈ψi
L|
−→
∂A|ψk

H〉|ψi
L〉〈ψk

H |
)

. (4.23)

In general (δHL,H,M/δA) 6= jL,H,M . The difference is due to matrix elements of

the type 〈ψk
H |
−→
∂A|ψi

L〉, which gives coupling of the two subspaces due to the vector

potential. Thus, we see explicitly in this simple example thatHeff(A) = HL + jL ·A,

and then of course, jeff = (δHeff/δA). In particular,Heff(A) 6= HL + (δHL(A)/δA) ·
A. In fact, the operator (δHL(A)/δA) is not contained only in the low-energy sector.

It has mixing terms as can be seen explicitly from Eq. (4.22). In this context it is useful

to note that the approximate low-energy current (jP ) obtained by Peierls substitution is

only the diagonal part of jL. It is given by

jP =
∑

i∈L

∂Ei
L

∂A
|ψi

L〉〈ψi
L|. (4.24)

The off-diagonal part of jL involve information about the A dependence of the wave-

functions |ψL〉. The diagonal part contains the A dependence of the spectrum EL.

Next we will consider the general case of down-folding in the presence of the vector

potential. We generalize Eq. (4.1) to





HL + jL ·A H†
M + j

†
M ·A

HM + jM ·A HH + jH ·A









ψL

ψH



 = E





ψL

ψH



 . (4.25)

As we have discussed before

δHL(A)

δA
=

δ

δA
[PH(A)P ] 6= jL = P [

δH(A)

δA
]P.

As before we will assume that the eigenstates for the full theory are orthonormal. The
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equivalent of Eq. (4.3) in the low-energy sector is

HD(E,A)ψL =
[

(HL + jL ·A) +
(

H†
M + j

†
M ·A

)

(E −HH − jH ·A)−1

× (HM + jM ·A)]ψL

= E(A)ψL. (4.26)

We expand the above equation to linear order in δE and A and also retain terms of the

order (δEA). We get, after collecting terms,

H̃(EL,A)|ψ(0)
L 〉 = δEO−1(EL,A)|ψ(0)

L 〉, (4.27)

where

H̃(EL,A) =
[

HL +H†
M(EL −HH)−1HM − EL

]

+
[

jL + j
†
M(EL −HH)−1HM +H†

M(EL −HH)−1jM

+ H†
M(EL −HH)−1jH(EL −HH)−1HM

]

·A, (4.28)

and

O−1(EL,A) =
[

1 +H†
M(EL −HH)−2HM

]

+
[

j
†
M(EL −HH)−2HM

+H†
M(EL −HH)−2jM +H†

M(EL −HH)−1jH(EL −HH)−2HM

+H†
M(EL −HH)−2jH(EL −HH)−1HM

]

·A. (4.29)

If we expand the normalization condition which is a generalization of Eq. (4.5) to

zeroth order in δE and to linear order in A, we get

〈ψ(0)
La |O−1(EL,A)|ψ(0)

Lb 〉 = δab. (4.30)

As before we use the transformation T2 to go to the orthonormal basis {|φL〉}. In this

basis we get

Heff(EL,A)φL = δE(A)φL, (4.31)

where

Heff(EL,A) = O1/2(EL,A)H̃(EL,A)O1/2(EL,A). (4.32)
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From the above equation we get
(

δHeff(EL,A)

δA

)

A=0

= O1/2(EL)
[

jL + j
†
M(EL −HH)−1HM +H†

M(EL −HH)−1jM

+ H†
M(EL −HH)−1jH(EL −HH)−1HM

]

O1/2(EL)

+

(

δO1/2(EL,A)

δA

)

A=0

H̃(EL)O1/2(EL)

+ O1/2(EL)H̃(EL)

(

δO1/2(EL,A)

δA

)

A=0

. (4.33)

Now we want to compare the above expression with that of jeff given by Eq. (4.20).

We note that the first term in the above expression, which is zeroth order in δE, co-

incides with the zeroth order term in jeff . The difference is in terms which are first

order in δE. However, it turns out that there is no simple closed form expression

for ((δO1/2(EL,A))/(δA))A=0. So we will expand O1/2(EL,A) in the parameter

λ = EM/(EH − EL), where EM is a typical matrix element ofHM . We find
(

δHeff(EL,A)

δA

)

A=0

− jeff =
1

2

[

X(EL)−X†(EL), H̃(EL)
]

+O(λ4), (4.34)

where

X(EL) =
[

j
†
M +H†

M(EL −HH)−1jH

]

(EL −HH)−2HM . (4.35)

4.4 Example: Non-Interacting Anderson Lattice Model

In this section we apply the abstract concepts of down-folding discussed in the last

two sections to the particular case of the non-interacting Anderson lattice model. The

interacting version of this model is used to study heavy-fermion systems. We write the

Hamiltonian as

H =
∑

k

(εF + εk)|k, c〉〈k, c|+
∑

k

εf |k, f〉〈k, f |

+
∑

k

(Vk|k, f〉〈k, c|+ V ∗
k |k, c〉〈k, f |) .

The states |k, c〉 form a broad band of conduction electrons with a well-defined Fermi

sea. The spectrum εk is defined with respect to the Fermi energy εF . The states |k, f〉



61

form a narrow dispersion-less band with energy εf . In the following we will assume

that the two bands are well-separated with large εF − εf = ∆E. The last two terms in

the Hamiltonian represent hybridization between the bands.

The Hamiltonian is diagonal in momentum space, and it is quite elementary to

diagonalize it into a low-energy and a high-energy bands. However, in the following

we will apply the concept of down-folding and construct a low-energy effective theory

which is entirely in terms of the conduction electrons. Since in the low-energy sector

all the operators are now scalars (matrices diagonal in k-space), the down-folding is

very easy. We get,

Heff =
∑

k

δEk|k, c′〉〈k, c′|, (4.36)

where

δEk =

(

1 +
|Vk|2

(∆E)2

)−1(

εk +
|Vk|2
(∆E)

)

, (4.37)

and |k, c′〉 are the renormalized conduction electron states.

In the following we will assume that the current operator for the full theory is

known and is given by ∇H(k). Thus,

j =
∑

k

∇εk|k, c〉〈k, c|+
∑

k

(∇Vk|k, f〉〈k, c|+∇V ∗
k |k, c〉〈k, f |) . (4.38)

Following the formalism discussed in section 4.2 we get,

jeff =
∑

k

(

1 +
|Vk|2

(∆E)2

)−1
(

∇εk +
1

∆E
∇(|Vk|2)− δEk

1

(∆E)2
∇(|Vk|2)

)

|k, c′〉〈k, c′|.

(4.39)

It is also easy to check that if we do the down-folding in the presence of a vector

potential then, in this example,

δHeff

δA

∣

∣

∣

∣

A=0

= jeff . (4.40)

This is due to the fact that in this example the various operators in the down-folded

theory are scalars. As discussed in the previous section, in a more general case, where

the low-energy theory has non-trivial matrix structure with respect to the band indices
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(for this the low-energy theory has to have more than one band), the above equality

will not hold.

4.5 Conclusion

We identify down-folding, to linear order in the spectrum, as a formal renormalization

group procedure. We construct the current operator for the low-energy theory which

gives the correct matrix elements to linear order in the spectrum. We find that while

down-folding in the presence of a vector potential, the operator that couples to the

linear term in A cannot be interpreted as the current operator for the low-energy theory.

In the presence of the vector potential the downfolding transformation is a function of

A, i.e., D = D(A). As a result the effective low-energy Hamiltonian to linear order in

A is

Heff(A) = D†(A) (H + j ·A)D(A)

= Heff(0) +

[

jeff +
δD†(A)

δA
HD(0) +D†(0)HδD(A)

δA

]

A=0

·A.

