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Abstract

An overview of the understanding of correlations between energy gap and refractive index of semiconductors is presented here. The
atomic approach of Moss, the nearly free electron model of Penn, the oscillator concept of Wemple and the optical polarizability
approach of Finkenrath are considered in this study. The Ravindra relation is discussed in the context of alternate approaches that have
been presented in the literature. Case studies of applications of these relations to infrared materials and wide band gap semiconductors

are presented.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

The refractive index and energy gap of semiconductors
represent two fundamental physical aspects that character-
ize their optical and electronic properties. The applications
of semiconductors as electronic, optical and optoelectronic
devices are very much determined by the nature and mag-
nitude of these two elementary material properties. These
properties also aid in the performance assessment of band
gap engineered structures for continuous and optimal
absorption of broad band spectral sources. In addition,
devices such as photonic crystals, wave guides, solar cells
and detectors require a pre-knowledge of the refractive
index and energy gap. Application specific coating technol-
ogies (ASPECT™) [1] including antireflection coatings and
optical filters {2] rely on the spectral properties of materials.

The energy gap determines the threshold for absorption
of photons in semiconductors. The refractive index in the
semiconductor is a measure of its transparency to incident
spectral radiation. A correlation between these two funda-
mental properties has significant bearing on the band struc-
ture of semiconductors. In 1950, Moss [3] proposed a basic
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relationship between these two properties using the general
theory of photoconductivity which was based on the photo
effect studies of Mott and Gurney (4], Smekal [5], Zwicky
[6], Gudden and Pohl [7] and Pearson and Bardeen [8l.
According to this theory, the absorption of an optical
quantum will raise an electron in alkali halides to an
excited state rather than freeing it from the center. Thermal
energy then moves this electron to the conduction band
from the lattice. Such a photo effect takes place in imper-
fections at certain lattice points, and thus, the electron
behaves similar to an electron in an isolated atom with a
dielectric constant of the bulk material. As a result of this
effective dielectric constant, egg, the energy levels of the
electron are scaled down by a factor of 1/ei; which
approximately corresponds to the square of the refractive
index, n. This factor, thus, should be proportional to the
energy required to raise an electron in the lattice to an
excited state as given by the Bohr formula for the ioniza-
tion energy, E, of the hydrogen atom, E = 2n’m"e*/e’h?,
where, m” is the electron effective mass, e is the electronic
charge, ¢ is the relative permittivity and 4 is the Plank con-
stant. This minimum energy determines the threshold
wavelength, ., which then varies as the fourth power of
the refractive index. Experimental data on different photo-
conductive compounds show that the values of n*//, were
close to 77 throughout a range of refractive indices. The
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similarities in the quotient show that the photoelectrons
stem from the same type of lattice imperfections, or alter-
natively, the binding energies to the different types of
hydrogen-like centers are similar. Thus the Moss relation
was formulated as [3}:

1’14
=
where n is the refractive index and /. is the wavelength cor-
responding to the absorption edge. In terms of energy gap,
this is [9%

n*E, = 95eV (2)

According to this relation, the refractive index of a semi-
conductor can be determined with a known energy gap,
E,. This relation, again, was based on the general assump-
tion that all energy levels in a solid are scaled down by a
factor of 1/¢%;.

77/pum (n

2. Penn model

In 1962, Penn [10] proposed a simple model for an iso-
tropic semiconductor with electrons in a sphere of momen-
tum space and are characterized by an isotropic energy
gap. In his investigation of a nearly free electron model
for a semiconductor, Penn showed that two common
assumptions were flawed in Callaway’s approximation of
the static dielectric constant [11]. Previous semiconductor
models did not allow for the formation of standing waves
in the Brillouin zone. The Umklapp process was neglected.
The energy, E, and wave function, ¥, with respect to the
state k for this model are given by,

Ef = YE) + By £ [(B) - Ev) + B2}
o= (€% + e ) /(1 + (o))
where

“f = %Eg/(Ef - Eﬁ)

El = (1)2m)k, K =k—2K¢k

Here, E is the electron energy, k is the wave vector, K is
the Fermi wave vector and « represents an averaged Jones
boundary [12]. The electron energy £ as a function of wave
vector k for an isotropic three-dimensional free electron
model is plotted in Fig. 1. This model of placing the energy
gap above the Fermi surface was first suggested by Call-
away [11] in his investigation of the correlation energy of
electrons.

Fig. 2 shows the density of states vs. the energy and
describes the treatment of the Penn model. The dashed line
represents Callaway’s model and the solid line represents
the Penn model. According to the Penn model, the states
from the energy gap are removed and piled up at the top
of the valence band and the bottom of the conduction band
(101 The resulting graph is thus asymptotic.

Based on this model, Penn describes the dielectric func-
tion as:

3)
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Fig. 1. Electron energy as a function of & for isotropic three-dimensional
nearly free electron model {101
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Fig. 2. Density of states vs. energy. The solid curve represents the three-
dimensional nearly free electron model while the dashed curve represents
Callaway’s model [10].
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In this equation, k' =k -+ q — (2Kg)(k + q)/|k -+ q| where
K is the reciprocal lattice vector and q is a wave number.
N is the occupation number for the states k and k+q. e
is the electronic charge. If the Brillouin zone is divided into
sections, then the dielectric function can be written as:

81'682 iMiz
(a) = 1+ 22 5 5 M 5
97 W i

where &, = 1 when k is in the i region and 0 otherwise. M, is
the matrix element. For the specific case when ¢ =0,

8(0) ~ 1 + (wy/Eo)* + (1 — (Eg/Er/4) + ((Eq/Er)” +48)]
(6)

where w;, is the plasma frequency and Ef is the Fermi en-
ergy. The expression in the brackets is nearly equal to 1 for
materials with band gaps in the commonly occurring range
where (E,/Ep) = 0.3 [12]. Since the most significant varia-
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tion occurs in the expression before the square brackets, (5
can be written as,

8(0) = 1 + (Fw,/Eq)” - S (7

where Sy represents the quantity in brackets in Eq. (6.
Penn approximates Sy to be nearly 1, thereby neglecting
the smaller quantities of E,/Eg. The dielectric function is
thus:

6(0) ~ 1 + (hw,/Eo)’ (8)

Grimes and Cowley [12] found a more accurate value of Sj,.
In their investigation, Grimes and Cowley found that the
value of Sy is only weakly dependent on the band gap
and that a value of 0.62 is a fairly good representation of
Sp. Thus, with this slightly more accurate value for Sy,
the energy gap can be determined by using appropriate val-
ues of the dielectric constant.

In the Penn model, the dielectric constant was found to
have reasonable values for small values of wave number
{g). This model is quite simplistic in design, though it
accounts for the formation of standing waves near the
Brillouin zone. It does not consider the degeneracy that
may occur in the Brillouin zone. In spite of the simplicity
of the Penn model, the mere isotropy of the system allows
the model to be applied to a liquid or amorphous
semiconductor.

3. Ravindra relation

The Ravindra relation, which was initially proposed
empirically [13] was shown to be an approximation [14]
of the Penn model [10]. One feature common to all the
semiconductor band structures is that the valence and con-
duction bands are more or less parallel to each other at
least along the symmetry directions. This formed the basis
for Gupta and Ravindra [14] to define:

Ey=E, +K ©)

Using Eq. (9) in the Penn model in Eq. (8) and considering
the situation for which E,/K <1, Gupta and Ravindra ar-
rived at an expression for the refractive index:

n=Ki - KyEy + K;3E; — K4E, (10)

where the values of K are calculated by Gupta and Ravin-
dra [14] and the higher values are neglected since they are
too small to be considered. Eq. (10} then reduces to a form:

(11)

The oscillator model from Wemple [15] defines the dielec-
tric constant as: ¢ = 1 + E4/E; where ¢ is the real part of
the complex dielectric constant, Ey is the oscillator strength
and Ej is the average energy gap which is approximately
equal to the Penn energy gap, E,.

Performing a similar treatment with the dielectric func-
tion in the optical region, they [14] show a similar equation
for the refractive index with the constants evaluated,

n=4.16 - 1.12E, + 0.31E2 — 0.08E

n=4.16 — 0.85E, (12)

Other forms of the Ravindra relation include a variation of
the relation with respect to temperature and pressure [16}

ggz = —0.62%%- (13)
gg-z —0,62% (14)

3.1. Moss relation and its implications

It is perhaps noteworthy to mention that other optical
properties of semiconductors are merely integral relations
to the energy gap and refractive index. Moss [9] pointed
out that the absorption edge can be calculated using the
refractive index. Moss {9] showed that the refractive index
and absorption edge are related by:

1 da
n—lzﬁx/ KI:/? (15)

which for long wavelengths at zero frequency becomes,

1 '
n~1=§7-t—2x/Kd/. (16)

Here, K is the absorption coefficient and A, is the wave-
length corresponding to the absorption edge. This function
is integrated over the wavelength rather than energy. This
expression shows that the long wavelength refractive index
is determined simply by the total area under the curve of
absorption coefficient vs. wavelength — it is independent
of the absorption spectrum [18]. As a result, if a certain le-
vel of absorption persists over a given energy interval — as it
occurs where absorption is due to transitions between two
allowed energy bands — then, the smaller the width of the
forbidden zone, the greater will be the spread of absorption
in wavelength, resulting in a greater value of the integral
and larger n [91

Moss [9] provided an illustration of this relation in his
paper. This analysis shows that much of the refractive
index originates from narrow bands of intense absorptions.
The absorption occurs at wavelengths below 1 pm which
corresponds to the very short wavelength compared to
the absorption edge.

With these observations, Moss concluded that the nar-
row absorption band of semiconductors in the UV region
is the factor which determines the refractive index. Two
conclusions followed from this assumption: (1) the relation
between the energy gap and UV oscillator frequency are
factors in determining the relationship between the refrac-
tive index and the long wavelength absorption edge; (2) any
modifications of the absorption edge that do not vary at
the same time are not expected to produce a change in
the refractive index.

Moss compared his relation with the Ravindra relation
[9]. The Ravindra relation predicts no results of indices
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beyond 4.1. However, very reliable infrared materials, such
as PbSe and PbSnTe, do exist at refractive indices of 4.7
and 7.0 respectively. The Moss formula, however, closely
estimates these values with the formula: #*E, = 108 eV
where the constant has been revised. This formula yields
refractive indices of 4.6 for PbSe and 6.03 for PbSnTe.
For low refractive indices, the Ravindra relation predicts
impractical results. It predicts that the refractive index will
become zero when the energy gap is 6.6eV. The Moss
formula on the other hand requires that the energy gap
be infinity for the same result. For the index to be unity,
the Ravindra relation predicts the energy gap to be SeV.
However, there exist materials which exceed this value.
The Moss relation requires that the energy gap should
be greater than 100 eV to obtain a refractive index of 1.
This is much larger than the refractive index of any
material.

In a theoretical derivation of optical polarizability, Fin-
kenrath [17] described a treatment in the transitions from
the valence band to the conduction band. These transitions
are represented by differential oscillator densities that occur
at distributed resonant frequencies. The combined polariz-
abilities are summed and replaced by an integral over the
relevant frequencies. These differential oscillators are iden-
tified through the wave number and occupation probability
based on spherical energy surfaces. The result of this study
showed that (e — l)zEg is a complex expression that is
basically constant. From this expression, one can see that
neglecting unity compared to the dielectric constant gives
the Moss relation. According to Finkenrath’s estimate,
the average value of the constant is nearly 95eV. These
observations are made for direct interband transitions. It
must be understood that, if the transitions are not direct,
then deviations could arise from ignoring the transitions
from other bands and the varying densities of states and
the matrix elements.

Moss [9] thus showed the interrelations between the
refractive index and the absorption. He showed that the
important factor that determines the index is the frequency
of the UV absorption peak. Reasonable values for the
refractive index can be found using the model of a single
classical oscillator at this frequency. The relation between
the refractive index and the absorption edge band energy
arises from the comparative nature of the band edge and
the resonance energy. Assuming a constant energy differ-
ence, a relation similar to the linear Ravindra relation
can be obtained. However, the Ravindra relation is shown
to have a few shortcomings at high and low index values.
The Moss relation out performs the Ravindra relation in
these areas and is further supported by formal theory from
Finkenrath. From the different semiconductors known, one
can understand that a relationship between refractive index
and energy gap, or for that matter, other optical constants
that are integrally related, can only be general and approx-
imate at best. From Moss [9], it is seen that where the Rav-
indra relation fails, the Moss relation holds approximately
frue.

4. Alternate approaches and interpretations

Further relations were developed as a modification or
addition to the Moss and Ravindra relations. While the
Moss formula is limited by the structure of the material,
the Ravindra relation is restricted by the refractive index.
From the Ravindra relation, the refractive index cannot
be greater than a value of 4.1, which corresponds to an
energy gap of 6.587 eV. In an effort to broaden the applica-
tion of these two concepts, several authors have presented
variations of the Moss and Ravindra relations.

