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In this thesis we investigate two topics. First, in chapter 2 we study the basis de-
pendence of dynamical mean field theory. For the purpose of using this theory as a
numerical tool for predicting properties of materials, the choice of a suitably localized
basis is important. We propose and test a criterion for making this choice of basis.
In the rest of the thesis we study thermal and charge transport in systems in which
correlation effects are important. In chapter 3 we clarify some aspects in the calcula-
tion of the thermal transport coefficients. For a tight-binding Hamiltonian we discuss
the approximate nature of the charge and the thermal current obtained by Peierls sub-
stitution. Using equation of motion we derive the thermal current for a generalized
Hubbard model with density interaction. We identify a part which is the contribution
to the thermal current from the long-range interactions. For the Hubbard model we
derive expressions for the transport coefficients which are exact in the limit of large
dimensions. In chapter 4 we study the form of the charge current operator in a down-
folding scheme. By treating the down-folding procedure to lowest order in perturbation

we derive expressions for the charge current in the low- energy sector. In chapter 5 we



study the thermoelectric behaviour of a heavy-fermion compound when it is close to
an antiferromagnetic quantum critical point. When the low-energy spin fluctuations
are quasi two-dimensional with a three-dimensional Fermi surface, the “hot” regions
on the Fermi surface have a finite area. We argue that there is an intermediate energy
scale where the qualitative aspects of the renormalized hot electrons are captured by
a weak-coupling perturbative calculation. Due to enhanced scattering with the nearly
critical spin fluctuations, the quasiparticle mass in the hot region is strongly renormal-
ized. This accounts for the anomalous logarithmic temperature dependence of specific
heat observed in these materials. We show that the same mechanism produces logarith-
mic temperature dependence in thermopower. This has been observed in CeCug_,Au,.

We expect to see the same behaviour from future experiments on YbRh,Si,.
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Chapter 1

I ntroduction

Understanding the various quantum states of matter such as metals, insulators, super-
conductors, superfluids and magnets, and the description of phase transitions from one
state to another are among the basic goals of condensed matter physics [1]. In the
last two decades the discovery of heavy-fermion materials [2] and high temperature
superconductors have posed a formidable challenge to this field. In these materials
the electron-electron interaction is comparable to the kinetic energy of the electrons.
The correlation effects arising from the strong interaction between the electrons play a

crucial role in these materials.

Theorists try to understand these strongly correlated electron systems by studying
microscopic model Hamiltonians such as the Hubbard model and the Kondo lattice
model. In spatial dimensions greater than one there are no known exact solutions of
these models and so one has to resort to various approximations. The main difficulty
with strongly correlated systems is the non-perturbative nature of these systems. This
means the physical properties of these systems cannot be understood by expanding
various quantities in powers of the interaction. On the other hand, there are very few
known non-perturbative approximations which are controlled in the sense that these
approximations are exact in certain limits. In problems involving spins, examples of
controlled non-perturbative approximations include the large-S technique, where the
size of the spin is assumed to be large, and the large-N technique, which assumes the

spin degeneracy N to be large [3].



1.1 Overview of Quantum Phase transition

A quantum phase transition [4, 5] is a zero temperature phenomenon in which the na-
ture of the ground state of a material undergoes profound change by the tuning of a
microscopic parameter. The energies of the ground state and the excited states are
functions of the microscopic parameters of the Hamiltonian. As one of them, say g, is
changed, the transition can occur either by a level-crossing in which an excited state
becomes the ground state, or by the limiting case of an avoided level-crossing. Math-
ematically, a quantum phase transition is a point of non-analyticity in the ground state
energy E,(g) at some g = g.. This transition is typically from an ordered ground state
(broken symmetry state) to one without order (symmetry restored). The transition is
said to be driven by quantum fluctuations. When the transition is continuous, second
order, the phase transition point is called a quantum critical point (QCP). It is associ-
ated with diverging length and time scales. This is to be contrasted with a classical
phase transition which occurs by tuning the temperature (7°). In this case it is the ther-
mal fluctuations that drive the transition. Mathematically, a classical phase transition
is associated with non-analyticity in the thermodynamic free energy.

A second order phase transition, both quantum and classical, is associated with the
divergence of a characteristic length scale ¢ (correlation length). Physically, this length
scale is the average spatial size of the fluctuations of a relevant quantity about the mean
value. More precisely, it is the length scale that determines the exponential decay of

correlation functions. The divergence of the correlation function is expressed as

(é)_ ~ 19— gl (L1)

a

Here v is a critical exponent, and a is a microscopic length scale (lattice spacing, or
resolution in a coarse-grained description). For a quantum phase transition there is also
an energy scale €2 that goes to zero at the QCP. For a gapped system this energy scale
is the gap between the ground state and the excitations. For a gapless system this is the

characteristic scale of the excitation spectrum. The vanishing of €2 is expressed as



(b)

Figure 1.1: Two possible phase diagrams with quantum critical points. In (a) a line
of classical continuous phase transitions end at a quantum critical point. The region
within the dashed lines is the critical regime. In (b) only the ground state energy is
non-analytic. At finite temperature thermodynamic free energy is analytic.

()~ marn (8) e

The exponent z is the called the dynamical exponent. Here .J is a microscopic energy

scale. The disappearance of the energy scale is associated with the divergence of a time
scale 74, called the phase coherence time. Physically, this is the time scale over which

a many-body wavefunction retains phase memory. One can write

. (é) (13)

a
The dynamical critical exponent gives the scaling of time compared to the scaling of
space.
There are three generic possibilities for the 7" — g phase diagram of a system in the
presence of a QCP at 7" = 0 and g = ¢.. First, a line of continuous phase transitions
at 7' > 0 can end at a QCP. The line is defined by the non-analyticity of the free

energy. This is illustrated in Fig. 1.1(a). The region within the dashed lines is the



critical regime where k1" > hwyy,. Here wyy,, is the frequency scale of the long range
fluctuations of the system close to criticality. In this regime it is possible to think of
the dynamics of the long range fluctuating modes as frozen in time. Then the phase
transition can be described in terms of classical statistical mechanics, a subject which
is well studied [6]. Close to the QCP this region shrinks and there is a wide regime in
the phase diagram where both quantum fluctuations and thermal fluctuations come into
play. We will study this scenario in greater detail in a later chapter of this thesis in the
context of magnetic QCPs in heavy-fermion systems. A second possibility is illustrated
in Fig. 1.1(b). Inthis situation only the ground state energy is non-analytic as a function
of g. At T > 0 the free energy is analytic and there is no finite temperature phase
transition. A third possibility is when a line of discontinuous first order transitions
at ' > 0 end at a QCP. For all these cases, studying the system close to the QCP
reveals information that is important to understand the nature of the system at low

temperatures.

1.2 Magnetic Quantum Criticality in Heavy-Fermion Systems

Heavy-fermion systems are compounds and alloys which contain rare earth metals such
as Ce, Yb, U and Np as one of their constituents. Typical heavy-fermion systems are
CeCu,Siy, CeCug, UPt3, UBe;3, NpBe;3. The presence of 4 and 5 f electrons in these
materials has dramatic influences on their properties [7, 8, 9]. Below a certain charac-
teristic temperature 7, these materials behave as Landau Fermi liquids characterized
by linear temperature dependence of specific heat C' o T, quadratic temperature de-
pendence of resistivity p(7') oc 172, and temperature independent Pauli paramagnetic
susceptibility x. But the effective mass m™* of the quasiparticles is typically several
hundred times the mass of a free electron. As a consequence, the specific heat coeffi-
cient v = C/T is very large. For example, in heavy-fermions typically v ~ 1 J mol~!

K2, while in an ordinary metal such as Na, v ~ 1 mJ mol~! K2. Similarly, below



T the Pauli paramagnetic susceptibility is rather large. As the temperature is raised
above 7™, the quasiparticles lose their heavy mass and the specific heat levels off. The
susceptibility changes from being Pauli-like to Curie-like. The Ce and U ions start

behaving like ions with localized magnetic moments.

The f-electrons are localized and so their interaction energy is very high compared
to those between s, p and d orbitals. Consequently the low-energy excitations involving
f-electrons are predominantly the spin degrees of freedom, while the high-energy ex-
citations are the charge degrees of freedom. The model Hamiltonian for studying the
microscopics of heavy-fermion systems is the “Kondo Lattice Model” (when charge
fluctuations of the f-electrons are important one has to study the more basic “Periodic

Anderson model™). It has the form

H=> euclouat T Si 0l ()Fastis(i). (1.4)
k,a

i, 8

It describes a band of conduction electrons, whose creation and annihilation operators
are CLa and ¢ ,, respectively, interacting with localized SU (2) spin degrees of freedom
at each lattice site 7. 1, (7) is the Fourier transform of ¢y ,. Here «, [ are spin indices,
and & are the Pauli matrices. ¢y is the spectrum of the non-interacting conduction
electrons. J is the energy scale of the Kondo coupling. The localized spins are formed
at each unit cell by unpaired f-electrons of the rare earth ions. Charge fluctuation of
the f-electrons is suppressed due to high repulsion energy.

In the last decade several heavy-fermion materials have been discovered which ex-
hibit antiferromagnetic quantum critical behaviour [10]. Examples include CePd,Si, [11],
Celns [11], CeRu;Sis [12], CeNiyGe, [13], UsPtsIn, [14], CeCug_. R, (R=Au, Ag) [15],
YbRh,Si, [16]. The generic presence of antiferromagnetic QCP in the phase diagrams
of these materials can be understood in the following way [17]: at high temperatures
the f-electrons form local moments which are mostly decoupled from the conduction
electrons. The coupling J grows as the temperature is lowered. It also gives rise to

interaction between the moments which is mediated by the conduction electrons. This
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Figure 1.2: The competition between the Kondo effect and the RKKY interaction give
rise to magnetic quantum phase transitions in heavy-fermion systems.

is known as the RKKY interaction [18]. In a perturbative calculation the RKKY in-
teraction Jrrxxy ~ J2?p, where p is the conduction electron density of states at the
Fermi level. This estimate of Jrxxy is valid only when Jp < 1. The tendency of
the RKKY interaction is to magnetically order the spins, usually in an antiferromag-
netic order with Néel temperature Ty ~ Jrixky/kp. On the other hand the Kondo
coupling J tends to screen the local moments (Kondo effect) by the formation of sin-
glet bound states between the local moments and the conduction electrons below the
Kondo temperature Tx ~ p~'exp(—1/(Jp)). When the moments are screened, they
hybridize with the conduction electrons to form a heavy Landau Fermi liquid. The
ground state of the system is non-magnetic. The existence of antiferromagnetic QCP
in heavy-fermion systems can be understood as a competition between the RKKY in-
teraction Jrx y and the Kondo energy scale T (see Fig. 1.2). It is the point in the
phase diagram where the balance between Jx kv and T is just right to drive the Néel

temperature 7'y to zero.



Heavy fermion materials with antiferromagnetic QCP have attracted the attention
of theorists as well experimentalists in the last several years. At low temperature and
close to the QCP these materials, which are metallic, exhibit remarkable non-Fermi
liquid (NFL) behaviour. For example, the temperature dependence of resistivity is ei-
ther linear or quasi-linear, i.e., p ~ T, where 1 < r < 2. The specific heat coefficient
diverges logarithmically with temperature with v ~ log(7o/T"). Recently in YbRh,Sis,
one of the most well-studied materials in this context, it has been observed [19] that
as temperature is lowered the divergence of the specific heat coefficient enhances and
it becomes a power law with v ~ T~/ The spin susceptibility (y) of another
well-studied material CeCus; 9Aug; (whose Neéel temperature is believed to be zero),
measured by inelastic neutron scattering, seem to scale with frequency over tempera-
ture (w/T") with an anomalous exponent o ~ 0.75 [20]. There is general consensus that
the origin of the NFL behaviour is due to proximity to the QCP (the quantum critical
regime), and that the quantum fluctuations in this regime are responsible for the de-
struction of the Landau Fermi liquid. However, a satisfactory microscopic description
of this phenomena and a clear understanding of the NFL properties is still an enigma

and therefore constitutes an active area of theoretical and experimental research.

1.3 Landau Ginzburg Description of Magnetic QCP : Spin Fluctu-

ation Theory

The spin fluctuation theory [21,22] is the generalization of the Landau Ginzburg theory
for a second order classical phase transition, to describe a quantum phase transition.
In a classical phase transition the dynamics can be separated from statics, and so time
does not enter in the description of the phase transition. But for a quantum phase
transition this separation is not possible. When temperature is the lowest energy scale
in the system, i.e., hwyy, > T, the dynamics of the long range fluctuations close to the

QCP is important. Due to this, the effective dimension of a d dimensional system is



enhanced to (d + z), where z is the dynamical exponent.

In the context of magnetic QCP in heavy-fermion systems, the spin fluctuation the-
ory is constructed to describe the phase transition from the non-magnetic side. The
assumption is that 7 is a high energy cut-off, and the spin fluctuation picture is valid
for temperature much below this cut-off. In this low temperature regime the local mo-
ments are completely screened and are hybridized with the conduction electrons. In
other words, in this regime a heavy Fermi liquid has already formed. The spin fluc-
tuation theory describes the phase transition by a spin density wave (SDW) instability
of this Fermi liquid. The long wavelength collective spin fluctuations of the fermions
condense at the critical point at a particular wave-vector, giving rise to magnetic order.

The starting point of the theory is an interacting fermion system with short range

Hubbard interaction. This is written as
H=> el o0+ UD nijni,. (1.5)
k.o 7

Here n,; , = cj7gci7a is the number operator for fermions with spin o at the lattice site s.
c (c) are fermion creation (annihilation) operators, and ¢y, = (3., e *®ic; ) /V/N.
R, is the position of the site s and N is the number of lattice sites. ¢ is the spectrum
of the free fermions. Since the system is close to a SDW instability, the long wave-
length collective spin fluctuations (the paramagnons) are important low-energy degrees
of freedom. In a functional integral formalism the spin fluctuations are introduced by
a Hubbard Stratonovich transformation. The partition function (Z) is expressed as a
functional integral in terms of Grassman fields which represent the fermions. The tem-
perature in this formalism plays the role of imaginary time (7). The fermion interaction
term, which is quartic in the Grassman fields, is decoupled into Grassman bilinears by
introducing a bosonic Hubbard Stratonovich field (¢). This field is identified with the
collective spin fluctuation degrees of freedom. The fermionic part of the action is now
quadratic, and can be integrated out. The resulting action (S) is expressed entirely

in terms of the spin fluctuations, and has a structure which is similar to the Landau



Ginzburg free energy functional for second order classical phase transition. The im-
portant difference, as mentioned earlier, is that in the quantum case the order parameter

fields are dynamical variables. The spin fluctuation theory is expressed as
2= 7y | Dolkw,)e e, (L)

where the action S has the form

Solkw)] = 33 (6 W “;—‘) el + 15 3 1, 01) (ke 2
k,wn k;,w;
X¢(k3, u}3>(]5(—k1 — k2 — k3, —W1 — Wy — u}3>. (17)

Here Z, is the partition function of the non-interacting fermions, 4 is a mass term for
the paramagnons which goes to zero at the QCP, and 5 = 1/(kgT). w, = (2wn)/Fis
bosonic Matsubara frequency obtained by Fourier transform of the imaginary time 7.
In terms of the parameters of the original fermionic theory 6 = 1 — Up(Er) and u =
U?p"(Er)/12, where p(EFr) is the density of states of the non-interacting fermions at
the Fermi energy. The |w,|/T'x term in the quadratic part of the action gives damping to
the paramagnons. Since the spectrum of the spin fluctuations lies within the continuum
of particle-hole excitations, they can decay into particle-hole pairs and are therefore
overdamped. For a ferromagnetic instability I', ~ k&, and for an antiferromagnetic
instability I';, ~ const. In this description of the quantum phase transition the only
role of the conduction electrons is to provide damping to the critical collective spin

excitations.

The above action can be studied using the renormalization group (RG) approach [21,
22]. This is a powerful conceptual framework [23] in which one studies how the cou-
pling constants ( 6 and w for the above action, and also 7" at finite temperature) of the
action change as the energy and momentum cut-off of the theory is lowered. From
studying the flow of the coupling constants (which are functions of the cut-off scale)

one can identify the fixed point action S*. This is the action which remains unchanged
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under RG transformation. ldentifying the fixed point action that governs a phase tran-
sition gives information about the various critical exponents. These exponents are uni-
versal in the sense that they are properties of the fixed point theory S* and do not
depend on the microscopic details of the original action S. RG transformation pro-
ceeds in three steps. First, the phase space is separated into slow and fast variables.
The modes with low frequency and momentum are the slow modes ¢ = ¢(k, w) with
0<k<A/sand 0 < w < Q/s,. The modes with high momentum and/or frequency
are the fast modes ¢~ = ¢(k,w) with A/s < k < A and/or ©2/s,, < w < Q. After the
separation of scales, the fast modes are integrated out (mode elimination). This pro-
cedure generates contributions to the slow sector from the fast sector while preserving
the form of the action. It is also possible that entirely new couplings are generated by
the mode elimination. In the second step, the momenta and frequencies are rescaled by
defining £’ = sk and w’ = s,w, such that the cut-offs (for the rescaled parameters) are
restored to their original value. The final step is to perform field rescaling by defining
new fields, ¢'(k',w’") = £ 1o (k'/s,w'/s,), such that certain terms in the quadratic

part of the action remains invariant.

In the action given by Eg. (1.7) momentum and frequency enter differently, as a
result they are scaled differently. One finds that s, = s* where z is the dynamical
critical exponent. This scaling is necessary to keep both the k% and the |w,,|/T'x terms
in the action unchanged. At the level of bare scaling (i.e., ignoring loop corrections)
one finds that 6 — §s%, 7' — T's* and u — us® where e = 4 — (d + 2). Thus, (d + 2)
appears as the effective dimension of the system. When (d + z) > 4 the coupling
between the spin fluctuation modes diminishes as the cut-off is lowered, and goes to
zero at the fixed point. The fixed point theory is given by the quadratic part of the
action (with 6 = 0). This is known as the Gaussian fixed point, and the system is said
to be above its upper critical dimension (= 4). In such a case the critical exponents
are correctly given by a mean-field theory. When (d + z) < 4 the coupling u grows

as the cut-off is lowered and it becomes relevant. This is a strong coupling problem.
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The ultimate fate of the flow of the couplings cannot be determined by perturbative
RG (expansion in powers of ). When (d + z) = 4, u goes to zero logarithmically
as 1/log(Ao/A) (u is said to be marginally irrelevant). This is determined by the sign
of the O(u?) correction to the flow of u. A detailed RG analysis of the above action
gives information about the various regimes and the associated phase transition and

cross-over lines in the 7-6 phase diagram [22].

