1 Functional Integrals for Fermions

This approach can be extended to Fermions in two formally similar but concep-
tually inequivalent ways :—

In the first we define coherent states of Fermions by allowing to take linear
combination of states with coefficients valued in a Grassmann algebra, i.e., the
algebra generated by 2N anticommuting objects {£;£;i =1, -N}. Any mem-
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We define a fermion coherent state as
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We require that {£,a} = 0 and (fa)Jr =ater
Then it is clear that
aa §) = &a [§)
(€l al = (€l&:
To understand the properties of the Fermionic coherent states consider first a
single Fermion degree of freedom {a,a}. Define

€) = e~¢' o)

{¢{,a} =0 and (fa)T = a'¢*. The overcompleteness relations are easily worked
out

[aedei € = 5 ge(0) - ca )OI - (Oag")1 - )

= 10) (0| +a' |0) (0]a =T

Notice that £ anticommutes with vectors in the Hilbert space containing an odd
number of Fermions in which case
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Finally, notice that if |1;) are vectors in the Fock space with a definite number
of Fermions then (£]¢);) is a grassmann variable which contains an odd number

of 1, if |1;) has an odd number of Fermions and contains an even number of 7,
if |¢;) has an even number of Fermions. Hence:
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This gives an expression for the trace of an operator A which acts on the Fock
space and preserves the number of particles.
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Equipped with these techniques we can write functional integral expression for
Fermi systems in complete analogy with the Bosonic theory.
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To = T,,TN =71 . We express
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and insert at each point a resolution of the identity to find
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Using the expression for the trace of an operator derived earlier one finds

TrU(r, 7') = /dUSdﬂoe’"g”o (o [U(7.7")|10)

_ Ti+1+7i
1 (=5 )ATand H.(n*,n) with * and 7 and replaced by a' and a
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give the normal ordered form of H we find
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(ny = —n5). Notice that if H. contained some explicit time dependence due
to the source or an auxillary field, it should be evaluated at time 7 = %

Proceeding heuristically we could define
Tre—PH — /Dn*Dne—(n*g—Z+Hc(n*m))

where the operator % is defined on the space of functions obeying n(8) = —n(0).



2 The Standard Gaussian Integral:
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using the transformation
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Thus
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expanding to second order.
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