We see explicitly that besides jeff , there are additional operators that couple to the term

linear in A. We conclude that the correct procedure to obtain the current operator is

the one outlined in section 4.2, and that jeff 6= ((δHeff(A))/(δA))A=0. However, one

needs to understand the physical nature of the additional terms. It is possible that the

additional terms are divergence-less, and therefore do not contribute to dc transport. To

test this conjecture one has to study a more non-trivial example where the low-energy

sector retains more than one band.
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Chapter 5

Thermoelectric Behaviour of Heavy-Fermion Systems
Near Magnetic Quantum Critical Point

5.1 Introduction

Understanding the behaviour of a system close to antiferromagnetic quantum critical

point (QCP) is currently an area of active research. The problem is interesting both in

the context of high temperature superconductors as well as heavy-fermion materials,

especially to understand metallic phases that show non-Fermi liquid (NFL) properties.

In recent times several materials have been discovered where it has been possible to

demonstrate the existence of magnetic QCP [24,16,11]. This has made the problem an

exciting ground where theoretical understanding of electrons with strong correlations

can be verified experimentally. One central issue in this problem is an appropriate

theoretical treatment of electrons interacting with spin fluctuations close to the QCP

where magnetic correlation length diverges. A second central issue, is whether the

spin-fermion model [25] describes the relevant degrees of freedom, or whether a more

basic model, allowing for the disintegration of the binding of local moments to the

quasiparticles, is necessary for describing this transition [20, 63].

In this chapter we will discuss two experimentally well-studied heavy fermion ma-

terials, CeCu6−xAux [24] and YbRh2Si2 [16], that exhibit antiferromagnetic QCP. In

doped CeCu6, replacing Cu with larger Au atoms, favours the formation of long range

magnetic order [24]. Beyond a critical doping xc = 0.1, the ground state of the sys-

tem is antiferromagnetic with finite Néel temperature (TN ) [25]. At the critical doping

TN is zero and the system has a QCP. On the other hand YbRh2Si2 is undoped and
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atomically well-ordered [16]. It is a much cleaner material than CeCu6−xAux, with

residual resistivity (ρ0) smaller by a factor of about 10. At ambient pressure it devel-

ops long range magnetic order at a very low temperature of TN ' 65 mK. [16] The

ordering temperature can be suppressed to practically zero (less than 20 mK) by ap-

plying a magnetic field of only 45 mT [16]. Both these materials show pronounced

deviations from Fermi liquid (FL) behaviour, which is believed to be due to closeness

to the QCP. For instance, the dependence of electrical resistivity ∆ρ = ρ− ρ0 to tem-

perature T is ∆ρ ∝ T , while that of specific heat C is C/T ∝ − lnT [24, 16]. This

is in contrast with FL behaviour which predicts ∆ρ ∝ T 2 and C/T = constant. The

low temperature NFL behaviour is observed over a decade of temperature, up to about

1 K for CeCu6−xAux [24, 25], and up to as high as 10 K for YbRh2Si2 [16]. The

source of the interesting physics in these materials is the localized 4f electrons [20]

of Ce3+ (in 4f 1 electronic configuration) and Yb3+ (in the configuration 4f 13), and

their interaction with the relatively delocalized s, p and d orbital electrons that form a

conduction band with a well defined Fermi surface at low temperature. The conduction

electrons and the localized 4f electrons carrying magnetic moment are coupled by ex-

change interaction (J). Below a certain critical value of exchange interaction (Jc), the

local moments interact with each other, mediated by conduction electrons, and at suf-

ficiently low temperature form long range antiferromagnetic order. On the other hand,

if the exchange coupling is strong (J > Jc), the local moments are quenched below

a certain temperature (lattice Kondo temperature). The quenched moments hybridize

with the conduction electrons and they participate in the formation of the Fermi sea.

The ground state of such a system is non-magnetic. The exchange coupling is usually

tuned experimentally by either doping the material or by applying external pressure or

external magnetic field.

For CeCu6−xAux there are two different views [20] regarding the nature of the

system in the non-ordered phase and the corresponding mechanism by which the crit-

ical instability occurs. In the first picture (Fig.5.1(a)), the lattice Kondo temperature
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Figure 5.1: Two possible scenarios for heavy-fermion quantum criticality. T ∗ is the
temperature below which heavy Fermi liquid forms. Local moments exist above this
temperature. In (a) T ∗ is zero at the critical point xc. Local moments exist down to the
lowest temperature. In (b) T ∗ is finite at the critical point. The phase transition is by
spin density wave instability of the Fermi liquid.

(T ∗) becomes zero exactly at the critical point (J = Jc). The local moments of the 4f

electrons survive at all finite temperature close to the critical point. At the transition

point they are critically quenched. The local moments produce the critical magnetic

fluctuations that destabilize the Fermi sea. It has been argued, in favour of this mecha-

nism, that the data on magnetic susceptibility shows non-trivial scaling with tempera-

ture [64]. At the critical point the susceptibility has the scaling form χ = T −αf(ω/T )

with an anomalous exponent α ' 0.75, which is different from conventional insulating

magnets which have α = 1. The alternative picture suggests that T ∗ is finite at the

critical point. Well below this temperature, and close to the critical point, the local

moments are quenched by Kondo mechanism. The 4f electrons become part of the

Fermi sea. Then, the phase transition occurs by the usual spin-density wave instabil-

ity of the Fermi surface. In this picture the local moments do not play any role in the
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Figure 5.2: Logarithmic temperature dependence of thermopower over tempearture for
CeCu5.9Au0.1. Data courtesy of C. Pfleiderer and A. Rosch.

phase transition. This theoretical viewpoint, proposed by Rosch and collaborators [25],

is motivated by inelastic neutron scattering data on CeCu5.9Au0.1 which show that the

nearly critical spin fluctuations are two dimensional [26]. But the origin of the quasi

2d behaviour of spin fluctuations is not well understood. However, the same feature is

probably also present in YbRh2Si2, where the structure of the lattice provides a more

natural explanation for the spin fluctuations to be two-dimensional [16]. Besides the

nature of the magnetic correlations, there are different opinions regarding the dynam-

ics of the spin fluctuations. It has been argued [65] that if the ordering wave-vector

spans different points of the Fermi surface, then the dynamics of the spin fluctuations

is overdamped, with dynamic exponent z = 2. This model of spin fluctuations with

d = 2 and z = 2, coupled with three-dimensional electrons, was used to explain the

linearity of resistivity with temperature [25]. Following the method of Hertz [21, 22],

in which the system is described entirely in terms of the spin fluctuations, after a formal

Hubbard-Stratanovich transformation to integrate the fermion modes, it also explains



67

the logarithmic temperature dependence of specific heat [25, 22]. In an alternative de-

scription [66], in terms of low energy electrons interacting with spin fluctuations, it has

been suggested recently that both the frequency and momentum dependence of the spin

fluctuation propagator undergo singular corrections such that the propagator acquires

an anomalous dimension η ∼ 1/4 [67]. Thus, after nearly a decade, there is still no

clear understanding regarding the appropriate model that describes the quantum phase

transition.

In this chapter we will study the thermoelectric behaviour of a system in the para-

magnetic phase and close to antiferromagnetic QCP. For CeCu5.9Au0.1 it is known that

thermopower (St) has a dependence similar to specific heat over the same range of tem-

perature [68, 69], i.e, St/T ∝ − lnT . We will show that scattering with nearly critical

spin fluctuations give rise to temperature dependent quasiparticle mass (m∗) over much

of the Fermi surface. The signature of this can be seen in static response (specific heat)

and in transport (thermopower). Finally we will argue that the same mechanism should

be relevant for YbRh2Si2, and so we expect to see the same behaviour for thermopower

from future experiments.

5.2 Model

Our model is motivated by the second picture as described above. It assumes that T ∗

defines a high energy parameter. For T ∼ T ∗ the local nature of the spins of the

4f electrons is important as they participate in some lattice Kondo phenomenon. For

T < T ∗, the 4f electrons become part of the hybridized conduction band. In this

regime the nearly critical spin fluctuations of the conduction electrons is important.

It is an intermediate temperature range where the system is described by low energy

conduction electrons interacting with quasi two-dimensional spin fluctuations. Within

the spin-fermion description, at sufficiently low temperature, the three-dimensional

nature of the spin fluctuations is retrieved and the model used here ceases to be valid.
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In this regime, the model predicts, in pure systems, a crossover to an electronic Fermi

liquid with a finite mass. However the physics governing this dimensional crossover,

has not been investigated.