1.4 Application of Spin Fluctuation Theory to Heavy-Fermion Quan-

tum Criticality

The application of the theory of spin fluctuations to understand magnetic quantum
criticality in heavy-fermion materials is not straight-forward and has proven to be
only partially successful [10]. For an antiferromagnetic QCP, = = 2. If one con-
siders three-dimensional spin fluctuations (since the materials are three-dimensional),
the corresponding spin fluctuation model is above the upper critical dimension. Us-
ing this model has the following difficulties: (1) it predicts specific heat coefficient
v ~ 7 + T2, i.e., the corrections to the leading Fermi liquid behaviour are non-
analytic. But experimentally it has been observed [24] that v ~ log(T,/T") for materi-
als such as CeCug_,Au,, CeNi;Ge, and YbRh,Sis. (2) In this model the Landau quasi-
particles are well defined on most of the Fermi surface except on the “hot lines” which
are lines on the Fermi surface that are connected by the magnetic ordering wave-vector
Q. Though the hot electrons have lower lifetime due to scattering with the critical
fluctuations, the normal electrons (which form the bulk) contribute the most in trans-
port processes. As a result this model will predict the same temperature dependence
of resistivity as does Fermi liquid theory. However, in practice one observes linear or

quasi-linear temperature dependence.

The above difficulties can be removed with the postulation that the spin fluctua-

tions are two-dimensional [25]. The two-dimensional nature of the spin fluctuations
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has been observed in elastic neutron scattering experiment on CeCus oAug ; [26]. The
d = 2 and z = 2 spin fluctuation theory correctly predicts the logarithmic tempera-
ture dependence of the specific heat coefficient. In addition, the entire Fermi surface
becomes hot because the spin fluctuation spectrum is insensitive in a third direction.
This provides a possible explanation for the linear temperature dependence of resis-
tivity [25]. In a later chapter we will show that this postulation is consistent with the

observed temperature dependence of thermopower in CeCus 9Aug ;.

However, the two-dimensional spin fluctuation theory leaves the following issues
unexplained: (1) The dynamical spin susceptibility of CeCus¢Auy ; at the ordering
wave-vector has been experimentally observed [20] to have the form x(Q,w)™! ~
(w/T)%7. This would suggest a dynamical critical exponent z = 2.7 which is differ-
ent from that given by a Gaussian fixed point. This observation cannot be reconciled
with the two-dimensional spin fluctuation theory since it is at the upper critical dimen-
sion [27]. (2) Recently the specific heat coefficient of YbRh,Si, has been observed
to diverge with a power law as v ~ 713 [19]. Currently there is no proper un-
derstanding of this behaviour. (3) The microscopic origin of the generic occurrence
of two-dimensional spin fluctuations in materials which are three-dimensional is not

known.

The attempt to get a complete picture of magnetic quantum criticality in heavy-
fermion materials still is an active area of research in condensed matter physics. The
failure of the spin fluctuation theory in its current formulation has led to the suggestion
that a more basic model, one that will incorporate the physics of the Kondo effect close
to a QCP, is necessary [10]. It has been speculated that 7, the temperature below
which the heavy Fermi liquid forms, goes to zero at the QCP [20,28]. This would imply
a failure of Kondo effect to take place and the existence of the local moments down to

the lowest temperature at the QCP. This idea is currently a topic of investigation.
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1.5 Brief Introduction to Dynamical Mean Field Theory

In the last decade dynamical mean field theory (DMFT) has emerged as a successful
non-perturbative approximation scheme to deal with problems involving strongly cor-
related electrons [29, 30]. It is a generalization of the Weiss mean field theory, which
was developed for classical systems, to quantum problems. The main idea of DMFT is
to describe a many-body system defined on a lattice in terms of a single site quantum
impurity in the presence of an effective medium which is self-consistently determined.
One can show that this description is exact in the limit of infinite co-ordination number
Z (or infinite dimension d). Hence it is a controlled approximation in which various
physical quantities can be expanded in powers of 1/Z.

As an illustration of DMFT, we will consider the Hubbard Hamiltonian. Itis written

as

H=—t> cl,ciotUd nimy. (1.8)
(ig),o 7

Here (ij) denote nearest neighbour summation, cjp (¢i.») create (annihilate) electrons
with spin o on lattice site R;, ¢ is the hopping integral between neighbouring sites,
Niy = czaci,a is the number operator, and U is the on-site interaction between the
electrons. It can be thought of as the local part of the screened Coulomb interaction
between the electrons. We will imagine the lattice to be a d-dimensional hypercube
which has a co-ordination number Z = 2d.

In the limit of infinite dimension the interaction term, which has no information
about neighbouring sites, need not be changed. But the hopping term has to be scaled
appropriately in order to get a sensible theory. This is done in the following way. We
define the one-particle density matrix g;; , = (czacj@o, where (), implies average
with respect to the non-interacting system. g?N gives the transition amplitude between
site R; and R;. Then |gy; ,|*, summed over those R; which are nearest neighbour
sites to R, gives the probability for an electron to escape from a site R; to its nearest

neighbour sites. Since the number of nearest neighbour sites is 7, and g?N = t, when
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R; and R; are nearest neighbours, this probability is Z¢. We have to scale ¢ such
that this probability remains finite and the electrons stay mobile in the limit of infinite
dimensions. Thus the correct scaling is given by

t*

t= i t* = constant. (1.9)

As a result of this scaling, one can show that the electron self-energy becomes local,
ie.,

Eijﬁ(w) d—:>oo Zii’U(w)é}j. (110)

In other words, self-energy becomes momentum independent, and only a function of
frequency. Thus, DMFT ignores fluctuations in space but retains the local quantum
fluctuations. In this sense, even in the limit of infinite dimensions, the system has
a many-body nature. The above idea can be made more concrete in the functional
integral language. This formulation, and the DMFT equations for the Hubbard model
are discussed in appendix A.

However, like any other local approximation, DMFT is basis dependent. One has
to choose a suitably localized basis in order to ignore all non-local interactions. This
topic will be discussed in chapter 2. In recent times DMFT, in conjunction with band
theory, is being developed as a numerical tool for predicting properties of correlated
materials. For this purpose the accuracy of the DMFT approximation, which is related
to the issue of choice of basis, is quite important.

Finally, the calculation of various transport coefficients acquire certain simplifying
features in the DMFT formulation. This, and rigorous expressions for the transport

coefficients are discussed in chapter 3.
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Chapter 2
Basis Dependence and Choice of Basisfor DMFT

In this chapter we discuss the basis dependence inherent in all local approximation
schemes including dynamical mean field theory (DMFT). From the point of view of
improving the numerical accuracy in the implementation of DMFT, choosing an ap-
propriate basis is important. We will suggest a procedure for making this choice. We
will test this proposal on an analytically tractable toy model. A few concepts from
linear algebra used here, expressed in the language of a non-orthogonal basis, are dis-

cussed in appendix B.

2.1 Basis Dependence of Local Approximations

We consider a system of interacting electrons on a lattice whose Hamiltonian is ex-
pressed in the basis of atomic orbitals. The single particle states are denoted by
(rlna) = ¢o(r — R,,), where « is a symmetry (say, orbital) index and R, is a lattice
position. We will assume that there are m orbitals such that the index o = 1,--- ,m,
and there are IV lattice sites with the lattice index n = 0,--- , N — 1. We will also
impose the periodic boundary condition |n, a) = |n + N, «). The states defining the
basis, unlike those in a Wannier basis, are not orthogonal. We will denote the overlap
between any two states by O,3(n — m) = (na|m/3). As described in appendix B, the

second quantized many body Hamiltonian can be written as

kl
H= Ztﬁﬁ chatmps+ O VIRl el sersciq, (2.1)

’”” nmlk
afBvyé
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where ¢ = (na|Ho|mB), and V2 = (na, mB|V |1y, kd). In dynamical mean field

theory (DMFT) only the on-site interaction terms are kept, i.e.,

Hpumrr = Z tagC Lacmﬁ + Z Vigsyc Tna Cp,3Cn,6Cn,y- (2.2)

nm

apB aﬁ’yé

We now consider an invertible transformation of the single particle basis |na) —
ey = 3,5 Tsa(m — n)lmB). Expressed in the new basis the Hamiltonian, say
H', has the same form as in Eq. (2.1) except with all indices primed. We know that
‘H' = "H since they are the same operator expressed in two different bases. However, if
we perform the DMFT approximation on H’ and neglect the non-local interaction terms
in the new basis, the corresponding new DMFT Hamiltonian H',,, z7 # Hpamrr. The
approximation involved in DMFT, namely the neglect of non-local interaction terms,
makes this scheme basis dependent. This is a feature of any theory that involves local
approximations because a local interaction term in one basis becomes non-local when
expressed in another basis. This observation also implies that ignoring non-local in-
teraction terms is a good approximation only if the single particle basis is sufficiently
localized. This is the motivation for choosing an appropriate basis in which DMFT can

be used as a meaningful approximation.

2.2 Choice of a Localized Basis for DMFT

The two important questions for formulating the problem of choosing an appropriate
basis are: (1) what should be the criterion that picks out a suitably localized set of
orbitals as the preferred basis, and (2) what type of transformations of the basis should
we allow. The problem of choosing an appropriate basis set has been studied earlier
in quantum chemistry and in band structure calculations [31]. Usually such problems
are formulated by defining an appropriate functional (this provides the aforementioned
criterion) which is basis dependent and whose extremization by transformation of basis
provides a well-defined scheme for choosing a preferred basis set. For example, “local-

ized molecular orbitals” have been studied extensively in quantum chemistry. These are
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the analogues, for finite systems, of the Wannier functions defined for infinite periodic
systems. Among the several criteria that have been proposed for defining the localized
molecular orbitals, one of the most widely accepted criterion is the maximization of
the Coulomb self-interaction of the molecular orbitals by unitary transformations of
the basis states [32]. For band structure calculations the use of “maximally-localized”

Wannier functions has been proposed [31]. The Wannier functions are defined by

_ Z 6ik-(r—R)¢ak(r)7
k

where ¢,k (r) are the Bloch orbitals which have the periodicity of the lattice. However,
there is freedom in the choice of phase of the Bloch orbitals. More generally, the basis

of Bloch orbitals can be changed by unitary transformations
Pak(r) = dor(r Z Upa (k) pk(r)

where Ug, (k) is unitary. This produces a new basis of Wannier functions

Wy (r—R) :Z ik-(r—R) ZU,BQ )0ak(T)

k

The criterion for choosing this particular basis of Wannier functions involves the min-
imization of the “spread functional” which is the sum of the second moments of the

Wannier functions. It is given by

QUsa (k)] = Y _[(0a'[r*[0a’) — (00 |r[0a’)?].

Oél

The spread functional is maximized with respect to the unitary transformation Up,, (k).
This criterion is the exact analogue, for a lattice system, of one of the criteria suggested
for choosing localized molecular orbitals [33].

In our problem it seems a priori there is no unique criterion, and only by compar-
ing the results of different criteria one can conclude what is appropriate. A possible
criterion, for example, is to choose the basis in which the sum of the square of the
on-site interaction terms is maximum. For this one has to define a functional

Fi{na)}] = 37 (VIR0 = 3 vy,

afBvyé afBvyé
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and find a basis in which the functional is maximum. If it can be implemented, will
this procedure allow us to say that the sum of the square of the non-local interaction
terms have been minimized as well? Also, should one include weight factors from the
overlap matrix in the case of non-orthogonal bases? To answer these questions we will
first identify a quantity which is invariant under invertible transformations of the basis

states. As discussed in appendix B, the trace of an operator is such a quantity. We

define
I=Te(V:) = > O 5(n—m)0; (1 —k)O.)(r—s)0, (p— gV Vain.
rtrepe
(2.3)

This invariant quantity has two basis-dependent parts: terms that involve only the local
interaction, and those that involve the non-local interaction. Keeping only the local

interaction terms we can define the functional

Fi{lna)}]= Y~ 035(0)053(0)0,,(0)0,, (0)Vaia Vi (2.4)

op dno ¥ pryas
afydopnv

which we will call the “local interaction functional”. Now if we can find a basis in
which F'is maximum, then we are guaranteed that simultaneously the part of I which
contains non-local interaction terms is minimized. Thus, the functional F' is a more
suitable quantity to work with than F;. We note that the two functionals are identical
in the case where the basis is orthonormal.

To elucidate the structure of the functional we will consider a basis transformation
of the form |na) — |n’a’) = T'|na). In general the transformation of the overlap is
given by O’ = TTOT, and the transformation of the interaction is V' = TTTTVTT.
Supressing indices for clarity, the functional in the new basis can be expressed as

F{ln'a)}] = Y 025(0)055(0)055,(0)0; (0)Vagh o Vi
wipst

U/p/’!]/IJ,

- o (TT)_1]4 [T TtV TT)?

— F[T).
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The scheme is to maximize F[T’] with respect to the transformations 7'.

The next question is what kind of transformations of the basis states should we con-
sider under which the local interaction functional will be maximized. We will study
two possibilities: (1) unitary transformations, and (2) general invertible transforma-
tions with suitable constraints. The overlap matrix remains unchanged under unitary
transformations, therefore in this scheme we will maximize F' within a family of bases
which have the same overlap matrix. The motivation for using general invertible trans-
formations is to probe bases which have different overlap matrices. However, without
appropriate constraints, the functional becomes unbounded when non-unitary transfor-
mations are allowed. In particular, we will discuss the constraint that the basis states
remain normalized under a change of basis. But we find that this scheme still fails to
make the functional bounded. We will conclude that the proper way to constrain the
non-unitary transformations is to keep the ratio of the singular-value decompositions

of the transformations within a certain range.

2.3 Maximization of Local Interaction Functional by Unitary Trans-

formations

Given a basis {|na)} with the overlap matrix (na|m3) = O,s(n — m), we consider

unitary transformation
|na) — |na) + 0|na) = Ulna) = Z Uga(m — n)|mp) (2.5)

to a new set of basis states {|n'a’)}, where [n'a’) = |na) + §|na). The unitary trans-
formation can be represented as U = e*“¥, where H is hermitian and e is a small
parameter. The action of /7 on the states is given by H |na) = 3, 5 Hga(m —n)|mp3)
such that

Uap(n —m) = 6ag0pm + (i€) Hog(n —m) + (2! Z Hy(n—0Hg(l—m) +---
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The hermiticity of A implies that [(na|H|m3)]* = (mpB|H |na), i.e

> Hig(l—m)O, Z Opy(m = D) Hoa (I =), (2.6)
ly

where we have used O}, (n—1) = O, (l—n) (which follows from the definition of O).
Using the above equation it is easy to check that the overlap matrix remains unchanged,
ie, (W'o/|m'B') = (nalmpB) = Oup(n —m). If there are m orbitals per site, and the
lattice has IV sites with periodic boundary condition, then .., (I — n) has Nm? real
independent parameters. The transformation of the two-particle states is given by

[ne, mB) — [na, mB)+(ie) Y _{Hya(l —n)lly,mp) + Hys(l — m)na, 1) }+0(e),

by
and the variation of the on-site interaction term is

SV = (ie Z{vﬁggtH ) + Vo Hyy (1) — Hg()VIS0 — Hy () VR0 1+O(€

H péno Buno
The variation of the functional F' under the unitary transformation is given by

OF =2 Z OQE(O)O;Jl(o)O—l(O)O (0>5V60§;)£Voooo

op pryo®
apyéopny

In the following we will assume that V(ry, 1) = V(r2,1y), S0 that Vil = ymnlk,

For the convenience of notation we define the quantity

)= Y 0300054000, (0)0,, (0)Varovsse (2.7)

prya” Bénu-
aBydpny

After some algebra we get

OF = (4ie) Z {Lou(t) — L, () H;,(t)} + O(€
= (4ie)) { — > 0,5(m = n)Li5(=m)Ogp(n — t)} Hyo (1)
t,own 7;75
+ O(). (2.8)
We define

Agu(t) = L Z O, 5(m —n)L%5(—=m)Oap(n + 1), (2.9)
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and we note that A,,,(¢) is anti-hermitian, i.e.,

> Ogy(m =)Ao (1 —n) ZA ol —n). (2.10)
Ly
The condition for the functional F' to have a local maxima is
oF
- — A (=t =0. 2.11
S0~ A7) =0 (2.11)

This anti-hermitian condition has to be satisfied by the preferred basis. In other words,
the preferred basis is the one in which L, (¢) is hermitian. This condition gives Nm?
real independent conditions, which is the same as the number of real independent pa-
rameters in the hermitian transformation matrix H,,, ().

The following is a simple ansatz for maximizing F' by successive unitary transfor-
mations: starting with a basis {|n«) }, we calculate A,,,(¢) in that basis using Egs. (2.7)

and (2.9). We then change the basis using the transformation
H,;(t) =iA,,(t), (2.12)

and follow this procedure successively till the condition for maxima is achieved. We

assert that with this ansatz, to O(¢)

—(46) Y Agu(—t)As () > 0. (2.13)

top
This will ensure that with successive transformations the value of the functional in-
creases till maxima is attained.

Next we will prove the above assertion. First, if the basis is orthonormal to begin
with, i.e., Oap(n —m) = dapdnm, itis easy to see that A, (t) = L, (—t) — L; ,(t) =
—A;,(t). Then, 0F = (4¢)3>_, ,, |Ayu(—t)]* > 0. If the basis {|na)} is non-
orthogonal, we will assume there exists an orthonormal basis {|a7))} (say a Wannier
basis) to which it is related by

laT)) = ZS(n,a;a, T)|na) and ({(aT| = Z(na|5(n,a;a,7’)*. (2.14)

n,o
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From a generalization of Eq. (B.3) we get
aﬁ (n—m ZS (n,a;a,7)S(m, B;a,7)". (2.15)
Using Eg. (2.10) we can rewrite

SF = (4) 3~ 0,3 (m — n)Aly(m)Ouy(n — 1) A, (1)

= () )Y 0. n) A% g(k — 1)Oy(k — ) Ao (t — m),

nmtk
afBop

(2.16)
where in the last line we have rearranged the lattice indices in a more symmetric way.
Now, using the matrix Eq. (2.15) and its inverse, we get

oF Z[ZSmaaT S(n,a;a,T)*

nmtk
afop

> ST b mik, )" STH(b, it )

/435(k —-ﬂ) X

Ayt —m)

2

1
= (49 S ST kit p) Ao (t — m)S(m, 0 a,7)

> 0.