In 1992, a relation similar to the Moss relation was pro-
posed by Reddy and Anjaneyulu [19]. According to their
formula, the relation is:

Epe" =363 (17)

This relation holds true for energy gaps greater than 0 eV.
Reddy and Ahammed [20] proposed an empirical rela-
tion that was a modification of the Moss formula [18]

n*(E, — 0.365) = 154 (18)

This relation was proposed to overcome some of the draw-
backs of the Moss relation. However, it is not valid when
the energy gap is less than 0.36 eV nor does it hold for
infrared materials such as lead salts and InSb.

Further derivations based on the Moss and Ravindra
relations include approaches by Herve and Vandamme
[21]. They separated the semiconductors into a covalently
bonded group and ionically bonded group. For a cova-
lently bonded crystal, the dielectric function is:

g(w) = 1+ 4nNg?/[m(w} — o?)] (19)

where N is the density of valence electrons, m the rest mass
and wq the UV resonance frequency. Eq. (19) describes the
dielectric constant for elements like Si and Ge. For the case
of binary compounds such as NaCl or GaAs, the dielectric
function needs to account for the ionic bonding. Thus the
dielectric function in an ionic diatomic lattice is,

() = ¢ (wep) + Qi/(w"zr - o?) (20)

where €2, is similar to the plasma frequency for ions and wr
is the infrared resonance frequency. To account for materi-
als in the optical range, wr < w,p, < wg, Herve and Vand-
amme proposed,

2
n=og) " =n= 1+ () 1)
B

where A is the hydrogen ionization energy ~13.6 eV and B
is 3.47 eV. Herve and Vandamme based this equation on
oscillatory theory, assuming the UV resonance energy has
a constant difference with band gap energy,

hwy = Eq + B (22)

Herve and Vandamme claim that their model provides the
lowest deviation for ITII-V, I-VII and chalcopyrites. This
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model is accurate for most materials used in optoelectronic
device structures and high band gap materials. Yet it does
not explain the behavior of the IV-VI group.

In the Moss, Ravindra and Herve and Vandamme rela-
tions, the variation of the energy gap with temperature
leads to three relations. By differentiating their relation
with respect to temperature, we arrive at:

dn 13.6° (dEg )

AT Y A T 23
a7~ u(E,+B) \dr (23)
where B = % Allowing, E, + B = /3& 1,

tan_ (- (dEg )

ndl X\t B 24
ndT ~ 136m(E,+B) \dT (24)

Similarly, the Moss and Ravindra relations were differenti-
ated to arrive at temperature coefficient for the energy gap.

A few values of (dEg/dT) and (dn/dT) calculated using
this relation for some semiconductors are given in Table 1.

In conducting this study, Herve and Vandamme [22]
found two particular temperature dependences. Generally,
the energy gap and temperature are inversely proportional
for most semiconductors, that is, as T increases, the energy
gap decreases, and, as a result, the refractive index
increases. This occurs in diamond and similar structures.
On the other hand, infrared detector materials Including
the lead sulphide, lead selenide and lead telluride exhibit
a positive temperature coefficient of energy gap and nega-
tive refractive index temperature dependence.

Herve and Vandamme [22} found that the Moss relation
showed the strongest deviation at lower energy gaps
(<1.43eV), as shown in Fig. 3. Above this value, the Moss
relation provides results closest to the experimental values.

Calculations made with the Ravindra relation show
more accurate estimations for energy band gap values less
than 1.43 eV. These results deviate at energy gaps greater
than 1.43eV. Herve and Vandamme found that their
model presents the best results below the specified energy
gap and is quite close to the experimental results above
1.43 eV.

Table 1

Energy gap, its temperature coefficient and refractive index temperature
dependence for some semiconductors as calculated by the Herve Vand-
amme equation [22]

Material E, (eV) dE/dT (eV K™H (dn/dT)/n (K™Y
InSb 0.18 -2.8x107* 6.9x107°
PbSe 0.278 +5.1x 107 ~2.1%x107*%
Ge 0.67 -3.7x 10 6.9x107°
GaSb 0.75 -3.7%x107¢ 8.2x107°
Si 1.1 ~28x 107 40x%x107°
InP 1.35 29x 1074 2.7 %1072
GaAs 1.43 -39x 107 45x107°
AlAs 2.15 —40x107* 4.6x107°
AlP 241 ~3.7%x107* 3.6x107°
Sic 2.86 33%x 107 2.9%107°
GaN 3.5 -4.8x 107 26%107°
C 5.48 ~50%x107° 40x 107°

4x10“'>< -1
xi0
o~
£
¥
0
§
;;.mu“
“xiot}
] >§( i k] 2 i i 4
0.18 0278 0.67 075 11 135 143 215 241 28 35 548

Be V)

Fig. 3. Temperature coefficient of refractive index vs. energy band gap.
The solid line represents the experimental results. The cross (x) represent
the differentiated Moss formula, the (+) represent the differentiated
Ravindra formula and the open squares (J) represent the Herve
Vandamme model [22],

5. Case studies of applications to condensed matter physies
5.1. IR detector materials

One application of the energy gap-refractive index
relation helps to determine the strontium composition in
PbSe and lead-alkaline-earth-chalcogenide materials
(Pb;_,Sr,Se [23]). The compounds are notably used in
mid infrared (mid-IR) lasers and mid-IR/ultraviolet (UV)
detectors. The energy gap and refractive indices of these
materials depend on the strontium composition. Majumdar
et al. [23] sought to determine the electronic and optical
properties of the ternary compound for Sr compositions.
PbSe has a direct band gap at 0.3 eV, at the L point of
the Brillouin zone [23]. Contrastingly, SrSe has a wide indi-
rect band gap between the X-I" bands of the Brillouin
zone. As the amount of Sr in Pb;_.Sr,Se increases, the
band gap changes from narrow and direct to wide and indi-
rect. Majumdar et al. have determined the composition at
which this change takes place.

In their experiment [23], the transmission spectra mea-
sured from the epitaxial layers of Pb;_,Sr,Se were used
to calculate the refractive index and the absorption coeffi-
cient. The refractive index was approximated from odd
interference peaks in the long wavelength region, which is
below the energy gap. This approximated value was then
fitted with the experimental curve from which the true
refractive index and absorption coefficient were deter-
mined. The refractive index of Pb;_,Sr,Se was calculated
and was found to be in the range of 4.8-2.04 for room tem-
perature and for a strontium composition of 0-1 at a wave-
length of 4 pm. Similarly, SrSe has a refractive index of
2.04 at room temperature and at a wavelength of 4 um.
This is shown in Fig. 4.

From Fig. 4, the refractive index of PbSe shows a nega-
tive temperature coefficient while SrSe shows a positive
coefficient. When the composition is nearly Pbgg,Srg 15Se,
the refractive index at the specified wavelength is indepen-
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Fig. 4. Refractive index of Pb;_.Sr,Se for different strontium composi-
tions at room temperature and liquid nitrogen temperature (77 K) at a
wavelength of 4 pum. Inset shows refractive index of SrSe at 77 K [231

dent of temperature in the measured range. The slope of
the curvature of the absorption coefficient changes dramat-
ically with the increase of Sr in the compound. Such a
change in curvature of the absorption coefficient represents
a change in band gap.

The absorption coeflicients for direct and indirect tran-
sitions are calculated as follows:

Adirect = 7"{/—2 (hv - Eg>l/2
( ;) (25)
2
indirect = ;’l—l.; (hl) - Eg + Ep)

Here, 4 and B are constants, v is the photon energy and
£, is the phonon energy. The phonon energy is much lower
than the energy band gap and so is neglected. These equa-
tions only hold true in the region where the photon energy
is greater than the energy band gap. Taking the second
derivative of the absorption coefficient () (25} with respect
to the photon energy yields,

dzadirecl _AEg 3 2 4

A 5 (4{hv)" = 3(hv) Eg H{ (hv)

— () Eg} ", (26)
which is negative for iv > E,; and,
dzaindirect _ BE;

d(hv)? (hv)®

which is positive for v > E,. As the absorption coefficient
changes from negative to positive, the band gap changes
from direct to indirect due to the increase in strontium
composition [23], Fig. 5 shows the direct and indirect band
gap plotted against the strontium composition at 77 K for
Pb;_,Sr.Se. ‘

The following equations were found to describe the best
fit for the curve of the calculated direct and indirect band
gap energies:

(27)

4

e
Ak ]

Diect Bundgap Energies

Bandgap at 77K {eV)
w~

1 -_ /
[ Indirect Baredgap Encrgics
(L) - TOYOTTURT! PRTPETTITE TOTRTVRNTS IYPRTPITH MTTTTITT
0.0 02 0.4 0.6 0.8 1.¢
Sr eomposition

Fig. 5. Direct and indirect band gap energies for Pb;_,Sr,Se at different
compositions of strontium at 77 K {23].

Egy = 0.278 4 1.356x + 1.040x + 1.144x° (eV)

28
Ey . =029+ 1527x (&V) (28)

Zindirect

As can be seen, the direct band gap shows a dependence on
a polynomial function of the strontium composition (x)
while the indirect band gap is linear in nature with respect
to the strontium composition. In this experiment, Majum-
dar et al. found the indirect band gap of SrSe at 77 K to be
1.82 eV and the direct band gap to be 3.81 ¢V. For PbSe,
the direct band gap occurred at 0.278 eV at 77 XK. Majum-
dar et al. assumed that the lowest indirect band gap energy
for all strontium compositions (0.43-1) occurs at similar
bands which separate linearly as the amount of strontium
increases. This occurs as the indirect band gap of
Pb,;_,Sr,Se changes linearly with the strontium composi-
tion. When the indirect band gap energy curve of lower
Sr composition is extrapolated, the direct energy band
gap curve crosses at x~0.2. This suggests that at
x ~ 0.2 — 1, the lowest energy band gap of Pb;_,Sr.Se is
direct.

Majumdar et al. have thus, determined the refractive
indices and direct and indirect band gaps of Pb,_,Sr.Se
for strontium compositions ranging from 0 to 1. Using
the data obtained in this experiment, it would be possible
to aid further development of optoelectronic devices based
on Pb;_,Sr,Se.

5.2. HgZnTe (MZT)

Ali Omar and El-Akkad [24] performed a study on the
optical parameters of mercury zinc telluride (MZT) in solid
solution. MZT is a direct band gap material with an energy
gap between —0.15 and 2.20 eV depending on the compo-
sition ratio. An equation describing the energy gap is,

Ey = ap + aix'? + apx + a3x* + agx’ (eV) (29)
The best fit was found to be,
E, = —0.1016 + 1.978x -+ 0.3144x2 (30)
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Fig. 6. E, vs. percent composition. TE refers to the energy gap equation
{29) and QF refers to the best fit equation (30). N refers to the ternary
solution equation (32) [24],

where x represents the percent composition. According to
Nag [25], an empirical formula illustrating the dependency
of energy gap on percent composition is given by,

E, = (a— bZ) (31)

where a and b depend on the semiconductor group. When
this formula is applied to the ternary solution, Ey(x)
becomes:

Eg(x) = 0.15 + 0.8637x + 1.245:2 (eV) (32)

Fig. ¢ describes the results of Egs. (29)-(32).

Relating the energy gap to the refractive index, Ali
Omar and El-Akkad refer to the Ravindra relation. With
reference to the best fit, this equation is:

n=4.036 — 1.127x — 0.262x° (33)
In the range of 0 < x < 1 the quadratic approximation is

nem = 3.84 — 1.56x + 0.428x2 (34)

From graphical illustrations of the refractive index vs. per-
cent composition, as in Fig. 7, the refractive index is seen to
decrease with x.

4.0r

3.0
2.5

20F

1.0 i i ; : . A
& Q.2 c.4 o X-1 0.8 1.0
X

Fig. 7. Refractive index vs. composition ratio. R refers to refractive index
with respect to best fit, CM refers to the quadratic approximation [24],

Studying the relation between these parameters, compo-
sition and E, for MZT allows for an understanding and use
of the material for IR detectors and solar cells.

5.3. GaN

Bourissa [26] performed a study on the pressure
dependence of optoelectronic properties of GaN in the
zinc-blende structure. The refractive index was calculated
at different pressures with the Moss, Ravindra and
Herve Vandamme relations. On a graph of the band lineup
vs. pressure, the conduction band minimum is seen to
increase with the increase in pressure at " yet it is seen to
decrease at X. The valence band maximum decreases at I”
(Fig. 8).

The lowest direct energy gap increases with increas-
ing pressure while the indirect gap is seen to have a
smaller dependence on pressure. As a result, the direct
band gap of zinc-blende GaN cannot be expected to cross-
over to indirect behavior in the pressure range studied
(Fig. 9).