The model is described by the Hamiltonian

H =
∑

k,σ

εkc
†
k,σck,σ +

g0

2

∑

k,q,α,β

c†k+q,αck,βσα,β · S−q +
∑

q

[

χ−1(q)Sq · S−q

+ Πq ·Π−q] +
u0

4

∑

k1,k2,k3,k4

(Sk1
· Sk2

) (Sk3
· Sk4

) δ(
∑

i

ki). (5.1)

Here c†k,σ is the electron creation operator, Sq is the operator for the spin fluctuations,

Πq = ∂tSq is the conjugate momentum field for the spin fluctuations, and χ(q) is the

static magnetic susceptibility. g0 is the bare coupling between the electrons and the

spin fluctuations, and u0 is the interaction energy of the spin fluctuations. The collec-

tive spin fluctuations are formally obtained by integrating out high energy electrons in

the band up to a certain cutoff [66]. Thus the typical energies of the spin fluctuations

ωs ∼ W , the bandwidth of the conduction electrons. The system is close to an antifer-

romagnetic instability with ordering wave-vector Q. We will assume that the dynamics

of the spin fluctuations is purely damped with dynamic exponent z = 2. The spectrum

of the two-dimensional spin fluctuations will be described by [21, 22]

χ−1(q, ω) = δ + ωs(q−Q)2
‖ − iγ |ω| . (5.2)

Here δ is the mass of the spin fluctuations and measures the deviation from the QCP, the

parallel directions are those along the planes of magnetic correlation, and γ ∼ (g0/εF )2

is an estimate of the damping from the polarization bubble. In the spin fluctuation part

of the Hamiltonian, the interaction term u0 is marginal, since the scaling dimension

is zero [21, 22]. The main contribution of this term is to renormalize the mass of the

spin fluctuations (δ) and make it temperature dependent. Within a Gaussian approxi-

mation, δ is linearly dependent on temperature, up to logarithmic corrections [25, 22].

We will ignore other effects of the u0 term in our discussion, and will consider only the

quadratic term with temperature dependent mass of the spin fluctuations. To simplify
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the calculation we will assume a spherical Fermi surface for the non-interacting elec-

trons, with the ordering wave-vector Q = (α, 0, 2kF cos θ0). Here θ0 6= 0 (i.e. not 2kF

ordering), and θ0 6= π/2 (i.e. not ferromagnetic ordering). We have chosen x̂ as the

direction along which the spin fluctuations are uncorrelated, and α, the ordering in the

x-direction, varies from one plane of magnetic correlation to another. Since the spec-

trum of spin fluctuations is two-dimensional, those carrying momentum of the form

Q + ax̂, where a is arbitrary, are all nearly critical. Due to constraints from energy-

momentum conservation, only those points on the Fermi surface that are connected by

the nearly critical spin fluctuations are particularly sensitive to the QCP, since elec-

trons at these points undergo singular scattering with the spin fluctuations. These are

the so-called “hot spots”. It is important to note that since the spin fluctuations are

two-dimensional, there will be a finite area of the Fermi surface that is hot. Though it

is worthwhile to estimate the fraction of the Fermi surface that is hot, theoretically it

is a daunting task. In our calculation we will assume that most of the Fermi surface is

hot. In effect, we are assuming that contribution to static response and also to trans-

port is mostly from the hot regions. It was pointed out by Hlubina and Rice [70] that

in transport the hot carriers are less effective than the cold ones. This is because the

quasiparticle lifetime of the hot carriers is less than that of the cold carriers, since the

former suffer enhanced scattering with the spin fluctuations. As we will show below,

the lifetime of the hot electrons τh ∝ 1/T , while the cold electrons have Fermi liquid

characteristics with τc ∝ 1/T 2. If x is the fraction of the Fermi surface (FS) that is hot,

then we can make an estimate of conductivity σ,

σ ∝ 〈τk〉FS ∝
x

T/εF
+

1− x
(T/εF )2

.

The first term, which is the contribution from the hot region, will dominate to give

∆ρ ∝ T only if x > 1/(1 + T/εF ). This gives a rough estimate of the fraction nec-

essary for the hot carriers to dominate. In the case of CeCu6−xAux, which is a dirtier

material, the above estimation is more involved. It was recently shown [71] that the ef-

fect of disorder is to favour isotropic scattering and thereby reduce the effectiveness of
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Figure 5.3: Lowest order (a) electron self-energy and (b) spin-fermion vertex correc-
tion. For the vertex external frequency has been set to zero.

Hlubina-Rice mechanism. Thus, one should expect a smaller fraction, than estimated

above, enough to make the contribution of the hot carriers significant for CeCu6−xAux.

5.3 Spin-Fermion Vertex and Electron Self-Energy

We will first examine the lowest order correction to the spin-fermion vertex (Fig.5.3(b)).

The main purpose of this exercise will be to demonstrate that at the QCP (δ → 0) the

corrections to the vertex is not singular. This is important because otherwise our per-

turbative calculation will break down at low temperature near the QCP. With a singular

vertex, the coupling constant between the electrons and the spin fluctuations will get

strongly renormalized at low energy. The qualitative features of the theory will change,

in particular the electron self-energy. We will express the lowest order correction to the

bare spin-fermion coupling as g = go(1 + Γ). Since we are interested only in the hot

electrons and their low energy interaction with the spin fluctuations, we will calculate
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the vertex Γ with zero external frequency. The expression for the vertex is given by,

Γ = ig2
0

∑

k

∫ ∞

−∞

dω

2π
G (p1 + k, ω)G (p2 + k, ω)χ (Q + ax̂ + k, ω) . (5.3)

Here p1 and p2 are two hot points that are connected by wave-vector Q + ax̂ and

G (p, ω) is the free electron propagator given by,

G (p, ω) =
np

ω − εp − iη
+

1− np

ω − εp + iη
. (5.4)

Here np is the electron occupation of the momentum state p at T = 0. It is convenient

to use the spectral representation of the spin fluctuation propagator

χ(k, ω) =

∫ ∞

0

dΩ

π
Imχ(k,Ω)

2Ω

Ω2 − ω2 − iη . (5.5)

The ω-integral is now stright-forward. We get

Γ = g2
0

∑

k

∫ ∞

0

dΩ

π

2Ω2

γ2
Q+k + Ω2

{

θ(−ε1k)

(ε1k − ε2k)(ε1k − Ω)(ε1k + Ω)

+
θ(−ε2k)

(ε2k − ε1k)(ε2k − Ω)(ε2k + Ω)
− 1

2Ω(Ω + ε1k)(Ω + ε2k)

}

.

In the above equation γk = δ+ωs(k−Q)2
‖, and ε1k, ε2k are the fermionic spectra near

the two hot points p1 and p2 respectively. The linearized spectra can be expressed as

ε1k = v1iki + v1jkj and ε2k = v2iki + v2jkj, where (ki, kj) are co-ordinate axes in the

plane defined by the centre of the Fermi sphere and the two hot points. The k-sum can

now be simplified by expressing all the terms in the quadrant defined by ε1k, ε2k > 0.

After some algebra we get

Γ = 4g2
0

∑

k,
ε1k,ε2k>0

∫ ∞

0

dω

π

ω2

(

γ2
Q+k + ω2

)

(ε1k + ε2k) (ω + ε1k) (ω + ε2k)
. (5.6)

It is easy to check by simple dimensional analysis that as δ → 0, the above expression

is finite. As an estimate we get Γ ∝ g2
0Λ

1/2/(ε
3/2
F ω

1/2
s ), where Λ is a dimensionless

cutoff in the momentum space.

Next, in order to calculate the effect of the low energy spin fluctuations on the hot

electrons, we will examine the electron self-energy. The lowest order term (Fig.5.3(a))
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in perturbation gives

Σ (p, ω) = −g2
0

∑

k

∫ ∞

−∞

dΩ

2πi
χ (k,Ω)G (p + k, ω + Ω) . (5.7)

As expected, the above expression has different behaviours in the hot and cold re-

gions. But within each region the self-energy is practically momentum independent.