2.4 Example: Lattice with Two Sites and Two Orbitals

In this section we study the problem of choosing a localized basis for an analytically
tractable case, namely a lattice with two sites and two orbitals on each site. For this
case we examine the result of maximizing the local interaction functional by unitary
transformations. In particular, we will investigate: (1) whether the criterion that we
have proposed for choosing a suitably localized basis for DMFT is a mathematically
well-defined procedure, and (2) whether the result of maximizing the functional gives

a unique basis.
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We consider a lattice with two sites (N = 2), namely n = 0,1. On each site
there are two orbitals (m = 2) a and b. We assume that the initial basis with the four
states (r|0a) = @q(r), (r|0b) = ¢p(r), (r|la) = ¢.(r — R), (r|10) = ¢p(r — R) is

orthonormal. We consider an interacting electron Hamiltonian of the form

V
H = Z tggbcil,acmﬁ +U (ng + nf) + E (nOm + nlno) . (217)
ap

Here n,m are site indices and «, 3 are orbital indices. ¢35 = (nalHo|mg) is the
hopping term, and n; = > Cj,acz‘,a is the occupancy of the site 7. We parameterize the
non-local interaction term by V' = A\U.

For the basis defined above the local interaction functional F = 4, in units of U?
(which we will set as 1 from now on). In the following we will examine whether the
functional can be maximized by unitary transformations of the starting basis.

We order the initial basis states {|0a), |00), |1a), |10)}, and consider unitary trans-
formation of the form [na) — [n'a’) =3 | Usw(n — n')|na). The transformation
is defined by Nm? = 8 independent parameters. Due to lattice translation symmetry,

the 4 x 4 transformation matrix U and its adjoint U can be written in terms of 2 x 2

blocks of the form
U= and Ul = . (2.18)

We note that the 2 x 2 matrices U(0) and U (1) are not unitary, but the 4 x 4 matrix U

is. The most general form of the blocks can be expressed as

U(0) = % {e™ [cos(u)1 + isin(u) (@ - 7)] 4 €™ [cos(v)1 +isin(v)(0 - 7))},

U(l) = % {e™ [cos(u)1 + isin(u)(a - 7)] — ™ [cos(v)1 + isin(v)(d - 5)] } .
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Here 1 is the 2 x 2 identity matrix and & are the Pauli sigma matrices. @ = w12 +usy +
usz and v = v1T + v9y + w3z are unit vectors. The parameters of the transformation
are ug, v = (0,27), u,v = (0,7), ur,ug (With ug = £/1 —u? — ), and vy, vy
(with v3 = +/1 — v} — 3 ). The transformations belong to the symmetry group
SU(2)x SU(2)xU(1) xU(1). One U(1), which we will associate with the parameter
uy, IS a trivial transformation by a global phase. We will disregard this and set uy = 0,
and define vy — uy = 6. The transformations U are then defined by «, v, 6 (seven
parameters), i.e., U = U(u, v, 0).

The local interaction term in the new basis V%92, 5 = (0o, 08'|V]08",0+') is given

by

Vot => Ul (N —m) VUL (D) Usy (k). (2.21)
nmlk
afyé

Since the transformation is unitary, the orthonormality of the original basis is preserved

in the new one. Since, 0;51(0) = 044, the form of the functional defined in Eq. (2.4)

reduces to
F[U] - Z ‘VO/%O/O/(S/ 2
alﬁl,ylél
2
= > Doul bs(N —m)VIk U, (D Uss (K)|-(2.22)

131~ S
o & | nmlk
By i

The above expression is simplified because in the original basis we have only two
types of interaction matrix elements: UZ235% = 1 (in units of U) for n = (0,1) and
a, B = (a,b); and ULZE" = A/2,n # m, n,m = (0,1) and o, 8 = (a,b). Since the
transformation is unitary, it is easy to verify that UT(0)U(0) + UT(1)U(1) = 1. For

convenience we define the matrix Y = UT(0)U(0) — UT(1)U(1). One can show that

Y = cos(f) [cos(u) cos(v) + sin(u) sin(v) (@ - 0)] 1 + sin(f) sin(u) cos(v) (@ - &)

—sin(#) cos(u) sin(v)(v - ) — sin(f) sin(u) sin(v)(w x v) - &. (2.23)
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After some algebra one can show that the functional has the form
F[U] = (1 + %)2 + i (1 - %)2 [Tr(Y?)]* + % (1 - %2) Tr(Y)]?.  (2.24)
From Eqg. (2.23) we get,
Tr(Y) = 2cos(f) [cos(u) cos(v) + sin(u) sin(v)(u - 0)], (2.25)
and one can further show that
Tr(Y?) = 2sin?(6) + 2 cos(26) [cos(u) cos(v) + sin(u) sin(v) (@ - 0)]°.  (2.26)

Since |u - 0| < 1, one can show that |cos(u) cos(v) + sin(u) sin(v)(a - 0)| < 1. We

define cos(u) cos(v) + sin(u) sin(v)(@ - ©) = sin(¢). Then,

Flu) = (1+g)2+3 (1—%)2<1—cos<29> cos(20))’

% (1 — %2) (1 — cos(2¢)) (1 + cos(26)) . (2.27)

Before we discuss the transformations that maximize the functional, it is useful to
identify the symmetry transformations that leave the interacting part of the Hamilto-
nian (H;) invariant. Since the functional considers only interaction terms, we do not
worry about the transformation properties of the non-interacting part. Suppose U, is a
transformation of the form given by Eq. (2.18) which leaves H; invariant. Now, if U,,
is a transformation that maximizes the functional, then so does U,,,U,. In this context
we note: (a) H; is invariant under transformations that generate SU(2) rotations of
the two orbitals on each site. We will call such transformations Ugyr(2). They have the
form U(0) = exp(in - ), U(1) = 0, i.e.,, U(n,n,0). (b) H, is invariant under trivial
re-labeling of the two sites, i.e., 0 «— 1. We will call this transformation Ug;,. It is
givenby U(0) =0,U(1) =1, i.e, U(0,0,7). (c) For A = 2, H has SU(4) symmetry
and is invariant under any U.

The result of maximizing the functional depends on the strength of the non-local

interaction A in the starting basis. We identify the following different cases:
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1 )\ <2
The maximum value of the functional is F},.., = 4 (same as in the original basis),
and at the maxima we have the solution cos(2¢) = —1, i.e.,, ¢ = 7/2,(37)/2,

and cos(20) = 1, i.e., 0 = 0, 7. For ¢ = w/2 we have the equation
cos(u) cos(v) + sin(u) sin(v)(a - v) = 1. (2.28)

This has solutions ((¢ - 0) = 0,u = v = 0), ((¢-0) = 0,u = v = m), and
((a-v) = 1,u = v). Similarly for ¢ = (37)/2 we have the solutions (4 - v) =
O,u=0,v=m),(t-0)=0,u=m,v=0)and ((¢-0) = —1,v=m—u). All
these solutions can be put into two categories of transformations: (a) U(n, 7, 0).
This gives the identity transformation, and rotations between the two orbitals on
each lattice site. Since the identity transformation, which chooses the original
basis, maximizes the functional, so does Usgy (2). (b) U(0) <= U(1), which is the
same as (a) with an additional relabeling of the lattice sites (i.e., Ur Usu(2) =
U(n,n,m)). All these transformations are trivial in the sense they do not mix
between orbitals on different sites. Up to these trivial transformations the result
of maximizing the functional is unique, and we conclude that the original basis

is the most localized one.

2. A=2.
In this case the functional becomes constant with F* = 4 and independent of the

choice of basis. This is because H; has SU(4) symmetry.

3. A > 2.
Frax = 2+ A\?/2 and the solution for the maxima is cos(20) = —1, i.e.,, § =
7/2,(3m)/2, and cos(2¢) = 1, i.e.,, ¢ = 0,m. For either value of ¢ we get the
equation
cos(u) cos(v) + sin(u) sin(v)(a - v) = 0. (2.29)
The vectors u and v are defined by six independent parameters. The above equa-

tion fixes one of the parameters. This defines a family of transformations ()
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with five independent parameters. To understand the composition of this family
we note that v = 0, v = /2 satisfy the above equation and belongs to this
family. This defines a two parameter set (Sy) of transformations of the form
U0)=(1-0-0)/2,U1) = (1+0-0)/2,ie., Sy = {U(0, (70)/2,7/2)}.
The two parameters fix the direction of ©. The remaining transformations be-
longing to S are generated by the action of a transformation belonging to S, on a
symmetry transformation Ugy (o) (Which accounts for three independent param-
eters). To prove this let U(u,,, v,,, m/2) be the result of acting U (0, (7v)/2, 7/2)
on a Usy gy of the form U(n, 7, 0). Then, one can check that @,, = n, and v, is

defined by

cos(vy,) = sin(n)(n - 0)

and
Un:_cos( )ﬁ—i-sin( )(n X )
V1 —sin?(n)(n - 0)2

Using the above relations one can show that cos(un) cos(vp,)+sin(uy,) sin(v, ) (G,

0,) = 0, for all o (two parameters) and for all 7 (three parameters). Thus,
U(uyn, vy, ™/2) constitutes the set S, and furthermore, it is enough to consider
only transformations U (0, (7v)/2,7/2) as solutions. They define a family of
non-trivial transformations (in the sense that the transformations mix orbitals on
different sites). Thus, there is no unique most localized basis in this case. As an
example, wheno =z, U(0) = (1—0,)/2,and U(1) = (1+0,)/2. Then, H; —
L(14+23)n3+3(1—2)(c} 4cop+cl yo.a)?+local terms on site 1+non-local terms.
Thisgives ' = 4 x (1 + \/2)?/4+4 x (1 — )/2)?/4 = 2 + A\?/2. And when
b=9,Hr — $(1+3)m2—1(1—2)(c} ycos+ ¢} yc0.)? + local terms on site 1+
non-local terms. This too gives F' = 2 + A\2/2. It is also important to note that

identity does not belong to this family. In other words, the starting basis is not

among the most localized bases.

A= =2,
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F.x = 4 and there are two sets of solutions for the maxima. One set of solution
is cos(2¢) = —1, cos(20) = 1, which has been discussed in case 1. The second
set of solution is cos(26) = —1, and cos(2¢) = 1, i.e., ¢ = 0, 7 which has been

discussed in case 3.

We conclude that the scheme of maximizing the local interaction functional is
mathematically well-defined. The result of maximization, at least for the case that
we have studied explicitly, chooses a localized basis uniquely when the non-local in-
teraction terms are sufficiently small in the original basis. However, an unsatisfactory
feature of the solution is that it changes discontinuously, like in a first order transition.
For small enough values of A the functional gives no mixing of orbitals and prefers
the original basis. But beyond a certain value of \ it mixes orbitals on the two sites
equally, and in the preferred basis the wavefunctions are delocalized over the two sites.
It remains to be investigated what gives rise to this behaviour. It is possible that the
source of the first order transition is due to the high symmetry of the toy Hamiltonian.
In that case a more generic model will exhibit second order transition. The other ques-
tion that remains to be investigated is whether in a lattice the preferred orbitals will
be delocalized if the strength of the non-local interactions become large enough. The

study of the toy model, but with four sites, will shed some light on these questions.

2.5 Attempt to Include Non-Unitary Transformations

In this section we extend the group of the allowed transformations to include non-
unitary transformations as well. We will consider the same system we have studied
in the previous section, namely a lattice with two sites and two orbitals and a starting
basis which is orthonormal with a Hamiltonian given by Eq. (2.17).

We consider non-unitary transformation of the form [na) — |n'a’) =37 | Thw (n—
n')|na). The transformation is defined by 2Nm? = 16 independent parameters. The

general form of the transformation matrix 7" and its adjoint 7" can be written in terms
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of 2 x 2 blocks of the form

T(0) = % {e™ [cos(u)1 + isin(u)(a - 7)] + €™ [cos(v)1 + isin(v)(0 - 5)] },

and

T(1) = % {e™ [cos(u)1 + isin(u) (@ - 7)] — ™ [cos(v)1 + isin(v) (0 - 7)]} .

(2.32)
All the parameters in the above transformation are complex (when the parameters are
real we have unitary transformations that we have discussed before). Let ug = ag+ b,
Vg = co+idy, u = a+ib, v = c+id. U = ur T = ugy+uszand v = v1T = vey+wvsZ are
complex “unit vectors” with u; = a; +ib;, and v; = ¢; +id; fori = (1,2, 3). Each “unit
vector” is determined by six parameters, only four of which are independent since two
of the parameters are determined by the complex valued equation @ - « = 1. To keep
the calculation manageable for the rest of the discussion we will consider only real unit
vectors, i.e., b; = d; = 0,Vi. Thus we are considering only a subclass of non-unitary

transformations. For this subclass we have

T7(0) = % {e7"6 [cos(u*)1 — isin(u*) (@ - )] + e~ [cos(v*)1 — isin(v*)(0 - 7)] },

T(1) = % {e7™ [cos(u*)1 — isin(u*)(d - 5)] — e~ [cos(v*)1 — isin(v*)(d - 5)]} .

Though the starting basis is orthonormal, since the transformation is not unitary, the

new basis {|n'a’)} is not orthonormal. The overlap matrix for the new basis is given
by

0= =TT, (2.33)
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where O(0) = TT(0)T(0) + T7(1)T(1), and O(1) = TT(0)T(1) + TT(1)T(0). It will

be useful to define the inverse of the transformation 7! and the adjoint of it (77-!)" as

pio [ TTO TN oy [ (T2)10) (T }
=11 T70) (T=H1(1) (T7H)(0)
(2.34)
One can show that
T710) = % {e7"0 [cos(u)1 — isin(u) (@ - 7)] 4+ e [cos(v)1 — isin(v)(0 - 7)] },
(2.35)

T-1(1) = % {e7™ [cos(u)1 — isin(u) (@i 5)] — e~ [cos(v)1 — i sin(v) (0 - 7))}
(2.36)
(T-1)7(0) and (T~1)T(1) are the adjoints of 7-1(0) and T~ (1) respectively. Note that
T-1(0) and T7'(1) are not the inverses of the matrices 7°(0) and 7°(1) respectively as

the notation might suggest. The inverse of the overlap matrix is given by

where O71(0) = T=1(0)(T~1)H(0)+T~1(1)(T~H)(1),and O~1(1) = T~ H(0)(T~H)H(1)+
T=H)(T1)(0).

The functional given by Eqg. (2.4) can be written in terms of the transformation

matrix as
]7[]“] = 2{: ()V(l 77ﬁ’ )();iY(O)CDQ;J(O)
lﬁl /5/
X Z s (N = m) Vs T (1) Ths (k)

nmlk
aﬁ'\/é

X D TN = )T (N = ) VErT, (p)T(g) | (2.38)

opnv

7s8pq
Lopnv
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where O~! is given by Eq. (2.37). Since in the original basis the interaction ma-
trix elements are simple and symmetric, the above expression simplifies consider-
ably. It is useful to define the matrices X = O~(0)[T(0)T(0) + T*(1)T(1)] and
Y = O~H0)[T(0)T(0) — TH(1)T(1)]. The expressions for X and Y are given in
appendix C.

One can show that the functional reduces to the form

FIT) = % (1 + %)2 [Tr(f(z)]z%—% (1 _ 2)2 [Tr(f/?)]z% (1 - %2) [Tr(f(f/)r.

(2.39)
We note that the above equation reduces to the unitary case, i.e. Eq. (2.24), if we put
the non-unitary parameters b, dy, b, d to zero. The evaluation of the traces of X2, y?2
and XY are given in appendix C.

It is quite clear that without imposing constraints the functional £ is unbounded
with respect to the non-unitary parameters by, do,b and d. The rest of this section is
devoted to examining what constraints will be appropriate to keep F' bounded.

First, we consider the transformation where the orbitals are multiplied by a scale
factor (dilatation). This transformation has the form 7°(0) = l,6.5, (1) = 0, where
l,, is the scale by which the orbital « is multiplied. Then O~'(0) = |l4|™* 6.3, and
X =Y = 1. Using Eq. (2.39) we get F' = 4 for this transformation, which is the
same as in the original basis. Thus, we note that the functional stays constant under
dilatation.

Next we consider the transformation where only the non-unitary parameter b, is
non-zero, i.e. ag = cg = dy = a =b=c=d = 0and by # 0. This transformation has
the form 7'(0) = ((e™® +1)/2)1 and T'(1) = ((e~% — 1)/2)1. This is a non-trivial
transformation since it mixes the orbitals on different sites. It is easy to check that

X = cosh?(by)1 and Y = cosh(b,)1, and F as a function of b, is

2

F(b) = (1 + %)2 cosh®(by) + (1 — %)2 cosh®(by) + 2 (1 — %) cosh®(by),

which is unbounded for any value of \. As by — oo, the functional F' blows up and the
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transformation becomes singular. It is easy to check that the behaviour of the functional
is the same for transformations where any one of the non-unitary parameters d, b and
d is the only non-zero parameter. Thus, each of the non-unitary parameters enter the
functional in a way that makes it unbounded and when the functional goes to infinity
the transformation becomes singular as well.

Next we will examine what kind of constraint will keep the functional bounded.
First we will consider the constraint that the basis states remain normalized after the
transformation, i.e. we want the transformation to satisfy O,,(0) = 1. To keep the
calculation simple we will put the unitary parameters ag = ¢o = a = ¢ = 0. The
constraint gives two equations involving the non-unitary parameters bq, dy, b and d.

Solving for by and b in terms of d, and d we get

by = — [ (e cosh(2d) —2)” — (¢ (1) sinh(24))’]

—2dop :
b = arctanh [6 (ls) sinh(2d) } ,

e~2do cosh(2d) — 2

where I3 = v3/uz. Since we have put the parameters ao and a to zero, we need real
solutions of the constraint equations. This imposes some bound on the possible values
of the parameters dy, d and [5. However, it is easy to verify that over the range in which
real solutions exist the functional still blows up. As an example, say i3 = 0.1 and
do = 1. Then over the range 2 < d < oo we get real solutions for by, and b. Over this
range we find that the functional £, now a function of d, is monotonically increasing
and is still unbounded.