The dependency of band gap on pressure can be repre-
sented by,

E-av () ve (é.) (35)

44 ay

where Aa = a, + a9 and a, and q, are lattice constants at
pressure p and zero pressure. Applying this to the equation
describing least square fit, namely,

dE(p)

E(p) = E(0) = &

P (36)

12.0 e ]

0.0

&0

Band Lineup (eV)

8.0

7.0 v 4
25 40 80 8% i iz

Pressure {kbar)

Fig. 8. Band lineup in eV vs. pressure in (kbar). The valence band
maximum I is indicated by (—) while the conduction band minimum I is
indicated (- - -). (-¥-) indicates the conduction band X bottom [26].
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Fig. 9. Direct and indirect band gaps of GaN as a function of pressure in
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is then,
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Fig. 10. Refractive index as a function of pressure for GaN. (—) indicates
Moss relation, (---) represents Ravindra relation and (-y-) is the Herve
Vandamme relation [26],

Table 2
Refractive indices at zero pressure and the first pressure derivative for
GaN [26]

Model n g}'; (107% kbar™)
Moss relation 2.41 -0.67
Ravindra et al. relation 2.10 -2.40
Herve and Vandamme relation -2.29 -1.13

These dependencies show a non-linear behavior. From
Fig. 9, the valence band width is shown to increase with
pressure. This can be attributed perhaps to decreasing ion-
icity under hydrostatic compression which is typical of
semiconductors.

The refractive index obtained by the three models is also
plotted as a function of pressure in Fig. 10,

In Fig. 10, the refractive index is seen to decrease line-
arly with respect to increasing pressure, as opposed to the
energy gap which shows the opposite behavior. It can be
concluded that for GaN and other I1I-V compounds, the
smaller the energy band gap, the larger the refractive index,

In Table 2 are the refractive indices at zero pressure and
the first pressure derivative. The refractive index obtained
by the Moss relation shows a large difference when com-
pared with the Ravindra and Herve Vandamme relations.
Since no known experimental data has been published on
the refractive index of GaN, Bourissa calculated the index
using &, = n°. The results of the refractive index for the
three relations were 5.81, 4.41 and 5.24 respectively.

Compared to the experimental value of 5.15 for the
dielectric constant obtained by Yu et al. [27], the value
5.24 as obtained by the Herve Vandamme relation is a bet-
ter result. However, the value of the dielectric function of
5.8, theoretically calculated by Zheng et al. [28] is almost
in agreement with the Moss relation.

The pressure derivative of the refractive index is another
significant parameter which explains pressure induced dis-
tortion. The first pressure derivative calculated through
the Ravindra relation indicates a greater effect of applied
hydrostatic pressure to the refractive index. Results of cal-
culations show that the pressure derivative is negative and
this appears to be the trend among the II1I-V group. How-
ever, a study by Johanssen et al. [29] shows a direct linear
relation between refractive index and increase in pressure.
Thus, it is believed that ionicity of the material plays a sig-
nificant role in determining the magnitude and sign of the
pressure coefficient of refractive index.

6. Conclusions

The various energy gap-refractive index relations and
their applications to semiconductors have been summa-
rized in the above study. The analysis examines the contri-
butions of Moss, Penn, Finkenrath, Wemple and
Ravindra. Applications of these relations to IR detector
materials such as Pb;_,Sr,Se and Hg; ,Zn,Te and UV
detector material such as GaN have been discussed.
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List of symbols

Defined symbols

e = charge on electron

m* = electron effective mass

h = Planck’s constant

¢ = speed of light

pp = Bohr magneton

o = conductivity

[ = resistivity

a(0) = conductivity at zero temperature

6y = Mott’s minimum metallic conductivity

o = loffe-Regal value of conductivity

= temperature

= Fermi temperature

= Fermi wave vector

= electron mean free path

= magnetic field strength

= electric field strength

= Boltzmann’s constant

= electron density

= electron density at MI transition

= average spacing between impurities

= average spacing between impurities
at n

= effective Bohr radius

S

LSV~ e B
I o

i~
#

w = frequency

€ = dielectric constant

€ = dielectric constant for silicon
€y = dielectric constant for impurity
X = dielectric susceptibility

Xs = spin susceptibility

D = diffusion constant

I = nuclear spin

J = exchange interaction energy
T = spin lattice relaxation time
K = Knight shift

2 = atomic volume

N(E) = electron density of states

Ex = Fermi energy

= mobility edge energy

g = spectroscopic splitting factor
£ = localization length

Np = donor density

Na = acceptor density

ng; = refractive index of silicon
n(0) = zero frequency refractive index
a(w) = IR absotption coefficient

Symbols less commonly encountered or defined in terms of previously defined

symbols.

D* = lower (hole) Hubbard
band

D~ = upper (electron) Hubbard
band

E, = activation energy to

impurity band

N = number of impurities
in a cluster

Wy = energy absorbed by
cluster

a(Wy) = absorption coefficient
of cluster

R=n'a(hr)  =ag(hv)+aexp(eq,/kT)
IR absorption coefficients

Avew = full width of Raman
Spectrum defined by eq.
@ .

4 = scattering angle in eq.
(08}

E, = energy between neutral
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and ionized impurity sites.
= activation energy to
conduction band
= conductivity coefficients
defined by eq. (3.3)
= coefficient in eq. 3.4)
= exponent in eq. (3.4)
= function defined on
p. 249
= screening wave vector
= Qkg/%)
= [In(1 +x)1/x
= coefficient in eq. (3.6)
= relaxation time
=[4meln/m*e]'/?
== Eph/W,
= coefficient defined by
eq. 3.7)
= valley degeneracy
= parameter depending
on effective mass
== field and temperature
dependent resistivity
= change in p with field
= coefficient defined by
eq. (3.8)
= inelastic scattering time
= hc/(4eDry,)
= integral defined by eq.
(3.10)
= guy H/kT
= coefficient defined by
egs. (3.11) and (3.12)
=4+ A,
= characteristic length in
eq. (3.14)
= temperature and electric
field dependent resistivity,
eq. (3.14)
= Coulomb energy
= wave function probability
at the nucleus averaged
over states at Ep.
= electron wave functions
= constant in eq. (5.1)
= specific heat
= coefficient of T ineq. (5.2)

a

c’
9c

¥Y(r)
oy (1)
x(r)
a, b

X Xe

i O«

Up(r)

Uu(r)

H
N(O)

T

a,

= coefficient of 7% in eq,
(5.2)

= coefficient defined by eq.
(6.4)

= exponent in eq. (6.4)

= exponent in eq. (6.5)

= coefficient defined by egs.
(6.5), (7.6)

= conductivity from Boltz-
mann transport theory

= Fermi surface area

= constant in eq. (7.4)

= mobility gap

= power of (n — n.) term
in percolation theory

= constant in eq. (7.6)

= electron wavevector

= wavevector cut-ofl value
at ~1/¢

= electron wavefunction

= Bloch wavefunction

= envelope function

= effective mass radii in eq.
(83)

= components of r along
axes of mass tensor in eq.
(83)

= magnitude of the stress

= glastic constant

= impurity band energy

= conduction band deforma-
tion potential

== electrostatic interaction
of outer electron with
neutral donor

= second-order perturbation
term, eq. (8.7)

= system Hamiltonian

= electron density of states
defined by eq. (9.1)

= characteristic temperature
defined by eq. (9.2)

= Bohr orbit radius per-
pendicular to H

= Bohr orbit radius parallel
to H.

Part 1 - General overview

1. Introduction

The metal—insulator (MI) transition in disordered systems has been a subject
of interest to physicists for many years, going back to the classic papers by
Mott (1949, 1956) and by Anderson (1958), which emphasize, respectively, the
role of electron correlation and disorder in the phenomenon of electron
localization. The basic idea is quite simple, and we take the Mott picture to
begin with — consider an ensemble of (neutral) hydrogen atoms held rigidly in a
regular array (e.g., simple cubic) in space. If the lattice spacing is small
compared to the Bohr radius, so that electron wavefunctions overlap, we
expect for this one electron per atom case, following standard band theoretical
considerations, that in the ground state the 1s electron band is half filled and
the system is a metal at T = 0. However when the density is very low, so that
electrons on different atoms do not overlap significantly, it costs a finite
amount of energy for electrons to hop from their host nucleus to another
because of electron—electron repulsion {the Hubbard U (Hubbard 1964a,b)},
and the system is insulating at 7=0. Thus the system undergoes an MI
transition as a function of density on account of electron correlation. This is
schematically shown in fig. 1, which depicts the one-electron energy diagram as
a function of density (Bhatt and Rice 1981). At low density the occupied level
is the 1s state at —1Ry, while if an extra electron is added to the system it
forms a negative hydrogen ion (H™), which is known to be bound by only
0.055Ry. As the density is increased, these levels broaden into bands but the
system remains insulating so long as a m% Qcma vﬁ%%: the two. At a nﬂ:n& ,
density n_, the gap vanishes, and the system vaacE BﬁwEn at T=0,
describable by Fermi liquid Enoq 35 is not . true for disorde &‘
systems, as will be seen later). Clearly in such : m the ga ,
insulating state, is due to electron interactions.
Anderson in 1958 showed that the presence om a msaﬁmszu. large random
potential, even in the absence of electron interactions, leads to uoo»_ﬁmm,,_
electron states and hence an insulator at T=0. In such non-interacting
systems, the insulator-metal transition is viewed not as a closing of a true
one-electron energy gap, but as that of a mobility gap. The mobility gap is the
distance of the Fermi level from a critical energy (mobility edge), at which the
one-electron states become delocalized. The relevance of the Anderson idea to
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Fig. 1. Schematic diagram of the electron (H™) and hole (H*) bands (also referred to as the upper

and lower Hubbard bands) for a lattice of hydrogen atoms, as a function of density; a useful

diagram for locating n. though incomplete in its description of random systems such as doped
semiconductors.

our hydrogenic system immediately becomes clear if the hydrogen atoms are
distributed not on a lattice, but randomly, leading to an effective random
potential in which the electrons move. Which of the two effects - disorder or
electron interactions —is dominant near the MI transition is an issue debated
many times and we have come a full circle to the belief that both of them are
necessary to describe the experimental results.

Whatever the detailed differences in various systems from our simple hydro-
genic model, one simple formula known as the Mott criterion, relating the
critical density at the MI transition n, to the Bohr radius, a*, illustrates the
universality of the phenomenon:

n'/%a* = 0.25. (1.1)

Fig. 2 (from Edwards and Sienko 1978) depicts how well eq. (1.1) is satisfied
by a variety of systems undergoing an MI transition, with n s varying over
eight orders of magnitude.

In this chapter we will consider the interplay between the effects of
Anderson localization and Coulomb interactions as they appear in the mea-
sured properties of doped semiconductors. Doped semiconductors are excellent
materials to use for this purpose since they are well characterized and the
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Fig. 2. Mott criterion illustrated for a variety of systems (Edwards and Sienko 1978).

addition of selected impurities allows a controlled progression of properties as
the material is taken through the MI transition. The characteristically low
electronic energy allows electronic effects of interest to be separated from
lattice-dominated processes, although in order to probe the region near the
transition, experiments must be done a very low temperatures or, as in the case
of optical studies, at far infrared (IR) frequencies. Fortunately, the recent
advances in far IR detection and the availability of He-3 dilution refrigerators

. ameliorates these experimental problems. ‘

In Part I, we will present an overview of experiments close to but outside the
immediate region of the MI transition. The optical, transport, magnetic and
dielectric properties of doped semiconductors are strongly influenced by both
the disorder and the correlations and they often can be analyzed directly in
terms of Coulomb interactions and /or localization models. In Part II, we will
study the critical region of the transition, with particular emphasis on the
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behavior of the zero-temperature conductivity and recently developed stress
tuning techniques.

2. Optical properties of doped semiconductors

2.1. Far infrared studies

Doped semiconductors have been widely studied to probe the nature of the MI
transition in disordered systems (Mott 1974, Friedman and Tunstall 1978). The
outer electrons of shallow donor states have a large effective Bohr radius which

E(meV)
o] 10 20 30 40 50 60
T T T T T H
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:u_.mx_o_moaxu
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Fig. 3. The actual absorption spectrum of a random system in contrast to model for a periodic

system shown in fig. 1. The normalized infrared absorption coefficients for three Si: P samples are

shown at T = 2K. The sharp lines characteristic of isolated donors broaden into a continuum at
high donor concentrations (Thomas et al. 1981a).

The metal-insulator transition in doped semiconductors 239

encompasses many lattice sites, making the discreteness of the lattice unim-
portant in describing the interactions among electrons. At low concentrations,
n, of randomly distributed donors there is negligible overlap of the hydrogenic
wave functions of these donor electrons and the material is an insulator at
temperature T=0K. In far IR studies this low n region produces sharp
absorption lines arising from transitions between bound states, followed by a
broad absorption band at high photon energies (that is, energies above
~ 46 meV in Si:P, for example) due to transitions to the conduction band
states (Fisher and Ramdas 1969, and references therein).

Figure 3 shows the normalized absorption coefficient measured by Thomas
et al. (1981a) as a function of photon energy for three samples of Si: P with
differing donor densities, n. Samples were at T = 2K and uncompensated. The
low density sample is dominated at low energies by the sharp atomic-like lines.
These narrow lines, characteristic of isolated donors, are seen to broaden
appreciably in the next sample with n=1.4 X 10cm ™~ and disappear com-
pletely at n=1.9 X 10'*cm 3. The initial broadening has been seen in both
n-Si, p-Si and GaAs (Thomas et al. 1981a, and references therein) and for Si: P
has been interpreted as arising from donor pairs.