The imaginary part of the self-energy gives the quasiparticle lifetime as determined by

scattering with the spin fluctuations. For ω > 0 we have,

ImΣ (p, ω) = −g2
0

∑

0<εk<ω

(ω − εk+p)

γ2
k + (ω − εk+p)2 . (5.8)

If p is a point in the hot region, then it is connected to another hot spot by a wave-vector

of the form k = Q + ax̂. We linearize the spectrum about this second hot point, and

perform the integral in terms of local coordinates around it. In the hot region we get,

ImΣ (p, ω) ∝ −
(

g2
0

εFωs

)

ω2

max[δ, ω]
. (5.9)

For ω > δ the lifetime of the hot electrons is much smaller than that given by Fermi

liquid behaviour (ImΣ(ω) ∝ ω2). As we have mentioned above, this is due to more

effective scattering with the spin fluctuations in this region. For the cold electrons the

behaviour is Fermi liquid like.

Next, we will examine the real part of the self-energy. The dependence of ReΣ on

frequency is more important than the dependence on momentum. We get,

− lim
ω→0

∂

∂ω
ReΣ (p, ω) =

g2
0

π

∑

k

{

1

γ2
k + ε2k+p

−
(

γ2
k − ε2k+p

)

(

γ2
k + ε2k+p

)2 ln

∣

∣

∣

∣

γk

εk+p

∣

∣

∣

∣

+
π(2nk+p − 1)γkεk+p
(

γ2
k + ε2k+p

)2

}

. (5.10)

If p is a point within the hot region, each of the three terms in the above expression is

logarithmic. As before, after linearizing the spectrum near the second hot spot, we get,

− lim
ω→0

∂

∂ω
ReΣ (p, ω) ∝

(

g2
0

πεFωs

)

ln
(ωs

δ

)

. (5.11)
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Due to scattering, the non-interacting electron mass m is renormalized to the quasipar-

ticle mass m∗ = m/Z (in the absence of any momentum dependence of the electron

self-energy), where

Z−1 = 1− lim
ω→0

∂

∂ω
ReΣ (p, ω) (5.12)

defines the quasiparticle residue. Since δ, which measures the deviation from the crit-

ical point, can be written as δ = Γ(p − pc) + T , the quasiparticle mass becomes

temperature dependent. Here p is an experimental parameter that can be tuned to the

critical value pc, and Γ is an appropriate energy parameter. As a consequence the en-

tropy of each hot quasiparticle becomes anomalously large. This can be seen from the

expression for entropy (S) per particle, [72]

S

N
=
∑

p

1

πT

∫ ∞

−∞
dω

(

−∂f
∂ω

)

ω tan−1

(

τ(ω)

εp − ω/Z

)

.

Here f(ω) is the Fermi function, and τ(ω) is quasiparticle lifetime obtained from the

inverse of imaginary part of self energy. From the above expression it is easy to see

that S/N ∝ 1/Z. Over the hot region, keeping only the leading term, Z−1 ∼ ln(1/δ).

Then,

S/N ∝ N (0)T

(

g2
0

εFωs

)

ln
(ωs

δ

)

, (5.13)

where N (0) is the density of states of the non-interacting system at the Fermi energy.

For T > Γ(p − pc), the temperature dependence of entropy is S ∝ T ln(1/T ), which

is different from Fermi liquid behaviour (S ∝ T ). This gives rise to the anomalous

logarithmic temperature dependence of specific heat. In the past [22,25] this behaviour

has been understood from a purely bosonic point of view following the formalism of

Hertz and Millis. For the spin fluctuations the Gaussian part of the action gives a free

energy F ∝ T 2 lnT , which explains the ln(1/T ) behaviour of C/T . Thus, here we

find that there is agreement between the results of the spin-fermion model and the pure

bosonic model.
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5.4 Thermopower

From our discussion on entropy, it is natural to expect that this entropy enhancement

should be seen in the measurement of thermopower (St). This is because one can think

of thermopower as proportional to the correlation function between the heat current

and the particle current, and heat current involves the transport of entropy due to tem-

perature and electric potential gradients in the system. Strictly speaking, thermopower

is defined as a ratio of two correlation functions [55], i.e,

St =
L12

eTL11

,

where

L12 = lim
ω→0

1

ωV
Im

∫ β

0

dτeiωτ 〈Tτ jQ(τ) · j(0)〉,

is the correlation function between heat current (jQ) and particle current (j), and

L11 = lim
ω→0

1

ωV
Im

∫ β

0

dτeiωτ 〈Tτ j(τ) · j(0)〉,

is the correlation function between particle currents. L11 is a measure of electrical

conductivity (σ = e2L11). Here we are ignoring the tensor nature of L11 and L12, and

assuming that temperature and potential gradients and the thermal current are along the

major symmetry directions of the lattice so that the tensors are diagonal. We express the

single particle energies with respect to the chemical potential and assume that chemical

potential in the sample is uniform. The expression for heat current is given by,

jQ =
i

2

∑

p,σ

vp

(

c†p,σ ċp,σ − ċ†p,σcp,σ

)

.

In principle, heat current will have additional terms (see Eq.(3.14)). However, such

terms are quartic in fermionic operators and generate only subleading contributions in

our calculation. We will also ignore corrections to the particle current and heat current

vertices due to exchange of spin fluctuations. These vertex corrections are nonsingular,

and change only the numerical prefactor (which we do not attempt to calculate) of

our leading term, because the spin fluctuations are peaked around a finite wave-vector.
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We note that neglecting the vertex corrections for the transport coefficients is justified

rigorously in the limit of infinite dimension (see Sec.(3.4)). With these approximations

the expressions for the correlation functions can be re-expressed in a more transparent

form as

L12 =
∑

p

v2
p

∫ ∞

−∞
dω(−∂f

∂ω
) ω A2 (p, ω) ,

L11 =
∑

p

v2
p

∫ ∞

−∞
dω(−∂f

∂ω
) A2 (p, ω) .

Here vp = ∂εp/∂p is the quasiparticle velocity, and A (p, ω) is the spectral function

defined as

A (p, ω) =
τ(ω)−1

(

ω
Z
− εp

)2
+ τ(ω)−2

.

The evaluation ofL11 is more straightforward and we will examine it first. The momen-

tum sum can be converted into an integral over various energy surfaces. The dominant

contribution is from close to the Fermi level, and we get

L11 = v2
FN (0)

∫ ∞

−∞
dω(−∂f

∂ω
)τ(ω).

We have already noted that over the hot region τ(ω) ∝ ω−1. For the frequency integral

since ω ∼ T , we get

L11 ∝
(

εFωs

g2
0

)

v2
FN (0)

T
. (5.14)

This result [24, 25] simply reiterates what we had noted before, that when the hot car-

riers dominate transport, ∆σ ∝ 1/T . Now for L12, we first notice that the expression

is odd in frequency. This is because L12 is a measure of particle-hole asymmetry in

the system. In our calculation we will consider as phenomenological input two dif-

ferent sources of such asymmetry. One such source is from the density of states, so

that N (ω) = N (0) + ωN ′(0) +O(ω2/ε3F ), where N ′(0) 6= 0 only if there is particle-

hole asymmetry in the bare non-interacting system of electrons. The second source of

asymmetry will be from the quasiparticle lifetime which, for the hot carriers, we write

as τ−1(ω) = (g2
0/εFωs) |ω| (1 + τω). Here the second term is a possible particle-hole
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asymmetric term in scattering lifetime. τ is a typical scattering time, and ω < τ−1.