By studying the above examples we find that the functional is unbounded in terms
of the non-unitary parameters. Since the group of invertible transformations is non-
compact, the parameters themselves do not have an upper bound. Any attempt to max-
imize the functional has to be supplemented by a suitable constraint that will keep the
non-unitary parameters within some bound and not allow them to flow to infinity. This
idea can be implemented more concretely in terms of the singular value decomposition

of the transformation matrix. In this decomposition the transformation is expressed as
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T = VIDW, where W and V are unitary matrices and D is diagonal with positive
definite eigenvalues (the singular values). It is easy to check that the singular values
are nothing but the square roots of the eigenvalues of the overlap matrix 777". For
example, for transformations in which ag = ¢y = a = ¢ = 0 (to keep the calculation
simple), the singular value decomposition gives exp(dy — d), exp(dy + d), exp(bg — b)
and exp(bo + b). When any of the non-unitary parameters flow to infinity one or more
of the singular values become zero or infinity. This is the point where the functional
blows up and the transformation becomes singular. Thus, a suitable way of imposing
constraints would be to keep the ratio of the maximum and minimum singular values
within a specified bound. This will ensure that the singular values do not become too
large or too small, and that the non-unitary parameters stay within a finite bound. The

local interaction functional can now be maximized by non-unitary transformations.
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Chapter 3

Thermal and Charge Transport for Many Body
Tight-Binding Models

3.1 Introduction

The theoretical description of the thermoelectric response of correlated materials is
a fundamental problem in condensed matter physics, and a breakthrough in this area
has potential technological useful implications [34]. The materials, which have been
studied as likely candidates for useful thermoelectric properties, are mostly semicon-
ductor alloys and compounds. Materials such as Bi,Tes/Sh,Tes and Si-Ge, which are
currently favoured for room temperature application, belong to this category. Another
class of materials, with potentially useful thermoelectric properties, are Ce and La
filled skutterudites such as LaFe;CoSbh,, and CeFe;CoSh;, [34]. Theoretically these
materials have been studied successfully using band theory [35]. Recently Mahan and
Sofo [36] have shown that the best thermoelectric materials could well be correlated
metals and semiconductors (i.e., rare earth intermetallic compounds). The develop-
ment of the dynamical mean field theory (DMFT)[for reviews see Refs. [29, 37]] has
allowed new studies of the effects of correlation on the thermoelectric response using
this method on model Hamiltonians [38, 39, 40]. More recent combinations of band
theory and many-body methods such as the LDA+DMFT method [41] [for reviews see
Refs. [42,43]] or the LDA++ method [44] offers the exciting possibility of predicting
the thermoelectric properties of materials starting from first principles [45]. This re-
vival of interest in the thermoelectric response motivates us to re-analyze in this chapter

the following issues: (1) what is the form of the thermal current and the charge current
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which should be used in realistic calculations, and (2) how it should be approximated

in a DMFT calculation.

The first question is subtle for two reasons. First, as noted early on by Jonson and
Mahan [46], the electronic part of the thermal current operator contains a quadratic
and a quartic piece (if the electron-electron interaction is non-local) in the electron
creation and annihilation operators. The contribution of this quartic interaction term
to the current has continued to be the subject of discussion [47]. Second, while the
form of the thermal current and the charge current in the continuum is unambiguous,
and can be calculated using Noether’s theorem [48,49], DMFT calculations require the
projection of these currents on a restricted lattice model. This involves the computation
of complicated matrix elements, and in practice an approximation which is analogous
to the Peierls substitution [50] for the electrical current is carried out. It is well known
that the results of this construction depend on the basis set of orbitals used [51]. This
raises the practical question of how to optimize the basis of orbitals to be used in

transport calculations.

The second question is subtle due to the presence of interaction terms in the current.
This raises the issue of how it should be simplified in the evaluation of the various
current-current correlation functions and the transport coefficients. This question was
first addressed by Schweitzer and Czycholl [52] and by Pruschke and collaborators [37]
who stated that within the relaxation time approximation, this term can be expressed
in terms of a time derivative, and the vertex corrections can be ignored. In the review
of Georges et. al. [29] it was stated that the results of Pruschke et. al. hold beyond
the relaxation time approximation in the limit of large dimensionality when DMFT

becomes exact but no detailed proof of this statement was presented.

The following are our main results. (1) In section 3.2 we address the question of the
optimization of the basis of localized orbitals for transport calculations, following the

ideas of Marzari and Vanderbilt [31]. For completeness and for pedagogical reasons
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we discuss in parallel work on the charge current, which is simpler and better under-
stood [53] than the thermal current. Our conclusions in this context have applications
for the computation of Born charges in empirical tight-binding models [54]. (2) In sec-
tion 3.3 we derive the form of the thermal current to be used in tight-binding models,
and its dependence on the orbitals, using the equation of motion technique introduced
in Ref. [55]. Our final expression differs in one term from the results of Ref. [47]. (3)
In section 3.4 we describe in detail the diagrammatic analysis of correlation functions
of the current operators. We demonstrate explicitly that in the DMFT limit of the trans-
port calculation, the vertex corrections (even for those involving the thermal current)
can be completely neglected, thereby justifying the current practice used in all previous

DMFT work.

3.2 Charge Current

We consider a system of electrons in a periodic potential V'(r), in the presence of
an external vector potential A(r), and with coulomb interaction between them. The

Lagrangian is given by
L = %/d% (w1 — i) + %/d?’mﬂ (V — ieA(r)?y
2
= eS| [erersieee)—

v — 1’|
Here (r) and ¢(r) are the electron field operators with usual anticommutation prop-

P(r')(r). (3.1)

erties. We have ignored the spin of the electrons only to simplify the notation. Includ-
ing spin in the following analysis is quite straightforward. In field theory, when both
high and low energy degrees of freedom are retained, Noether’s theorem provides a ro-
bust procedure to identify the various currents [49]. The theorem associates with every
symmetry of the action a conserved charge and a corresponding current. The charge
current is determined by the invariance of the action S = [ dtL(t), under U(1) gauge
transformation given by #(r) — ¥ (r)e’® and ¥f(r) — ¥ (r)e~**®), The transfor-

mation does not produce any variation from the interaction term, and the well known
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expression for the charge current is

== [ direl ) (V- ieA(r) v(r). (3.2)

The above expression is gauge invariant. The part which is proportional to the vector
potential gives the diamagnetic current.

In order to facilitate further discussion we will perform the standard Noether con-

struction in the Wannier basis. In this basis the action (which includes both low and

high energy degrees of freedom) is

s=[a 53 (e —da) Ztm ik + 5= > Pl - Alnellel,

npy nml
py
_'_— ZA 7771; Jrn‘ucm ZA 77:, ILucm
nml nml
By py
-5 Z Upi-tielltelzcizens o (3.3)
ni...nq
H1...pa
where #7, = (nu|Ho|mv), phy, = (nulplmv), ALY, = (np|A(r)|mv), and UL -0 =

(nypy, napio]e® /v — r'||nypig, naps). Here Hy = p*/2m + V(r) is the non-interacting
part of the Hamiltonian, x is the band index, and R, defines the lattice positions.
W,(r — R,) = (r|nu) form a complete set of orthonormal Wannier functions. The
creation and annihilation operators satisfy the anticommutation relation {c#, ¢} =
dnm0,. The gauge transformation of the fermionic field operators is equivalent to the
variation dclt = i [ d*r¢(r)y(r)Wi(r — Ry,) and dcl = —i [ d®ré(r)d!(r)W,(r —
R,,). Expanding ¢(r) about the point R,, and keeping only up to V¢ (which is all we

need to construct the Noether current) we get
och = i¢(Rn)ch +N¢>ZL5; -
st = —igp(R,)c* — iV Z e (3.4)

where Lt = [ d*rW;(r — R,)(r — R,)W,(r — R,,) are the connection coefficients.

The matrix L is hermitian. We note first that the variation from the interaction term is
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exactly zero. Next, using the operator identity [r;, A;(r)] = 0, we find that the variation
from the term quadratic in A(r) is zero. To get the correct diamagnetic part we make

use of [r;, p;| = id;;. From the invariance of the action we can identify the charge

current as
j = zez R, )ty clticy, +ie Y i (thy L)y — L) ek,
i s
—— > A,
m nm
- zeZcT“c (nu|[Ho(A), x]|mu). (3.5)

Ho(A) = (p — eA)?/(2m) + V(r). This is just Eq. (3.2) expressed in the Wannier

basis. The charge current is related to the electronic polarization operator [56]
P, = eZcT”c (np|r|muv)

by 0P /0t = j. The change in polarization AP, (which is a well defined and mea-
surable bulk quantity, rather than polarization itself) between an initial and a final state
of a sample is the integrated current flowing through the sample during an adiabatic
transformation connecting the two states [57].

Theoretical models of the tight-binding type are effective low energy models de-
scribed in terms of those bands which are close to the Fermi surface [58]. The question,
which is non-trivial and which is still debated, is what should be the form of the current
for such low energy models. The low energy Hamiltonian is obtained by eliminating
or integrating out the degrees of freedom corresponding to the high energy bands. This
is easily formulated in the functional integral language and the procedure generates
many interaction terms that are not present in the original action. In a Hamiltonian
formulation this is equivalent to making a canonical transformation to decouple the
low energy and the high energy sectors [59]. That is, given a full many body Hamil-

tonian 7, we perform unitary transformation U such that UHU ~! is diagonal (for a
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system of interacting particles, in general, this can be done only approximately), and
then consider only PUHU ~! P, where P is the operator projecting on the low energy
bands. To obtain the expression for the current in the low energy sector one has to
perform the same canonical transformation used to transform the original Hamiltonian
into the effective Hamiltonian on the operator representing the current. In other words,
we first calculate the current (say, J) for the full theory (using the symmetry of the full
theory), make the same unitary transformation and then project the current on the low
energy sector of interest. The exact low energy current is then given by PUJU ' P.
This method of calculating the current for the low energy theory is motivated by renor-
malization group ideas. But, to implement this in practice is usually a formidable task.
However, if we consider a system of non-interacting electrons (in a periodic potential)
with a subset M of bands that defines the low energy subspace, the low energy current
is obtained by projecting the full current in Eq. (3.5) on the low energy subspace. This

is given by PjP, where P = Z |nu) (nul is the projection operator. We note that
n,neM
the calculation of the exact current requires knowledge of the matrix elements of the

position operator in addition to that of H, (the tight-binding parameters) [60].

Sometimes, to avoid calculating the matrix elements of the position operator, one
makes the approximation known as Peierls substitution. There are two types of ap-
proximations involved with this procedure. First, terms involving the connection co-
efficients are dropped out, and one considers an approximate gauge transformation
given by ot = i¢(R,)c” and dcf* = —ig(Ry,)cl*. Putting the connection coef-
ficients to zero is equivalent to the approximation (nu|r/mv) ~ R,d,,,0,, for the
matrix elements of the position operator, and (nu|p|mv) = im(nu|[Ho, r]|mv) =~
im(R,, — R,,)tk for the matrix elements of the momentum operator. Second, with
this approximate gauge transformation, the variation from the interaction term is non-

zero (though, as already noted, it is zero for the exact gauge transformation). However,

contribution to the current from the interaction term is neglected. It will be further
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assumed that the vector potential is constant, i.e., ALY = Ad,;,0,,. With these sim-

plifications the approximate current (j») is given by

nmn m*

jp = ie Z R, — Rt clics, + e Y (Ry—Ry) (R — R,,) - A)thy el

nm
;UJGJW urveM

(3.6)
The second term is the approximate diamagnetic contribution. The usefulness of jp
lies in the fact that it can be calculated from the tight-binding parameters alone.

The construction of the Peierls current in terms of the atomic orbitals is a pri-
ori not obvious for the case when there is more than one atom per unit cell. It is
worthwhile to clarify this issue here. We will denote the atomic wavefunctions by
laTR,,), where « is a symmetry index, R,, is the lattice position of a unit cell, and R,
is the position of the atom 7 within a unit cell. It is desirable to define the Bloch ba-
sis wavefunctions by [aTk) = 1= 3"p e ™ (RR)[arR,,), though the phase factor
e~%R- js quite innocuous for the definition of the Hamiltonian matrix H(k)a, :asm
and for the subsequent calculation of the energy bands. The question, whether to keep
the phase factor or not, is however important for the definition of the Peierls current
ir(K)armasms = 2H(K)arramm- It is easy to verify that, with the above definition
of the Bloch basis, one gets the same form for the Peierls current if one considers a
lattice with one atom per unit cell (for which case the definition of the Peierls current
is unambiguous), and compare it with the same lattice with its period doubled (and
therefore now with two identical atoms per unit cell).

We will examine the behaviour of the exact current and the approximate one under
infinitesimal unitary transformation U*,, = 6,,,,,0,,, + W (where W is antihermitian)
of the Wannier functions defined by |nu) — > U |mv). The variation of a matrix

element (j)1 = ie(nu|[Ho(A), r]|mv) of the exact current is given by
i = @)t + Z{ Wi, = WG 37

This is the usual transformation of matrix elements of operators that remain invariant

under unitary transformation. In fact, the paramagnetic and the diamagnetic parts of
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the operator j are separately invariant. The behaviour of jp is, however, different. The

variation of (jp)* = ie(R,, — R,)t" + e*(R,, — Ry,)((R,, — R,,) - A)t s given

by

Gr)m m T Z{ 3P)uiWiem — Wai (e )i }+lez —Re) 6 Wi,
—lez (Ry, — R,,) WM —l—GQZ{ (R, — R —Rk)-A)
+ (Rm —Ry) (R, —R,) - A)} t’“’WW - Z {(R,, —R;) (R —R,) - A)

The paramagnetic and the diamagnetic parts of j» are both basis dependent operators.

The basis dependence of j p raises the practical question as to what basis one should
choose while making the Peierls construction. For example, there have been efforts to
calculate polarization properties, like effective charges of semiconductors, using the
empirical tight-binding theory [54]. In this scheme a natural approximation is the
“diagonal” ansatz which assumes that the position operator is diagonal in the tight-
binding basis with expectation values equal to the atomic positions. This is equiva-
lent to a Peierls substitution, and the polarization calculated with this ansatz is related
to the Peierls current jp. The effective charges calculated in this procedure depends
on the choice of the underlying Wannier basis. In order to improve the results one
should first make an appropriate choice of a basis. One possibility is to use the ba-
sis of the “maximally localized” Wannier functions that was introduced by Marzari
and Vanderbilt [31]. This is obtained by minimizing a functional which measures the
spread of the Wannier functions. Intuitively, it seems plausible that the approxima-
tion in which the connection coefficients are neglected, will work better in a basis
where the Wannier functions are more localized. A second possibility, suggested by
Millis [51], is to choose that basis in which the charge stiffness calculated using the
Peierls current will be closest to the one obtained from band theory. We note that

this criterion is already satisfied by the Bloch basis in which the effective one-electron
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Hamiltonian is diagonal in the band indices. This can be seen easily in the follow-
ing manner. We consider the scenario of band theory where electrons are in an ef-
fective periodic potential. Let ¢, denote the single particle energy levels. It can be
shown that the charge stiffness is given by Do = 3, , f(ex) (0w (OkoOkis)) [61].
Here f(e) is the Fermi function and «, § denote spatial directions. The Peierls cur-
rent constructed in the Bloch basis does not have any interband term since the basis
is already diagonal in the band indices. The paramagnetic part of the current is given
by (jP)paraa = D i, (Fexy /Okq)cicl. Since the paramagnetic part has no interband
matrix element, it does not contribute to the charge stiffness. The diamagnetic part,
given by (jp)aiaa = — Ekw(8zekﬂ/(aka8kﬁ))A5cL“cﬁ, gives a charge stiffness ex-
actly equal to that obtained from band theory. It is possible, though, that there are other
bases which satisfy this criterion.

In passing we note that if the matrix elements of the exact current j are known
by some means, say, from first principles calculation, then it is possible to define the

functional
Q= (nulj—jplmv) - (mvlj — jplnp) (3.9)
;WSM
and choose the basis which minimizes €2, and thereby the difference between the exact
current and the approximate one. Using Eqgs. (3.7) and (3.8) we can calculate the
variation of € under infinitesimal unitary transformation. The gradient, defined as

Ghr = dQ/dW | is given by

Ghm = Ry —Ry) - (np|[Ho, (G —jp)]lmy)
+ ie (Rm - ARy — (R - A)Ry) - (nu[{Ho, (5 — Jp) }mv)
— ieY {(Rm—Ry)Ri-A) + (R — R,) - ARy}
{{nulj — Jplky) (kv[Holmv) + (nu|Holky) (kvlj — jplmv)} (3.10)

The optimum basis is the one for which the gradient vanishes. The choice of basis will

depend on the vector potential, but the physical quantities calculated in that basis will
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not. In general, this criterion will give a basis which is different from that of the “max-
imally localized” Wannier functions. The above method of choosing an appropriate
basis is not very useful for doing charge transport calculations because to define the
method one needs to know the matrix elements of the exact current, knowing which
makes the Peierls construction redundant. However, one can use this optimization pro-
cedure for doing thermal transport calculation. As we will see in the next section, the
matrix elements of the exact thermal current are quite complicated, and a Peierls for-
mulation of the thermal current is desirable (in some suitable basis). The rationale for
our suggestion is that the basis which optimizes the Peierls construction for electric
transport will be a good basis for doing the Peierls construction for thermal transport

as well.

3.3 Thermal Current

In field theory, the energy current (which is same as the thermal current, except for the
latter the single particle energies are measured from the chemical potential) is deter-
mined from the invariance of the action under the transformation of time ¢t — t—¢(r, t).
This shifts the field operators by §y» = ¢, and 6yt = ¢ ¢. From the variation of the

action defined in Eq.(3.1), the energy current (jg) is given by
o = g [ (Ve vutih e [ @ [ Ere - n U -
X {¢T(r1)9(r2)¢(rl) — 9T (r1)plr2)eb(r1) + W(rl)fo(h)@b(l‘l)} : (3.11)

Here p(r) = ¢T(r)y(r), and U(r) is the two-particle interaction energy (Coulomb
potential, in our case). The second term above, which is formally quartic in the field
operators, is the contribution to energy current from the non-local (in space) interac-
tion. This term was missed by Langer [48], but noted in a different context by Jonson
and Mahan [46]. More recently, it has been discussed by Moreno and Coleman [47].
We have discussed in the previous section that for an effective low-energy model

any current is obtained correctly by projecting the current for the full theory (where
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both high and low energy degrees of freedom are present) on the low-energy bands.
To implement this for the energy current one has to consider variations of the Wannier

operators dc/ = ¢(Ri)! + Vo>, Lives and ocf' = o(Ry)el" + VoY, i Ly

vy ) JVJ

under translation of time. If we ignore the terms with the connection coefficients, we
get an approximate current which is equivalent to a Peierls substitution. The same
approximate current can be derived from the low-energy effective Hamiltonian using
the equations of motion [55]. Although we are emphasizing the importance of the
exact low-energy current, in practice, calculating the exact thermal current is fairly
complicated. Therefore, we will restrict the derivation to that of a Peierls type of

energy current for a generalized Hubbard model described by the Hamiltonian

H=> e, + Z Y, (3.12)
ij

O'O'

using the equation of motion technique. Here nf, = ¢l . The local energy density

10 10"

(h;) s given by

1 1

— I JW v TV e uv v L
hi = 5 Z < ij Cio JVU + t]l jo w) +3 9 Z (V;j Uglnwnjgr + V;ZUU Ja,n )
v A

oo’

We can show that

hi = 5 Z {tw} < ;fg juo ;f(l; ;/cr> + tV“ (C;rcha - C;racza>}

0'

1
+ —ZV’“’ < R e S L L e SR LD L e

2 ij,00' 10 “jo’ “jo’ Vio 10 ]a jo' “io 10 ]a jo' “io

J
piv
oo’
THTVV'H 1 Vi vt o v fvoatw o v
- chja’cja 0 _'_5 ‘/ji,a’a C]a’cwcwcja C]a’cwcwcja
J
v
CTCT/

— et oy Y et o ) , (3.13)

jo’ 10 1o g0 jo! “io Viojo’
where O = i[H, O]. The energy current (jg) is related to the energy density by the
continuity equation 7; + V - jg(i) = 0. We define h(q) = 3, e~ a®ip,, and sim-

ilarly jr(q). The Fourier transform of the Wannier operators are defined by ¢ =
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\/Lﬁ S e Rick “and similarly for . Here N is the size of the lattice. Comparing

ZO”

with the continuity equation we get the energy current

;

_ pv ( twov pv .