At higher donor concentrations, overlap among nearby electrons causes the
formation of electron energy bands. The band model proposed by Hubbard
(1964a,b) considers Coulomb interactions between electrons only when they
reside on the same atom, neglecting longer range forces. For small values of n
this model predicts a filled lower (hole) band and empty upper (conduction)
band, also simply called the lower and upper Hubbard bands. In terms of
donor states these are referred to as the D* and D~ bands - the bands of states
involved in removal or addition of an electron (e.g., Fritzsche 1978). In the
density range of the two more heavily doped samples shown in fig. 3, dc
measurements indicate that the conductivity can be parameterized as electron
activation to an impurity band with activation energy E, (Fritzsche 1955, 1978,
1980, Fritzsche and Cuevas 1960a,b, Mott 1974; also see section 3.1). E,
decreases with increasing n as the impurity band edge moves down toward the
donor ground state. Within the Hubbard model increasing n causes the D~
states to broaden and push the band edge down. This same impurity overlap
broadening and lowering of the band edge has been assumed by many workers
as the factor responsible for the broad, featureless IR spectrum seen for heavil
doped samples shown in fig. 4 (see Capizzi et al. 1980, and references therein

A band model, although useful for a qualitative picture of why there must be-
a MI transition, is really a one-electron approximation for uniform systems. In
the insulating phase the disorder is large and many-electron (e.g., exciton)
effects must be taken into account. A recent interpretation of the optical data
shows that the broadening in the far IR for increasing n is a result of the
growth in intensity of absorption from random clusters (Capizzi et al. 1979,
1980, Thomas et al. 1981a). The analysis uses a statistical theory of optical
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Fig. 4. Absorption coefficients for heavily doped Si:P samples. The munm owwgnan.wan, o.m close
momOMvE.a disappear as the concentration is increased. The most heavily doped sample is just on
the insulating side (n, = 3.74 X 107 1Bem~3) (Thomas et al. 1981a).

absorption by donor clusters of various sizes, similar to that used by EE:A and
Rice (1979) to explain the absorption of mxvms.mﬁ fluid mercury. In fig. ﬂ_ﬁ
see the growth of the broad absorption band with increasing n (Thomas et al,
1981a). For the lowest donor density shown absorption ?9.: close donor pairs
can still be seen. At higher densities the analysis must consider S_..mnn clusters.
The absence of data at high photon energies for the samples with larger n
results from the increasing metallic-like reflectivity of the samples as the
critical concentration n,=3.74 X107 8c¢m™? is approached. In the cluster
calculations the assumption is made that a cluster of N mowoa §.= absorb m:
an energy W, with an absorption coefficient .ngxzvon n” as given Nw the
Poisson distribution probability of a cluster of size N. The theoretical absorp-
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Fig. 5. The absorption coefficients of heavily doped Si: P samples are compared with theoretical
curves (dotted lines) based on a cluster calculation. Here R = n~1/3 (Thomas et al. 1981a).

tion coefficient shown as the dotted line in fig. 5. The values R =n"1/3 The
distance R =130A is about twice that at either the peak or average in the
Poisson distribution of nearest neighbors.

An interpretation of the far IR absorption based on Hubbard bands was
presented by Narita and Kobayashi (1980) for Ge : Sb as shown in fig. 6. Here
the absorption coefficient is shown for four different temperatures. They
interpreted the transparent low energy region of the 1.6K spectrum as result-
ing from the Hubbard gap and the rise in absorption above ~ 2.2 meV from

transitions between the lower and upper Hubbard band. Analysis of the data
shows that it fits the following form: ,

a(hv) = ay(hv) + QMnx_uAlmoE\wﬂv.

Here a,(hv) represents the transitions from the lower to upper Hubbard band.
They interpret the second term as evidence of thermally populated localized
states in the upper band, from which transitions occur to even higher levels.
However, as mentioned earlier, the picture in terms of Hubbard bands does
not take into account excitonic states below the band gap. The data of fig. 6
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Fig. 6. Absorption coefficients of a Ge: Sb sample at four different temperatures. The data have
been interpreted in terms of Hubbard bands (Narita and Kobayashi 1980).

can also be interpreted in terms of excitonic states due to large random
clusters.

2.2 Raman spectroscopy

The existence of localized, singly occupied donor ground states has been
inferred from Raman excitation of these ground states to excited states on the
same donor (Doehler 1975, Doehler et al. 1975, Jain et al. 1976). The IR
spectrum of Si:P (fig. 3) shows no hint of isolated donors at n=1.8X
10'%cm 3, whereas a line from inter-ground-state transitions still appears in
the Raman spectrum of a sample at n=3.7 X 10'8cm 3, just below the critical
concentration n, (Rosenbaum et al., 1980b, Jain et al. 1976). Similarly, the
electron spin resonance (ESR) hyperfine split donor signal in Si: P is washed
out by ~ 10'3cm™? (Maekawa and Kinoshita 1965). As with the far IR data,
the idea of randomly distributed clusters appears germane here.

Figure 7 shows the Raman spectrum of Ge:As for several values of n
obtained by Doehler (1975). The peak, Raman shifted by ~35cm™}, can still
be seen in the sample with n = 4.4 X 10%cm 2, above n,. for Ge: As. Jain et al.
(1976), however, report that a similar Raman spectrum for donor states in
Si: P disappears as n goes through n..

Another application of Raman spectroscopy to the study of electronic
properties of doped semiconductors is spin flip Raman spectroscopy, SFRS. In
this technique a magnetic field, H, causes an energy level to be split by the

The metal-insulator transition in doped semiconductors 243

xnftoo] Yuforo] Z < celay) 7
X i 10] m.:moo@ X u[100] ¥ nforo] 7 nfoo1]
x'nfoo1] vn[110] z'n[110] Z(XY)X  T=10K
se(as) ,, T=85K
n=2.5x10% n=55x1017 ¢cm-3
cm-3

@ Z(XY)X »
s f\([l/\ £
2ol 2
> 1.0x1017| %0 4.4 x 1017
< <

d oty
e td) 2oy | E
I - T e I
< <0 3,0 x 1077 ]
- 5.4 x 108
> >
= = I(h
£ jted O I (n)
zZ, .1 Zo 2.5 x 1017
. -
z 2.5x10' =

(X' 0
of e
6.3x10%
a [
o ta) 2 'YX
Ll bttt et bt tata bbbt il

50 40 30 20 10 O -10 -20-30-40 80 70 60 50 40 30 20 10 0 -10-20
RAMAN SHIFT (Ccm’t) RAMAN SHIFT {cm™!)

Fig. 7. Raman spectrum of Ge: As. A peak is still visible for the sample with n=4.4 X 10Y7em ™3
which is above n_ (Doehler 1975).

Zeeman energy, gpgH, into two levels. An electron at one of these levels
absorbs a photon of energy E, bringing it to a virtual energy state, whereupon
the electron falls back to the other spin flipped low level with the emission of a
photon with energy E + gpg H. Information on electron dynamics is contained
in the SFRS spectra, as discussed by Geschwind et al. (1980) who used the
technique to study n-CdS. For mobile carriers the CdS SFRS lineshape is a
collisionally narrowed Doppler line. The resulting Lorentzian lineshapes can
therefore be related to the diffusion constant or in turn the resistivity, p, and
carrier concentration, n. Geschwind et al. (1976, 1979, 1980) show that for
n-CdS using 4880 A light the full width at half intensity is given by

4.2 %10°
b=~\u

Avpy = sin*(8/2)cm ™!, (2.1)

where @ is the scattering angle. Using the measured value of p and n, eq. 2D
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Fig. 8. Linewidth from the spin flip Raman spectrum of n-CdS plotted against sin?(/2). The
solid line is the best fit to the data and is in qualitative agreement with eq. (2.1) (Geschwind et al.
1980). ’

gives theoretical values of Avgy, which are generally within a factor of 2 of the
measured linewidths. Since p is determined from the bulk sample and the
SFRS probes only a small portion of the sample (~ 100pum in size), macro-
scopic inhomogeneities may account for the discrepancy. The SFRS lineshape
may, in fact, be a reasonable method for probing inhomogeneities in n on this
size scale.

The angular dependence of eq. (2.1) is investigated in fig. 8 for n-CdS at
16K (Geschwind et al, 1980). We see that for this metallic sample the
linewidth is proportional to sin?(8/2) for small angle scattering, indicating
diffusive behavior.

3. Transport properties
In a series of papers, Mott (1967, 1972, 1981a, b) has put forward the notion of

a zero temperature minimum metallic conductivity, oy, which in three dimen-
sions is given by

oy =0.026e%/hd_, (3.1

where d, is the average spacing between impurities at n.. Experimental
estimates of o, for several doped semiconductors are compared with eq. (3.1)
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in fig. 9 (Fritzsche 1978). These estimates are derived from the transport
properties of insulating samples (see sections 3.1 and 3.2). We will also
consider the role of electron interactions in the transport properties of metallic
samples at low temperature (sections 3.3 and 3.4) and briefly examine nonlin-
ear effects on both sides of the MI transition (section 3.5). In Part I, we will
return to eq. (3.1) and the current debate about the existence of oy,.

3.1. The insulating phase

In addition to being a minimum conductivity for metals, Mott has claimed that
the same o,, enters the high 7T conductivity expression for non-metallic
systems where conduction occurs via electrons excited to the mobility edge, E..
Mott (1967, 1972, 1974, 1978) finds that for the appropriate concentration
region

o =oyexp[~(E.— Ep)/kT], (32

where E is the Fermi level. Experimentally other activation energies are also
observed as discussed below. The results supporting eq. (3.2) and o, for
metals are illustrated in fig. 10 which shows the temperature dependence of the
resistivity, p =1/0, for Ge: Ga (Fritzsche 1955, 1978). For this system n_~

! T T i T T T
0% GAP.Zn o -
Si:P ©
£
(&)
2 ok
E
e Ge:sb
£ 0¢=0.026 e? hd
4+ -
rm.. n-Insb
AOca i 1 1 i L i i

Doaoauuv

Fig. 9. Historically interesting plot of the estimated values of log oy versus log n, for various
systems. The solid line is a plot of eq. (3.1). In no case is there evidence of a discontinuity in ¢ at
T =0K (Fritzsche 1978).
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10cm > and the bottom four curves show the approximately temperature
independent resistivity characteristic of metals at low 7. As acceptor con-
centration decreases toward n_, p — py = 0.1Q cm. Similarly, the lightly doped
samples (n ~ 3 to 6 X 10'%cm~3) at high temperatures converge to roughly the
same resistivity as predicted by eq. (3.2). This region is characterized by the
activation energy E_ — E (E, in Fritzsche’s notation) into an impurity band.

At lower T these same samples are believed to conduct via phonon assisted
hopping between neutral and ionized impurity sites with an activation energy
E; resulting from the random fields of the compensating impurities (Mott
1974). At least a small amount of compensation is required in order for there
to be some unoccupied impurity sites (Mott and Twose 1961).

At high T these systems show another activation energy, E,, to the conduc-
tion band. For samples with concentrations just below n, Mott has suggested
that the low T conductivity proceeds via variable range hopping (Mott and
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Fig. 10. Plot of logp versus 1/T for Ge:Ga. The sample with a donor concentration of

1.3 10"%m™? is labeled as 1.3-19. Sample 19 is just on the metallic side of the transition

(n,~10"cm™3). Samples with lower donor concentrations show evidence of activation energies as
discussed in the text (Fritzsche 1955, 1978).
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Davis 1979) which yields log(p) @ 7~ '/% The essence of this process is that
electrons may preferentially hop to impurity sites which are close in energy to
the site they have left, but not necessarily close spatially. Sample 18 in fig. 10 is
characterized by variable range hopping at low T. Ignoring the variable range
hopping region, these systems have a conductivity given by

o =o,exp(—E,/kT) + o,exp(— E,/kT) + oyexp(— E;/kT ), (3.3)

where Mott finds o, = oyy.

3.2. The Hall effect

Fig. 11 shows the Hall coefficient as a function of 1/7T for this same set of
samples (Fritzsche 1955, 1978). The transitions between various activation
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Fig. 11. The log of the Hall coefficient is plotted against 1/7 for the same samples as in fig. 10.

Peaks in the Hall coefficient indicate transition between temperature regions where different
activation energies dominate (Fritzsche 1955, 1978).
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energy regions is interpreted as the peak in the Hall coefficient. For example,
the peak in the top curve at ~ 5K represents the transition from E, to E;
conduction (compare this with the top curve of fig. 10). At higher concentra-
tions two peaks occur corresponding to the three conduction regions (E,, E,
and E,).

Fritzsche (1978) defines two metallic conduction regions in doped semicon-
ductors. The first starts at the MI transition (n=n_) and conduction is
assumed to occur in an impurity band. In this region the low 7" conductivity
increases very rapidly with small increases in n and the Hall mobility rises with
n, as shown in fig. 12 for the case of Si: P at 4.2K (Yamanouchi et al. 1967).
The authors suggest that this rise in mobility continues until the Fermi level
passes into the conduction band. Further increases in » produce the drop in
Hall mobility characteristic of metals.