After the energy integral around the Fermi surface we get,

L12 = v2
F

∫ ∞

−∞
dω(−∂f

∂ω
)ωτ(ω)N (ω/Z)

=

(

εFωs

g2
0

)

v2
F {TN ′(0)/Z + TN (0)τ} . (5.15)

The first term in the above equation is from the asymmetry in density of states,

and the second term is from the asymmetry in quasiparticle lifetime. We note that the

factor of 1/Z, which leads to entropy enhancement, is associated with the asymmetry

in density of states. Thus, the first term is the dominant one and eventually gives

anomalous temperature dependence to thermopower. For this leading term we can

write

St ∝
1

e

(

g2
0N ′(0)

εFωsN (0)

)

T ln(ωs/δ). (5.16)

In the regime where T > Γ(p− pc), St/T ∝ ln(1/T ), as has been observed [68,69] in

thermopower measurement on CeCu6−xAux (see Fig5.2).

5.5 Conclusion

To check the consistency of our model and calculation, we need to estimate the high

energy scale (namely, T ∗) of CeCu5.9Au0.1. For this purpose, we have fitted an ap-

proximate form of the free energy function (F ) that will match with the experimental

results at low temperature and in the presence of magnetic field (H). The function that

matches well with the experiment has the form,

F (T,H)/kB = X(T,H) ln

[

2 cosh

(

µλH

Y (T,H)

)]

, (5.17)

where

X(T,H) = T ∗ + C1

(

T 2

T ∗

)

− C2

(

T 2

T ∗

)

ln(T 2 + C3H
2),

Y (T,H) = T ∗ + (T 2 + C3H
2)1/2.
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Figure 5.4: Magnetization (M) vs external magnetic field (H) at different temperatures
: a) T=0.15K, b) T=0.3K and c) T=0.8K. The discrete points are experimental. The
solid lines are fits using equation (10).

Here C1 - C3 are parameters of the fitting function, µ is the effective magnetic mo-

ment of the Ce3+ ions in units of Bohr magneton (µB) and λ = µB/kB = 0.67.

We have chosen a simple possible form of the free energy which, at low temper-

atures (T � T ∗), is consistent with the critical form of free energy that is sug-

gested by renormalization group calculation for two-dimensional spin fluctuations [22],

namely F ∝ T 2 ln(T0/T ). At high temperatures (T � T ∗) it matches smoothly to

an impurity model where the 4f cerium electrons act as Kondo impurities. The uni-

form magnetic susceptibility in this regime is Curie-Weiss like, with χ(T ) ∝ µ2/T .

This temperature dependence is cut-off at T ∗, below which χ ∼ µ2/T ∗, down to

zero temperature. The fitting function is chosen such that at very low temperature

(T → 0), χ(T ) − χ(0) ∝ −T . [73] This limiting behaviour agrees with the form

χ ≈ a0 + 1/(a1 + a2T ) which Rosch et. al. [25] used to fit susceptibility data up to

1.4 K. We also find that susceptibility derived from equation (10) can describe reason-

ably well (with a difference of at most twenty percent) the data [64] up to 6 K. The
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Figure 5.5: Entropy (S) per Ce atom vs temperature (T) at different magnetic fields :
a) H=0T, b) H=1.5T and c) H=3T. The discrete points are experimental, obtained by
numerically integrating data from specific heat measurement. The solid lines are fits
using equation (10).

variation of entropy and magnetization as functions of temperature and magnetic field

that one expects from the above free energy matches well with the experiments (see

Figs.(5.4), (5.5)). From the fit we estimate T ∗ to be around 15 K, and µ ∼ 2.6. In

the absence of magnetic field the specific heat coefficient (γ = C/T ) can be written

as γ = a ln(T0/T ). From the fit we estimate a = 0.5 J/mol-K2 and T0 = 9.4 K,

which have comparable order of magnitudes with the experimentally measured values

a = 0.6 J/mol-K2 and T0 = 5.3 K [24]. The logarithmic behaviour in specific heat and

thermopower in CeCu6−xAux is observed around 1 K, which is well below T ∗. The

experimental fits and the estimates suggest that the spin-fermion model that we have

been considering is consistent with the experimental data.

We now discuss the limitations of our calculation. We have completely ignored the

interaction between the spin fluctuations (the u0 term). This is justified since this term

is marginally irrelevant. In our calculation we considered only the lowest order diagram
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in the perturbation series in terms of the spin-fermion coupling. However, we have

examined the lowest order spin-fermion vertex correction, and found that it is well-

behaved close to the QCP. So we believe that the qualitative features of our calculation

will not be modified by including higher order terms of the series. This is very different

from what is found in the two-dimensional spin-two-dimensional fermion model (see

appendix), where the spin-fermion vertex is singular indicating a potential breakdown

of the approach [66]. So, if the 2d-spin 3d-fermion model breaks down, there is no

trace of this breakdown in perturbation theory.

From our calculation we see that irrespective of whether the system is clean or

dirty, if there is a large enough hot region in the system, then both specific heat and

thermopower should show anomalous logarithmic temperature dependence.

Since the microscopic origin of the quasi two-dimensionality of the spin fluctu-

ations is not known, our model seem to be a fine tuned one rather than one that

is expected intuitively. It would be interesting to investigate the origin of the two-

dimensional magnetic coupling, and why most of the Fermi surface is hot by means

of microscopic first principles calculations. This study should be supplemented by

an investigation of the two- to three- dimensional crossover, to estimate the energy

scale at which it is expected to occur. We notice that specific heat and resistivity mea-

surements on YbRh2Si2 [16] seem to indicate that the model, with most of the Fermi

surface hot, is quite valid for it. From this we can conclude that we expect to see the

behaviour St/T ∝ ln(1/T ) from thermopower measurement on YbRh2Si2, probably

over a wider range of temperatures than the Ce-material.

In very recent times a rather anomalous behaviour of the specific heat coefficient

of YbRh2SI2 has been reported. Between 0.3K ≤ T ≤ 10K γ(T ) ∼ ln(1/T ) which,

as discussed above, can be understood within our model. However at lower temper-

ature (TN < T < 0.3K) γ shows an unexpected upturn. In this regime γ ∼ T −1/3.

Currently there is no proper understanding of the origin of this behaviour. Neither

can it be understood within the framework of the spin fluctuation theory in its current
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formulation. In the absence of a satisfying theory we will speculate what this upturn

could imply for the thermopower of YbRh2SI2 in this same temperature range. We

will interpret the upturn of the specific heat as an indication that the self-energy of the

electrons is more singular (due to some mechanism which is not yet understood) than

what was calculated in Sec.(5.3), and now has the form Σ(ω) ∼ ω2/3. This would

imply that the quasiparticle residue Z−1 ∝ T−1/3 for fermions close enough to the

Fermi surface. Then, following the same line of reasoning as before we will conclude

that thermopower should show the same temperature dependence as specific heat, i.e.,

St/T ∝ T−1/3. This is because in our line of reasoning the non-analytic behaviour of

thermopower is entirely thermodynamic in origin. It is possible, though, that in this

regime of lower temperature the hot quasiparticles will be short-circuited by the nor-

mal carriers. But such a situation would be reflected in the temperature dependence of

resistivity. Since in the range TN < T < 0.3K the resistivity ρ ∼ T , the possibility of

short-circuiting can be ruled out.
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Appendix A

DMFT Equations for the Hubbard Model

Here we will discuss a functional integral formulation of DMFT for the Hubbard model

defined in Eq.(1.8). We consider c†0,σ and c0,σ as an impurity degrees of freedom at

the site R0 interacting with a bath which is made up of the degrees of freedom on

the remaining lattice site. In the limit of infinite dimensions one can show that the

bath degrees of freedom can be integrated out to get an effective impurity action in

imaginary time (τ ) of the form

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†0,σ(τ)G−1
0 (τ−τ ′)c0,σ(τ

′)+U

∫ β

0

dτn0↑(τ)n0↓(τ). (A.1)

Here β = 1/(kBT ) is the inverse temperature. G0(τ − τ ′) acts as the effective Weiss

field for the impurity. It gives the amplitude for an electron to hop on the impurity

site from the bath at time τ and to return to the bath at time τ ′. We define the Green’s

function of the effective action as

G(τ) = −〈Tτc(τ)c
†(τ)〉Seff

, (A.2)

and its Fourier transform G(iωn) in terms of fermionic Matsubara frequencies ωn =

(2n + 1)π/β. In the above equation Tτ is the imaginary time ordering operator. From

the discussion in Sec.(1.1) it is clear that the Fourier transform of the one-particle

Green’s function Gij(τ) = −〈Tτci,σ(τ)c†j,σ(τ)〉 of the lattice theory has the form

G(k, iωn) =
1

iωn + µ− εk − Σ(iωn)
. (A.3)

Here µ is the chemical potential, εk = −2t
∑

i cos(ki), and Σ(iωn) is the self-energy

which is momentum independent. One can show that the lattice theory can be mapped
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to Seff by the condition

Σ(iωn) = G−1
0 (iωn)−G−1(iωn). (A.4)

The above equation ensures that the local Green’s function Gii(iωn) =
∑

kG(k, iωn)

coincides withG(iωn). The above set of equations can now be solved self-consistently.

