
Solution to Problem Set 3

First we will consider the scattering of a neutron by a single spin. If the spin is due to
an electron, the magnetic dipole moment is ~m = 2µB

~S, where ~S is the spin operator and can
be represented by Pauli matrices as ~S = ~σ/2. The vector potential due to a magnetic dipole
moment ~m is,

~A(~r) = −µ0

4π

[
~m× ~∇

(
1

r

)]
, (1)

from which the magnetic field can be calculated as,

~B(~r) = ~∇× ~A(~r)

=
µ0

4π

[
3 (r̂ · ~m) r̂ − ~m

r3
+ 4π~mδ3(~r)

]
. (2)

The magnetic moment of the neutron is ~mN = γNµN
~SN , and the magnetic interaction between

the two is given by the Hamiltonian,

H = −~mN · ~B

= λ~SN ·
[
~∇×

{
~Se × ~∇

(
1

r

)}]

= λ (SN)i εimk∂mεkjl (Se)j ∂l

(
1

r

)
, (3)

where λ = 2µBγNµNµ0/4π.

To calculate the scattering cross-section for the neutron with incident wave-vector ~k and
final wave-vector ~k′, we have to evaluate the matrix element 〈 k|εimkεkjl∂m∂l

(
1
r

)
|k′ 〉. This is

the Fourier transform of the potential that the neutron experiences. The calculation is done
using the trick (thanks to Chaikin & Lubensky),

1

r
=
∫

d3q

(2π)3

4π

q2
e−i~q·~r. (4)

Then,

〈 k|εimkεkjl∂m∂l

(
1

r

)
|k′ 〉 = εimkεkjl

∫
d3rei~q·~r∂m∂l

(
1

r

)

= εimkεkjl

∫
d3rei~q·~r∂m∂l

∫ d3k

(2π)3

4π

k2
e−i~k·~r

= −4πεimkεkjl

∫
d3k

(2π)3

kmkl

k2

∫
d3rei(~q−~k)·~r

= 4π
(
qiqj − q2δij

) 1

q2
, (5)

where ~q = ~k − ~k′.
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The matrix element for the transition of the neutron from an initial state of wave-vector ~k
and spin state |s 〉 and the elctron in the initial spin state |σ 〉 to corresponding final states ~k′

and |s′ 〉 for the neutron and |σ′ 〉 for the electron is,

〈 ks; σ|H|k′s′; σ′ 〉 = 4πλ〈 s|(ŜN)i|s′ 〉〈σ|(Ŝe)j|σ′ 〉(qiqj − q2δij)
1

q2
. (6)

In Born approximation the differential scattering cross-section for the neutron is given by,

(
dσ

dΩ

)
~k,s→~k′,s′

=
(

mN

2πh̄2

)2 ∑
σ,σ′

P (σ) |〈 ks; σ|H|k′s′; σ′ 〉|2 . (7)

Here P (σ) is the probability of the electron to be in the spin state |σ 〉. The summation over
the electron spins can be done easily and we have,

∑
σ,σ′

P (σ)〈σ|(Ŝe)j |σ′ 〉〈σ′|(Ŝe)k|σ 〉 = (
1

4
)δjk, (8)

if the electron has an equal probability to be in up and down states. Then, combining equations
(6), (7) and (8) we have,

(
dσ

dΩ

)
~k,s→~k′,s′

=
(

mN

2πh̄2

)2

(4πλ)2(
1

4
)
(
q2δij − qiqj

) 1

q2
〈 s|(ŜN)i|s′ 〉〈 s′|(ŜN)j |s 〉. (9)

If the neutron is initially in the state | ↑ 〉 and finally in | ↓ 〉, then the scattering cross-section
is,

(
dσ

dΩ

)
~k,↑→~k′,↓

=
(

mN

2πh̄2

)2

(4πλ)2 1

q2

{
〈 ↑ |(ŜN)x| ↓ 〉〈 ↓ |(ŜN)x| ↑ 〉(q2 − q2

x)

+ 〈 ↑ |(ŜN)x| ↓ 〉〈 ↓ |(ŜN)y| ↑ 〉(−qxqy) + 〈 ↑ |(ŜN)y| ↓ 〉〈 ↓ |(ŜN)x| ↑ 〉(−qyqx)

+ 〈 ↑ |(ŜN)y| ↓ 〉〈 ↓ |(ŜN)y| ↑ 〉(q2 − q2
y)
}

=
(

mN

2πh̄2

)2

(4πλ)2(
1

4
)2
(
1 + cos2 θ

)
. (10)

Similarly, we can show that,

(
dσ

dΩ

)
~k,↑→~k′,↑

=
(

mN

2πh̄2

)2

(4πλ)2(
1

4
)2 sin2 θ. (11)

Now we consider, instead of a single spin, a regular array of spins in a lattice. Let the
position of the spins be ~Rα. The magnetic moment per unit volume of the sample is defined
as,

~m(~r′) =
∑
α

~mαδ(~r′ − ~Rα), (12)
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where ~mα is the magnetic moment of the spin at ~Rα. The magnetic field created by the array
of spins is,