3.3. Barely metallic samples: Temperature dependence

The T-dependence of o has yielded important information regarding the
relative strengths of Coulomb interaction and localization effects. Originally,
millidegree measurements of o(7) for metallic Si:P and Ge:Sb (Ootuka
et al. 1976, 1979, Sasaki 1980a, b) and n-InSb (Morita et al. 1980) showed a log
T dependence which was not readily interpretable in terms of either type of
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Fig. 12. Log-log plot of Hall mobility against donor concentration for Si:P. The mobility
continues to rise as the concentration exceeds 7. ny, marks the concentration which was assumed
to move the Fermi level into the conduction band (Yamanouchi et al. 1967).
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theory. More recent measurements on Si: P (Rosenbaum et al. 1981a,b, 1983),
Ge : Sb (Thomas et al. 1982b) and n-InSb (Morita et al. 1982) show a power
Jaw dependence for o(T'). Following Rosenbaum et al. (1981a) we write o(7)
as follows:

o(T) = 0(0) +mT?, (3.4)

where o(0) is the T = 0K conductivity and the T# term comes from Coulomb
interactions. The data for Si:P (T < 5K), n-InSb (T < 100 mK), and Ge: Sb
(T < 150 mK) can be fit to the form of eq. (3.4) using =} and a value of m
which changes sign with concentration. Measurements on amorphous
Ge, _,Au alloys (Dodson et al. 1981) yield a positive T correction to ¢(0)
which we find can be fit to 8 = 1, although the data was originally interpreted
as fitting B = §.

The Coulomb interactions model with electron-electron and electron-hole
scattering in the presence of random impurities predicts a T'/? correction to o
(Altshuler and Aronov 1979a,b, Lee and Ramakrishnan 1982). In the limit of
weak scattering kp/>> 1, where kg is the Fermi wave vector and [ is the mean
free path, they find

o(T)=0(0)+a[4-2F|VT, (3.5)

where

wn\31-1/2
a=0.025 #As\wbv a(0).

Here Ty is the Fermi temperature, m* the effective mass, and D the diffusion
constant. The dimensionless term F results from the Hartree interaction and is
a function of x = (2k /K )?, where K is the screening wave vector. It is given
by F=x"'n(1 + x), which can range from 0 to 1. In the Si: P, Ge:Sb and
n-InSb studies most samples had a donor concentration which yielded negative
values of m (F> %). However, for samples very close to the transition,
screening breaks down (K ! diverges) and F — 0, causing m to change sign.
Also, the magnitude of m (determined mostly by a) grows as n — n_, since a
is proportional to ¢(0) ~'/2. Although there is good qualitative agreement of m
with n, the best fits to the data differ from theory by a factor of 2.6 for Ge: Sb
and ~ 1 for Si:P. Part of the disagreement may result from the fact that the
theories do not include either the anisotropy or the effect of intervalley
scattering, which occurs at an unknown rate in Ge and Si (Rosenbaum et al.
1981a,b, Thomas et al. 1982b). Recent calculations by Bhatt and Lee (1982)
consider the effects of intervalley scattering, valley degeneracy and valley
anisotropy. The anisotropy turns out to be the most important correction and
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with its inclusion agreement with theory is found both for the single valley
semiconductor n-InSb (Morita et al. 1982) and the many-valley Si:P and
Ge: Sb.

In Ge:Sb the simple T'/? dependence for o(7T') is restricted to very low
temperatures (< 150 mK). The same dependence extends up to ~ 5K in 5i: P,
partly because the electronic and lattice characteristic energies are greater in Si
than in Ge. Thomas et al. (1982b) find that the inclusion of a linear T term
provides a good fit to the Ge: Sb data up to 500 mK. They write

o(T)=0(0) + mT'/*+ BT. (3.6)

The BT term arises from localization theory (Gorkov et al. 1979) assuming

an energy relaxation time 7, of the form 1/7, = ¢T'%. Such a form is expected if

the energy relaxation proceeds via electron—electron scattering. , is then given
(Quinn and Ferrill 1958) by

ENE

Te

2
M."&A vwmmxﬂmﬂ.%ﬁﬁv "ﬁ.NJNw

V3ihe \ Er

where ¢ is the dielectric constant and

4me’n
LG -

B from eq. (3.6) is related to ¢ as follows:

e? ¢
B=S 4\ =, , 3.7
o 272k (37)

where D is the diffusion constant, » the valley degeneracy (v = 4 for Ge) and
S, a parameter which depends on the effective mass tensor.

The fit to eq. (3.6) is shown in fig. 13 for a sample with a net donor density
n=33x10"cm™3 (n,~ 1.5 X 10""cm~? for Ge: Sb) and compensation < 5%
(Thomas et al. 1982b). Here the abscissa is linear in 7'/ The dashed-line
shows the best fit using only a T'/2 term (B = 0). The fit can be extended to
~ 500 mK if both the T'/? and T terms are included. The solid line is the sum
of these two terms (dashed-dotted lines).

s i
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Fig. 13. o(T) plotted against 7'/? for a barely metallic sample of Ge:Sb. The data have been

analyzed in terms of a linear 7' localization term and a T%/? Coulomb interaction term. The two

lower dashed lines assume different values of ¢(0). The solid line is a best fit to the data using both
the T and T'/? terms as in eq. (3.6) (Thomas ct al. 1982b).

3.4. Barely metallic samples: Magnetic field dependence

Early work on metallic n-Si and n-Ge (Alexander and Holcomb 1968, and
references therein) have generally shown a negative magnetoresistance, al-
though the magnitude and sign of Ap/p change with concentration, tempera-
ture and field strength. More recently, extensive studies of the low T (<1K)
magnetoresistance have been made on Si: P (Sasaki 1980a, Rosenbaum et al..
1981b), Ge: Sb (Ootuka et al. 1979, Sasaki 1980b) and n-InSb (Morita et al.
1980, 1982). The behavior of the magnetoresistance has been interpreted as
arising from donor spins (Alexander and Holcomb 1968, Mott 1974, Sasaki -
1980a, b, Ootuka et al. 1979), localization (Kawabata 1980, 1981), Coulomb
interactions (Altschuler et al. 1980a,b, Lee and Ramakrishnan 1982) or a
combination of localization and Coulomb interactions (Rosenbaum et al.
1981b, Chui et al. 1981, Morita et al. 1982).

Within the framework of Anderson localization (Abrahams et al. 1979),
Kawabata (1980) predicts a negative magnetoresistance which varies as H? at



252 R.F. Milligan et al.

low field and H'/? at high field. Specifically he finds
eH 1/2
Ap/p(0,0) = no.oﬁ%,e%\i?m,v = A,H"?, (3.8)

for H > H,, where
Ap/p(0,0)=[p(H,T)-p(0,T)]/p(0,0), A4,=—-0.9180p(0,0)

for H in kOe and p in € cm, and 4eH_/hc = (D7)~ '. Here D is the diffusion
constant and T, is the inelastic scattering time. Estimates of H_ for Si:P,
Ge:Sb and n-InSb indicate that the condition H > H, is easily satisfied
experimentally.

Using the Coulomb interactions model, eq. (3.5) can be extended to include
the effect of magnetic fields (Rosenbaum et al. 1981b, 1983, Lee and
Ramakrishnan 1982). In the presence of H, eq. (3.5) becomes

p(H,T)=p(0,0)—a[i- F|T?+ «FT'*G(h)/G(0), (3.9)
where

Q;vu\gaskmAMmma

[ aw —— JOw+ 1) 24w =17, (3.10)

and h=gugH/kT. They find G(h)/G(0)= 0.77Wh for h>1 and
G(h)/G(0)=1+ a(h?) for h < 1. This yields a magnetoresistance which is
always positive. For gugH > kT eq. (3.9) becomes :

Ap/p(0,0)= —a(4~F)T'/?/p(0,0) +0.77aF(guyH/k)'"* /p(0,0)
. (3.11)
= —~BTY2+ A H'?, (3.12)

where the term A, is independent of 7. The magnetoresistance can now be
written as

Ap/p(0,0)= (A, + A )H/?*— BT'/?
= AH\2 - BT/, 613)

where the localization and interaction effects are assumed to be additive. Such
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an analysis of the low T magnetoresistance was first done on Si: P and Ge: Sb
by Rosenbaum et al. (1981b) and subsequently on granular aluminum (Chui
et al. 1981) and n-InSb (Morita et al. 1982). In fig. 14 we show the results for
n-InSb, where p is plotted against VH for two different temperatures. As in the
Si: P and Ge:Sb cases, p has a VT dependence at constant field values and
the slopes of the two curves in fig. 14 are essentially independent of tempera-
ture and field direction as predicted by eq. (3.13). From the slopes of the p
versus H'/? and T'/? curves the values of 4 and B can be obtained.
Subtracting the calculated value of 4, from A, the values of A, and B are
compared with theory (eq. 3.11). The gialitative agreement with theory is quite
good, although the actual values of the parameters differ by a factor of 2 to 3.
One common problem encountered in interpreting the low 7' magnetoresis-
tance of all three materials is that the largest effects occur near the transition
where k¢l ~ 1, contrary to the conditions of the theory, kp/> 1.
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Fig. 14. Resistivity of a metallic n-InSb sample plotted against H'/?. At high fields p is
proportional to H'/’ 2 with a slope independent of T, as shown in eq. (3.13) (Morita et al. 1982).
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3.5. Electric field effects near the transition

At millidegree temperatures the resistivity of Si: P samples near n_ shows a
marked electric field dependence not related to lattice heating. This has been
observed for samples with n<n_ (Rosenbaum et al. 1980b) and n>n,
(Rosenbaum et al. 1983). The data for samples on the metallic side is not
understood; however, on the insulating side the results can be interpreted in

terms of a hopping model. For small electric fields E the model predicts (Hill
1971, Pollak and Riess 1976)

o(T,E) o p(T )exp(eEL/kyT), (3.14)

where L is a characteristic length. Figure 15 shows In(p/p ) plotted against
E/T, where py=1/0y conveniently scales the data. Using the line for
T =392mK yields L =16pum compared with the Bohr radius of the isolated
donor of ~ 16A. Eq. (3.14) is calculated for eEL < kT and this condition
may not be well satisfied for the lower values of T, as the poorer fits suggest.

At present, the large value of L implied by the data is not understood. L is
much larger than either the average donor spacing n~!/? = 63 A or estimates of
the localization length £ ~10A for amorphous semiconductors (Mott 1974,
Mott and Davis 1979). Scaling theories of localization (see Part II) suggest a
divergent length scale near the MI transition. However, even estimates of this
are ~ 250 times too small (Capizzi et al. 1980, Hess et al. 1982, Rosenbaum
et al. 1983).

ntp/p,,)
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Fig. 15. Plot of In(p/p\) versus E/T at several temperatures for a barely insulating Si : P sample.
Here py, = 1 /0y and E is the electric field (Rosenbaum et al. 1980b).
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4. Magnetic properties

In this section, we discuss a number of magnetic field related phenomena, such
as electron spin resonance, Knight shift, spin susceptibility and Faraday
rotation. Extensive reviews of magnetic phenomena can be found in Alexander
and Holcomb (1968), Holcomb (1978) and Tunstall (1980).

4.1. Electron spin resonance studies

The effects of donor clustering seen in the far IR absorption studies are also
apparent in the electron spin resonance (ESR) spectra of donor electrons in
Si: P (Fletcher et al. 1954, Slichter 1955, Feher et al. 1955, Maekawa and
Kinoshita 1965). At low donor concentrations (n < 10'7cm ~3) the spectrum is

dx dx’

dH n=gx10'7 | dH 7 x10'®

*x!;v cm-3 t

Ho Ho
2.7x10%7 3x108

(Agq) (Ag)
1 i

1.9x10%7 14018

(Az)(Az)(A3)
'

Fig. 16. ESR spectra of donor electrons in Si: P for samples with various donor concentrations.

The hyperfine doublet, A;, which dominates at low concentrations is characteristic of isolated -

donors, however signals from donor pairs, A,, and triplets, A,, are also visible. At high

concentrations the only signal which remains is a single narrow line characteristic of delocalized
spins (Maekawa and Kinoshita 1965).
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dominated by two hyperfine lines of the 100% abundant 3P nucleus (1= 3).
Increasing n introduces signals from donor pairs and larger donor clusters. In
fig. 16 we show a series of ESR spectra of the donor electrons in Si: P at
various values of n. The curves are taken from Maekawa and Kinoshita (1965).
We calculated the values of n using their reported values of p at 300 K and the
neutron activation calibration curve for Si: P (Mousty et al. 1974). The donor
concentration determined in this fashion is somewhat larger than the values
they report. For example, where they reported an excess donor concentration
of 1.7 % 10%cm 3, we find 3 X 10'¥cm 2.

