Many Body Theory Problem Set 1

Rudolph J. Magyar
October 23, 2000

In the following problems, I use a unit system so that 2 =1 and e = 1.

Problem One

a. The equation of motion is

Substitute

into

to get

da(0)

H=w(d'a+ )
1 1
H = %ﬁQ + imWQ.fZ'Q

using [%;, pr] = @;;. This shows that that a and af can be considered as an
operator factorization of H. Note that these so called creation and annihila-
tion operators satisfy the following commutation relationship,

[a,a] =1
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Write out the commutator explicitly and commute the a and a' in the first
term.

1
d(;(t[)) = —iw(aaTa + ia —a'aa — 5(1)
= —iw(aTaa — a'aa + a) = —iwa
Upon integration
a(t) = a(0)e ™"
b. Given
&T(t) — aT(o)eiwt
And from part a
1 1
to) — = . . N
a'(0) NG [—\/mp(()) + z\/mwx(O)]
SO
! 1 N y 2, —iwt
a(t) = 7 \/ﬁp(()) — iv/mwi(0)] e
1 /1
_ [ Qmwﬁ(t) — imwi(t)}
a'(t) = = L]3(0) + iv/mwz(0) | e™!
2 | Vmw
L 1
[ 2mwp(t) +1 imwx(t)]
Add these
(l(t) + aT(t) — lﬁ(t) _ 1 ]5(0) [ —iwt + iwt} +Z %‘%(0) [eiwt . —iwt}
mw 2mw 2
Solve for p
p(t) = p(0) coswt — mwz(0) sin wt
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To get z, subtract

Solve for
1
r(t) = 2(0 t+—p(0)sinwt
z(t) = 2(0) cosw +mwp( ) sinw

c. We know that (¢) and (p) obey the Erenfest theorem and we can write:

@ _
dt m
(p) ,

And they are equivalent to classical equations when (V') = (V). If dispersion
(Aq)? = (¢?) — (¢)? of wave packet is small then we can write:

V'(q) = V() + (g — {a)Vi + (¢ — (0))*V7 + ...

We see that V/ = V) if all term higher that V" are equal to zero. Harmonic
oscillator potential has quadratic form and hence quantum and classical equa-
tion of motion look similar.

Problem Two

8= 2 (cer +ler)
: Loy f
Sy = —5¢ (CTCl — CLCT)
& _Lg
z = 9 (CTCT clcl)



Check commutators
Sz, S, = —i [ $clc$cl + CICTCJ{CL — CICTCICT — CJ{CLCICT}
—I—i [c%lc%l + CJTrClCICT - CICTCICT - CICTC%J
Use
{crchi} = 0o

Normal order. Because c,c, = 0 and clcl = 0, several terms vanish.

|

1

5 A l
1S, 9] = ~2 HCT@CL + c]cchcT cIclckl - CTCTQCT}

{
w4l
4
bt ol
= [ creepe) + CTCl —cjccicr + clcT + clcTclcl + cTclcTc

. n-Jk

teol torel to ol
—— {+CTCTCLCT + clclcTcl - cJ{cIclcl + CTCL — CICTCTCT + clcd
1

= —52 (CTCl + clcT) —iS,

W

5., 5,] = i {cchkl - cIclckl cIclclcT + CTCTQCT}

_i {cklﬂq - c$clclcl - CICTCICl + CLCTCTCT}

= i [—cJ{cJ{cTCL + cJ{cl + cicqu + cIcIclcT CICT - CTCLCTC }
—I—i [—I—c$c$clq CJ{CICLCL + CTCl - CICIClCl + CLCTCTCT - clc }

= % (cJ{cl — CICT) = 2(—%) (CJ{CL — CICT) = igy
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Sz, Syl = I [—cIckTCl + c{cl + C$CICLCT - cJ{cT + c$c{clcT + cIcl - CICT

T

)

T
TCTCl — CTCT}

A

=15,



Problem Three
We start with

H= Zaa] —l— Za akanzﬂé L

7,67)\|r7r’\|k,’n>
”kn 4 |r — /|

Insert the completeness relationship once in the first term, four times in the
next term. Rewrite the result equation in terms of wave-functions.

- Z / d giaiam: (r) V26, (r)

Zaaakan/(f’ dgli

z]kn |I'—I',|

T (1) () 0y (1) )

Use the definitions of

r) = 365,

= ¢i(r)a]

to do the sums over the 7,7, etc. We get

1
v — |

== [ o) VPu() / dr dr' ¢ ()i () ey Y (r)

which is what we wanted.
b. Fourier transform everything. The following will be useful:

k Cx ezk-r

1 3 A iq-(r—r’
1= gl o

it (ka—ki)

5(k2 — kl) = (2




Plug these into the result from part a.

1 1 .
H = e | € Pl @l gk e 70
A 1 3. 3.0 13 3 31, 131/ 13
+—167r3(27r)6/drdr d’ky d°ky d°k d°k’ d°q

1 Fog . . oyl
i(ki+q—k)r _i(ka—q—k’)-r
———=C,, Gy,  Ck/CkE e
g2+ N

Pick out delta functions and do integrations over them.

1 1
H = G | % 5k
A 1
i T
o [ R i ka0

Problem Four
Show

efa(ané)(nlf%) _ 167% Z eao’(annl)
2 o==%

To prove, I'll manipulate each side into suggestive forms and then show that
both sides are the same. First, consider the left hand side of the equality.

lhs — e-am=3)m—-3) — ~§+3a(ni+n;)—anin,

I put the absolute value sign to remind us that cosh(z) = cosh(—x).