= 52 :vkek (ckackcr _Ckacko> E :Vkaaa (Ck/ nko’ck’ ko
k kk/

CTO'

T TH
- Ck’ nka’ck’ ko — Cw/, nka’ck’ ko) (3.14)

where ny , = > cL‘,‘vacﬁ, 1o+ The first two terms (the quadratic part) in the above
equation are contributions to the energy current from the electron hopping and from
the local part of the interactions. The last three terms (the quartic part) are addi-
tional contributions to energy flow from the long range interactions. Moreno and
Coleman [47] have calculated the quartic part using Noether’s theorem for classical

fields, and their resultis 3 Vi Vi, (n*y ik, — iy k) . We want to ar-

k,o0’
gue that this result is inco;(fgéfaWe note that for classical fields the issue of correct
arrangement of operators is not present. Indeed, if we could commute the third op-
erator with the second in each of the last three terms of Eq. (3.14) we would get
the result derived in Ref. [47]. However such commutation will generate an additional

k,o0

term Z ViV el kck, +Cir o~ Thus, proper arrangement of operators is important

kk’ uv,o
to get the correct form of the energy current, which is naturally captured in an equation

of motion technique but not while using Noether’s theorem for classical fields.

The heat current (j) is related to the energy currentby jo = jr—14j, where p is the
chemical potential [55]. The chemical potential enters only to shift the single particle
energies, i.e., right hand side of Eq. (3.14) gives the heat current with the re-definition
0= i[H — uN, O], where  is the total particle operator.

3.4 Transport Coefficients

In this section we will examine in detail the derivation of the correlation functions of

the current operators. We will consider only the Peierls type of (charge and thermal)
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Figure 3.1: Diagrams in configuration space for thermoelectric power. H; is the inter-
action term. In (a) and (b) the thermal current is a two-point vertex, while in (c) and
(d) it is a four-point vertex. In the limit of infinite d contribution from (b) and (d) can
be neglected.

currents to keep things analytically tractable. In Kubo formalism the correlation func-
tions are related to the corresponding response functions (the transport coefficients). In
the framework of DMFT [29] it is possible to derive exact expressions for the transport
coefficients. The essential simplification in the limit of infinite dimensions (d) is that
the self energy and the vertex terms are local. For the single-band Hubbard model,

defined by the Hamiltonian

H = Z <tijcz‘r,gcj,o + hC) + Uzn@Tni,l?

(ij)o
we will demonstrate that this allows the correlation functions to be factorized into
products of single particle Green’s functions and their time derivatives. The terms
that are ignored by such factorization are O(1/d) smaller and can be neglected in the
limit of infinite d. Using a slightly different approach, the expressions for the transport

coefficients for the Falikov-Kimball model have been derived recently [40].
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The correlation functions of the current operators are defined as [55]

1
Biw,V

s
Loy (twy,) = /o dre™ " (T, ja(7)js(0)), (3.15)

where a,b = (1,2), and j; = j is the charge current and j, = jo is the heat current.
Here V" is the volume of the system, 5 = 1/kgT is inverse temperature, and iw, is
bosonic Matsubara frequency. The transport coefficients (that enter the formula for

DC conductivity, thermoelectric power and thermal conductivity) are given by,

Loy = lim Im Ly (1w, — w + i9). (3.16)

w—0

For the single band Hubbard model the charge current is given by,
j=e Z chLUckJ =e Zz (R; —Ry) tijczacj,a, (3.17)
k,o (ig)

and the heat current is given by

JQ = 5 Z Vk <CTk70'ck’0' - CTk,O'ck’o') =
k,o (ig)

[

b .t
(Ri — Ry) ti; <Cz~,acj,cr - Ci,ach) :

N | —

(3.18)
Here vi. = Ve is the electron velocity. Since the interaction is purely local, there is

no contribution from the long range interactions.

The derivation of L4, is discussed extensively in the literature on DMFT [37,52].
In infinite d the particle-hole vertex becomes momentum independent [62], and the
dressed correlation function becomes equal to the bare one. This implies the correla-
tion function can be factorized into a product of single particle Green’s functions, i.e.,
(T3(3(0)) = =5 Yy, 03Go (k, )Gy (k, —7), where Gy (k, ) = —(Tycaeo(7)ch ,(0))
is the fermionic Matsubara Green’s function. We define the Fourier transform G, (k, 7) =

52 € "Gy (K, iwy), in terms of which

2
Lin(iwn) = — (%) ( &: V) Zvi% 3 Gulk o+ ip)Gak ).

k,o
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G, (k, z) has a possible branch cut at = = ¢ and G, (k, z + iw,) hasone at z = ¢ —

1wy, [55]. Following Mahan [46,55] one can show

ipn

/_ ;Z—;_HF(E>A0(k, €) [Go (K, € + iwy) + Gy (K, € — iwy)] ,

where A, (k, €) = —2ImGZ%(k, ¢) is the spectral function and n(¢) is the Fermi func-

tion. After analytic continuation iw,, — w + id, and after taking the static limit we get

In = 2dﬁvz / ( Inrle >>A§(k,e)- (3.19)

The derivation of L,; is more involved, and is not well discussed in the litera-
ture. Since the heat current has a part which is a four-point vertex, a priori it is
not clear whether a factorization of the correlation function into products of single
particle Green’s functions and their time derivatives is possible. We have ¢;, =
—iY tuce — tU¢ on; 5 + iuc; . (@nd similarly for c »)- We ignore the term with
the chemical potential for the time being (the result remains unchanged). Due to the
first term the heat current is a two-point vertex, and the corresponding diagrams for L
are of the type (a) and (b) of Fig. 3.1. The heat current is a four-point vertex due to the
second term. The corresponding diagrams are of the type (c) and (d) of Fig. 3.1. In the
limit of infinite d the scaling of the hopping termis ¢,; = ¢ /\f (Ref. 4). This implies
that G2, ~ (1/+/d)""7! (Ref. [29]). One can show explicitly that diagrams (a) and (c)
are O(1/d) (and higher), and diagrams (b) and (d) are O(1/d?) (and higher). In Fig.
3.1, H; = U, niny, is the interaction term of the Hubbard Hamiltonian. In the
limit of infinite d the latter drops out, and the factorization of the correlation function

is possible. In imaginary time

(Trio(r)j(0)) ‘== 2—6d v {<T7c'k,c,<r>c;a<0)><TTCk,o(o>c;0<T>> + h.c.} .
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Using 2G(7) = (T>Zc(7)ct(0)) — 6(7) (in imaginary time), we get

) = () B (ST 5o i

— ’rLkJ} .

We drop the second term within braces because it does not contribute to Im Lo (w+10).

The rest is evaluated like L1 (iw,). It can be shown that

3 Z (an ) (K, ipn) Gy (K, ip, + iw,) =

ipn

[ Snr0atic) (422 ) Guticer i) + (= 2 ) Gutiee—iwa)].

After analytic continuation and taking the static limit we get,

LIn = 2d5vz / - ( 8nF())A§(k,e)- (3.20)

The derivation of Lo, is analogous to that of L. In the limit of infinite d, (7%jo(7)jo)

factorizes into products of (imaginary) time derivatives of single particle Green’s func-
tions (plus terms which do not contribute to Im Loy (w)). As in the case of Ly; and Loy,
the terms which are dropped out by such factorization are at least O(1/d) smaller. In

other words,
(Triq(r)ig) "= ﬁ > v {<TTék,o<T>cL,o<0)> (T 10 (0)éf o (7))
(Tt ()l (0)) (Trtrer (0)cl (7)) + b |

With this simplification it can be shown that

1 1 wn')? . .
Lo (iw,) = — (dﬂiw V) Zvﬁ {B Z (z’pn + %) Go(k,ipn)Go (K, ipy + iwy,)
n k,o ipn

_|_}

The terms in the ellipses do not contribute to Im Lo (w). Finally we get,

__ ¢ o [ de , _0nF(e) 2
Loy = 2dﬁvgvk/_m o€ < 5 ) Ak, (3.21)
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We reiterate the observation made in Ref. [40] that the above expressions for the trans-
port coefficients are correct for any model with local interaction (for which Eq. (3.18)

is correct), in infinite dimensions.

3.5 Conclusion

The current (charge or thermal) obtained by Peierls substitution or by the equation of
motion technique is an approximation to the exact low energy current for an effective
tight-binding Hamiltonian. In particular, the approximate current is not invariant under
a unitary transformation of the Wannier basis. We have suggested a simple criteria
by which one can choose a set of Wannier functions where the difference between
the exact and the approximate current is minimum. The minimization procedure is
well defined provided the matrix elements of the exact current are known from first
principles calculation. Using the equations of motion we have derived the thermal cur-
rent for a very general tight-binding Hamiltonian, correcting the result of a previous
work. Finally, using the Peierls currents, we have established the correctness of known
expressions for the transport coefficients for the Hubbard model in infinite d. The sim-
plification in the limit of large coordination is that the current (charge and thermal)
correlation functions can be factorized into products of single particle Green’s func-
tions and their time derivatives. These expressions are correct for any model with local

interaction and in infinite dimensions.



51

Chapter 4

The Charge Current Operator in Down-folding Scheme

4.1 Introduction

The notion of effective low-energy Hamiltonians, or model Hamiltonians, is central to
the conceptual framework of condensed matter theory. The motivation and the justi-
fication for using model Hamiltonians is the following: The microscopic details of an
interacting many-body system come into play only when we probe the system over a
wide range of energy. But if we restrict ourselves to examining only low-energy prop-
erties of the system then much of the microscopic details can be forgotten. This allows
us to replace a more complicated full Hamiltonian, which describes both low- as well
as high-energy modes of the system, by a simpler Hamiltonian (usually with fewer mi-
croscopic parameters) which describes only the low-energy degrees of freedom. The
Hilbert space for the latter is smaller and hence has a better chance of being tractable,
both analytically as well as numerically. This procedure is implemented rigorously

within the formalism of the renormalization group (RG).

The scheme of down-folding is a formal procedure by which a Hamiltonian, which
has a clear and well-separated low(L)- and high(H)-energy subspaces, is expressed
entirely in the low-energy sector. This procedure can be used to construct low-energy
effective Hamiltonians, and the scheme is motivated by the idea of RG mentioned
above. To illustrate the scheme we consider solving Schroedinger equation Hvy) = E.
The wave-function has low- and high-energy projections v);, and v respectively. The

Hamiltonian has low- and high- energy pieces and also some mixing terms. In matrix
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notation we write

f
Hip = O NN (4.1)
7_{M 7_{H ’(/)H ’(/)H
Formally one can write
1
Yy = MHM@DL (4.2)

and eliminate the high-energy subspace completely. The “Schroedinger equation” in

the low-energy subspace is

Hp(E)Yr = (HL + HLﬁHM) Y = Er. (4.3)

Note that the down-folded “Hamiltonian” H ;, is energy dependent and that the above
equation is non-linear. Let us suppose that £, and Ey are typical energy scales of
the low- and high-energy manifolds respectively, i.e., typical matrix elements of the
operators H; and Hy respectively. We want the down-folded theory to reproduce
the spectrum of the low-energy manifold. In principle this can be done by writing

E = E+JF and expanding the above equation in the small parameter 0 E/(Ey — E'L.).

Let us suppose that for the original theory (in which both the low- and high- energy
degrees of freedom are present) the form of the charge current operator j is known
from the symmetry of the original theory and by the application of Noether’s theorem.
Let us assume that the current operator is given by j = ((60H(A))/(0A))a—o. For the
down-folded theory it is not possible to reconstruct Noether’s theorem since the Hilbert
space has been truncated to exclude the high-energy states. The questions, then, are:
what is the form of the charge current operator (j.¢) for the down-folded theory that
reproduces the low-energy part of the current correctly? Also, if we can write down
a low-energy effective Hamiltonian H.¢(£) (and which does not depend on E like

Hp(E)), then will jeg = ((0Her(A))/(6A)) a=o-
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This issue was recently revisited by Millis [51]. He assumed that the wavefunc-
tion in the low-energy sector is normalized, i.e., (¢ |¢or) = 1. With this normal-
ization convention, the basis states of the full theory acquire energy dependent nor-

malization factor, i.e., the normalized states are ¢y = ¢/N(E) where N(E) =

\/1 + <¢L|HL(E — Hyg)~?Hu|Yr). By asimple application of the Feynman-Hellman

theorem one can show that

il () = (55) =l (FEER) . @y

From the above equation we find that the diagonal matrix elements of the current op-
erator for the full theory can be expressed in terms of the diagonal matrix elements of
the energy-dependent current operator of the down-folded theory. However, Millis ob-
served, for non-diagonal matrix elements there is no such simple relation between the
full theory and the down-folded one. The main problem in making such a connection
is the energy dependence of the normalization of the basis states in the full theory and
the energy dependence of the operators in the down-folded theory.

RG provides a rigorous way of identifying the low-energy theory. In the functional
integral language this is done by eliminating or integrating out high-energy degrees of
freedom. In a Hamiltonian formulation this is equivalent to making unitary transforma-
tions that decouple the high- and low-energy subspaces, and then truncating the Hilbert
space to keep only the low-energy subspace. That is, given a Hamiltonian H, we per-
form unitary transformations (U) such that UTHU is block diagonal (i.e., no terms mix-
ing the two subspaces). The effective low-energy Hamiltonian is H.s = PUYHUP,
where P is the operator projecting on the low-energy subspace. In this scheme the
effective low-energy current operator is unambiguous and is jog = PUTjUP. In the
following our aim will be to understand down-folding as a formal procedure of per-
forming RG transformation and make a connection between the two schemes.

We make the observation that the problem of the energy dependence in the nor-
malization factor and the energy dependence in the operators of the down-folded the-

ory can be removed if we expand Eq. (4.3) to first order in 6 E. To this order, and
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after a transformation that makes the low-energy basis states orthonormal, the low-
energy effective theory can be expressed as a Schroedinger equation with an effective
Hamiltonian H.s(FE). We will identify the down-folding transformation D, where
Hex(EL) = DYHD, as a combined operation of unitary transformation and projection,
i.e., D = UP. With this identification it is clear that in the down-folding scheme the
effective current operator is j. = D'jD. However, we will see that the down-folding
transformation is energy dependent, i.e., D = D(JFE). Therefore, in order to write

down j.& we will have to make use of the equation of motion.

4.2 Charge Current Operator in Low-Energy Sector

We begin with Eqg. (4.1), and we adopt the normalization that the eigenstates of the
full theory are orthonormal, i.e., (¢,|¢s) = d4. This implies the projections of the

eigenstates on the low-energy sector satisfy the formal relation

<wLa

L4y (B = )™ (By = M) P || ) = 6 (45)

Next, we expand Eq. (4.3) to linear order in  E£. The corresponding equation can be

written as
H(EL )y = SEO™ (B, (4.6)
where
H(EL) = Hp + H (B, — Hy) ™ VHy — By, (4.7)
and
O NEL) =1+H\,(E, —Hpy) Hu. (4.8)

The solution of Eq. (4.6), w(LO), coincides with v;, to zeroth order in 0F, i.e., ¢, =

w(LO) + O(0F). If we expand the normalization Eq. (4.5) to zeroth order in 6 £, we get
(Wl O~ (EL)IY5)) = b (49)

This suggests that Eq. (4.6) has the structure of Schroedinger equation expressed in a

non-orthogonal basis, and the operator O~!(E}) can be understood as the inverse of
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the overlap. This is expected because though the basis states for the full theory (v’s)
are orthonormal, their projection on the low-energy sector (:1,’s) are not orthonormal.
In other words, this step in the process of down-folding is a transformation (say 77)

that is a non-unitary followed by the projection P. We write this transformation as

(0) (0)
1 0
L _ ot = vr (4.10)
VY 0 M 0 0
where
M = (Ep — Hy) *Hay — SE(Ep — Hy) *Hay. (4.11)
In this new basis we have the equation
(0) (0)
TTH-E)T, | " | =6ETiTy | " . (4.12)
0 0

To O(0F) this coincides with Eq. (4.6). We note that the transformation 73 depends
on the spectrum § E.

In the next step we will consider a non-unitary transformation (73) in the low-
energy sub-space of the form w(LO) = T,¢y, such that the states ¢;, are orthonormal. It
is easy to check that the general form of the transformation is 7, = O/2U, where U is

unitary, i.e., UTU = 1. Using Eq. (4.9) we get

Sap = (WO EL) W) = (¢ra|UTOV207 02U |b1s) = (braldrs).  (4.13)

This establishes the orthonormality of the {|¢.)} basis. The transformation from the
non-orthogonal basis {|¢;) } to the orthonormal basis {|¢r)} is not unique. It depends
on the choice of U. In the following we will choose U = 1. Applying this transforma-
tion to Eq. (4.6) we get

Her(EL)¢r = 0E 9L, (4.14)

where

Her(EL) = OY2(Ey) <HL FHL(BL — Hy) " VHay — EL) OY2(EL).  (4.15)
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We identify the down-folding transformation (D) as

1 0 o2 ¢ o2 0
D =TT, = = , (4.16)
M 0 0 0 MOY2
and we can write
Hcff 2
D'HD = + O((0E)?). (4.17)
0 0

It is easy to check that keeping terms to zeroth order in § £ (which is consistent since

we have maintained accuracy of the wavefunction and the normalization condition to

10 }
. (4.18)

this order) we get

DD =
0 0

This confirms the identification D = U P. It is important to remember that the trans-

formation D is spectrum dependent.

The effective low-energy current is given by

01/2 Ol/ZMT jL j;rw 01/2 0 B joﬁ 0
MOY? ( 0 0

0 0
The above equation has explicit dependence on d E. This can be removed formally by

+O((6E)?).