In Sample 1 the predominant resonance, A,, is due to isolated 1P atoms.
Even at this low concentration, where the average spacing between impurities
is ~ 300 A, signals from donor pairs, A ,, and triplets, A ;, can be seen (Slichter
1955, Holcomb 1978). The central resonance, which rapidly grows and narrows
with increasing n, is evidence of interaction among electrons (Holcomb 1970,
1978, Holcomb and Rehr 1969). The narrowest line occurs at a value of n far
below the MI transition in Si:P. The observation that charge delocalization
occurs at a value of n at least 3 times that of spin delocalization has been
interpreted as evidence of correlation effects (Holcomb 1978). The exchange
interaction J between neighboring spins can be large enough for the electrons
to average the hyperfine interaction of many P nuclei, producing the large
narrow resonance. In order for charge transport to occur, however, an ad-
ditional electron must be placed on the donor atom, which would cause one
electron to be raised by the Coulomb energy, U, to a D~ state. As long as
J < U this Coulomb barrier prevents charge transport at low 7.

4.2. Spin susceptibility

The spin susceptibility, x, has been measured in doped semiconductors by a
variety of techniques: direct static measurements (Sonder and Stevens 1958),
integration of ESR spectra (Quirt and Marko 1971, 1972, 1973, Jerome et al.
1965, Ue and Malkawa 1971), low T SQUID magnetometer measurements
(Andres et al. 1981) and Faraday rotation (Kummer et al. 1978, Walstedt et al.
1979, Geschwind et al. 1980).

In fig. 17 we see the T dependence of x; ' from the ESR integration results
of Quirt and Marko (1973) for Si:P with n=5.9 X 10'®%cm ™. Although this
sample is clearly in the metallic range as far as conductivity studies suggest
(n,=3.74 X 10"%¢cm~?), the strong T dependence of x ' cannot be explained
by the T-independent Pauli susceptibility expected for degenerate electrons. It
is not until higher concentrations (n ~ 1-2 X 10'°cm~?) that x, is indepen-
dent of T at low temperatures, the suggestion being that the T dependence
arises from correlation effects (Holcomb 1978).
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Fig. 17. The temperature dependence of the inverse of the spin susceptibility of Si:P with
n=159x10"%cm3, This metallic sample does not show the T-independence of x expected for
degenerate electrons (Quirt and Marko 1973).

Figure 18 shows the results of Andres et al. (1981) for Si: P on the insulating
side. These measurements were extended to both low T and low field. The
unexpected leveling off of x, below ~30mK is roughly independent of
concentration and remains unexplained. The data of higher T, however, has
been adequately explained using two different types of cluster calculations
which involve exchange coupling between the many-valley orbital ground
states of the P atoms. The first is a pair calculation which has been modified to
include larger clusters (Bhatt and Rice 1980) while the second is a computer
simulation cluster analysis (Walstedt et al. 1979). The dashed lines in fig. 18 are
the results of these calculations. The solid lines indicate the slope for Curie law
behavior. The deviation from Curie law behavior is also seen in fig. 19 which
shows x, versus n for two temperatures. Note that n = 3.74 X 10"¥c¢m ™2 is
well off the scale in this plot. The deviation from linear Curie law behavior
(x, o n) is most dramatic at low T, but the data is still in good agreement with
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Fig. 18. The temperature dependence of the spin susceptibility for insulating samples of Si: P. The
dashed lines are the results of cluster calculations while the solid line is the Curie law for free spins
{Andres et al. 1981).
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Fig. 19. Donor spin susceptibility plotted against donor concentration for insulating samples. The
straight line is the Curie law behavior, while the curved line is based on the modified pair
approximation (Andres et al. 1981).
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Fig. 20. Recorder tracing of the Faraday rotation of linearly polarized light transmitted through
CdS as a function of magnetic field. The dots show the accumulated rotation which is linear in H
at small field with a slope proportional to x, (Geschwind et al. 1980).
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Fig. 21. The temperature dependence of the Faraday rotation for a barely metallic sample of Cds
with a Fermi temperature of 270 K. Two wavelengths were used and normalized to each other at
8.5K (Geschwind et al. 1980).
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the calculated value of x, using the modified pair approximation (curved line).
A different approach to measuring x, is by observing the Faraday rotation

of linearly polarized light as it passes through a sample in a magnetic field.

Romestain et al. (1975) have shown that the rate at which the rotation changes
with field is proportional to x, at small fields. The technique selectively
measures X, of the donor in very small concentrations even though magnetic
impurities may be present, an advantage over methods which measure the bulk
susceptibility. This technique has successfully been applied to n-CdS at low T
(Kummer et al. 1978, Walstedt et al. 1979, Geschwind et al. 1980). Figure 20
shows the Faraday rotation @ as a function of magnetic field. The recorder
trace shows the signal transmitted through an analyser, where each positive

peak corresponds to an additional 7 rotation of the plane of polarization. The |

accumulated rotation is shown as the dots on the graph, the slope of which is
constant at small H and proportional to x,.

The temperature dependence of the Faraday rotation for a barely metallic
sample of CdS is shown in fig. 21. Here two different wavelengths were used
and the data made to coincide at 8.5 K. The temperature dependence of x,
(proportional to the rotation) is similar to the data of Quirt and Marko (1973)
for Si: P shown in fig. 17.
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Fig. 22. Nuclear spin-lattice relaxation time, 7}, plotted against donor concentration for Ge: As.
Both samples are metallic (Tunstall and Deshmukh 1979).
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4.3. Nuclear magnetic resonance studies

The nuclear spin-lattice relaxation time, T}, can be used to provide informa-
tion about electron spin motion since it monitors the strength of the interaction
between the electron and nuclear spins. Spin motion, however, may not be the
same as charge motion. The concentration dependence of 7, for Ge:As
(Tunstall and Deshmukh 1979) is shown in fig. 22. These samples are above the
MI transition and the only temperature dependence of T, is the usual T~!
found for degenerate systems (i.e., only electrons within k7T of the Fermi level
participate in the process). An interesting feature of the data is the increase in
T, with field, a process which grows as n — n_. Tunstall (1980) suggests that
this quenching of the spin-lattice relaxation may be due to local moments.

A related topic is the Knight shift, K, which depends on both x, and the
electron wave function probability at the nucleus {|¢(0)|?) E, averaged over
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Fig. 23. Knight shifts as a function of donor concentration (a) for ?°Si and *'P in Si: P samples
(Sasaki et al. 1974) and (b) for ">Ge in Ge : As samples (Deshmukh and Tunstall 1976).
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electron states at the Fermi level, as shown below:
K=(87/3)Q¢(0)*), x,- (4.1)

Here {2 is the atomic volume. Figure 23 shows the donor density dependence
of the Knight shifts for 2°Si and 3'P for Si: P samples (Sasaki et al. 1974) and
PGe for Ge: As samples (Deshmukh and Tunstall 1976). Both the Si and Ge
hosts show an n dependence of roughly K « n!/? (solid line), which is basically
the dependence of x, for these densities. Presumably the donor wave function
at the host site changes very little until just above n_,. However, the Knight
shift for >'P increases dramatically as n —» n_, which must mean that the wave
function at the donor site grows rapidly as n approaches n_ from above. The
results for the hosts are consistent with the 7; measurements. K and 7T; are
related by the Korringa relation, T;Tk? = constant (see for example Holcomb
1978) and in this region K o n?/3, T, o n=%% and T, « 1/T.

5. The specific heat

Mott and Davis (Mott 1972, 1981b, Mott and Davis 1975) have shown that

6(0) can be written as
2

o) =4(| [tummtnd’| ) [NE)], (1)
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where ¢, and , are electron wave functions within the random potential.
Here A is a constant, N(Ep) is the density of states at the Fermi energy Eg
and the bracketed term is a matrix element. Within the framework of
Anderson localization (1958), ( ) vanishes for n <n_ while the density of
states remains finite.

One way to check this result is by measurements of the specific heat, c,
which give indications of the way in which N(Eg) changes with donor
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Fig. 24. The specific heat ¢ divided by the absolute temperature is plotted against T2 for Si:P

samples above and below the transition. The intercept of a linear fit gives y which is proportional

to the density of states at the Fermi level. These results replotted in fig. 25 show that v is
continuous through the transition (Kobayashi et al. 1979).
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concentration. At low temperatures we can write
c=yT+aT?, (5.2)

where the T and T3 terms are the electronic and lattice specific heats,
respectively. Within the free-electron model we have (Sasaki 1980b)

y=(n2%3/3) N(Ey). (5.3)

Kobayashi et al. (1977, 1979) and Thomas et al. (1981b) have measured the
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Fig. 25. The square of vy, as defined in eq. (5.2), is plotted against donor concentration for Si:P

samples. The dashed line for n> n_ is based on the free electron form, while for n < n_ itis a

guide to the eye. The solid line shows the behavior of a(0)/0,, versus n in the metallic region
(Thomas et al. 1981b).
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low temperature specific heat of Si: P. In fig. 24 we show ¢/T plotted against
T2 for several samples with different values of n. The intercepts give y while
the slopes yield a. The slopes are essentially all the same since the lattice
specific heat is primarily determined by the host material. The key feature of
the data is that vy is continuous through the MI transition. The results obtained
by Thomas et al. are in essential agreement with those of Kobayashi et al., but
yield values of y which are slightly smaller. In addition, the values of n used
by Thomas et al. are from the neutron activation analysis of Mousty et al.
(1974). They define n,=3.74 X 10"%cm ™3, at the point where o(0)— 0.
Kobayashi et al., however, use n =3.2Xx10¥cm™3, determined from the
concentration where the activation energy E, — 0 (Yamanouchi et al. 1967).
Recalibration brings the two sets of data into agreement on n_.

Comparing egs. (5.1) and (5.3), we see that the theory can be checked by
comparing y? and ¢(0) as functions of n. Figure 25 shows the results for the
data of Thomas et al. (1981b). The solid curve shows the behavior of o(0) as
found in this and earlier work (Yamanouchi et al. 1967, Rosenbaumr et al.
1980b, Ootuka et al. 1980). The dashed line for n>n_ is a fit to the free
electron form, y=vy(n/n.)/* (Sullivan and Seidel 1968). For n<n, the
values of y? drop off more rapidly with n as expected for insulators. The
dashed line in this region is a guide to the eye.

These results confirm the arguments of Mott and Anderson. N(Eg) does not
drop to zero at the transition. Rather, it varies slowly with n, in marked
contrast to the abrupt disappearance of 6(0) for n <n_.

6. Divergence of the dielectric susceptibility

The critical behavior of the donor dielectric constant, ¢, as n — n_ from the
insulating side provides great insight into the physics of the MI transition.
Castner and co-workers (Castner et al. 1975, 1980, Castner 1980, Bethin et al.
1974) have measured € for n-Ge and n-Si using a low frequency capacitance
bridge technique and temperatures down to 11 mK. Figure 26 shows the results
for Sb, P and As doped Si samples as a function of n= Ny, — N,. Here ey is
the dielectric constant of the impurity found by subtracting the host value
€g;=11.4 from the measured total dielectric constant. As n->n_ there is
clearly a steep rise in €y.

In terms of the donor polarizability, ap, the Clausius—Mosotti expression
gives ey as

ex=(1+8mnap/3)/(1 —4mnay/3). (6.1)

A polarization catastrophe occurs when 4wnap/3 =1, which within the
effective mass approximation occurs at a critical concentration n, given by
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Fig. 26. The donor dielectric constant €y, for Sb, P and As impurities in Si is plotted against the
net donor concentration. ey, diverges as n is approached (Castner 1980).

n'/%a* = 0.376 (see for example Castner 1980, Fritzsche 1978). Castner et al.
(1975) find, however, that €, diverges even more rapidly than predicted by the
Clausius—Mosotti relationship eq. (6.1).

Another means of obtaining ¢ and the dielectric susceptibility, x, has been
by integrating the far IR absorption coefficient a(w) over @ and using the
Kramers—Kronig relation (Townsend 1978, Capizzi et al. 1980). The suscepti-
bility is related to the dielectric constant, ¢, by € = eg; + 4my. In terms of the
zero frequency refractive index n(0) = ¢'/? we get

dmy = ?Aoznimmt (6.2)

where n(0) is determined by the Kramers—-Kronig relation
iovﬂ:mm.fm\s\ss?ﬁev\siaa. (6.3)
o

Here c is the speed of light. Figure 27 shows the results (open circles) for Si:P
(Capazzi et al. 1980). The spectrometer used for this experiment measured
a(w) in the energy range hw=2.5 to 58meV. To perform the integration
indicated in eq. (6.3), a high frequency Drude tail (~ 1/«?) was added to the
data. x was insensitive to the precise form of the tail.
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Fig. 27. Divergence of the donor dielectric susceptibility, 4mx, and conductivity o(0) extrapolated
to T=0 as the MI transition is approached from below and above, respectively. The system is
Si:P. The open circles for 4myx are from IR studies while the closed circles are from direct
measurements at 400 MHz. The open circles for a(0) were obtained for samples under stress. The
solid lines for 47y and a(0) are best fits using eq. (6.4) and eq. (6.5) respectively (Hess et al. 1982).

In addition to the IR data, the closed circles show direct measurements of x
using a resonant transmission cavity at 400 MHz and temperatures down to
20mK (Hess et al. 1982). These additional measurements were required
because the IR measurements are difficult to make near the MI transition due
to the nearly metallic reflectivity of the sample and the appreciable absorption
which occurs at frequencies below the measured range.