We start with an initial guess for Σ(iωn). Then the local Green’s function G(iωn) can

be calculated by momentum summation of G(k, iωn) given by Eq.(A.3). In the next

step the Weiss field G0(iωn) can be calculated using Eq.(A.4). This gives complete

information of Seff which will allow us to calculate the local Green’s function using

Eq.(A.2). Finally, using Eq.(A.4) one gets a new expression for the self-energy. This

procedure can be iterated till convergence is achieved.
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Appendix B

Mathematical Preliminary

In this appendix we will review some familiar concepts of linear algebra which we will

express in the language of a non-orthogonal basis. We will discuss the representation

of abstract operators, and the appropriate definition of the trace of an operator in a non-

orthogonal basis. We will also discuss unitary and non-unitary transformations from

one set of basis to another. Finally we will express a second quantized Hamiltonian in

a non-orthogonal basis.

We consider a non-orthogonal set of states {|α〉} that spans a linear vector space

(which means the states are linearly independent). We will regard the states {|α〉} as

defining a non-orthogonal basis for the vector space. The overlap between the basis

states is given by the overlap matrix Oαβ ≡ 〈α|β〉. In principle, one can construct an

orthonormal basis, say {|i〉}, from the states {|α〉} by the Gram-Schmidt method. Here

we will assume that there exists a transformation S connecting the two bases such that

|i〉 =
∑

α

Sαi|α〉 and 〈i| =
∑

α

S∗
αi〈α| =

∑

α

S†
iα〈α|. (B.1)

We note that, by definition, the transformation S is non-unitary. Since

δij = 〈i|j〉 =
∑

αβ

S†
iα〈α|β〉Sβj =

∑

αβ

S†
iαOαβSβj, (B.2)

we find the overlap matrix is given by

O =
(

SS†)−1
. (B.3)

As an example, by using the above equation we find that the representation of the
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identity operator in the non-orthogonal basis is given by

Î =
∑

i

|i〉〈i| =
∑

iαβ

Sαi|α〉S†
iβ〈β| =

∑

αβ

O−1
αβ |α〉〈β|. (B.4)

The matrix elements of an abstract operator Â in the two bases are related by

Aij ≡ 〈i|Â|j〉 =
∑

αβ

S†
iα〈α|Â|β〉Sβj =

∑

αβ

S†
iαAαβSβj. (B.5)

We get back Eq. (B.2) if Â is the identity operator.

In an orthogonal basis the trace of an operator is given by Tr(Â) =
∑

iAii, i.e., the

sum of the diagonal terms of the matrix representation of the operator. However, this is

not the case in a non-orthogonal basis. In fact,
∑

iAii 6=
∑

αAαα. In a non-orthogonal

basis the trace is given by,

Tr(Â) =
∑

i

〈i|Â|i〉 =
∑

iαβ

S†
iα〈α|Â|β〉Sβi =

∑

αβ

O−1
αβAβα. (B.6)

In particular we have Tr(Î) = n, where n is the dimensionality of the vector space.

Using Eqs. (B.4) and (B.6) we recover the familiar result

Tr(ÂB̂) =
∑

αβ

O−1
αβ 〈β|ÂB̂|α〉 =

∑

αβγδ

O−1
αβAβγO

−1
γδ Bδα = Tr(B̂Â). (B.7)

Next we will consider unitary transformations of an ordered basis {|α〉} to another

ordered basis {|α〉〉} of the form

|α〉 → U |α〉 = |α〉〉 =
∑

β

Uβα|β〉, and 〈α|U † = 〈〈α| =
∑

β

〈β|U †
αβ, (B.8)

where U †
αβ = U∗

βα. The unitarity of the transformation U †U = Î is expressed in the

{|α〉} basis as,

Oαβ = 〈α|U †U |β〉 =
∑

γδ

〈δ|U †
αδUγβ|γ〉 =

∑

γδ

U †
αδOδγUγβ. (B.9)

The overlap matrix in the new basis Õαβ ≡ 〈〈α|β〉〉 is given by

Õαβ = 〈α|U †U |β〉 =
∑

γδ

U †
αγOγδUδβ = Oαβ. (B.10)
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Thus, the overlap matrix is invariant under unitary transformations, which is a well-

known result. As an exercise we note that the identity operator expressed in the {|α〉〉}
basis is

Î =
∑

αβ

O−1
αβ |α〉〉〈〈β| =

∑

αβγδ

UγαO
−1
αβU

†
βδ|γ〉〈δ|.

Comparing this with Eq. (B.4) we get

O−1
γδ =

∑

αβ

UγαO
−1
αβU

†
βδ. (B.11)

The above relation can also be derived by inverting Eq. (B.9) and therefore has the

same content. The matrix element of an abstract operator in the two bases are related

by

Ãαβ ≡ 〈〈α|Â|β〉〉 = 〈α|U †ÂU |β〉 =
∑

γδ

U †
αγ〈γ|Â|δ〉Uδβ =

∑

γδ

U †
αγAγδUδβ. (B.12)

We consider a similarity transformation Â → U−1ÂU . The representation of the

U−1 transformation in the {|α〉} basis is given by U−1|α〉 =
∑

β U
−1
βα |β〉 such that

∑

γ UαγU
−1
γβ = δαβ . From Eq. (B.9) one can show that

∑

γ OαγU
−1
γβ =

∑

γ U
†
αγOγβ.

Using this relation we get

〈α|U−1ÂU |β〉 =
∑

γ

〈α|U−1Â|γ〉Uγβ =
∑

γδρ

〈α|U−1O−1
δρ |δ〉AργUγβ

=
∑

γδρη

OαηU
−1
ηδ O

−1
δρ AργUγβ =

∑

γδ

U †
αδAδγUγβ = Ãαβ. (B.13)

This proves that a unitary transformation of the basis states is equivalent to a similarity

transformation of the operators. Also using Eqs. (B.11) and (B.12) we get,

Tr(Â) =
∑

αβ

O−1
αβ Ãβα =

∑

αβγδ

O−1
αbeU

†
βγAγδUδα =

∑

αβγδ

Aγδ

[

UδαO
−1
αβU

†
βγ

]

=
∑

γδ

O−1
δγ Aγδ. (B.14)

This shows that trace of an operator is invariant under unitary transformations of the

basis states (or equivalently, under similarity transformations).
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Next we consider non-unitary, invertible transformations of the basis {|α〉} to an-

other basis {|α〉〉} of the form

|α〉 → T |α〉 = |α〉〉 =
∑

β

Tβα|β〉, and 〈α|T † = 〈〈α| =
∑

β

〈β|T †
αβ, (B.15)

where T †
αβ = T ∗

βα. Unlike in a unitary transformation, the overlap matrix in the new

basis is different from that in the old basis. The two overlap matrices are related by

Õαβ ≡ 〈α|T †T |β〉 =
∑

γδ

T †
αγOγδTδβ. (B.16)

The matrix elements of an abstract operator in the two bases are related by,

Ãαβ ≡ 〈〈α|Â|β〉〉 =
∑

γδ

T †
αγAγδTδβ. (B.17)

It is easy to verify that a non-unitary transformation of the basis states is not equivalent

to a similarity transformation of the operators, i.e., Ãαβ 6= 〈α|T−1ÂT |β〉. In fact, sim-

ilarity transformations where T is non-unitary do not preserve hermiticity of operators,

and as such are not allowed in quantum mechanics. By inverting Eq. (B.16) and using

Eq. (B.17) one can show that

Tr(Â) =
∑

αβ

Õ−1
αβ Ãβα =

∑

αβ

[

∑

γδ

T−1
αγ O

−1
γδ (T †)−1

δβ

][

∑

ρη

T †
βρAρηTηα

]

=
∑

αβ

O−1
αβAβα. (B.18)

Thus, the trace of an operator is invariant under non-unitary transformations of the

basis states.