~B(~r) = −
(

µ0

4π

)
~∇×


~mα × ~∇


 1∣∣∣~r − ~Rα

∣∣∣





= −
(

µ0

4π

)∫
d3r′ ~∇×

[
~m(~r′) × ~∇

(
1

|~r − ~r′|
)]

, (13)

where we have used equation (12) in the last step. The magnetic interaction between the
neutron and the spins is given by,

H = λ~SN ·
[∫

d3r′ ~∇× ~S(~r′) × ~∇
(

1

|~r − ~r′|
)]

= λ
∫

d3r′(ŜN)iεimk∂mεkjlŜj(~r
′) ∂l

(
1

|~r − ~r′|
)

, (14)

where ~S(~r) is the total spin per unit volume of the array. The Fourier transform of the potential
is similar to what we did before, and we have,

〈 k|εimkεkjl∂m∂l

(
1

|~r − ~r′|
)
|k′ 〉 = 4π

(
qiqj − q2δij

) 1

q2
ei~q·~r′

. (15)

The relevant matrix element is,

〈 ks; S|H|k′s′; S ′ 〉 = 4πλ〈 s|(ŜN)i|s′ 〉〈S|Ŝj(~q)|S ′ 〉(qiqj − q2δij)
1

q2
. (16)

Here |S 〉 and |S ′ 〉 are the initial and final spin states of the array. ~S(~q) is the Fourier transform
of the spin of the array and is defined as,

~S(~q) =
∫

d3r~S(~r)ei~r·~q.

In the previous case, where there was a single spin, we considered elastic scattering of
the neutron. This is usually the case, unless the spin has other degrees of freedom that the
neutron can excite. However, now the neutron can exchange energy with the array. This is
what happens in inelastic neutron scattering experiments. The scattering cross-section per unit
energy, called the partial scattering cross-section is defined as,(

d2σ

dΩdE ′

)
~k,s,E→~k′,s′,E′

=
k

k′

(
mN

2πh̄2

)2 ∑
S,S′

P (S) |〈 ks; S|H|k′s′; S ′ 〉|2 δ(ES − ES′ + h̄ω), (17)

where ES is the energy of the array in the spin state |S 〉 and h̄ω = E − E ′, is the energy
transferred from the neutron to the array. The delta function, which ensures total energy
conservation during the scattering, can be represented as,

δ(ES − ES′ + h̄ω) =
∫

dt

2πh̄
e(i/h̄)(ES−ES′+h̄ω)t. (18)
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The summation over the spin of the array gives,∑
S,S′

P (S)〈S|Ŝj(~q)|S ′ 〉〈S ′|Ŝl(−~q)|S 〉e(i/h̄)(ES−ES′)t =
∑
S

P (S)〈S|Ŝj(~q, t)Ŝl(−~q, 0)|S 〉

= χjl(~q, t), (19)

where χjl(~q, t) is the dynamic spin-spin correlation function. The time integral from (18) Fourier
transforms the correlation function,∫

dtχjl(~q, t)e
iωt = χjl(~q, ω). (20)

Using equations (16), (17), (19) and (20) we can write a general expression for the partial
differential scattering cross-section as,(

d2σ

dΩdE ′

)
~k,s,E→~k′,s′,E′

=
k

k′

(
mN

2πh̄2

)2 (4πλ)2

2πh̄

1

q4

(
qiqj − q2δi,j

) (
qkql − q2δk,l

)

×〈 s|(ŜN)i|s′ 〉〈 s′|(ŜN)k|s 〉χjl(~q, ω). (21)

Suppose the neutron is initially in the spin up state, and the detector can detect only down
spins. Then, |s 〉 = | ↑ 〉, and |s′ 〉 = | ↓ 〉.In this case it is easy to see that in equation (21)
indices i, k 6= z. Doing a summation over the appropriate indices in equation (21), and after a
bit of algebra we get the result,(

d2σ

dΩdE ′

)
~k,↑,E→~k′,↓,E′

=
k

k′

(
mN

2πh̄2

)2 (4πλ)2

2πh̄
(
1

4
)

1

q4

(
q4χ−+(~q, ω) + q−q+qjqlχjl(~q, ω)

−q2q+qlχ−l(~q, ω)− q2q−qjχj+(~q, ω)
)
, (22)

where, q+ = qx + iqy and q− = qx − iqy.

If the neutron is in spin up state both initially and finally after the scattering, then |s 〉 =
|s′ 〉 = | ↑ 〉. In this case, we have i = k = ẑ in equation (21).

If both the initial and final neutron beam are unpolarized, then we have to do a sum over
the neutron spins. Since,

∑
s,s′

P (s)〈 s|(ŜN)i|s′ 〉〈 s′|(ŜN)k|s 〉 = (
1

4
)δik,

now equation (21) can be simplified as,(
d2σ

dΩdE ′

)
~k,E→~k′,E′

=
k

k′

(
mN

2πh̄2

)2 (4πλ)2

2πh̄
(
1

4
)

1

q2

(
q2δjl − qjql

)
χjl(~q, ω). (23)

Suppose the spins are ordered in the ẑ direction, with an ordering wavevector ~Q (for fer-

romagnetic ordering ~Q = 0, while ~Q is finite for antiferromagnetic ordering). Then χzz( ~Q) is
peaked and the corresponding elastic scattering cross-section is large.
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