The data is found to fit the form

dax =xo(ne/n=1)"%, (6.4)



268 R.F. Milligan et al.

with xo=7.0 and £=1.15. Similarly the zero-temperature conductivity o(0)
fits the form

a(0)=o(n/n.—1)", . (6.5)
with

0,=260(2cm)”" and »=0.55.

Both forms are suggested by scaling theories of localization (Abrahams et al.
1979, Imry 1980) which predict a divergent length scale as n — n, from above
or below. Most of the theoretical and experimental work has concentrated on
the approach to n_ from above, which we will now present in Part II.

Part II - “Tuning” the MI transition

As we have seen in Part I, the MI transition can be probed through many
different properties — optical, transport, magnetic, dielectric, etc. — each of which
give somewhat different insights into the details of the transition. Perhaps the
most illuminating is the dc conductivity, as suggested by the name: Metal-
Insulator Transition.

7. The conductivity story

The metallic phase is characterized by a finite dc conductivity at T'=0, ¢(0),
while ¢(0) is zero in the insulator. Thus ¢(0) is in some ways akin to an “order
parameter” characterizing a phase transition. (It should be noted that there is a
transition only at absolute zero, somewhat like a ferromagnetic transition
which occurs strictly only in zero magnetic field.) Deep in the metallic phase,
6(0) is given by the Boltzmann transport theory:

eyl
127°h°

6(0)=0p= (7.1)

where $p is the Fermi surface area, and ! the (elastic) mean free path.
Equation (7.1) is just the familiar form op = ne’r/m generalized to arbitrary
Fermi surfaces. For a spherical Fermi surface, S = 47(372n)*?, where n is
the electron density, so defining d=n"'/3, an average distance between
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electrons, we get

T\V3 e? |

«0-(3)" 7 (7.2)
Ioffe and Regel (1960) pointed out that for a Boltzmann theory to be valid, /
must be greater than the distance between the scattering centres, thus eq. (7.2)
has a lower limit

o~ e’/3hd. (7.3)

This idea was formalized into the concept of a “minimum metallic conduc-
tivity”, oy, by Mott in 1972. Mott argued that as the MI transition was
approached from the metallic side, 6(0) decreased with /, till /=4 and then
the system became insulating with an abrupt drop in ¢(0), from a minimum
value o), to zero (fig. 28a). o), was given by:

oy = C(e/hd), (7.4)

with C a numerical factor estimated by Mott to be ~ 0.025-0.1, quite a bit
lower than the constant in oz (eq. 7.3). This, Mott claimed, was due to a
reduction in the density of states at the Fermi level, compared to free electron
estimates. Experimental support for this value came from the prefactor of the
temperature-activated conductivity in the insulating phase (Fritzsche 1978),
where o(T') = oexp(—A4/2T), with the mobility gap A varying with n (see
section 3.1).

For many years, Mott’s claim was not seriously challenged except by Cohen
and co-workers (Webman et al. 1975) who viewed the metal-insulator transi-
tion as classical percolation of metallic regions in an insulating medium,

NON -
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Fig. 28. Various proposed scenarios for the conductivity onset: (a) Mott, (b) Classical Percolation
and (c) Scaling theory.
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instead of an intrinsically quantum phenomenon. Percolation theory implied a
soft onset ¢(0)a (n—n.)" with r=1.8, (fig. 28b), and experimental support
for this picture was scant.

In 1979, Abrahams, Anderson, Licciardello and Ramakrishnan, following
the work of Wegner (1976) and Thouless (1977), put forth a scaling theory of
localization for non-interacting electrons in disordered systems, which put the
MI transition in the context of the general theory of phase transitions. Their
picture was based on the assumption that conductance was the only relevant
parameter describing the phenomenon of localization close to the transition.
Applied to three-dimensional systems, their results implied that the dc conduc-
tivity near the MI transition would be given by a form like eq. (7.4) but with
the interparticle spacing d replaced by the localization length £, which is the
only relevant length near n. Thus ¢(0)= 0 for n <n, while above n,,

0(0) = C’(e?/ht). (7.5)

The localization length diverges at the transition, §~ |n—n ™", so that
0(0) has a continuous, albeit critical, onset (see fig. 28¢):

a(0) =oo(n/n.—1)", (7.6)

where o, ~ 0, within a factor of two or so. » was estimated to be 1.

On the insulating side, the approach to the critical point (see section 6) is
characterized by a diverging polarizability (dielectric constant). For large
wavevectors g (short distances), the system behaves like a metal, so e(¢) ~ 1/q 2,
This behavior is cut off at g, ~ 1/£ so the dielectric constant should go as

«(0)~1/g2~ 82~ (n,/n—1)"", (1.7)

The experimental situation prior to 1982 is typified by the results of Si: P
(Rosenbaum et al. 1980a) shown in fig 29. The data do not exhibit any
discontinuous change in 0(0), and can be fit over the range 1 <#/n < 1.5 (and
surprisingly, even further), with a critical form (eq. 7.7). However, it should be
noted that the jump implied by Mott (o,,) is extremely small, and data below
o) are scant with uncertainties in n of the order of the variation of n. Thus
they are not invulnerable to the criticism that density inhomogeneities may be
playing a major role. Further, a fit to the critical form gave » = 0.55 + 0.1 and
0, = 130y, both in apparent disagreement with the scaling theory. Parallel
work on amorphous Au-Ge alloys (Dodson et al. 1981) also yielded samples
with 6(0) < o), but problems of calibration of the density and of inhomogenei-
ties in that system were no better, perhaps worse. Clearly a much finer search
around n, was called for to settle the issue of the existence of @y Other
nagging questions included why the critical region (o < g, or 6,,) was so small,
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Fig. 29. Low temperature (mK) dc conductivity o(0) of phosphorus doped silicon, as a function of
phosphorus concentration. gy, = 20 (Qcmy™ !, n, = 3.7 x 10¥cm 3 (data from Rosenbaum et al.
1980a).

and what role electron-electron interactions played if a scaling description was
valid. : o :

8. Tuning the metal-insulator transition

Around the time the experimental investigations were at this stalemate, it was
realized that there existed, at least for the doped semiconductor system, an
alternate probe which allows a study of the critical region with greater control
and precision and less ambiguity. It was a classic case of the mountain coming
to Muhammad since Muhammad couldn’t go to it (i.e., varying n_ through n,
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the density of a given sample, since the converse was not fruitful). This unique
versatility of “tuning” the MI transition [by a factor of two Aw.rm: 1981) or
even more] by application of modest stresses readily mﬁ:mim in the _mcoam-
tory, is a consequence of the strong coupling of the impurity band to :on-o:.go
deformations. In order to understand the phenomenon, however, we review
some basics concerning the impurity band.

8.1. Shallow impurities in semiconductors

When a group V element (donor, e.g., P, As, Sb) is substituted for .Ea host
element in crystalline Si or Ge, four of the valence electrons go into the
chemical bonding and the fifth sees a singly charged ion screened by the large
dielectric constant ¢ of the semiconductor (eg; = 11.4, €, = 15.4). Neglecting
the short range part of the potential (due to atomic shells and lattice REU.S-
tion) one obtains the effective mass approximation (ema) (Kohn 1957) in which
the electronic wavefunction is expressed as:

P(r) = ¢4, (r)x(r), (8.1)

i.e., a product of the Bloch wave ¢, at the conduction band minimum Q.a =ky)
of the host semiconductor and an envelope x which satisfies a hydrogenic wave

equation:

T i qﬁmvxsnmi; (82)

2m*

Here m* is the conduction band mass (in general a tensor, with different
elements along its major and minor principal axes). When m* is a scalar (e.g.,
for a band minimum at k,=0 as in GaAs), eq. (8.2) is the hydrogen atom
wave equation with a 1s ground state and the usual set of excited bound states
(2s, 2p, 3s etc.) below the continuum; the “Bohr radius” a* = eh?/m*e? is
typically 30-100 times the normal hydrogen atom, while the “Rydberg”
Ry = m*e*/2¢2h? is 300-1000 times smaller than that of hydrogen. For Si and
Ge, the conduction band masses are anisotropic, and the 1s ground state
wavefunction is no longer the spherically symmetric exponential form
exp(—r/a*). However, it is well represented by the variational form (Kohn
and Luttinger 1955, Kittel and Mitchell 1955):

2 2 2\1/2
x xg+x
x(r)~exp| - mw 4 ) (8.3)
a

where x, and x,; (i = 1,2) are the components of r along the major and minor
axes of the mass tensor and a and b are variational parameters often referred
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to as the transverse and longitudinal radii of the wavefunction. The effective
mass radii in Si are ¢ = 24 \wr b~14A and in Ge a=62A, b=22A (note the
large anisotropy). Since the donor wavefunction radii are much larger than
the nearest neighbor distance of the host lattice (~ 2.4 A), the discreteness of
the positions for a substitutional impurity is unimportant, and we may assume
that the impurities are randomly distributed in a continuum. This property will
come in use later.

Both Si and Ge really have multiple conduction band minima (called
valleys): in Si there are six equivalent minima, along the positive and negative
x,y and z axes [(100) directions), roughly 85% the way to the Brillouin zone
boundary; Ge has four minima in the (111) directions at the zone boundary.
For multiple minima (valleys), there is a hydrogenic set of impurity levels
derived from each, which are orthogonal to each other because of the orthog-
onality of the Bloch waves ¢, (eq. 8.1). The envelope wavefunctions are all of
the form (8.3), only the axes (x, and x,) are rotated along the axes of the
appropriate valley—ie., the anisotropic wavefunctions “point” in different
directions. Thus, within the effective mass approximation, for a v-fold degener-
ate conduction band minimum there is a v-fold degenerate ground state. For
most donors, however, this degeneracy is split by the short range (atomic/lattice
deformation) potentials of the impurity known as the central cell, and the
ground state is usually the non-degenerate, symmetric combination of the v
valleys:

Fom= L x:(r)os(r). (84)

i=10u

[Ge: Sb and (interstitial) Si: Li however, have unusually small splittings and
are well approximated by degenerate em wavefunctions for most purposes.]
Usually the lowering of the energy of the symmetric state is accompanied by a
“sucking in” of the envelope function by the central cell. The envelope
functions for the other states (which consist of a triply degenerate and a
doubly degenerate set in Si, and one triply degenerate set in Ge), however, are
not much affected because these “antisymmetric” states have zero amplitude at
the impurity site. Thus the effective radii of the ground state wavefunction are
smaller, sometimes by as much as 30%, than the excited 1s states.

Non-cubic deformations break the degeneracy of the conduction band
minima in these cubic semiconductors and thus couple directly to the donor
wavefunction and hence the critical density n . The relatively modest external
stresses needed are easily understood because the relevant energy scale is the
impurity band energy ~ 10~ 2eV rather than ~ eV typical of most electronic
bands. We may obtain an order of magnitude estimate of the stress needed as

S~CEy/= (8.5)
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where C is an elastic constant (~ 10'2dynecm™?), E, the impurity band
energy (~ 107%eV) and Z the conduction band deformation potential (typi-
cally ~10eV). Putting these numbers in eq. (8.5) yields § ~ 10°dynecm 2
~ 1 kbar, a stress edsily obtainable in the laboratory.

8.2. Effective mass donors

The coupling of n_ with uniaxial stress is largest for the effective mass case,
where the strain splits the degeneracy of the donor ground state. Thus the
donor wavefunction, which has the freedom of choosing between a number of
differently oriented ground states (see fig. 30a) in the unstressed case, is forced
into the lowest one of them in the high stress limit (fig. 30b). (In the case of Si,
the high stress limit has two lowest valleys related by inversion symmetry;
however the envelope functions are identical, so there is no freedom of
orientation left.) In the absence of stress, the impurity band is thus formed by
a random, isotropic system of donors with nearly isotropic wavefunction
overlap. (This is because of the orientational degree of freedom. Strictly
speaking, there is only cubic symmetry - isotropy would require a continuous,
infinitely degenerate orientational degree of freedom.) In the high stress limit,
on the other hand, the donor system, though random, has highly anisotropic
wavefunctions (fig. 30c). However, it was noted (Bhatt 1981) that by a scale
contraction along the transverse axes (or expansion along the longitudinal axis)
of the wavefunction (eq. 8.3), which makes the wavefunction isotropic in the
new coordinates (fig. 30d), the system can be mapped on to an essentially
isotropic system, with a different density. This is because: (a) the randomness
of the distribution of the donor nuclei is retained with no preferred direction in
the transformed frame, despite the anisotropic scaling; and (b) the dominant
(exponential) dependence of quantities determining n. e.g., hopping integrals,
is isotropic; the residual anisotropy in prefactors of the exponential has only a
small effect in determining n..