D'iD =
v Jm

making use of the equation of motion, i.e., Eq. (4.14). Since the operator D acts on
|61}, we will replace § E by H.g acting on the right, and for DT we will replace 6 E by
H.¢ acting on the left. We get

Jor = O[3+ 30 (Bu = M) Hay + My (B = Har) i+
Hi(EL — Hu) 'ju(Er - HH)—luM} oV2 _
1072 Lty + M4 (B — M) " | (B = Har)“Has OV * Mo+
HefEOl/ZHj,[VI(EL — Hy) > {jM +in(EL — HH)_lHM} 01/2} . (4.20)

This construction guarantees that

(Valiltp) = (DLaliert|DLs) + O((5E)2)-
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4.3 Downfolding in the Presence of a Vector Potential

We will assume we know how the vector potential A couples to the original Hamil-
tonian H, and that the current operator is given by j = ((60H(A))/(0A))a—o. Thus
H(A) = H(0)+j- A. From this information we should be able to find how A couples
to Heg(Ey). We will investigate whether jog = ((6Heg(Er, A))/(0A))a—o

It is instructive to study this issue first for a case where the down-folding is trivial.
Let us suppose we have a Hamiltonian which we can diagonalize and which we can
cleanly separate into a low- and a high-energy subspace. In obvious notations

Ho =ML ®Hu =Y _ E i) wil+ Y Eflvh) (Wl
i€l keH
In this trivial case the down-folded Hamiltonian is
How = He = > Ej[v3) (.
i€l

However, though H is diagonal, the current operator j = ((6H(A))/(6A)), in general,
is not diagonal in this basis. In particular, it can have terms mixing between the two

subspaces. The current operator can be expressed as

= W L+ 3 Wl k)

ijeL ki€H
OH oH
+Z QMﬂ OW)L M) (W] + Z ¢L O|¢H>|¢L><¢H|

The four terms above are jr, ju, jar and j}'w respectively. The current for the down-
folded theory is
. . . OH.
Jett = PjP =j = Z <¢L‘ - |¢L>|¢L><¢L|
i,j€L
Now the question is whether j, = (6H.(A))/(0A). Using Feynman-Hellman theorem

we can express the current matrix elements as

L O0H, . OF" , s
(W 0) = S0y + (B = B)@RJ0),  ijeLH (421
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Using the above equation we get

oa = et Y B ((WhIORI) W)l + (b loalullud) (whl) . @22)

keH

Similarly, one can show that

SH ) — . ) L — X
S =+ Y Bl (Whloalvi) o) (il + (Wilosleh) i) (whl) . (423)

keH

In general (6Hp ma/0A) # jouam. The difference is due to matrix elements of
the type <¢1’3|8_>A|w2>, which gives coupling of the two subspaces due to the vector
potential. Thus, we see explicitly in this simple example that Hz(A) = Hy +j1 - A,
and then of course, jog = (0Heg/JA). In particular, Heg(A) # Hy + (6HL(A)/SA) -
A. In fact, the operator (6. (A)/0A) is not contained only in the low-energy sector.
It has mixing terms as can be seen explicitly from Eq. (4.22). In this context it is useful
to note that the approximate low-energy current (j ) obtained by Peierls substitution is

only the diagonal part of j; . It is given by

. OFEL . .
o= 30 TRl (. (4.24

1€l

The off-diagonal part of j; involve information about the A dependence of the wave-
functions |¢1). The diagonal part contains the A dependence of the spectrum E7.
Next we will consider the general case of down-folding in the presence of the vector

potential. We generalize Eq. (4.1) to

Hp+jr-A HI, +jl, A
L TJL M T Im VL _E v, . (425)
Hy +jv-A Hp+ju- A YV Yy
As we have discussed before
OHL(A) _ i[PH(A)P] oy :P[éH(A)]P
SA SA JL SA

As before we will assume that the eigenstates for the full theory are orthonormal. The



59

equivalent of Eq. (4.3) in the low-energy sector is

Ho(E,AWr = |(Hp+j.-A)+ (ij Ll A) (E—Hy —ju-A)"
X (Har +im - A)]Yr
— E(A)Yy. (4.26)

We expand the above equation to linear order in § £ and A and also retain terms of the

order (§E'A). We get, after collecting terms,
H(EL A)ley) = SEO (Ep, A)lvy), (4.27)
where
H(ELA) = Myt My (Er—Ha) ™ Hag — B |

+ [jL b (B = Hy) M + MY (B — Hi) Y

+ (B = M) By — M) Mg - A, (4.28)
and
O~ YEp,A) = [1 +H (B — HH)-ZHM} + [jjw(EL — Hy) *Huy
+H (B — Hiy) 5+ HY (B — Hy) (B — Hy) " *Huy
+HY (B — Hi) 2ju(Er, — HH)_IHM] AL (4.29)

If we expand the normalization condition which is a generalization of Eq. (4.5) to

zeroth order in § E and to linear order in A, we get
(WO~ (B, A)S) = da. (4.30)

As before we use the transformation 75 to go to the orthonormal basis {|¢.)}. In this
basis we get

Heg(Er,A)pr = SE(A)or, (4.31)

where

Hew(Er, A) = OV (EL, AYH(E,, A)OV*(E,, A). (4.32)
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From the above equation we get

SHet(ErL, A o . B
<%) = 0 [JL +38(BL — Hu) "M + My (B — Hi) \ju
A=0

v H (B — Hy) (B — HH>—1HM] OV2(Ey)

(501/2(EL, A)

0A )A:O HAEL)O ()

SOV(EL, A)
SA Ao

+ OY*ELYH(EL) (
Now we want to compare the above expression with that of j.¢ given by Eqg. (4.20).
We note that the first term in the above expression, which is zeroth order in J E, co-
incides with the zeroth order term in j.g. The difference is in terms which are first
order in . However, it turns out that there is no simple closed form expression
for ((§OY*(EL,A))/(0A))a—o. So we will expand O'?(E, A) in the parameter

A= FEy/(Ey — EpL), where E), is a typical matrix element of H,,. We find

<W)Azo e = % [X(EL) B XT(EL)’,]:{(EL)] + O(/\‘l)’ (4.34)

where

X(By) = [i+ Mo (B = M) ] (BL = Hu) "M (439)

4.4 Example: Non-Interacting Anderson Lattice Model

In this section we apply the abstract concepts of down-folding discussed in the last
two sections to the particular case of the non-interacting Anderson lattice model. The
interacting version of this model is used to study heavy-fermion systems. We write the

Hamiltonian as

H o= D (er+allk o)k cl+ Y effk, f){k, f|

k k
+ > Ak, )k el + ik, o)k, f]) .
k

The states |k, ¢) form a broad band of conduction electrons with a well-defined Fermi

sea. The spectrum ¢, is defined with respect to the Fermi energy e. The states |k, f)

(4.33)
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form a narrow dispersion-less band with energy €. In the following we will assume
that the two bands are well-separated with large e — e, = AE. The last two terms in
the Hamiltonian represent hybridization between the bands.

The Hamiltonian is diagonal in momentum space, and it is quite elementary to
diagonalize it into a low-energy and a high-energy bands. However, in the following
we will apply the concept of down-folding and construct a low-energy effective theory
which is entirely in terms of the conduction electrons. Since in the low-energy sector
all the operators are now scalars (matrices diagonal in k-space), the down-folding is
very easy. We get,

Her = > _SE[k, ) (k, ], (4.36)
k

- i\ Vif?

and |k, ¢’) are the renormalized conduction electron states.

where

In the following we will assume that the current operator for the full theory is

known and is given by V’H (k). Thus,
i=Y Vedlk kel + D (VVilk, f)(k e+ VVk o)k, f]).  (438)
k k

Following the formalism discussed in section 4.2 we get,

joﬁ I; (1 + (XkE"P) (VEk + A—1E|V(|Vk‘2) — 5Ek@quk|2)) ‘k, c’><k, c/|.

(4.39)

It is also easy to check that if we do the down-folding in the presence of a vector

potential then, in this example,

5Hcff

5A = Jeft- (440)

A=0
This is due to the fact that in this example the various operators in the down-folded
theory are scalars. As discussed in the previous section, in a more general case, where

the low-energy theory has non-trivial matrix structure with respect to the band indices
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(for this the low-energy theory has to have more than one band), the above equality

will not hold.

4.5 Conclusion

We identify down-folding, to linear order in the spectrum, as a formal renormalization
group procedure. We construct the current operator for the low-energy theory which
gives the correct matrix elements to linear order in the spectrum. We find that while
down-folding in the presence of a vector potential, the operator that couples to the
linear term in A cannot be interpreted as the current operator for the low-energy theory.
In the presence of the vector potential the downfolding transformation is a function of
A,ie., D= D(A). As aresult the effective low-energy Hamiltonian to linear order in
Ais
Her(A) = D'(A)(H+j-A)D(A)

B . SDY(A) toip OD(A)

We see explicitly that besides j.g, there are additional operators that couple to the term
linear in A. We conclude that the correct procedure to obtain the current operator is
the one outlined in section 4.2, and that jos # ((0He(A))/(0A))a—o. However, one
needs to understand the physical nature of the additional terms. It is possible that the
additional terms are divergence-less, and therefore do not contribute to dc transport. To
test this conjecture one has to study a more non-trivial example where the low-energy

sector retains more than one band.
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Chapter 5

Thermoelectric Behaviour of Heavy-Fermion Systems
Near Magnetic Quantum Critical Point

5.1 Introduction

Understanding the behaviour of a system close to antiferromagnetic quantum critical
point (QCP) is currently an area of active research. The problem is interesting both in
the context of high temperature superconductors as well as heavy-fermion materials,
especially to understand metallic phases that show non-Fermi liquid (NFL) properties.
In recent times several materials have been discovered where it has been possible to
demonstrate the existence of magnetic QCP [24,16,11]. This has made the problem an
exciting ground where theoretical understanding of electrons with strong correlations
can be verified experimentally. One central issue in this problem is an appropriate
theoretical treatment of electrons interacting with spin fluctuations close to the QCP
where magnetic correlation length diverges. A second central issue, is whether the
spin-fermion model [25] describes the relevant degrees of freedom, or whether a more
basic model, allowing for the disintegration of the binding of local moments to the
quasiparticles, is necessary for describing this transition [20, 63].

In this chapter we will discuss two experimentally well-studied heavy fermion ma-
terials, CeCug_,Au, [24] and YbRh,Si, [16], that exhibit antiferromagnetic QCP. In
doped CeCug, replacing Cu with larger Au atoms, favours the formation of long range
magnetic order [24]. Beyond a critical doping z. = 0.1, the ground state of the sys-
tem is antiferromagnetic with finite Néel temperature (7y) [25]. At the critical doping

T is zero and the system has a QCP. On the other hand YbRh,Si, is undoped and
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atomically well-ordered [16]. It is a much cleaner material than CeCug_,Au,, with
residual resistivity (po) smaller by a factor of about 10. At ambient pressure it devel-
ops long range magnetic order at a very low temperature of 7y ~ 65 mK. [16] The
ordering temperature can be suppressed to practically zero (less than 20 mK) by ap-
plying a magnetic field of only 45 mT [16]. Both these materials show pronounced
deviations from Fermi liquid (FL) behaviour, which is believed to be due to closeness
to the QCP. For instance, the dependence of electrical resistivity Ap = p — pg to tem-
perature 7" is Ap o T, while that of specific heat C' is C/T « —InT [24,16]. This
is in contrast with FL behaviour which predicts Ap oc 72 and C/T = constant. The
low temperature NFL behaviour is observed over a decade of temperature, up to about
1 K for CeCug_,Au, [24,25], and up to as high as 10 K for YbRh,Si, [16]. The
source of the interesting physics in these materials is the localized 4 f electrons [20]
of Ce3* (in 471 electronic configuration) and Yb3* (in the configuration 4 f!3), and
their interaction with the relatively delocalized s, p and d orbital electrons that form a
conduction band with a well defined Fermi surface at low temperature. The conduction
electrons and the localized 4 f electrons carrying magnetic moment are coupled by ex-
change interaction (.J). Below a certain critical value of exchange interaction (J.), the
local moments interact with each other, mediated by conduction electrons, and at suf-
ficiently low temperature form long range antiferromagnetic order. On the other hand,
if the exchange coupling is strong (J > J.), the local moments are quenched below
a certain temperature (lattice Kondo temperature). The quenched moments hybridize
with the conduction electrons and they participate in the formation of the Fermi sea.
The ground state of such a system is non-magnetic. The exchange coupling is usually
tuned experimentally by either doping the material or by applying external pressure or

external magnetic field.

For CeCug_,Au, there are two different views [20] regarding the nature of the
system in the non-ordered phase and the corresponding mechanism by which the crit-

ical instability occurs. In the first picture (Fig.5.1(a)), the lattice Kondo temperature
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Figure 5.1: Two possible scenarios for heavy-fermion quantum criticality. 7™ is the
temperature below which heavy Fermi liquid forms. Local moments exist above this
temperature. In (a) 7™ is zero at the critical point z.. Local moments exist down to the
lowest temperature. In (b) 7™ is finite at the critical point. The phase transition is by
spin density wave instability of the Fermi liquid.

(T*) becomes zero exactly at the critical point (J = J.). The local moments of the 4 f
electrons survive at all finite temperature close to the critical point. At the transition
point they are critically quenched. The local moments produce the critical magnetic
fluctuations that destabilize the Fermi sea. It has been argued, in favour of this mecha-
nism, that the data on magnetic susceptibility shows non-trivial scaling with tempera-
ture [64]. At the critical point the susceptibility has the scaling form xy = T~ f(w/T)
with an anomalous exponent o ~ 0.75, which is different from conventional insulating
magnets which have « = 1. The alternative picture suggests that 7™ is finite at the
critical point. Well below this temperature, and close to the critical point, the local
moments are quenched by Kondo mechanism. The 4f electrons become part of the
Fermi sea. Then, the phase transition occurs by the usual spin-density wave instabil-

ity of the Fermi surface. In this picture the local moments do not play any role in the
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Figure 5.2: Logarithmic temperature dependence of thermopower over tempearture for
CeCusg9Aug ;. Data courtesy of C. Pfleiderer and A. Rosch.

phase transition. This theoretical viewpoint, proposed by Rosch and collaborators [25],
is motivated by inelastic neutron scattering data on CeCus 9Aug ; Which show that the
nearly critical spin fluctuations are two dimensional [26]. But the origin of the quasi
2d behaviour of spin fluctuations is not well understood. However, the same feature is
probably also present in YbRh,Si,, where the structure of the lattice provides a more
natural explanation for the spin fluctuations to be two-dimensional [16]. Besides the
nature of the magnetic correlations, there are different opinions regarding the dynam-
ics of the spin fluctuations. It has been argued [65] that if the ordering wave-vector
spans different points of the Fermi surface, then the dynamics of the spin fluctuations
is overdamped, with dynamic exponent z = 2. This model of spin fluctuations with
d = 2 and z = 2, coupled with three-dimensional electrons, was used to explain the
linearity of resistivity with temperature [25]. Following the method of Hertz [21, 22],
in which the system is described entirely in terms of the spin fluctuations, after a formal

Hubbard-Stratanovich transformation to integrate the fermion modes, it also explains
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the logarithmic temperature dependence of specific heat [25, 22]. In an alternative de-
scription [66], in terms of low energy electrons interacting with spin fluctuations, it has
been suggested recently that both the frequency and momentum dependence of the spin
fluctuation propagator undergo singular corrections such that the propagator acquires
an anomalous dimension  ~ 1/4 [67]. Thus, after nearly a decade, there is still no
clear understanding regarding the appropriate model that describes the quantum phase

transition.

In this chapter we will study the thermoelectric behaviour of a system in the para-
magnetic phase and close to antiferromagnetic QCP. For CeCusgAug it is known that
thermopower (S;) has a dependence similar to specific heat over the same range of tem-
perature [68,69], i.e, S;/T o« —InT. We will show that scattering with nearly critical
spin fluctuations give rise to temperature dependent quasiparticle mass (m*) over much
of the Fermi surface. The signature of this can be seen in static response (specific heat)
and in transport (thermopower). Finally we will argue that the same mechanism should
be relevant for YbRh,Si,, and so we expect to see the same behaviour for thermopower

from future experiments.

5.2 Model

Our model is motivated by the second picture as described above. It assumes that 7*
defines a high energy parameter. For 7" ~ T the local nature of the spins of the
4 f electrons is important as they participate in some lattice Kondo phenomenon. For
T < T*, the 4f electrons become part of the hybridized conduction band. In this
regime the nearly critical spin fluctuations of the conduction electrons is important.
It is an intermediate temperature range where the system is described by low energy
conduction electrons interacting with quasi two-dimensional spin fluctuations. Within
the spin-fermion description, at sufficiently low temperature, the three-dimensional

nature of the spin fluctuations is retrieved and the model used here ceases to be valid.
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In this regime, the model predicts, in pure systems, a crossover to an electronic Fermi
liquid with a finite mass. However the physics governing this dimensional crossover,
has not been investigated.

The model is described by the Hamiltonian

Zekcﬂ’ocka Z ck+qackﬁaa5 S_q+z “(a)Sq - S_q
k,o kqaﬁ
Uo
+ T Tg)+ > (Sk - Sk) (Sky - Sk,) 6 Zk (5.1)
ki,ka,k3,kq

Here cLU Is the electron creation operator, S, is the operator for the spin fluctuations,
I1, = 0,S, is the conjugate momentum field for the spin fluctuations, and x(q) is the
static magnetic susceptibility. g, is the bare coupling between the electrons and the
spin fluctuations, and w is the interaction energy of the spin fluctuations. The collec-
tive spin fluctuations are formally obtained by integrating out high energy electrons in
the band up to a certain cutoff [66]. Thus the typical energies of the spin fluctuations
ws ~ W, the bandwidth of the conduction electrons. The system is close to an antifer-
romagnetic instability with ordering wave-vector Q. We will assume that the dynamics
of the spin fluctuations is purely damped with dynamic exponent z = 2. The spectrum

of the two-dimensional spin fluctuations will be described by [21,22]

X Haq,w) =0+ ws(q— Q)f —iv|wl. (5.2)

Here ¢ is the mass of the spin fluctuations and measures the deviation from the QCP, the
parallel directions are those along the planes of magnetic correlation, and v ~ (go/€er)?
is an estimate of the damping from the polarization bubble. In the spin fluctuation part
of the Hamiltonian, the interaction term wu is marginal, since the scaling dimension
is zero [21,22]. The main contribution of this term is to renormalize the mass of the
spin fluctuations (6) and make it temperature dependent. Within a Gaussian approxi-
mation, ¢ is linearly dependent on temperature, up to logarithmic corrections [25, 22].
We will ignore other effects of the u, term in our discussion, and will consider only the

quadratic term with temperature dependent mass of the spin fluctuations. To simplify
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the calculation we will assume a spherical Fermi surface for the non-interacting elec-
trons, with the ordering wave-vector Q = («, 0, 2kr cos 6y). Here 6, # 0 (i.e. not 2kp
ordering), and 6, # 7/2 (i.e. not ferromagnetic ordering). We have chosen x as the
direction along which the spin fluctuations are uncorrelated, and «, the ordering in the
x-direction, varies from one plane of magnetic correlation to another. Since the spec-
trum of spin fluctuations is two-dimensional, those carrying momentum of the form
Q + ax, where « is arbitrary, are all nearly critical. Due to constraints from energy-
momentum conservation, only those points on the Fermi surface that are connected by
the nearly critical spin fluctuations are particularly sensitive to the QCP, since elec-
trons at these points undergo singular scattering with the spin fluctuations. These are
the so-called “hot spots”. It is important to note that since the spin fluctuations are
two-dimensional, there will be a finite area of the Fermi surface that is hot. Though it
is worthwhile to estimate the fraction of the Fermi surface that is hot, theoretically it
is a daunting task. In our calculation we will assume that most of the Fermi surface is
hot. In effect, we are assuming that contribution to static response and also to trans-
port is mostly from the hot regions. It was pointed out by Hlubina and Rice [70] that
in transport the hot carriers are less effective than the cold ones. This is because the
quasiparticle lifetime of the hot carriers is less than that of the cold carriers, since the
former suffer enhanced scattering with the spin fluctuations. As we will show below,
the lifetime of the hot electrons 7, < 1/T, while the cold electrons have Fermi liquid
characteristics with 7, oc 1/72. If z is the fraction of the Fermi surface (FS) that is hot,

then we can make an estimate of conductivity o,

~ < > ~ T n 1—=x
g T .
KT Tlep T (T/er)?