For fermions, n, = 0 or 1.

If ny =1and n| =1, then |ny —n| =0

If ny =0 and n| =0, then |n; —n;| =0

If ny =1and n =0, then |ny —n|| =1

If ny =0and n| =1, then |ny —n|| =1

In the first two cases, the hyperbolic cosine term, cosh(a|n; —n,|), gives one.
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In the latter case, we can use the relation cosh +a = 3% and rewrite the
r.h.s. Equate the r.h.s. to the l.h.s and factor out common multiples of e~ 1.
Take the log of both sides. We’ll be left with

1 1
—anny + a(ng +ny) = galng —ny

Finally, I show that for all pairing of n, = 0, 1 this equality will be satisfied.
If ny =1andn; =1, then —a+a =10

Ifny =0andn; =0,then 04+0=0
If ny =1 and n; =0, then 0+ a =
If ny =0and n; =1, then 0+ 3a = 3
so our relation is true for fermions. All of this could have been rewritten in
matrix notation.

Problem Five

a

N[N

= Z eaaiaa
(07

a. I use v instead of what’s on the homework assignment so that I can keep
the labels straight. [ has a negative sign so that the partition function is
bounded.

Trace[ —fHo T } {;}({n }\[ —AHo Taw} [{ni})

where |[{n;}) stands for a many particle state with a set, {n;}, of occupation
numbers. ala, acting on [{n;}) returns 0 or 1 depending on whether there
is a fermion in state v - Alas, the notation is a bit degenerate - We can
likewise get the eigenvalues for the operators in the H-potential. I will use
e>ostuff _ I oStuff

, and write

Trace [e’ﬁH‘)aT } ZH {nl}]{ —feaalaay, aw {n;:})

{n;} @

Now, I let the density operators act on the various v states.

Trace [ —BHo o1 7} = Z ”vH {e’ﬁeana}
{ni} «



Take the term which was generated by the state v out of the product.

Trace [e_ﬁHOagaw} — Z nwe—ﬁﬁv”w H {e—ﬁeana}
{ni} oty

Do the sum over occupation numbers {n;} with n, =1 or 0.

Trace {e’ﬁHOaLav} = e~ Per H {1 + e’ﬁea}

aFEy
b. Solve
Trace {e_ﬁH‘)avaH = —Trace {e_ﬁH‘)agav} + Trace [e_ﬂHo]

using {aq,al} = 1. We know the first term on the left from part a. The
second term doesn’t take too much effort to get.

Trace [e*ﬁHo} = {nz:}l;ﬂ{m}’ (67&“"“) H{ni}) = 1;[ (1 + e’ﬁea)

So

Trace {e’ﬁHoava” = —e P H [1 + e*ﬂea} + H (1 + e’fk“)
aFy «a

e P L+ e o —Bea
_[_1+€ﬁ€a—|—1+eﬁea]1;[(l+e )

Which can be rewritten

Trace [e_ﬁHO&yaH = Hﬁ H (1 + e_ﬁea)

c. Noting that

_ 1 0 _
€ ﬁHO@L@”Y - iG] 3676 ﬁHO
We can find
1 0
Trace {e’ﬁHOaLav} = —Ea—evTrace [e’ﬁHo]
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. From earlier,

Trace [e‘ﬁHO} =1] [1 + e—ﬁﬁa}

whence it follows

Trace {e’ﬁHOaLav} — ¢ Per I1 {1 + e*ﬁea}

aFEy
which is what I got in part a.
d.
7 = Trace [e’ﬁHo] = H {1 + e’ﬁea}
and

Trace {e‘ﬁHoaiaw} — o P&y H {1 + e—ﬁea}
aFy
—Be
= o e

SO

(n,) = Trace {e_ﬂHoal;ay} /Trace [e_ﬂHO}
1
T 1+efe

e. For bosons,
[CL, aT] =1

First, we get the partition function. Notice that all for each n;, all positive
integer values are allowed. The sum is a geometric series and can be done
explicitly.

Trace [e‘ﬁHO} =7 = Z He—ﬁewa
{n;} «

1
=1l



Then, we use a nice little trick.

Trace {e’ﬁHoaiaw} = —%%Trace [e’ﬁHO}
e_ﬂea7 1

T 1 - e e o 1 — e B

(n,) = Trace {e’ﬁHoaiay} /Trace [e’ﬁHO}
1
1 —ePer
When one of the energies is zero or  — 0, the bose function diverges, and
we get a condensate.

Finally, I need to find Trace {e*ﬁHOawaH. Use the commutator to shuffle
terms.

Trace [e‘ﬁHoayaH = Trace {e‘ﬁH‘)a;aw} + Trace [e‘ﬂHo] =(n)Z+Z

f. We work with bosons.

[a’w HO] = Z €a [a’w allaa]

«

=Y elasala, — alaqa,] + € a,, avcﬂy]

aFy

= Eyly

[ai, Hy| = Z ea[ai, aLaa]

[}

= € [GLGLCM - alaaau + ey[ai, aiay]
aFy

— —edl

So [Hy,a,] = —€ya, and [Hy, al] = e al.



So commuting the a and a's past the H, we find

()= (0e)
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