By comparing the Mott criteria (eq. 1.1) for the two almost isotropic
systems — the stress free case, and the high stress limit in the transformed
frame, one may obtain the ratio of the critical density in the two cases,
independent of the value of the constant on the right side of eq. (1.1). For Ge
and Si, the results thus obtained are:

H_u valley ﬁ n H_w valleys
c

[ne

[ne

~15. (8.6)

um valleys -

Ge:

“_& valleys =22 Si: —”zo

The former result compares well with the experimentally obtained value of
2.1 in Ge:Sb by Cuevas and Fritzsche (1965), while in Si the comparison is yet
to be done - the high diffusion rate of the effective mass donor Li in Si at room
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random system in the high stress limit (c) into an isotropic random system (d). It should be noted

that the distribution in (d) remains isotropic, though nearest (solid line) and next-nearest (dashed
line) neighbors may get interchanged.

temperatures destroys the quenched nature of the system and complicates the
issue.
8.3. Moderate central cells

In the case of most donors (e.g., Si: P, on which detailed measurements have
been done), the orientational degeneracy is lifted even at zero stress by the
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central cell potential and the ground state wavefunction is the symmetric
combination eq. (8.4). Further, interference between the different Bloch waves
leads to rapidly oscillating (on the scale of the Si lattice spacing) factors
(Andres et al. 1981, Bhatt 1982), which make a simple application of the Mott
criterion uncertain, and a detailed calculation of the one-electron bands (fig. 1)
has to be done. Such a calculation for the case of the Mott transition has been
done recently (Bhatt 1982), using parameters appropriate for Si:P. The change
in n_ with stress is, in this case, related to the mixing of the excited 1s states
with the symmetric ground state by the non-cubic deformation. Since the
excited states are more extended, this causes a broadening of the occupied
(hole) band, as well as a lowering of the empty (electron) band. Both these
effects lead to a reduction in n,, which is signalled by a crossing of the two
bands. Note that this is the opposite of the effective mass case where n. at high
stresses is larger than at zero stress.

The first ingredient of the calculation is setting up the pseudopotential for an
electron in the D~ band (equivalent to H ™), scattering off a lattice of neutral
hydrogenic donors. This is done using the method of polarized orbitals, which
views it in a sort of Born-Oppenheimer approach - scattering of a slow
“outer” electron by a positive point charge surrounded by a fast moving
“inner” electron which adjusts adiabatically to the slow outer one. The
potential is then obtained as a sum of the electrostatic (Hartree) interaction of
the outer electron with the neutral donor Uy(r) and a perturbation series
arising from the modification of the wavefunction of the occupied 1s state
(virtual excitation to higher levels) due to the outer electron. For example, the
leading (second order) term of the perturbation series is

0(r) = = (X)) g V() () ). (8.7)

where E, and x(r’) are the ground state energy and wavefunction of the
internal electron, J# the Hamiltonian of the system, and

m.w

elr—r'|

(8.8)

o2
Vir,r)= -~ PP

is the perturbation due to the outer electron. It can be shown (Bhatt and Rice
1981) that truncating the perturbation series at this term leads to a potential
which reproduces the correct asymptotic behavior both for r— 0 and r— o0,
and for an isolated H~ yields a binding energy within 0.01Ry of the exact
result, which is extremely good for a one-electron description. Thus this
method provides a correct description in the low density limit, and comple-
ments methods such as the local density functional which are expected to be
good at high densities. Further, the method is readily generalized to the case
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where a central cell is present. A simplified cellular method — approximating
the Wigner—Seitz cell by a sphere of equal volume —is used to locate the band
edges. (The top of the band corresponds to a zero of the wavefunction at the
sphere boundary, while the bottom is given by a zero derivative boundary
condition.) The D™ (hole) band is calculated using a tight-binding approxima-
tion for the occupied ground state orbitals. For the D" band there is a large
reduction in the bandwidth, by a factor of almost three, compared to the
hydrogenic case because of phase mismatch of the different Bloch waves in the
ground state wavefunction at different donor sites. In addition, spin-flip
scattering for an antiferromagnetic ground state as exists in the insulating
state, leads to a further 25% reduction in the bandwidth. When all these effects
are included, the one-electron bands calculated for Si: P are shown in fig. 31,
for various values of compressional stress along a (1 10) direction. The calcu-
lated change in n, is about 3% for S = 2 kbar, which is consistent with recent
experimental estimates of 10-15% shift in n_ for 10 kbar stress (Paalanen et al.
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Fig. 31. The bottom of the electron (D7) and top of the hole (D*)band for Si:Pasa function of
donor separation d = n~ /3, Region near n, is enlarged in the inset, for different values of stress S
(Bhatt 1982).
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1982). As stated before, n_ is reduced by application of stress, and thus an
insulator near the M1 transition should transform into a metal.

9. Tuning n_ in practice: Squeezing at low temperature

The ideas outlined in the previous section were implemented in the experiment
by Paalanen et al. (1982) in which uncompensated samples of Si:P with
dopant densities just below n_ were subjected to uniaxial stress S of up to
10 kbar at millikelvin temperatures. The necessity of low temperature is
clear — the M1 transition strictly takes place only at 7= 0. One might naively
guess that experimentally it would be sufficient to have T < 4, the one-elec-
tron mobility gap (fig. 31); for samples 1% away from n_, 4, is about 3K.
However, as shown by Altshuler et al. (1979a,b, 1980a), electron—electron
interactions in disordered Fermi liquids with diffusive propagators lead to
strong singularities near the Fermi level even for weak disorder. For example,
the density of states in three dimensions has a singularity of the form

N(E)~ N(O)[1 +(E/Ey)"], (9.1)

which has been seen in tunnelling experiments (Dynes and Garno 1981,
McMillan and Mochel 1981), while the temperature dependence of the dc
conductivity is given by

o(T) = a(0)[1 +(1/T,)" (9.2)

which has been verified in a number of systems, including Si: P (Rosenbaum
et al. 1981a, see section 3.3). The temperature T, is given by

Ty~ m,mAa_w\Qonvu, (9.3)

where Ep is the Fermi energy (~ 100K for Si:P near n.), oz the loffe-
Regel value (eq. 7.3) and o(0) the zero temperature conductivity. For ¢(0) ~ o,
(n within 1% of n.), T,~100mK, so that for the temperature-dependent
correction in eq. (9.2) to be small, we need T < 100 mK. This emphasizes the
necessity of millikelvin temperatures (and proper extrapolation to absolute
zero), which is abundantly clear in the experimental results in the stress
dependence of the conductivity in Si: P taken at successively lower tempera-
tures (fig. 32).

The measurements were made on samples roughly a centimetre long and a
fraction of a millimetre in the other directions. Originally two sections from a
single wafer were used, but measurements have since been extended to samples
from three different boules with slightly different densities. Samples were
mounted in a pressure device operated by liquid *He as illustrated in the inset

e
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Fig. 32. Dc conductivity of a sample of Si:P near n_ as a function of uniaxial stress at three
different temperatures (Thomas et al. 1983).

of fig. 34, and the stress measured capacitively at one end of the sample.
Measurements were done using both a four-probe and a capacitance bridge
(for dielectric constant in the insulating phase) technique. Low frequencies
(10-10°Hz) and power levels below 1071 W were used to ensure linear
response.

In a small interval around a finite critical stress S, (when n.=n), the
variation of n_ with S may be approximated by a linear form. Thus the onset
of (0) with S would yield the critical exponent » (eq. 7.6). However, due to
rounding at low conductivity [¢ < 5(2cm)~!], which varied with sample, the
critical exponent of the intrinsic dependence is not clear from fig. 32. (The
downward curvature implies that » <1, though.) Thus an extrapolation to
T=0 has to be done by fitting an appropriate form such as eq. (9.2), which
yields » = 0.5 + 15%. Alternatively, one may plot o versus S at the lowest
temperature of 3mK (fig. 33); the linear behavior above the tail immediately
implies a critical exponent of 0.5 for o.

Note that the data include zero temperature conductivities well below Mott’s
minimum value o, and are therefore clearly inconsistent with this possibility
shown in fig. 28a. Further, the exponent for the critical onset disagrees with



Fig. 33. Inverse donor polarizability (closed circles) and square of
conductivity (open circles) as a function of stress near the critical
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that predicted by the scaling theory for the non-interacting case. However, it
does agree with earlier measurements (fig. 29). This is shown in fig. 34, which
plots both sets of data in a double logarithmic plot covering over two orders of
magnitude in conductivity - the data show no evidence for any discontinuity or
strong anomaly at oy, and add confidence in the obtained value of ».

Finally, fig. 33 also shows the inverse donor dielectric susceptibility in the
insulating phase versus S; the linear variation implies a divergence of the
dielectric constant as n_ is approached from below by a critical form with an
exponent { = 1. This behavior was observed in earlier experiments further from
the transition (Capizzi et al. 1980), and is consistent with the simple argument
given above, according to which { = 2».

10. Tuning with magnetic field

Application of a magnetic field has also been used to induce a MI transition in
barely metallic samples (see Robert et al. 1980, and references therein, Mott
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Fig. 35. The influence of applied magnetic fields on the MI transition in n-InSb samples is shown

in this log~log plot of conductivity versus donor concentration. Increased field strength causes 7,
as measured by the knee of the curve, to move to higher values (Ishida and Otsuka 1977b).
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1981b). The shrinking of the electron orbit due to the field may be sufficient o
reduce orbit overlap to the point where the electrons become localized. In fig.
35 we see data from Ishida and Otsuka (1977b) for n-InSb. The knee in the
curve is interpreted as marking the transition. The most heavily doped sample
stays metallic even at a field of 13.3T while the sample with excess donor
concentration of ~ 10%cm ™3 passes through the transition at ~ 10T. They
find that the condition for the MI transition to occur is (Npa? a))'/? = 0.26,
where Ny, is the donor concentration and a, and a are the Bohr orbit radii
perpendicular and parallel to the field. Unfortunately, the temperature is not
jow enough for an evaluation of the exponent ». [This presents a genuine
problem since systems for which magnetic tuning is feasible (e.g., InSb)
naturally have a small microscopic energy scale <1meV, and hence need
extremely small 7']. Robert et al. (1980) have performed similar experiments
on n-InSb but with the addition of hydrostatic pressure. They find that a given
example will become non-metallic at a lower field with pressure than it does
without pressure.

11. Concluding remarks

We have seen that the variation of the MI transition density n, with stress in
n-doped semiconductors can be theoretically understood, and is a powerful,
experimentally accessible tool for studying the behavior of systems near n..
The onset of the zero temperature conductivity determined by this technique is
found to be of a continuous, but critical form ¢ ~ (n — n.)” with » = 0.5, with
no discontinuity or strong anomaly at Mott’s “minimum metallic conductivity”
o The exponent » does not agree with that obtained within a scaling theory
for non-interacting electrons (or with the percolation exponent for conductiv-
ity). This discrepancy is supported by the divergence of the static dielectric
constant in the insulator which is characterized by an exponent { = 1.0 = 2».
One may speculate that this indicates the relevance of electron interaction
effects. [In the opposite limit of electron correlations with no disorder, the
transition is known to be first order (v =0): the experimental results lie
midway between the two extremes.] Scaling theories for interacting electrons
have been put forward by McMillan (1981) and very recently by Grest and Lee.
(1983); the latter calculation gives »=0.6 and {/v=12%, not far from the
experimental results in Si:P.

Further, the continuity between the o <oy and ¢ >0y, results (fig. 34)
suggests that the critical region is larger than oy, perhaps ~ o (eq. 7.3). In
fact, a reanalysis of the scaling picture in the weak scattering limit for
many-valley systems (Bhatt and Ramakrishnan 1983) yields a conductivity
scale o, ~ 120y for Si, in excellent agreement with the prefactor seen experi-
mentally (fig. 29). This restores the critical region from its assumed anomalous
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narrowness of ~ 1072 to a more reasonable value. Additional evidence in
favor of the larger scale is that it corresponds to the value when strong
departures occur from the conductivity calculated either (a) using the Kubo
formula with a Fermi surface density of states obtained from the experimental
low temperature electronic specific heat (Thomas et al. 1981b), or (b) that
deduced for a free electron gas with Thomas-Fermi screened impurities (fig.
29).

Very recently, precision tunnelling and transport measurements have been
carried out in amorphous Nb Si,_, alloy system (Hertel et al. 1983) as a
function of Nb concentration. They too obtain a continuous onset with ¢(0)
values much below oy, but with an exponent » = 1.0, perhaps because their
system is partly compensated. This larger value of the conductivity exponent
had been indicated in compensated semiconductors (Thomas et al. 1982a) as

20 T T _ T

Si:p Ge: sb
K~0  x<5%

15 -

asi:Nb \\\\\.\
——=""""LOCALIZATION(1 -valley)
| 1 |
0 1 2 3 4
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Fig. 36. Plot of 6(0)/ay against (n—n.)/n, for the Si: P system (see fig. 27), the Ge: Sb system
with various degrees of compensation and aSi:Nb. Increasing compensation, pushes the data
closer to the localization result (dashed line) (Thomas et al. 1982a).
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well as in amorphous Au ,Si, , (Nishida et al. 1982), though these measure-
ments did not probe as close to the transition (see fig. 36). It would clearly be
of great interest to do stress tuning experiments in compensated semiconduc-
tors to see if there is a crossover from interaction dominated to disorder
dominated behavior (as the apparent discrepancy in the exponent » would

suggest).
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