Next we will construct a second quantized Hamiltonian in a non-orthogonal basis.

We will use Eqs. (B.1), (B.2) and (B.3) to relate a non-orthogonal basis {|α〉} with an

orthogonal basis {|i〉}. The non-interacting part is given by,

Ĥ0 =
∑

ij

〈i|Ĥ0|j〉c†icj =
∑

ij

∑

αβ

S†
iα〈α|Ĥ0|β〉Sβjc

†
icj =

∑

αβ

〈α|Ĥ0|β〉c†αcβ, (B.19)

where

c†α =
∑

i

S†
iαc

†
i and cα =

∑

i

Sαici. (B.20)
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We note that c†α|0〉 =
∑

β O
−1
βα|β〉 6= |α〉, and that 〈β|c†α|0〉 = δβα. Also, the anti-

commutation relation of the creation and annihilation operators is given by

{

c†α, cβ
}

=
∑

ij

S†
iα

{

c†i , cj

}

Sβj = O−1
βα . (B.21)

Similarly one can show that the interacting part of the Hamiltonian is given by

V̂ =
∑

ijkl

〈i, j|V̂ |l, k〉c†ic†jckcl =
∑

αβγδ

〈α, β|V̂ |γ, δ〉c†αc†βcδcγ . (B.22)

The two-particle states are constructed from the one-particle states by |i, j〉 = |i〉⊗ |j〉.
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Appendix C

Few Calculations for Non-Unitary Transformation

In this appendix we will give the result of the evaluation of few matrices and traces that

are used in Sec. 2.5. The matrices X̃ and Ỹ can be shown to have the form

X̃ =
1

2
[1 + cosh(2(b0 − d0)) {cosh(2b) cosh(2d)− sinh(2b) sinh(2d)(û · v̂)}]1

+
1

2
sinh(2b) cosh(2d) sinh(2(b0 − d0))(û · σ̄)

−1

2
sinh(2d) cosh(2b) sinh(2(b0 − d0))(v̂ · σ̄)

− i
2

sinh(2b) sinh(2d) sinh(2(b0 − d0))(û× v̂) · σ̄, (C.1)

and

Ỹ =
1

2
[cos(v0 − u0) {cos(u) cos(v) + sin(u) sin(v)(û · v̂)}+ c. c.]1

+
1

2

[

sin(v0 − u0) sin(u) cos(v) + c. c.− ei(v∗
0
−u∗

0
) sinh(2d) sin(u∗) sin(v)

+e−i(v∗
0
−u∗

0
) sinh(2b) sin(v∗) sin(u)(û · v̂)

]

(û · σ̄)

− 1

2

[

sin(v0 − u0) sin(v) cos(u) + c. c.− ei(v∗
0
−u∗

0
) sinh(2d) sin(u∗) sin(v)(û · v̂)

+e−i(v∗
0
−u∗

0
) sinh(2b) sin(v∗) sin(u)

]

(v̂ · σ̄)

+
1

2

[

− sin(v0 − u0) sin(u) sin(v) + c. c. + iei(v∗
0
−u∗

0
) cosh(2d) sin(u∗) sin(v)

−ie−i(v∗
0
−u∗

0
) cosh(2b) sin(v∗) sin(u)

]

(û× v̂) · σ̄. (C.2)

Here “c. c.” implies complex conjugation of the term in front of it.

The traces used in the evaluation of the local interaction functional given by Eq.
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(2.39) have the form

Tr(X̃2) =
1

2
[1 + cosh(2(b0 − d0)) {cosh(2b) cosh(2d)− sinh(2b) sinh(2d)(û · v̂)}]2

+
1

2
sinh2(2(b0 − d0))

[

sinh2(2b) cosh2(2d) + sinh2(2d) cosh2(2b)

− sinh2(2b) sinh2(2d)(1− (û · v̂)2)

− cosh(2b) sinh(2b) cosh(2d) sinh(2d)(û · v̂)] , (C.3)

Tr(Ỹ 2) =
1

2
[cos(v0 − u0) {cos(u) cos(v) + sin(u) sin(v)(û · v̂)}+ c. c.]2

+
1

2

[

sin(v0 − u0) sin(u) cos(v) + c. c.− ei(v∗
0
−u∗

0
) sinh(2d) sin(u∗) sin(v)

+e−i(v∗
0
−u∗

0
) sinh(2b) sin(v∗) sin(u)(û · v̂)

]2

+
1

2

[

sin(v0 − u0) sin(v) cos(u) + c. c. + e−i(v∗
0
−u∗

0
) sinh(2b) sin(v∗) sin(u)

−ei(v∗
0
−u∗

0
) sinh(2d) sin(u∗) sin(v)(û · v̂)

]2

+
1

2

[

− sin(v0 − u0) sin(u) sin(v) + c. c. + iei(v∗
0
−u∗

0
) cosh(2d) sin(u∗) sin(v)

−ie−i(v∗
0
−u∗

0
) cosh(2b) sin(v∗) sin(u)

] (

1− (û · v̂)2
)

−
[

sin(v0 − u0) sin(u) cos(v) + c. c.− ei(v∗
0
−u∗

0
) sinh(2d) sin(u∗) sin(v)

+e−i(v∗
0
−u∗

0
) sinh(2b) sin(v∗) sin(u)(û · v̂)

]

×
[

sin(v0 − u0) sin(v) cos(u) + c. c. + e−i(v∗
0
−u∗

0
) sinh(2b) sin(v∗) sin(u)

−ei(v∗
0
−u∗

0
) sinh(2d) sin(u∗) sin(v)(û · v̂)

]

(û · v̂) , (C.4)

Tr(X̃Ỹ ) =
1

2
[1 + cosh(2(b0 − d0)) {cosh(2b) cosh(2d)− sinh(2b) sinh(2d)(û · v̂)}]×

[cos(v0 − u0) {cos(u) cos(v) + sin(u) sin(v)(û · v̂)}+ c. c.]

+
1

2
sinh(2(b0 − d0)) [sinh(2b) cosh(2d)− cosh(2b) sinh(2d)(û · v̂)]×

[sin(v0 − u0) sin(u) cos(v) + c. c.]

+
1

2
sinh(2(b0 − d0)) [sinh(2d) cosh(2b)− sinh(2b) cosh(2d)(û · v̂)]×

[sin(v0 − u0) sin(v) cos(u) + c. c.]

+
i

2
sinh(2(b0 − d0)) sinh(2b) sinh(2d) [sin(v0 − u0) sin(u) sin(v)

−c. c.]
(

1− (û · v̂)2
)

. (C.5)
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Appendix D

Two Dimensional Spin-Fermion Model

In this appendix we will compare the two-dimensional spin-three-dimensional fermion

model examined in chapter 5 with the two-dimensional spin-fermion model (where

both the spin fluctuations as well as the fermions are two-dimensional). The latter

model is interesting from the point of view of high-temperature superconductivity. In

these materials the generic presence of an antiferromagnetic phase near the supercon-

ducting phase is the motivation for studying fermions interacting with spin fluctuations

which are nearly critical.