The first term, which is the contribution from the hot region, will dominate to give

Ap o< Tonlyif x > 1/(1 + T/er). This gives a rough estimate of the fraction nec-
essary for the hot carriers to dominate. In the case of CeCug_,Au,, which is a dirtier
material, the above estimation is more involved. It was recently shown [71] that the ef-

fect of disorder is to favour isotropic scattering and thereby reduce the effectiveness of
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- = G(p,w)

k)

Figure 5.3: Lowest order (a) electron self-energy and (b) spin-fermion vertex correc-
tion. For the vertex external frequency has been set to zero.

Hlubina-Rice mechanism. Thus, one should expect a smaller fraction, than estimated

above, enough to make the contribution of the hot carriers significant for CeCug_,Au,.

5.3 Spin-Fermion Vertex and Electron Self-Energy

We will first examine the lowest order correction to the spin-fermion vertex (Fig.5.3(b)).
The main purpose of this exercise will be to demonstrate that at the QCP (6 — 0) the
corrections to the vertex is not singular. This is important because otherwise our per-
turbative calculation will break down at low temperature near the QCP. With a singular
verteX, the coupling constant between the electrons and the spin fluctuations will get
strongly renormalized at low energy. The qualitative features of the theory will change,
in particular the electron self-energy. We will express the lowest order correction to the
bare spin-fermion coupling as ¢ = g,(1 4+ I"). Since we are interested only in the hot

electrons and their low energy interaction with the spin fluctuations, we will calculate
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the vertex I" with zero external frequency. The expression for the vertex is given by,

ngZ/ MO+ k) Cpr k)X (Qtaxtkw).  (63)

Here p; and p, are two hot points that are connected by wave-vector Q + ax and

G (p,w) is the free electron propagator given by,

n

G (p,w) = £

1—n,
— + —.
w—€ —1 WwW—¢€+1n

(5.4)

Here n,, is the electron occupation of the momentum state p at 7" = 0. It is convenient

to use the spectral representation of the spin fluctuation propagator

< dQ) 202

The w-integral is now stright-forward. We get

8( €1k)
Z/ T Yo T 22 { (e1x — €ax)(€1x — Q) (€1 + Q)

( €2k) B 1
T e —a) (e — (e Q) 2000+ ) (2 + o) } '

In the above equation v, = ¢ + w,(k — Q)ﬁ, and ey, €9 are the fermionic spectra near
the two hot points p; and p, respectively. The linearized spectra can be expressed as
€1k = Vi;ki + v1;k; and eg = voik; + g5k, Where (k;, k;) are co-ordinate axes in the
plane defined by the centre of the Fermi sphere and the two hot points. The k-sum can
now be simplified by expressing all the terms in the quadrant defined by ey, €21c > 0.

After some algebra we get

2

I = 4g? Z / dw w . (5.6)

7Q+k + w2) (€1 + €2x) (w + €1k) (w + €2x)

1k sea >0
It is easy to check by simple dimensional analysis that as 6 — 0, the above expression
is finite. As an estimate we get I oc g2AY/2/(€2%wi/?), where A is a dimensionless
cutoff in the momentum space.

Next, in order to calculate the effect of the low energy spin fluctuations on the hot

electrons, we will examine the electron self-energy. The lowest order term (Fig.5.3(a))
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in perturbation gives

——%Ej/ 5 X\ ()G (P +kwt Q). (5.7)

As expected, the above expression has different behaviours in the hot and cold re-
gions. But within each region the self-energy is practically momentum independent.
The imaginary part of the self-energy gives the quasiparticle lifetime as determined by

scattering with the spin fluctuations. For w > 0 we have,

ImY (p,w) = —g2 Z (W~ airp) . (5.8)

2
0<er<w ’yk w - €k+P>
If p isa point in the hot region, then it is connected to another hot spot by a wave-vector
of the form k = Q + ax. We linearize the spectrum about this second hot point, and

perform the integral in terms of local coordinates around it. In the hot region we get,

ImY (p,w) ox — < 9 ) W . (5.9

epws ) max|d, w]
For w > ¢ the lifetime of the hot electrons is much smaller than that given by Fermi
liquid behaviour (ImX(w) o w?). As we have mentioned above, this is due to more
effective scattering with the spin fluctuations in this region. For the cold electrons the
behaviour is Fermi liquid like.
Next, we will examine the real part of the self-energy. The dependence of ReX on

frequency is more important than the dependence on momentum. We get,

2 62
~ lim iReZ (p,w) = go Z _ (Vk k+p)2 L
w—0 aw ’yk + Ek—i—p (712( + 612{+p) €k+p
3 . .
(v + 6ier)

If p is a point within the hot region, each of the three terms in the above expression is

logarithmic. As before, after linearizing the spectrum near the second hot spot, we get,

qmngg) <%)m@ﬂ. (5.11)

w—0 Ow TERW, )
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Due to scattering, the non-interacting electron mass m is renormalized to the quasipar-
ticle mass m* = m/Z (in the absence of any momentum dependence of the electron

self-energy), where

Z7'=1-lim aiReZ (p,w) (5.12)

w—0 Jw

defines the quasiparticle residue. Since ¢, which measures the deviation from the crit-
ical point, can be written as 6 = I'(p — p.) + T, the quasiparticle mass becomes
temperature dependent. Here p is an experimental parameter that can be tuned to the
critical value p., and I" is an appropriate energy parameter. As a consequence the en-
tropy of each hot quasiparticle becomes anomalously large. This can be seen from the

expression for entropy (.S) per particle, [72]

S 1 [ of _1 T(w)

— = — do| —= |wt — .

N ZP:WT/_C><J w( aw>wan <ep—w/Z
Here f(w) is the Fermi function, and 7(w) is quasiparticle lifetime obtained from the
inverse of imaginary part of self energy. From the above expression it is easy to see

that S/N o 1/Z. Over the hot region, keeping only the leading term, Z 1 ~ In(1/4).
Then,

S/N o N'(0)T < 9o ) In (“"—) , (5.13)

EFWs )
where N (0) is the density of states of the non-interacting system at the Fermi energy.
For T > I'(p — p.), the temperature dependence of entropy is S o T'In(1/7"), which
is different from Fermi liquid behaviour (S oc T'). This gives rise to the anomalous
logarithmic temperature dependence of specific heat. In the past [22,25] this behaviour
has been understood from a purely bosonic point of view following the formalism of
Hertz and Millis. For the spin fluctuations the Gaussian part of the action gives a free
energy F' o< T?1n T, which explains the In(1/7") behaviour of C/T. Thus, here we
find that there is agreement between the results of the spin-fermion model and the pure

bosonic model.
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5.4 Thermopower

From our discussion on entropy, it is natural to expect that this entropy enhancement
should be seen in the measurement of thermopower (S;). This is because one can think
of thermopower as proportional to the correlation function between the heat current
and the particle current, and heat current involves the transport of entropy due to tem-
perature and electric potential gradients in the system. Strictly speaking, thermopower

is defined as a ratio of two correlation functions [55], i.e,

_ L12
GCFLH7

St

where

1 v
Lip = lim —Im/ dre*™ (T jo(T) - j(0)),
0

w—0 WV
is the correlation function between heat current (j,) and particle current (j), and

L = liny %Im 06 dre“(Tj(r) - §(0)),
is the correlation function between particle currents. L., is a measure of electrical
conductivity (o = e?L;;). Here we are ignoring the tensor nature of L;; and L, and
assuming that temperature and potential gradients and the thermal current are along the
major symmetry directions of the lattice so that the tensors are diagonal. We express the
single particle energies with respect to the chemical potential and assume that chemical

potential in the sample is uniform. The expression for heat current is given by,

Jo = 2 Z Vp (CL,an,cr - CTp,chp,cr) .
p?o-

In principle, heat current will have additional terms (see Eq.(3.14)). However, such
terms are quartic in fermionic operators and generate only subleading contributions in
our calculation. We will also ignore corrections to the particle current and heat current
vertices due to exchange of spin fluctuations. These vertex corrections are nonsingular,
and change only the numerical prefactor (which we do not attempt to calculate) of

our leading term, because the spin fluctuations are peaked around a finite wave-vector.
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We note that neglecting the vertex corrections for the transport coefficients is justified
rigorously in the limit of infinite dimension (see Sec.(3.4)). With these approximations
the expressions for the correlation functions can be re-expressed in a more transparent

form as

L12—Z / dw(— u1142(137 w),
L11—Z /dw ) A% (p,w).

Here v, = 0e,/0p is the quasiparticle velocity, and A (p,w) is the spectral function

defined as

7(w)™1 .
(% — ep)2 + 7(w)~2

The evaluation of L; is more straightforward and we will examine it first. The momen-

A(p,w) =

tum sum can be converted into an integral over various energy surfaces. The dominant

contribution is from close to the Fermi level, and we get

Ln=#NO) [ do(-Syro).

—00

We have already noted that over the hot region 7(w) oc w™=1. For the frequency integral

an<@%)ﬁwm) (5.14)

This result [24, 25] simply reiterates what we had noted before, that when the hot car-

since w ~ T, we get

riers dominate transport, Ao oc 1/7". Now for L5, we first notice that the expression
is odd in frequency. This is because L5 is a measure of particle-hole asymmetry in
the system. In our calculation we will consider as phenomenological input two dif-
ferent sources of such asymmetry. One such source is from the density of states, so
that A'(w) = N(0) + wN'(0) + O(w?/€3.), where N’(0) # 0 only if there is particle-
hole asymmetry in the bare non-interacting system of electrons. The second source of
asymmetry will be from the quasiparticle lifetime which, for the hot carriers, we write

as 71 (w) = (g2 /erws) |w| (1 + Tw). Here the second term is a possible particle-hole
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asymmetric term in scattering lifetime. 7 is a typical scattering time, and w < 771
After the energy integral around the Fermi surface we get,

Ly, = vr /00 dw(—g—i)WT(w)N(w/Z)

—00

- (%) vE{TN(0)/Z + TN (0)7}. (5.15)

0

The first term in the above equation is from the asymmetry in density of states,
and the second term is from the asymmetry in quasiparticle lifetime. We note that the
factor of 1/Z, which leads to entropy enhancement, is associated with the asymmetry
in density of states. Thus, the first term is the dominant one and eventually gives
anomalous temperature dependence to thermopower. For this leading term we can

write
1/ gN'(0)
S o e (erSN(O)

In the regime where T > I'(p — p.), S¢/T o In(1/T), as has been observed [68, 69] in

) T In(ws/d). (5.16)
thermopower measurement on CeCug_,Au, (See Fig5.2).

5.5 Conclusion

To check the consistency of our model and calculation, we need to estimate the high
energy scale (namely, 7*) of CeCusgAug ;. For this purpose, we have fitted an ap-
proximate form of the free energy function (F") that will match with the experimental
results at low temperature and in the presence of magnetic field (H). The function that

matches well with the experiment has the form,

F(T,H)/kp = X(T, H)In [2 cosh (Yl(?};[)” , (5.17)

where

T? T?
X(T,H) = T+C (T—) — Cy (T—) In(T? + C3H?),

Y(T,H) = T+ (T? + CsH*)"Y?
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Figure 5.4: Magnetization (M) vs external magnetic field (H) at different temperatures
: a) T=0.15K, b) T=0.3K and c) T=0.8K. The discrete points are experimental. The
solid lines are fits using equation (10).

Here C - (' are parameters of the fitting function, p is the effective magnetic mo-
ment of the Ce*" ions in units of Bohr magneton (ug) and A\ = up/kp = 0.67.
We have chosen a simple possible form of the free energy which, at low temper-
atures (I'" < T7), is consistent with the critical form of free energy that is sug-
gested by renormalization group calculation for two-dimensional spin fluctuations [22],
namely F' oc T?In(Ty/T). At high temperatures (7" > T*) it matches smoothly to
an impurity model where the 4 f cerium electrons act as Kondo impurities. The uni-
form magnetic susceptibility in this regime is Curie-Weiss like, with x(T') oc p?/T.
This temperature dependence is cut-off at 7, below which y ~ u2/7*, down to
zero temperature. The fitting function is chosen such that at very low temperature
(T — 0), x(T') — x(0) o< —=T. [73] This limiting behaviour agrees with the form
X =~ ag + 1/(a; + aoT) which Rosch et. al. [25] used to fit susceptibility data up to
1.4 K. We also find that susceptibility derived from equation (10) can describe reason-

ably well (with a difference of at most twenty percent) the data [64] up to 6 K. The
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Figure 5.5: Entropy (S) per Ce atom vs temperature (T) at different magnetic fields :
a) H=0T, b) H=1.5T and c) H=3T. The discrete points are experimental, obtained by
numerically integrating data from specific heat measurement. The solid lines are fits
using equation (10).

variation of entropy and magnetization as functions of temperature and magnetic field
that one expects from the above free energy matches well with the experiments (see
Figs.(5.4), (5.5)). From the fit we estimate 7 to be around 15 K, and x4 ~ 2.6. In
the absence of magnetic field the specific heat coefficient (v = C/T') can be written
as v = aln(Ty/T). From the fit we estimate a = 0.5 J/mol-K? and 7, = 9.4 K,
which have comparable order of magnitudes with the experimentally measured values
a = 0.6 J/mol-K? and T, = 5.3 K [24]. The logarithmic behaviour in specific heat and
thermopower in CeCug_,Au, is observed around 1 K, which is well below 7%. The
experimental fits and the estimates suggest that the spin-fermion model that we have

been considering is consistent with the experimental data.

We now discuss the limitations of our calculation. We have completely ignored the
interaction between the spin fluctuations (the uq term). This is justified since this term

is marginally irrelevant. In our calculation we considered only the lowest order diagram
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in the perturbation series in terms of the spin-fermion coupling. However, we have
examined the lowest order spin-fermion vertex correction, and found that it is well-
behaved close to the QCP. So we believe that the qualitative features of our calculation
will not be modified by including higher order terms of the series. This is very different
from what is found in the two-dimensional spin-two-dimensional fermion model (see
appendix), where the spin-fermion vertex is singular indicating a potential breakdown
of the approach [66]. So, if the 2d-spin 3d-fermion model breaks down, there is no

trace of this breakdown in perturbation theory.

From our calculation we see that irrespective of whether the system is clean or
dirty, if there is a large enough hot region in the system, then both specific heat and

thermopower should show anomalous logarithmic temperature dependence.

Since the microscopic origin of the quasi two-dimensionality of the spin fluctu-
ations is not known, our model seem to be a fine tuned one rather than one that
is expected intuitively. It would be interesting to investigate the origin of the two-
dimensional magnetic coupling, and why most of the Fermi surface is hot by means
of microscopic first principles calculations. This study should be supplemented by
an investigation of the two- to three- dimensional crossover, to estimate the energy
scale at which it is expected to occur. We notice that specific heat and resistivity mea-
surements on YbRh,Si, [16] seem to indicate that the model, with most of the Fermi
surface hot, is quite valid for it. From this we can conclude that we expect to see the
behaviour S; /T o In(1/T") from thermopower measurement on YbRh,Siy, probably

over a wider range of temperatures than the Ce-material.

In very recent times a rather anomalous behaviour of the specific heat coefficient
of YbRh,SI, has been reported. Between 0.3K < T < 10K ~(7T) ~ In(1/T") which,
as discussed above, can be understood within our model. However at lower temper-
ature (Ty < T < 0.3K) ~ shows an unexpected upturn. In this regime y ~ 7~1/3,
Currently there is no proper understanding of the origin of this behaviour. Neither

can it be understood within the framework of the spin fluctuation theory in its current
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formulation. In the absence of a satisfying theory we will speculate what this upturn
could imply for the thermopower of YbRh,SI; in this same temperature range. We
will interpret the upturn of the specific heat as an indication that the self-energy of the
electrons is more singular (due to some mechanism which is not yet understood) than
what was calculated in Sec.(5.3), and now has the form X(w) ~ w?3. This would
imply that the quasiparticle residue Z—' o« T~'/3 for fermions close enough to the
Fermi surface. Then, following the same line of reasoning as before we will conclude
that thermopower should show the same temperature dependence as specific heat, i.e.,
Sy/T o T~1/3. This is because in our line of reasoning the non-analytic behaviour of
thermopower is entirely thermodynamic in origin. It is possible, though, that in this
regime of lower temperature the hot quasiparticles will be short-circuited by the nor-
mal carriers. But such a situation would be reflected in the temperature dependence of
resistivity. Since in the range Ty < T < 0.3K the resistivity p ~ T', the possibility of

short-circuiting can be ruled out.
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Appendix A
DMFT Equationsfor the Hubbard M odel

Here we will discuss a functional integral formulation of DMFT for the Hubbard model
defined in Eqg.(1.8). We consider c&a and ¢, as an impurity degrees of freedom at
the site R interacting with a bath which is made up of the degrees of freedom on
the remaining lattice site. In the limit of infinite dimensions one can show that the
bath degrees of freedom can be integrated out to get an effective impurity action in
imaginary time (7) of the form

B B B
Sa=- [ ar [ 3 ()G =7 oo 04U | drmay(onai (o). A

0

Here 5 = 1/(kgT) is the inverse temperature. Go(7 — 7’) acts as the effective Weiss
field for the impurity. It gives the amplitude for an electron to hop on the impurity
site from the bath at time 7 and to return to the bath at time 7/. We define the Green’s

function of the effective action as
G(1) = —(Tre(T)e (7)) s (A.2)

and its Fourier transform G(iw,,) in terms of fermionic Matsubara frequencies w,, =
(2n + 1) /3. In the above equation 7, is the imaginary time ordering operator. From
the discussion in Sec.(1.1) it is clear that the Fourier transform of the one-particle

Green’s function G;;(7) = —<TTci7U(r)c},o(r)> of the lattice theory has the form

. 1
Gk iwn) = iwn + p— e — Dliwy,) (A-3)

Here 1 is the chemical potential, e, = —2¢ ). cos(k;), and X(iw,,) is the self-energy

which is momentum independent. One can show that the lattice theory can be mapped
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to S.g by the condition
N(iwn) = Go Hiw,) — G~ iw,). (A.4)

The above equation ensures that the local Green’s function G;;(iw,,) = >, G(k, iw,)
coincides with G (iw,,). The above set of equations can now be solved self-consistently.
We start with an initial guess for X (iw,,). Then the local Green’s function G(iw,,) can
be calculated by momentum summation of G(k, iw,) given by Eq.(A.3). In the next
step the Weiss field Gy(iw,) can be calculated using Eq.(A.4). This gives complete
information of S.g which will allow us to calculate the local Green’s function using
Eq.(A.2). Finally, using Eqg.(A.4) one gets a new expression for the self-energy. This

procedure can be iterated till convergence is achieved.
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Appendix B

Mathematical Preliminary

In this appendix we will review some familiar concepts of linear algebra which we will
express in the language of a non-orthogonal basis. We will discuss the representation
of abstract operators, and the appropriate definition of the trace of an operator in a non-
orthogonal basis. We will also discuss unitary and non-unitary transformations from
one set of basis to another. Finally we will express a second quantized Hamiltonian in
a non-orthogonal basis.