The Fermi surface of the two-dimensional fermions is shown in Fig.(D.1). Pairs

of points on the Fermi surface which are connected by the ordering wave-vector Q =

(π, π) have low-energy scattering with the nearly critical spin fluctuations. These are

Ph1

Ph2
��

�� ��

��

�	 
�

�


��

Q

Figure D.1: Two-dimensional Fermi surface with hot spots. Pairs of hot spots are con-
nected by magnetic ordering wave-vector Q. The connected hot spots are not nested.
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the hot spots. This is to be compared with the case we have discussed before where

the entire Fermi surface is hot. The lowest order fermion self-energy and spin-fermion

vertex are shown in Fig.(5.3), and their formal expressions are given by Eqs.(5.6), (5.8),

(5.10). The difference between the models is in the estimation of the momentum sums

in these equations.

To simplify the calculation we will assume that the Fermi velocities at the hot spots

Ph1 and Ph2 are perpendicular (when they are anti-parallel there is nesting). We will

rotate the local momentum co-ordinate such that the Fermi velocity at Ph1 is along

k̂y and at Ph2 it is along −k̂x. The linearized spectrum around these points can be

expressed as εph1+k = vFky, and εph2+k = −vFkx. In terms of the local co-ordinates

(kx, ky) one can write γQ+k = δ + ωs(k
2
x + k2

y). We will now estimate the real part

of the self-energy by considering only the first term 1/(γ2
k + ε2k+p) in Eq.(5.10). The

momentum integral is well-behaved even when the cut-off is sent to infinity. We get,

keeping only the leading term

− lim
ω→0

∂

∂ω
ReΣ (p, ω) =

g2
0

π

∑

k

1

γ2
k + ε2k+p

=
g2
0

4π3

∫ ∞

−∞
dky

∫ ∞

−∞
dkx

1

(δ + ωs(k2
x + k2

y))
2 + v2

F (δp+ kx)2

' g2
0

4π2εF

∫ ∞

−∞
dky

1

δ + ωs((δp)2 + k2
y)

=
g2
0

4πεFω
1/2
s

[

1

(δ + ωs(δp)2)1/2

]

. (D.1)

In the above we have assumed that p is close to Ph1 and δp is the deviation from the

hot spot along the Fermi surface.

Next we will estimate the same term for the case where the fermions are three-

dimensional. Since the spin fluctuations are quasi two-dimensional, the entire Fermi

surface is hot and the momentum dependence of the self-energy is washed out. We

linearize the spectrum and write εk+p = vFk⊥ where k̂⊥ is the direction of the Fermi

velocity at the closest hot point. Let k‖ be the co-ordinates in the plane of the Fermi



92

surface. Then γQ+k = δ + ωs(k
2
⊥ + k2

‖). We get

− lim
ω→0

∂

∂ω
ReΣ (p, ω) =

g2
0

π

1

(2π)3

∫

d2k‖

∫ ∞

−∞
dk⊥

1

(δ + ωs(k2
‖ + k2

⊥))2 + (vFk⊥)2

' g2
0

εF

1

(2π)3

∫

d2k‖
1

δ + ωsk2
‖

=
g2
0

8π2εFωs

(

2 ln(Λ)− ln

(

δ

ωs

))

. (D.2)

Λ is a momentum cut-off. The above estimation gives Eq.(5.11).

We estimate the imaginary part of the self energy similarly. In two-dimension we

get

ImΣ (p, ω) = − g2
0

(2π)2

∫ ∞

−∞
dky

∫ −δp

−ω/εF−δp

dkx
ω + vF (δp+ kx)

(δ + ωs(k2
x + k2

y))
2 + (ω + vF (δp+ kx))2

' − g2
0

8π2εF

∫ ∞

−∞
dky ln

(

1 +
ω2

(δp + ωsk2
y)

2

)

' − g2
0

16πεF

[

ω2

ω
1/2
s (max[ω, δp])3/2

]

, (D.3)

where δp = δ + ωs(δp)
2. In three-dimension we have

ImΣ (p, ω) = − g2
0

(2π)3

∫

d2k‖

∫ ω/εF

0

dk⊥
ω − vFk⊥

(δ + ωs(k2
‖ + k2

⊥))2 + (ω − vFk⊥)2

' − g2
0

8π2εF

∫ ∞

0

dk‖k‖ ln

(

1 +
ω2

(δ + ωsk2
‖)

2

)

' − g2
0

16π2εFωs

(

ω2

max[ω, δ]

)

. (D.4)

Next we will estimate the vertex correction. In two-dimension since γ2
Q+k ∼ k4

while εk ∼ k, the momentum dependence of the former can be ignored. With this

simplification we get

Γ ' g2
0

π3ε2F

∫

dω̃

∫ ∞

0

dkx

∫ ∞

0

dky
ω̃2

(kx + ky)(ω̃ + kx)(ω̃ + ky)(δ̃2 + ω̃2)

=
g2
0

π3ε2F

∫

dω̃

∫ ∞

0

dkx
ω̃2

(δ̃2 + ω̃2)(k2
x − ω̃2)

ln

(

kx

ω̃

)

=
g2
0

4πε2F

∫ Ω

0

dω̃
ω̃

(δ̃2 + ω̃2)

=
g2
0

4πε2F
ln

(

Ω

δ̃

)

. (D.5)
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In the above ω̃ = ω/εF , δ̃ = δ/εF and Ω is a frequency cut-off. In three-dimension we

will assume that the Fermi velocities at Ph1 and Ph2 are perpendicular (to simplify the

calculation) such that ε1k = vFkx and ε2k = vFky. We neglect the kx, ky dependence

of γQ+k. Then the kx, ky integral are same as in the two-dimensional case. We set δ to

zero and get

Γ ' g2
0

π4

∫

dω̃

∫ ∞

0

dkz

∫ ∞

0

dkx

∫ ∞

0

dky
ω̃2

(ω̃2
sk

4
z + ω̃2)(kx + ky)(ω̃ + kx)(ω̃ + ky)

=
g2
0

4π2ε2F

∫ Ω

0

dω̃

∫ ∞

0

dkz
ω̃

ω̃2
sk

4
z + ω̃2

=
g2
0Ω

1/2

4
√

2πε2Fω
1/2
s

. (D.6)

Here ω̃s = ωs/εF .

We note that in all the calculations involving three-dimensional fermions we have

assumed that the plane formed by the two connected hot points and the centre of the

Fermi sphere is not perpendicular to the direction in which the quasi two-dimensional

spin fluctuations are incoherent. This is true for generic hot points. However, for a

spherical Fermi sea there are four special points where this is not true and as a conse-

quence the self-energy and the vertex at these points are more singular than they are for

generic points in the hot region. To elucidate the geometry let us assume that the spin

fluctuations are incoherent in the k̂z direction, and that the magnetic ordering wave-

vector has the form Q = (Qx, Qy, a), where a is arbitrary. Now there are two pairs of

special hot points such that each pair, along with the centre of the Fermi sphere, form a

plane which is perpendicular to k̂z. This implies that the difference in the wave-vectors

of the connected hot points must be (Qx, Qy, 0) for each of the pairs. For these four

special points the linearized fermion spectrum is independent of wave-vector along

k̂z (since this direction is along the Fermi surface). Thus, dynamics at these special

points is entirely two-dimensional (since the fermion and spin-fluctuation propagators

are independent of wave-vector along k̂z, in the estimation of self-energy and vertex

the integrand is independent of kz and the integral along kz is cut-off only by the cur-

vature term). The results for the two-dimensional fermions are relevant for these points
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(the kx and ky integrals are the same). However, since Z−1 ∼ 1/
√

δ + ωs(δp)2, where

δp is deviation from these special points along their Fermi surfaces, the contribution of

these points to thermodynamics is negligible.

The main difference between the two-dimensional fermion and the three-dimensional

fermion models is that the perturbative correction to the spin-fermion vertex is finite

in the three-dimensional case (for generic points in the hot region) whereas it diverges

logarithmically at the phase transition for the two-dimensional case. The self-energy

correction also has square-root singularity at the transition in two-dimension. The per-

turbative calculation indicate that while in the three-dimensional fermionic model the

coupling remains weak close to the phase transition, in two dimension the coupling

grows and perturbative calculation will eventually break down. In the language of the

renormalization group, this model flows to a strong-coupling fixed point.
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