We consider a non-orthogonal set of states {|«)} that spans a linear vector space
(which means the states are linearly independent). We will regard the states {|a)} as
defining a non-orthogonal basis for the vector space. The overlap between the basis
states is given by the overlap matrix O,s = («|5). In principle, one can construct an
orthonormal basis, say {|7) }, from the states {|«) } by the Gram-Schmidt method. Here

we will assume that there exists a transformation S connecting the two bases such that
i) =D Saile) and (| =) Silal =) Sh(al (B.1)
We note that, by definition, the transformation S is non-unitary. Since
6 = (il) = Y _ Sh(alB)Ss; = D S 0asSsi: (82)
af af
we find the overlap matrix is given by
0= (557" (B.3)

As an example, by using the above equation we find that the representation of the
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identity operator in the non-orthogonal basis is given by
f:Z| ) (] _Zsocz|a i3 (8] = ZOa5|CX (B.4)
i a3

The matrix elements of an abstract operator A in the two bases are related by
= (il Alj) = Z (0| A8)Ss; = Z AapSp;- (B.5)

We get back Eq. (B.2) if A is the identity operator.

In an orthogonal basis the trace of an operator is given by Tr( A ) > Ay e, the
sum of the diagonal terms of the matrix representation of the operator. However, this is
not the case in a non-orthogonal basis. In fact, > . A;; # > Aae. Inanon-orthogonal
basis the trace is given by,

Tr(A) =) (ilAli) =) Sl (alA|B)Ss = Z O} Aga. (B.6)
% il
In particular we have Tr(f) = n, Where n is the dimensionality of the vector space.
Using Egs. (B.4) and (B.6) we recover the familiar result
Tr(AB) =Y 0.3(BlABla) = > 0,5 A3,05) Bso = Tr(BA). (B.7)
[e% afyé
Next we will consider unitary transformations of an ordered basis {|«) } to another
ordered basis {|a)) } of the form
la) = Ula) = ZUaalﬁ and  (o|UT = ((o] = > _(8|UL,, (B
B
where Ui@ = U}, The unitarity of the transformation UTU = I is expressed in the
{|cv)} basis as,
Ous = (a|U'U1B) = Y (6|ULsUss17) = D Uls05,Us. (B.9)
07 07

The overlap matrix in the new basis O,z = ((a|3)) is given by

Oap = (a|UTU|B) = Z 0,5Usp = Oug. (B.10)
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Thus, the overlap matrix is invariant under unitary transformations, which is a well-
known result. As an exercise we note that the identity operator expressed in the {|«))}
basis is

I=3 01an((8l =Y UraOmsUks17) (6l.
of

afBvyd

Comparing this with Eq. (B.4) we get
0} =Y U,.0,3UL. (B.11)
af

The above relation can also be derived by inverting Eq. (B.9) and therefore has the

same content. The matrix element of an abstract operator in the two bases are related

by

A

((alA|B)) = (|UTAU|B) = > UL (4| A16)Uss = Y " UL, AsUs. (B.12)
Y6 ¥é

We consider a similarity transformation A — U~'AU. The representation of the
U~! transformation in the {|)} basis is given by U~'|a) = 37, Uﬁ‘al|5> such that
>, UayUsy = dap. From Eq. (B.9) one can show that 3~ Oa Uy = > Ul Oy

Using this relation we get

(U AUIB) = > (alU M AUy =Y (a|U105,'16) Ay Usg

Y Y6p
= Z OunUps O3} ApyUss = Z Ul A5 U3 = Agg. (B.13)
Yopn ~é

This proves that a unitary transformation of the basis states is equivalent to a similarity
transformation of the operators. Also using Eqgs. (B.11) and (B.12) we get,

Te(A) = 3 0dAs = 3 00U AsUse = 3 Ass |UsaO43UL |
af afBvyé afys

— 205—71/175. (B.14)
7%

This shows that trace of an operator is invariant under unitary transformations of the

basis states (or equivalently, under similarity transformations).
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Next we consider non-unitary, invertible transformations of the basis {|«)} to an-
other basis {|a)) } of the form
@) = Tla) = ZTﬁa\ﬁ and  (a|T" = ((a] = Y (BIT1; (B.15)
s
where Tctﬁ = T3, Unlike in a unitary transformation, the overlap matrix in the new

basis is different from that in the old basis. The two overlap matrices are related by
Oup = (a|TIT|B) = Z O-5Tss. (B.16)
The matrix elements of an abstract operator in the two bases are related by,
Aop = (o] A]B)) Z A 5Tss. (B.17)

It is easy to verify that a non-unitary transformation of the basis states is not equivalent
to a similarity transformation of the operators, i.e., A, # (T 'AT|£). In fact, sim-
ilarity transformations where 7" is non-unitary do not preserve hermiticity of operators,
and as such are not allowed in quantum mechanics. By inverting Eq. (B.16) and using

Eq. (B.17) one can show that

Tr(A) = Y 0345 => |D T, 0 > T8 AT
af af L6 2
= Y 0 As. (B.18)

Thus, the trace of an operator is invariant under non-unitary transformations of the
basis states.

Next we will construct a second quantized Hamiltonian in a non-orthogonal basis.
We will use Egs. (B.1), (B.2) and (B.3) to relate a non-orthogonal basis {|«)} with an
orthogonal basis {|7) }. The non-interacting part is given by,

Ho = (ilHolj)cle; = > > Sl (alHo|8)Ssicle; =Y (alHo|B)ches, (B.19)

] i af af

where

= Z Siel and Co = Z SaiCi- (B.20)

7
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We note that cf,[0) = >, 05.16) # |a), and that (3]cf[0) = ds.. Also, the anti-

commutation relation of the creation and annihilation operators is given by
{choea} =38k {cl e} 8o = O3 (B.21)
ij
Similarly one can show that the interacting part of the Hamiltonian is given by

V=" (i jVILk)elchere =Y (o, BIV ]y, 0)chcheses. (B.22)

igkl afByo

The two-particle states are constructed from the one-particle states by |7, j) = |i) ® 7).
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Appendix C

Few Calculationsfor Non-Unitary Transformation

In this appendix we will give the result of the evaluation of few matrices and traces that

are used in Sec. 2.5. The matrices X and Y can be shown to have the form

X =

and

Here “c.

The

% [1+ cosh(2(bo — do)) {cosh(2b) cosh(2d) — sinh(2b) sinh(2d) (it - 8)}] 1
+% sinh(2b) cosh(2d) sinh(2(by — do)) (@ - 7)
—% inh (2d) cosh(25) sinh(2(by — do))(i - )
—% sinh(2b) sinh(2d) sinh(2(by — do))(it x ©) - 7, (C.1)

% [cos(vg — ug) {cos(u) cos(v) + sin(u) sin(v)(w - )} +c¢. ¢.]1

1 (ko
3 [sin(vo — up) sin(u) cos(v) + ¢. ¢. — €*970) sinh(2d) sin(u") sin(v)

e~ iv5—u) sinh(2b) sin(v*) sin(u) (G - f))} (G- o)

1 (ot g

3 [sin(vy — ug) sin(v) cos(u) + €. €. — ' (%6 =4) sinh(2d) sin(u*) sin(v) (@ - 0)
+e7 1% 4) ginh (2b) sin(v*) sin(u)] (6 - 5)

1

3 [ sin(vy — up) sin(u) sin(v) + ¢. ¢. + i’ ~0) cosh(2d) sin(u*) sin(v)

—ie~" (" 71) cosh (2b) sin(v*) sin(u)] (@ x 0) - &. (C.2)

c.” implies complex conjugation of the term in front of it.

traces used in the evaluation of the local interaction functional given by Eq.
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(2.39) have the form

TT(X2)

% [1 4 cosh(2(by — dg)) {cosh(2b) cosh(2d) — sinh(2b) sinh(2d) (i - ©)}]?
% sinh?(2(by — dp)) [sinh2(26) cosh?(2d) + sinh?(2d) cosh?(2b)
— sinh?(2b) sinh?(2d) (1 — (4 - 0)?)

— cosh(2b) sinh(2b) cosh(2d) sinh(2d) (4 - 0)], (C.3)

% [cos(vg — ) {cos(u) cos(v) + sin(u) sin(v) (4 - ©)} + €. ¢.]?

% [sin(vy — uo) sin(u) cos(v) + ¢. ¢. — e *070) sinh(2d) sin(u*) sin(v)
+e (% =) sinh (20) sin(v°) sin(u) (i - 8)]°

% [sin(vg — o) sin(v) cos(u) + ¢. €. + e~ % =4) sinh (2b) sin(v*) sin(u)
—(*6 ) sinh (2d) sin(u*) sin(v) (4 - 0)]

1 S *
3 [ sin(vo — up) sin(u) sin(v) + c. ¢. + e’ ~"0) cosh(2d) sin(u*) sin(v)

2

—ie~("710) cosh(2b) sin(v*) sin(u)] (1= (a-9)?)

[sin(vg — ug) sin(u) cos(v) 4 €. €. — ' (%6 4%) sinh(2d) sin(u*) sin(v)
+e "%~ sinh(2b) sin(v*) sin(u) (4 - 9)] x

[sin(vo — uo) sin(v) cos(u) + c. €. + e~ 7") sinh(2b) sin(v*) sin(u)

—e'6 =) sinh(2d) sin(u*) sin(v) (@ - 9)] (@ - 0), (C.4)

% [1 + cosh(2(by — dy)) {cosh(2b) cosh(2d) — sinh(2b) sinh(2d)(ii - ) }] x
[cos(vg — ) {cos(u) cos(v) + sin(u) sin(v) (@ - 9)} + ¢. ¢

% sinh(2(by — do)) [sinh(2b) cosh(2d) — cosh(2b) sinh(2d) (it - )] x
[sin(vo — o) sin(u) cos(v) + ¢. ¢

%smh( (bo — do)) [sinh(2d) cosh(2b) — sinh(2b) cosh(2d) (@ - ©)] x
[sin(vg — ug) sin(v) cos(u) + ¢. ¢.]

% sinh(2(by — do)) sinh(2b) sinh(2d) [sin(vy — o) sin(u) sin(v)

—c.c](1—(a-9)?). (C.5)
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Appendix D

Two Dimensional Spin-Fermion Model

In this appendix we will compare the two-dimensional spin-three-dimensional fermion
model examined in chapter 5 with the two-dimensional spin-fermion model (where
both the spin fluctuations as well as the fermions are two-dimensional). The latter
model is interesting from the point of view of high-temperature superconductivity. In
these materials the generic presence of an antiferromagnetic phase near the supercon-
ducting phase is the motivation for studying fermions interacting with spin fluctuations
which are nearly critical.

The Fermi surface of the two-dimensional fermions is shown in Fig.(D.1). Pairs

of points on the Fermi surface which are connected by the ordering wave-vector Q =

(m, ) have low-energy scattering with the nearly critical spin fluctuations. These are

h2

hl

Figure D.1: Two-dimensional Fermi surface with hot spots. Pairs of hot spots are con-
nected by magnetic ordering wave-vector Q. The connected hot spots are not nested.
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the hot spots. This is to be compared with the case we have discussed before where
the entire Fermi surface is hot. The lowest order fermion self-energy and spin-fermion
vertex are shown in Fig.(5.3), and their formal expressions are given by Egs.(5.6), (5.8),
(5.10). The difference between the models is in the estimation of the momentum sums

in these equations.

To simplify the calculation we will assume that the Fermi velocities at the hot spots
P, and P, are perpendicular (when they are anti-parallel there is nesting). We will
rotate the local momentum co-ordinate such that the Fermi velocity at P, is along
/%y and at P, it is along —k,. The linearized spectrum around these points can be
expressed as ey, , 1k = vpky, and ep, , 1k = —vpk,. In terms of the local co-ordinates
(k, ky) one can write yq4i = 0 + w,(kZ + k7). We will now estimate the real part
of the self-energy by considering only the first term 1/(72 + eiﬂ)) in Eq.(5.10). The
momentum integral is well-behaved even when the cut-off is sent to infinity. We get,

keeping only the leading term

2
~ lim gReE(p,w) = By L

v oW K X Ve + Gsp
2 [e’e] [e%¢]
90 1
= — dk dk,
43 /_oo y/_oo (0 4+ ws(k2 + k2)) + vi(0p + ks )?
2 [ee)
gO / dky 1
dr?ep J_o 70+ ws((6p)? + k2)
2
90 1
= . D.1
47repw;/2 {(5"“%(517)2)1/2] (O

12

In the above we have assumed that p is close to P, and dp is the deviation from the

hot spot along the Fermi surface.

Next we will estimate the same term for the case where the fermions are three-
dimensional. Since the spin fluctuations are quasi two-dimensional, the entire Fermi
surface is hot and the momentum dependence of the self-energy is washed out. We
linearize the spectrum and write ey, = vpk, Where k. is the direction of the Fermi

velocity at the closest hot point. Let & be the co-ordinates in the plane of the Fermi



92

surface. Then yqiic = 0 +ws (k7 + &f). We get
9 90 / 2 /
— lim —ReX = d°k dk
wlLI(IJ 8wRe (p’ ) 271' I + 5 + ws /{32 + /{32 )) (UF]{?J_)2
90 1 2
d°kj———
er (2m)3 / s+ wskﬁ

_ % J
= ﬁ (21n(A)—ln (Z)) (D.2)

A is a momentum cut-off. The above estimation gives Eq.(5.11).

12

We estimate the imaginary part of the self energy similarly. In two-dimension we

get
InY (p,w) = QW / /_ e 6p b S o +wk:§);}§ f](): fi(aw kz))?
~ 8;’;@ /_ dk,In <1 + m)
T Liﬂ(mai[; 5p])3/2] = (D3)
where &, = 6 + w,(dp)?. In three-dimension we have
ImY (p,w) = &’k OW/EF dky (6 + wy(kf +wk£)2)]§]—€:(w —vpky)?

12

% [ <
— dkfkyIn |1+ ——--u—"
87T2<—:F/0 e (5+wskﬁ)2

2 2
9 w
16m2€pws <max[w, 5]) ' (D4)

Next we will estimate the vertex correction. In two-dimension since 74, ~ &*

12

while ¢, ~ k&, the momentum dependence of the former can be ignored. With this

simplification we get

I ~ dk: dk

k: + k) (@ + k:w)( + k) (02 + &2)

- gOQ/d@/ dk, 1n(’i
€k 0 2+ )(k::% — ©?) w

2 )
- 479;;% In (5) . (D.5)
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In the above & = w/ep, & = §/er and Q is a frequency cut-off. In three-dimension we
will assume that the Fermi velocities at P, and P, are perpendicular (to simplify the
calculation) such that €1 = vk, and exx = vpk,. We neglect the &, k, dependence
of yq1x. Then the k,, k, integral are same as in the two-dimensional case. We set ¢ to

zero and get

2 o) o) 00 ~2
g“/ ~/ J / :
' ~ = [ do dk, dk, dk,— — ~ p
4 (02K + @0%) (kg + k) (@ + k) (@0 + ky)
- dkz ~2k4 + @2
291/2
4fﬁer

Here &5 = ws/ep.

We note that in all the calculations involving three-dimensional fermions we have
assumed that the plane formed by the two connected hot points and the centre of the
Fermi sphere is not perpendicular to the direction in which the quasi two-dimensional
spin fluctuations are incoherent. This is true for generic hot points. However, for a
spherical Fermi sea there are four special points where this is not true and as a conse-
quence the self-energy and the vertex at these points are more singular than they are for
generic points in the hot region. To elucidate the geometry let us assume that the spin
fluctuations are incoherent in the k. direction, and that the magnetic ordering wave-
vector has the form Q = (Q., Q,, @), where a is arbitrary. Now there are two pairs of
special hot points such that each pair, along with the centre of the Fermi sphere, form a
plane which is perpendicular to k.. This implies that the difference in the wave-vectors
of the connected hot points must be (@, @,,0) for each of the pairs. For these four
special points the linearized fermion spectrum is independent of wave-vector along
k. (since this direction is along the Fermi surface). Thus, dynamics at these special
points is entirely two-dimensional (since the fermion and spin-fluctuation propagators
are independent of wave-vector along k., in the estimation of self-energy and vertex
the integrand is independent of %, and the integral along k. is cut-off only by the cur-

vature term). The results for the two-dimensional fermions are relevant for these points
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(the k. and k, integrals are the same). However, since Z~' ~ 1/1/8 + w,(3p)?, where
op is deviation from these special points along their Fermi surfaces, the contribution of
these points to thermodynamics is negligible.

The main difference between the two-dimensional fermion and the three-dimensional
fermion models is that the perturbative correction to the spin-fermion vertex is finite
in the three-dimensional case (for generic points in the hot region) whereas it diverges
logarithmically at the phase transition for the two-dimensional case. The self-energy
correction also has square-root singularity at the transition in two-dimension. The per-
turbative calculation indicate that while in the three-dimensional fermionic model the
coupling remains weak close to the phase transition, in two dimension the coupling
grows and perturbative calculation will eventually break down. In the language of the

renormalization group, this model flows to a strong-coupling fixed point.
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